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Multipath interference in a multistate Landau-Zener-type model

Yu. N. Demkov and V. N. Ostrovsky*
Institute of Physics, The University of St. Petersburg, 198904 St. Petersburg, Russia

~Received 1 June 1999; published 10 February 2000!

The bow-tie model is a particular generalization of the famous two-state Landau-Zener model to an arbitrary
number of states. Recently, solution of the bow-tie model was found by the contour integral method@V. N.
Ostrovsky and H. Nakamura, J. Phys. A30, 6939 ~1997!#. However, its physical interpretation remained
unclear, because the model implies simultaneous strong interaction of all the states apparently irreducible to
any simpler pattern. We introduce here a generalized bow-tie model that contains an additional parameter«
and an additional state. It includes the conventional bow-tie model as a particular limiting case when«→0. In
the generalized model all the state-to-state transitions are reduced to the sequence of pairwise transitions and
the two-state Landau-Zener model is applied to each of them. Such a reduction is well justified at least in the
opposite limit of large parameter«. Several paths connect initial and final states; the contributions of different
paths are summed up coherently to obtain the overall transition probability. The specialET ~energy and time!
symmetry intrinsic for the generalized bow-tie model results in a particular property of interference phases:
only purely constructive or purely destructive interference is operative. The complete set of transition prob-
abilities is obtained in a closed form. Importantly, the results do not depend on the parameter«. In the limit of
conventional bow-tie model all previously derived results are reproduced. This amounts to rationalization of
the bow-tie model by its interpretation in terms of multipath successive two-state transitions.

PACS number~s!: 34.10.1x, 32.80.Bx, 32.60.1i
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I. INTRODUCTION

Many quantum problems of practical significance are
ducible to the nonstationary Schro¨dinger equation considere
in the finite basis ofN states. Among them, the case wh
the Hamiltonian matrixH depends linearly on timet,

H~ t !5Bt1A, ~1.1!

is distinguished by its basic simplicity combined with cap
bility to model general situation. In Eq.~1.1! A and B are
time-independent HermitianN3N matrices that generally do
not commute. The expression~1.1! can be considered as
linear approximation to the Hamiltonian matrix with gene
time dependence. We choose the basis of states in which
matrix B is diagonal:

Bjk5b jd jk . ~1.2!

The diagonal elements of the Hamiltonian matrix

H j j 5b j t1« j , « j[Aj j ~1.3!

are nameddiabatic potential curves. They are slanted
straight lines with the slopesb j . The nondiagonal element

H jk5Ajk[Vjk ~ j Þk! ~1.4!

describe thecoupling between the diabatic basis state
These coupling matrix elements are time independent.
number of statesN depends on the approximation used
describe physical system that usually is infinite dimension
The HamiltonianH(t) ~1.1! is a straightforward generaliza
tion of the famous two-state (N52) Landau-Zener mode
@1#. Actually almost simultaneously with Landau and Zene
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similar two-state model was suggested and solved also
Mayorana@2#. Later the model was rediscovered by Wann
@3# and Horwitz @4# and directly tested experimentally b
Chigir @5#.

In many applications one is interested in a description
the time propagation in a general quantum problem when
HamiltonianH(t) varies slowly with time@6#, i.e., when it
depends ont5vt wheret is reduced time variable andv is
small velocitylike parameter. Description of thisadiabatic
case essentially uses theadiabatic potential curvesEn(t) and
the adiabatic statesxn(t) that are defined, respectively, as th
time-dependent eigenvalues and eigenstates of the inst
neous HamiltonianH(t): H(t)xn(t)5En(t)xn(t). The addi-
tional condition ^xnuẋn&50 introduced originally by Born
and Fock @7# fixes the time-dependent phases of diaba
states; in case of realH(t) it implies that the eigenfunctions
xn(t) are essentially real~within a time-independent phas
factor!. For the Hamiltonian~1.1! at largeutu the adiabatic
potential curves asymptotically approach the diabatic curv

The crossings of the diabatic potential curves corresp
to theavoided crossings, or pseudocrossingsof the adiabatic
potential curves, with the splittings increasing asVjk grow.
Born and Fock@7# assumedcontinuoustime-dependence o
the HamiltonianH(t) and showed that asv→0, the prob-
ability of transition between the adiabatic states tends
zero, being proportional tov in nondegenerate case or
some power ofv in degenerate case. Landau@8# noticed that
if the HamiltonianH(t) is an analytical function of time,
that holds in the most interesting cases, then the transi
probability is exponentially small. This is exemplified by th
two-state Landau-Zener model, as discussed in Sec. IV A

The transitions between the adiabatic states are know
be localized in the vicinities of the avoided crossings. T
circumstance allows one to develop an approximate met
to construct solution of nonstationary Schro¨dinger equation
applicable when only pairwise crossings occur between
©2000 The American Physical Society05-1
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YU. N. DEMKOV AND V. N. OSTROVSKY PHYSICAL REVIEW A 61 032705
diabatic potential curves. The two-state Landau-Zener mo
is employed in the vicinity of each avoided crossing. In b
tween the pseudocrossings adjacent on the time scale
purely adiabatic time propagation is operative. This me
that the phase* tEn(t8)dt8 is gained in thenth adiabatic state
This scheme implies a simple factorized form of the tim
propagation operator being extensively used in the ato
collision theory@9#.

The factorization scheme could be conveniently cast a
multipath interferenceproblem. The time evolution is asso
ciated with propagation along some path in the netw
formed by potential curves. Each path presents some
quence of pieces of potential curves; the leaps from
curve to another occur at the crossing points. The factor
tion approach allows one to ascribe some amplitude
propagation along each path. Generally, several paths
nect initial and final states; only the paths with propagat
forward in time should be taken into account. The contrib
tions of different paths are summed coherently, i.e., w
account for the phases gained along each path. This imp
interference effects.

The multipath propagation scheme certainly is valid wh
different pseudocrossing regions do not overlap that occ
in the limit of small couplingsVjk . Fortunately, it seems tha
the factorization approach often works well in a mu
broader range. An important insight is provided by the e
actly solvable generalized Landau-Zener models.

Discussing the possibility to find an analytical solution
the multistate generalized Landau-Zener model, whenN.2,
one naturally appeals to the fact that commonly the proble
with linear time dependence are efficiently solved by us
the Laplace transformation. The latter plainly reduces
problem to single first-order differential equation in the ca
when only one coefficientb j is nonzero. This gives the
Demkov-Osherov@10,11# model ~see also bibliography in
Ref. @10#!: one slanted diabatic potential curve crosses p
allel set of horizontal curves~of course, a trivial phase trans
formation makes the horizontal curves also slanted but w
equal slopes!. The remarkable property of the Demko
Osherov model is that for it the factorization scheme p
vides exact transition probabilities for arbitrarily large co
plings, i.e., when the strong-coupling regions for vario
pseudocrossings overlap substantially. Note, however, th
this model one important physical effect is not operati
namely there is no multipath transitions and interference

A less obvious case when the Laplace transformation
reduces problem to the first-order differential equation c
responds to the so-calledbow-tie model~see Sec. II for de-
tails!. Originally it was solved by Carroll and Hioe@12# for
the particular caseN53, but the method employed could n
be extended to largerN. Harmin @13# discussed the model in
connection with transitions within a manifold of Rydbe
states. Brundobler and Elser@14# presented a solution in
form of contour integral for an arbitrary number of statesN
but did not find the transition probabilities. The latter go
was achieved recently by Ostrovsky and Nakamura@15#.
However, the appealing physical interpretation was
given. Resolution of the latter problem appeared to be ho
less, since the bow-tie model impliessimultaneous strong
03270
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coupling of all N statesthat apparently could not be disen
tangled and reduced to some simpler situation such as a
quence of two-state transitions. Therefore the factorizat
scheme was not applicable.

In the present paper we show that the bow-tie mo
could be considered as a particular limiting case of the g
eralized bow-tie model~Sec. III!. The latter allows an ap-
pealing reduction to the sequence of pairwise transitions
tween the states. We succeeded~Sec. IV! in finding the
closed-form expressions for all transition probabilities wit
out actually solving the nonstationary Schro¨dinger equation
but by using the factorization scheme discussed above.
arguments presented in Sec. VI strongly suggest that
generally approximate scheme provides exact results in
particular case of the generalized bow-tie model as well a
some other situations~Sec. VI B!. This conclusion is fairly
supported by the fact that we are able to reproduce all
results obtained earlier for the bow-tie model@15#. For this
we plainly consider an appropriate limit~Sec. V! of the prob-
abilities derived for the generalized bow-tie model. This d
velopment amounts to physical rationalization of the bow-
model via the factorization scheme, i.e., by interpretation
the model solution as a sequence of pairwise transitions
tervened by plain ‘‘phase gain’’ time-propagation regio
without transitions.

As mentioned above, the important feature of the exac
solvable Demkov-Osherov model is that only one~or none!
path connects any initial and final state. This means tha
interference is operative in this model. It was tempting
suggest that the absence of interference is a necessary
erty of any exactly solvable model. The present study sho
that this guess is incorrect by providing a counterexamp
the exactly solvable generalized bow-tie model includes m
tipath interference~Sec. IV C!, albeit in a quite peculiar situ-
ation. Namely, the specialET symmetry intrinsic for the
model leads to a particular property of interference phas
only purely constructive or purely destructive interference
operative. The full account for the multipath interference
the exactly solvable model seems to be an achievemen
general interest in the present study.

Before concluding the introductory discussion we me
tion another subclass of Landau-Zener-type models wh
some important advancements were made. In these mod
set of parallel diabatic potential curves is crossed by ano
set of parallel curves. In the simplest case both sets con
only two curves (N54) @16,17#. The larger sets were als
considered with particular attention paid to the crossing
two infinite bands of equidistant potential curves@20–22#.
Two essentially different approaches were employed: dir
construction of the time evolution operator in the spirit
factorization scheme@18,19# and ab initio solution of the
non-stationary quantum problem@20–22#. Interestingly, the
similar mathematical models are considered in appare
very different theory of transitions in quantum networ
@23#. Among the vast realm of nonlinear nonstationary mo
els we mention the recent solution of the time-depend
quadratic problem with the inclusion of phase interferen
effects by Teranishi and Nakamura@24#.
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MULTIPATH INTERFERENCE IN A MULTISTATE . . . PHYSICAL REVIEW A 61 032705
II. BOW-TIE MODEL

In the bow-tie model the diabatic potential curves are~i!
linear in time and~ii ! all of them cross at some moment
time, that could be chosen as zero. The energy at which
multiple crossing occurs is naturally chosen as the origin
the energy scale that corresponds toAj j [0 in Eq. ~1.1!.
Hence in the diabatic basis the diagonal matrix element
the HamiltonianH are

H j j 5b j t. ~2.1!

The nondiagonal matrix elements are time independent, m
of them being zero. The nonzero matrix elements couple
particular state, labeled asj 50, to all other states:

H j 05H0 j5Vj . ~2.2!

By a trivial phase transformation one always can turn ho
zontal the diabatic potential curve withj 50, i.e., makeb0
50. The convenient way to label all other states is to asc
positive ~negative! indices j to the states withb j.0 (b j
,0) in such a way that largeru j u correspond to largerub j u,
i.e.,

. . . ,b23,b22,b21,b050,b1,b2,b3, . . . .
~2.3!

The diabatic potential curves are shown in Fig. 1~a!.
The general solutionuC(t)& of the nonstationary Schro¨-

dinger equation is expanded over the basis of diabatic st
u j &:

uC~ t !&5(
j

cj~ t !u j &, ~2.4!

where the expansion coefficientscj (t) obey the following
system of equations:

i
dc0

dt
5 (

nÞ0
Vncn , ~2.5a!

i
dcj

dt
5b j tcj1Vjc0 ~ j Þ0! ~2.5b!

~unfortunately the latter equation was cited previously@15#
with a misprint!. Solution of these equations carried out
the contour integral method@15# produced probabilities o
transitions between all combinations of initial and fin
states.

III. GENERALIZED BOW-TIE MODEL

The diabatic potential curves of the bow-tie model F
1~a!, as well as their adiabatic counterparts~considered in
Ref. @15#, see also Appendix A! are symmetrical with respec
to the simultaneousET reflection:$E⇒2E, t⇒2t%. Here
we suggest a generalization of the bow-tie model in wh
this key property is retained. Namely, we replace the sin
stateu0& with two statesu01& and u02&. Just as the origina
u0& state, these two states correspond to horizontal pote
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curves that, however, are shifted respectively by6 1
2 «:

H01015
1

2
«, H020252

1

2
«. ~3.1!

It is assumed that these states are not coupled to each o

H01025H020150. ~3.2!

FIG. 1. Diabatic potential curves for the bow-tie model~a! and
the generalized bow-tie model~b!. In both cases the potentia
curves are linear. The slanted potential curves are labeled by int
quantum numbersj with j .0 for the curves with a positive slop
b j and j ,0 for the curves with a negative slopeb j , larger values
of u j u corresponding to larger values ofub j u. All these curves cross
simultaneously at the pointt50, E50. In the bow-tie model all the
diabatic states are coupled only with the single state that is lab
as 0 and corresponds to horizontal potential curve. In the gene
ized bow-tie model the horizontal potential curve is ‘‘doubled
i.e., replaced by two curves 02 and 01 that correspond, respec
tively, to the energies2 1

2 « and 1
2 «. The coupling with the slanted

potential curves is ‘‘shared’’ between 02 and 01 states~see text for
detail!. The pairwise crossings between horizontal and slanted
abatic potential curves are marked by blocks. Note that due to
well-known optical illusion a human eye perceives horizontal lin
01 and 02 as slightly curved. The adiabatic potential curves a
shown by dots.
5-3
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YU. N. DEMKOV AND V. N. OSTROVSKY PHYSICAL REVIEW A 61 032705
The slanted diabatic potential curves are not changed
compared with the bow-tie model. The related statesu j & are
coupled to the horizontal statesu01& and u02& by identical
couplings parametrized as

H01 j5H j 015H02 j5H j 025
1

A2
Vj . ~3.3!

The diabatic potential curves for the generalized bow
model are shown in Fig. 1~b!. Equations~2.5! are now re-
placed by their generalizations:

i
dc01

dt
5

1

A2
«c011 (

nÞ06

1

A2
Vncn , ~3.4a!

i
dc02

dt
52

1

A2
«c021 (

nÞ06

1

A2
Vncn , ~3.4b!

i
dcj

dt
5b j tcj1

1

A2
Vjc011

1

A2
Vjc02 ~ j Þ0!.

~3.4c!

In the limit «→0 the horizontal statesu01& and u02&
become degenerate, and it is natural to introduce the lin
combinations

u0&5
1

A2
@ u01&1u02&], ~3.5a!

ud&5
1

A2
@ u01&2u02&]. ~3.5b!

One can straightforwardly see that for«50 the stateud& is
fully decoupledfrom all the other states,

H jd5Hd j5H0d5H0d50, ~3.6!

whereas for the stateu0& all the Hamiltonian matrix element
H0 j are the same as in the conventional bow-tie model@see
Eq. ~2.2!# @note that the factor 1/A2 in the parametrization
~3.3! is chosen so as to reproduce this limiting case with
notations of Sec. II retained#. This means that in the limi
«→0 the generalized bow-tie model is essentially reduce
the original bow-tie model.

Concerning the adiabatic potential curves in the gene
ized bow-tie model we note, first of all, that they could
found analytically in case of symmetric four-state mod
(N54) when two slanted diabatic potential curves cor
spond to equal couplings (V15V21) and slopes of opposite
sign (b2152b1):

E~ t !56
1

A2
Fb1

2t21
1

4
«212V1

2

6AS b1
2t22

1

4
«212V1

2D 2

12«2V1
2 G1/2

. ~3.7!
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All four curves correspond to different branches of uniq
analytical functionE(t) ~3.7! defined on the four-sheet Rie
mann surface of complex-valuedt variable. The choice of the
sheet~i.e., of the particular potential curve! corresponds to
the choice of6 signs in the expression~3.7!. It is worth-
while to note that two adiabatic potential curvescross ex-
actly at the central pointC: t50, E50 just as the diabatic
curves; two other curves correspond to 01 and 02 diabatic
curves repelled by the indirect coupling via the slant
curves: E(0)56A«2/412V1

2. It is easy to see how this
property is generalized in case of arbitrary number of sta
N. Here fort50 two adiabatic potential curves have energ

E~0!56A1

4
«212(

n
Vn

2. ~3.8!

All other (N22) adiabatic potential curvescross exactlyat
the pointt50, E50.

Generally, as discussed in the Introduction, the crossi
of diabatic potential curves correspond to the pseudocr
ings of adiabatic curves. In the generalized bow-tie mo
this refers to the crossings between the slanted diab
curves and either 01 or 02 curve @these crossings ar
marked by blocks in Fig. 1~b!#. If the couplingsVj are small,
all the pseudocrossings are well separated. Otherwise the
jacent pseudocrossing regions might strongly overlap. T
pattern of adiabatic potential curves in the generalized b
tie model is illustrated by Fig. 1~b!. The plot was constructed
by actual diagonalization of the Hamiltonian matrixH(t) for
some choice of couplingsVj that are not listed here. We onl
mention that both weak- and strong-coupling cases are
resented in Fig. 1~c!. For instance, the couplingV21 is small
and the related pseudocrossings@within (21,01) and
(21,02 pairs!# are well isolated. The couplingV3 is large
and the related broad pseudocrossing exhibits strong ove
with its neighbors.

In the present study we do not pursue solution of
dynamic Eq.~3.4!. Instead we reduce the multistate proble
to the sequence of pairwise transitions and find transit
probabilities under this presumption. Such a reduction is p
sible only within thegeneralizedbow-tie model where the
interactingpotential curves cross only in pairs~as seen from
the model statement, the interacting pairs include any slan
curve and one of two horizontal curves!. On the contrary, in
the conventional version of this model only single multip
crossing is present@see Fig. 1~a!# that apparently does no
allow disentangling to some simpler pattern. Of course,
the generalized model, in addition to pairwise crossings
tween diabatic slanted and horizontal curves, there ex
also multiple crossing of slanted curves at the central poinC
@see Fig. 1~b!#. However, this crossing does not induce a
transitions since the slanted curvesdo not interact with each
other. This is clear even from the simplest example~3.7!: all
four branch points of the functionE(t) are associated with
the crossings between diabatic slanted and horizontal cu
and there is no branch point stemming from the central po
C.
5-4
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MULTIPATH INTERFERENCE IN A MULTISTATE . . . PHYSICAL REVIEW A 61 032705
IV. TRANSITION PROBABILITIES IN GENERALIZED
BOW-TIE MODEL

A. Transitions at the crossing of two diabatic curves

According to the standard time-dependent two-st
Landau-Zener model, the probability ofdiabatic passage
~i.e., the nonadiabatic transition probability! is

Pj5expS 2
2pVj

2

ub j u
D , ~4.1!

assuming that one diabatic potential curve is horizontal,
other one has the slopeb j , and the coupling between th
diabatic states isVj . The probability ofadiabatic passage
~i.e., staying in the same adiabatic state! is Qj5(12Pj ) ~see
Fig. 2!. The diabatic passage amounts to transition betw
adiabatic states; its probability is exponentially small, w
the argument of exponent in Eq.~4.1! often referred to as the
Massey parameter.

As discussed above~Sec. III!, in the generalized bow-tie
model the couplingVj is ‘‘shared’’ between two horizonta
states 01 and 02. Namely, each of these two states
coupled to the slanted statej by the coupling (1/A2)Vj .
Hence, if all other states except 01 and j would be absent,
the probabilities of transition for diabatic passage (01⇒01

or j ⇒ j ) and adiabatic passage (01⇒ j or j ⇒01) were, re-
spectively,pj and (12pj ) with

pj5expS 2
pVj

2

ub j u
D . ~4.2!

The same probabilities describe transitions within the i
lated pair of states 02 andj. It is important to emphasize tha
the definitions ofPj andpj differ by a factor 2 in the expo-
nential. This circumstance leads to the remarkable relati

Pj5pj
2 . ~4.3!

FIG. 2. Diabatic~solid! and adiabatic~dashed! potential curves
in the conventional two-state Landau-Zener model. The slanted
abatic curvej crosses the horizontal curve 0. The diabatic pass
has probabilityPj and the adiabatic passage has probability 12Pj

~see text!.
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Our task is to describe transitions within the generaliz
bow-tie model in terms of independent pairwise transitio
in the spirit of factorization scheme discussed in the Int
duction. One has to consider some path starting from
initially populated potential curve and terminating at t
curve that corresponds to the final state of the specific tr
sition considered. The path goes along some sequenc
intermediate diabatic potential curves: the jump from o
curve to another occurs at the point of crossing of these
curves. Hence the path represents a broken, piecew
straight line. The propagation can proceed only in the dir
tion of increasing time, but not backwards. Each passag
individual crossing is characterized by the probabilitypj of
diabatic passage and the complementary probability
2pj ) of sudden turn~that meansadiabatic passage!. For
brevity we denote the crossings of slanted potential curvj
with the horizontal potential curves 01 and 02, respectively,
asJ1 andJ2 crossings. In the case when several paths
possible for given initial and final states the related amp
tudes are to be summed up coherently.

B. Single-path transitions

We start with the simplest case of transition when on
one path connects particular initial and final states, henc
coherent summation does not emerge. There are three e
tially distinct situations when such a single-path regime
operative. For definiteness below we consider the ini
slanted statej with a positive slope, i.e., the statej .0, or
initial 02 horizontal state. All the results are straightfo
wardly extended to the initialj ,0 or 01 states~see Sec.
IV D !.

1. j\0À transitions

As seen from Fig. 3~a!, the only path possible for thej
→02 transition implies adiabatic passage of theJ2 crossing
followed by diabatic propagation along 02 horizontal poten-
tial curve tot→`. The latter means diabatic passage of
the crossingsN2 with n. j .0 and withn,0. The transi-
tion probability is

Pj→025~12pj !S )
n. j

pnD S )
n,0

pnD . ~4.4!

Note that hereafter in all expressions that include the prod
sign ) the running index is denoted asn(nÞ06).

2. 0À\0À transitions

The only way to achieve the 02→02 transition is to fol-
low along 02 horizontal potential curve passing diabatica
all the N2 crossings with slanted potential curves. The tra
sition probability for this simplest case reads

P02→025)
n

pn[S )
n.0

pnD S )
n,0

pnD . ~4.5!

i-
e

5-5
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YU. N. DEMKOV AND V. N. OSTROVSKY PHYSICAL REVIEW A 61 032705
3. j\k transitions (jÌ0, kË0)

The path shown in Fig. 3~b! implies adiabatic transition o
the J2 crossing, development along 02 potential curve with
diabatic passage of all the crossingsN2 with n. j .0 and
with n,k,0 and finally adiabatic passage of theK2 cross-
ing. The overall transition probability is

Pj→k5~12pj !~12pk!S )
n. j

pnD S )
n,k

pnD . ~4.6!

C. Multipath transitions and interference

If several paths connect initial and final potential curv
then at first the transition amplitude is to be evaluated
each individual path. The amplitudes characterizing vari
paths are to be summed up coherently. The latter step
quires an information about the phases of different contri
tions. The phases are generally comprised of ‘‘geometric

FIG. 3. Single-path transitions in the generalized bow-tie mod
The transition paths are shown by thick broken line with arrows:~a!
j→02 transitions~the casej 53 is shown!; ~b! j→k transitions
with j .0, k,0 ~the casej 53, k522 is shown!.
03270
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and ‘‘dynamical’’ parts. The geometrical phases arise fro
the standard integral*E(t)dt over the path under conside
ation.

The differenceof diabatic geometrical phases betwe
two paths is given by the integralrE(t)dt over the loop
formed by one path passed in the direction of increasing t
and another path passed in the opposite direction. Gene
this phase difference has a simplegeometricalmeaning that
justifies our terminology: it equals thearea of the loopin the
(E,T) plane. In the case of the generalized bow-tie mo
this phase difference is always zero, since the part of the
loop that lies atE.0 exactly compensates the part lying
E,0 ~see Fig. 4!. It should be stressed that this property
the phases follows directly from the specialET symmetry of
the generalized bow-tie model, namely its symmetry un
the reflection$E⇒2E, t⇒2t%. From this we conclude tha
the difference of adiabatic geometrical phases also is zer
this model.

The dynamic phase is the phase increment due to
strong interaction in the domain of intensive nonadiaba
transitions. Conventionally this phase is derived@9# for de-
scription in the basis ofadiabatic states when the relate
potential curvesE(t) are used for evaluation of phase int
grals. These results are not applicable to our scheme b
on diabatic representation. We use the following simple ru
to incorporate the dynamic phase: for the diabatic passag
the crossing the phase is zero; each adiabatic passage in
increment of phase by12 p. In order to support this choice w
consider crossing within an isolated pair of states, the h
zontal one and the slanted one with the slopeb j . Within the
first-order nonstationary perturbation theory in the basis
diabatic states the amplitude of adiabatic passage is ev
ated as

Aj5 i E
2`

`

Vj expS i
1

2
b j t

2Ddt5 iA2p

ub j u
Vj expS i

p

4
sgn~b j ! D

~4.7!

l.

FIG. 4. Diabatic geometrical phases in the generalized bow
model. The pathsJ2⇒(C)⇒J1 and J2⇒K2⇒(C)⇒K1⇒J1

correspond to the same geometrical phase. This is seen from
fact that the phase difference is proportional to the sum of area
two congruent trianglesJ2K2C and K1J1C. The opposite signs
are to be ascribed to these areas since the first path lies high
t,0 whereas the second path lies higher in thet.0 domain.
5-6
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FIG. 5. Multipath transitionj→01 in the generalized bow-tie model~the casej 52 is shown!. Each plot~a!, ~b!, ~c!, ~d! pictures an
individual transition path~thick broken line with arrows! corresponding to intermediate states respectivelym52,3,4,5.
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~it is related to the probability of adiabatic passage discus
in Sec. IV A asQj512Pj'uA j u2). One can easily check
that in all application below the phase in Eq.~4.7! is equiva-
lent to the phase12 p. Indeed, when one evaluates the pha
difference between the interfering paths, the fac
exp@i(p/4)sgn(b j )# in the right-hand side of Eq.~4.7! does
not play role ~the turns clockwise and counterclockwis
compensate each other!. Therefore only the factori in Eq.
~4.7! is effectively operative. Since the number of turns
even, the interference phase could accept only valuesp or
2p depending on the specific path as detailed below.

1. j\0¿ transitions

Various paths for thej→01 transition are shown in Fig
5. The path shown in Fig. 5~a! presents a particular, mos
simple case. It implies diabatic passage of theJ2 crossing
followed by adiabatic passage of theJ1 crossing and subse
quent propagation along the 01 potential curve with diabatic
passage of the crossingsN1 with j .n.0. We denote the
related probability asPj→01

( j ) . It is straightforwardly evalu-
ated as

Pj→01
( j )

5pj~12pj !S )
j .n.0

pnD[~12pj !S )
j >n.0

pnD .

~4.8!
03270
d

e
r

The other paths proceed via the intermediate slanted
tential curve with the positive slopebm larger thanb j @see
Figs. 5~b!–5~d!#. We label this intermediate curve asm(m
. j ). The same indexm is employed also to label the pat
for the j→01 transition. The propagation along themth path
implies adiabatic passage of the crossingJ2 followed by
diabatic passage of the crossingsN2 with n lying in the
interval m.n. j , then adiabatic passage of the crossi
M 2, adiabatic passage of the crossingM 1 and finally diaba-
tic passage of the crossingsN1 with m.n.0. The related
transition probability reads

Pj→01
(m)

5~12pj !S )
m.n. j

pnD ~12pm!~12pm!S )
m.n.0

pnD .

~4.9a!

It is conveniently rewritten as

Pj→01
(m)

5~12pj !S )
j >n.0

pnD S )
m.n. j

pnD 2

~12pm!2.

~4.9b!

The amplitude of transition along themth path has modu-
lus APj→01

(m) . The phase of this amplitude is denoted aswm .
5-7
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FIG. 6. Same as in Fig. 3, but for multipath transitionj→k( j .0, k.0) ~the particular casej 52, k53 is shown!. Plots ~a!, ~b!, ~c!
correspond to intermediate states, respectively,m53,4,5.
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The coherent summation of contributions from differe
paths to find the probability of transitioni→ f generally im-
plies that

Pi→ f5U(
m

APi→ f
(m) exp~ iwm!U2

. ~4.10!

In the present case (i 5 j , f 501) we extend the summatio
in Eq. ~4.10! over m> j in order to embrace contributio
from the pathm5 j @Eq. ~4.8!#. The latter path includes only
one adiabatic passage, whereas all other paths withm. j
imply three adiabatic passages. Consequently, accordin
the rules formulated above, all the phaseswm with m. j
coincide (wm5w), whereas the phasew j differs by p:w j
5w2p. Using these phases and the representations~4.8!
and ~4.9b! we obtain from Eq.~4.10!

Pj→015~12pj !S )
j >n.0

pnD
3U12 (

m. j
S )

m.n. j
pnD ~12pm!U2

. ~4.11!

The summation overm is carried out employing the usefu
formula ~cf. Ref. @15#!
03270
t

to

(
m. j

S )
m.n. j

pnD ~12pm!512)
n. j

pn . ~4.12!

Finally we obtain

Pj→015~12pj !S )
j >n.0

pnD S )
n. j

pnD 2

, ~4.13a!

or, in equivalent form,

Pj→015~12pj !S )
n. j

pnD S )
n.0

pnD . ~4.13b!

2. j\k transitions (jÌ0, kÌ0)

As in the previous case, thej→k transitions proceed via
various intermediate slanted potential curvesm. Figure 6 cor-
responds to the case whenk. j ; the feasible intermediate
states havem>k.

At first we consider separately the intermediate statem
5k @Fig. 6~a!#. The related path implies adiabatic passage
theJ2 crossing followed by diabatic passage of the crossi
N2 with j ,n,k. After that the crossingK2 is passed adia-
batically and the crossingK1 diabatically. This sequence
leads to the following expression for the probability of tra
sition along the pathm5k:
5-8
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Pj→k
(k) 5~12pj !S )

k.n. j
pnD ~12pk!pk

5~12pj !~12pk!S )
k>n. j

pnD . ~4.14!

The casem.k corresponds to more complicated pa
@Figs. 6~b! and 6~c!#. It passes theJ2 crossing adiabatically
then follows the 02 potential curve passing diabatically th
crossingsN2 with j ,n,m. After that the crossingsM 2

andM 1 are passed adiabatically. Subsequently the cross
N1 with m.n.k are passed diabatically. The propagati
is completed by adiabatic passage of the crossingK1. The
probability of transition along this path is

Pj→k
(m) 5~12pj !S )

m.n. j
pnD ~12pm!~12pm!

3S )
m.n.k

pnD ~12pk!. ~4.15a!

The following equivalent representation is convenient
further calculations:

Pj→k
(m) 5~12pj !~12pk!S )

k>n. j
pnD ~12pm!2S )

m.n.k
pnD 2

.

~4.15b!

As in the previous case, we carry out coherent summa
~4.10! ( i 5 j , f 5k) over m>k, taking into account that the
phaseswm5w coincide form.k, whereas form5k one has
wk5w2p ~respectively, two or four adiabatic passag
along the path!. Using formulas~4.14! and~4.15b! we obtain

Pj→k5~12pj !~12pk!S )
k>n. j

pnD
3F12 (

m.k
~12pm!S )

m.n.k
pnD G2

. ~4.16!

The summation formula~4.12! allows us to cast expressio
~4.16! as

Pj→k5~12pj !~12pk!S )
k>n. j

pnD S )
n.k

pnD 2

,

~4.17a!

or, equivalently, as

Pj→k5~12pj !~12pk!S )
n. j

pnD S )
n.k

pnD , ~4.17b!

that coincides with Eq.~4.6!. This is a remarkable and quit
unexpected result: the analytical expressions for the tra
tion probabilities in case of the single-path transitionj→k
( j .0, k,0) proves to be the same as these for the multip
transition j→k ( j ,k.0).

The symmetry of the expression~4.17b! with respect to
permutation ofj andk labels indicates that it applies not on
03270
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for k. j ~as it was presumed in the present derivation!, but
also fork, j . This conclusion could be checked by a simil
direct calculation that we omit here for brevity. However t
transitionsj→ j are to be considered separately.

3. j\ j transitions

The calculations for thej→ j transitions differ from the
previous case only in some details that are emphasized
low. For the intermediate statem5 j ~i.e., for direct propa-
gation along the initial potential curvej ) only two crossings
are met,J2 andJ1, both of them being passed diabaticall
The probability is

Pj→ j
( j ) 5pj

2 . ~4.18!

For the path with intermediate statem(m. j ) the sequence is
as follows: theJ2 crossing is passed adiabatically, the cro
ingsN2 with m.n. j are passed diabatically, the crossin
M 2 andM 1 are passed adiabatically, the crossingsN1 with
m.n. j are passed diabatically, and finally the crossingJ1

is passed adiabatically. The overall transition probability

Pj→ j
(m) 5~12pj !S )

m.n. j
pnD ~12pm!~12pm!

3S )
m.n. j

pnD ~12pj !

5~12pj !
2~12pm!2S )

m.n. j
pnD 2

. ~4.19!

The coherent summation~4.10! ( i 5 f 5 j ) over all fea-
sible paths (m> j ) gives

Pj→ j5Fpj1 (
m> j

~12pj !~12pm!S )
m.n. j

pnD G2

5H pj1~12pj !F12S )
n. j

pnD G J 2

5F11S )
n. j

pnD pj2S )
n. j

pnD G2

, ~4.20!

where we used the same summation formula~4.12! as be-
fore. Note that all the phaseswm effectively coincide in the
present case, since zero or four adiabatic passages are
along the pathm5 j or m. j , respectively.

4. 0À\0¿ transitions

Here all the slanted potential curves withm.0 play the
role of intermediate states. For themth path the crossingsN2

with m,n are passed diabatically, the crossingsM 2 and
M 1 are passed adiabatically and then the crossingsN1 with
m,n are passed diabatically. The probability of transiti
via such a path is

P02→01
(m)

5S )
m,n

pnD ~12pm!~12pm!S )
m,n

pnD .

~4.21!
5-9
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All the phaseswm coincide. The coherent summation is ca
ried out as above:

P02→015F (
m.0

~12pm!S )
m,n

pnD G2

5F12S )
n.0

pnD G2

.

~4.22!

D. Time reversal and detailed balance

The time-dependent Schro¨dinger equation in the genera
ized bow-tie model is invariant under the transformati
$t⇒2t;«⇒2«%. From this we obtain the following ‘‘de-
tailed balance’’ relations:

Pj→k5Pk→ j ~ j ,kÞ06!, ~4.23a!

P06→ j5Pj→07 ~ j Þ06!, ~4.23b!

P01→015P02→02. ~4.23c!

Our derivation above was carried out for initial states w
positive slope, or for initial 02 state, and for all final states
The detailed balane relations~4.23! extend these results t
the initial states with negative slope and to the initial 01

state. Thus the complete set of transition probabilities is
tained. Note that the probabilityP01→02 is unrelated to the
probability P02→01 @Eq. ~4.22!#

P01→025F12S )
n,0

pnD G2

. ~4.24!

The fact thatP02→01 and P01→02 are different is obvious,
since the first probability is governed by the intermedi
states with positive slope, whereas in the second case
negative slope intermediate states are operative.

E. Probability conservation

The following probability conservation conditions are s
isfied:

Pj→021Pj→011 (
kÞ06

Pj→k51, ~4.25a!

P02→021P02→011 (
kÞ06

P02→k51. ~4.25b!

They are easily checked using the summation formulas s
lar to Eq.~4.12!. The complete formulation ofS-matrix uni-
tarity ~i.e., orthogonality of its columns and rows! also could
be checked but it needs identification of phases of transi
amplitudes. We postpone analysis of this issue to the fu
mathematical paper@25#.

V. BOW-TIE MODEL PROBABILITIES AS A LIMITING
CASE OF GENERALIZED BOW-TIE MODEL

The set of transition probabilities in the generalized bo
tie model ~4.4!, ~4.5!, ~4.6!, ~4.13b!, ~4.17b!, ~4.20!, ~4.22!
gives the major result of the present study. For anyj ,k
03270
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Þ06 our results for thej→k transitions probabilities as
given by formulas~4.6!, ~4.17b!, ~4.20! coincide with those
obtained earlier@15# for the conventional bow-tie model
Further, the following relation is easily checked by using t
formulas~4.4!, ~4.13b!:

Pj→011Pj→025S )
n. j

pnD ~12pj !S )
n.0

pn1 )
n,0

pnD
[Pj→0 , ~5.1!

where the right-hand side is the transition probability in t
bow-tie model@15#. The formula~5.1! reflects the fact that 0
state of the bow-tie model absorbs transitionsj→01 and j
→02 in the limit «→0 of the generalized bow-tie model.

At last, for the transitions within the$0102% manifold we
obtain by using formulas~4.5!, ~4.22!,

P01→011P02→021P01→021P02→01511P0→0 ,
~5.2!

P0→05F12 )
n.0

pn2 )
n,0

pnG2

, ~5.3!

whereP0→0 is the probability of the 0→0 transition found
earlier @15# within the bow-tie model. The relation~5.2! re-
flects the fact that in the limit of the bow-tie model the su
in the left-hand side of Eq.~5.2! reduces to the sum of prob
abilities of transitions 0→0 andd→d, where for the fully
decoupled stated @Eq. ~3.5b!# one has identicallyPd→d[1.
The sum

1

2
@P01→011P02→021P01→021P02→01# ~5.4!

can be interpreted as a probability to remain within t
$01,02% manifold averaged over initial states. According
Eqs.~5.2!, ~5.3! it cannot be less than12 . The latter value is
achieved whenP0→050, i.e.,

)
n.0

pn1 )
n,0

pn51. ~5.5!

It is worthwhile to mention that when one considers contin
ous transition from adiabatic to diabatic regime at the in
vidual pseudocrossings, i.e., augments the probabilitiespj
from 0 to 1~that is equivalent to decreasing the couplingsVj
from ` to 0), one inevitably passes the borderline where
condition ~5.5! is satisfied. Note also that among the ent
set of transition probabilities in the bow-tie or generaliz
bow-tie model only one, namely the probabilityP0→0 ~5.3!
in the bow-tie model, can turn zero for some choice of p
rameters. Zero of transition probability is to be attributed
the interference effects, albeit their manifestation in the g
eralized bow-tie model as a minimum in the averaged pr
ability ~5.4! does not look very lucid.

Thus the relation between the transition probabilities
the generalized bow-tie model and the original bow-
model is quite simple and straightforward. The generaliz
bow-tie model could be also related to the Demkov-Oshe
5-10
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model @10# in some limiting situation. Namely, one has
augment« and simultaneously vary the slopes of the slan
diabatic potential curves. If all the slopes tend to two limiti
values ~one for positive slopes and another for negat
ones!, then we obtain patterns characteristic of the Demk
Osherov model: crossing of the diabatic potential curve (1

or 02) by the set of~almost! parallel linear potential curves
Such a pattern is repeated four times~crossings of 01 and
02 curves by the slanted curves with positive and nega
slopes!.

VI. ON JUSTIFICATION OF LANDAU-ZENER-TYPE
MODEL REDUCTION TO SEQUENCE OF PAIRWISE

TRANSITIONS

A. Generalized bow-tie model

A remarkable property of the probabilities derived abo
for the bow-tie model is that they are independent of
parameter«. It leads to far-reaching consequences. Inde
for the fixed couplingsVj one can always choose« large
enough to ensure that the crossings of diabatic poten
curves~or pseudocrossings of adiabatic potential curves! are
well separated inE and t scales to justify reduction of the
problem to the sequence of independent pairwise transiti
Since the expressions for the transition probabilities thus
rived prove to be« independent, one can argue that the f
mulas are applicable also for small values of« and in the
limit «→0.

This heuristic mode of reasoning looks quite convinci
being complementary to rigorous mathematical treatmen
discussed more in Sec. VII. Here we mention some subt
in application of this kind of arguments. To see it consid
the shifted bow-tie modelthat differs from the conventiona
bow-tie model of Sec. II in one respect: the horizontal p
tential curve has some nonzero energye, while the multiple
crossing of slanted potential curves lies, as before, atE50.
One can consider the simplest three-state case when only
slanted potential curves are present with the slopes of op
site sign. At first it seems that only a single path conne
each initial and final state in this model, since the slan
curves are not coupled directly, as presumed in the bow
model. If this would be true, then the interference effe
were absent and the transition probabilities were indepen
of e just as in the case of the generalized bow-tie mod
However, in fact the slanted curves are coupled, albeitindi-
rectly ~via intermediate horizontal curve!, and the Landau-
Zener-type transitions are actually operative in the vicinity
their crossing. This is seen, for instance, from the fact t
the adiabaticpotential curves exhibitpseudocrossingin the
region where two slanteddiabaticcurves cross. Therefore, i
fact, the shifted bow-tie model allows multipath interferen
Consequently, the transition probabilities in this model d
pend on the value ofe. The latter fact was tested in th
numerical example by Brundobler and Elser@14#.

B. Probability of survival on the steepest diabatic
potential curve

The similar reasoning could be applied to evaluation
some particular transition probabilities in the gene
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Landau-Zener-type model discussed in Sec. I. Namely,
evaluatethe probabilities of survivalon the diabatic potentia
curves possessing the largest or the smallest value of
slopeb j . Consider the general Landau-Zener-type mode
Sec. I defined by the set of 3N parameters$« j ,b j ,Vj% and
let bM be the largest slope available. By increasing the va
of the related parameter«M one can always achieve situatio
where the crossings of theM th potential curve with all the
other curves are well separated. In such a case reductio
the time propagation to the sequence of pairwise transiti
is well justified.

The other point is that only a single propagation path
available for theM→M transition. Indeed, at the moment o
time when the initially populated curve with the largest slo
crosses any other curve the latter remains still unpopula
just because propagation in time proceeds only in forw
direction. Therefore at each pseudocrossing betweenM th
and j th diabatic curves only loss of theM th curve population
occurs with the probability of diabatic transition describ
by a standard Landau-Zener expression:

pM j5expS 2
2pVM j

2

ubM2b j u
D . ~6.1!

It is to be emphasized again that the population ofM th state
does not receive any influx from thej th state because th
latter is not populated as discussed above. As a result
probability of survival on theM th curve ast varies from
2` to `, i.e., the probability of the single-pathM→M tran-
sition is evaluated as a product of diabatic-propagation f
tors ~6.1! for all j:

PM→M5expS 2(
n

2pVMn
2

ubM2bn
D . ~6.2!

Since this result does not depend on«M it could be extended
to arbitrary values of this parameter. Previously the form
~6.2! for the states with extremal~maximal or minimal!
slopes was tentatively suggested by Harmin@13# and Brun-
dobler and Elser@14# and tested numerically for variou
choices of parameters inH(t) including the situations with
strong overlap of adjacent avoided crossing regions. Valid
of this formula in the bow-tie model was demonstrated
Ref. @15#.

Note that independence of the transition probabilit
from the value of the parameter« reflects mathematically the
fact that the probabilities do not depend on the geometr
phase difference. This situation emerges not only in cas
single-path transitions as in Sec. VI B, but also for multipa
transitions in the generalized bow-tie model, where the g
metrical phase is always zero due to particularET-symmetry
property of the model.

VII. CONCLUSION

In the present paper, among a variety of feasible mu
state Landau-Zener-type problems we seek those which
low an exact solution with appealing physical interpretatio
We show that the exactly solvable bow-tie model can
5-11
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embedded into the generalized bow-tie model as some
ticular limit of the latter. The dynamics of the generaliz
bow-tie model is interpreted as a sequence of two-state t
sitions each of which is described by the conventio
Landau-Zener model. In the limit of the bow-tie model t
multicrossing pattern is contracted into a point. It seems
the only way to provide an appealing interpretation of t
transition probability in the bow-tie model is to consider it
a limiting case of the generalized bow-tie model as do
above.

The rules used in evaluation of the transition amplitud
could be summarized as follows.

~i! Only forward propagation in time is to be considere
~ii ! Only the phase factors are gained in the course of t

propagation between crossings of adiabatic potential cu
adjacent on the time axis. The phases could be evalu
‘‘geometrically’’ as areas in the (E,t) plane ~Sec. IV C!.
They are zero in the generalized bow-tie model due to
specialET symmetry.

~iii ! The crossing of two diabatic potential curves induc
rearrangement within the related two-dimensional subsp
of Hilbert space. It is described by the transformation ma

S Apj iA12pj

iA12pj Apj
D , ~7.1!

wherepj is the Landau-Zener probability of diabatic passa
of the related crossing@in Fig. 1~b! these transformations ar
marked symbolically by small blocks around each crossin#.
The expression~7.1! shows that the dynamic phase1

2 p is
gained in the transition from one diabatic state to anothe

According to these rules the matrix of transition amp
tudes is constructed as a product ofN3N unitary matrices of
simple structure, namely either diagonal phase matrice
the item 2 above, or quasidiagonal matrices of item 3, t
differ from the unit matrix only by one diagonal block of th
form ~7.1!. The structure of these factor matrices is so sim
that it is convenient to reformulate the problem in terms
propagation paths. The path is defined as a piecewise str
line that can change its slope only at the points where
diabatic potential curve intersect. The rules summari
above are straightforwardly reformulated as the rules
ascribe the transition amplitude to each path connec
given initial and final states. The contributions of all pat
are to be added coherently.

Analysis of the generalized bow-tie model includes so
features that hopefully might be of broad interest. Gener
one has to account for the interference between various p
that connect initial and final states. It is universally know
that in such a situation the interference phases play cru
role in the result. Commonly it is assumed that the pha
vary smoothly when the system parameters are chan
This leads to the characteristic interference oscillations in
transition probabilities. The generalized bow-tie model p
sents an instructive exception from this common situati
Due to the particularET symmetry the phases cannot b
altered continuously. Only two discrete values of the int
ference phase are realized, one possibility correspond
purely constructive interference, another one gives purely
03270
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structive interference. One of these two possibilities ta
place for each path independent of other parameters of
problem, such as couplings. Note that the calculated tra
tion probabilities never turn zero due to interference effec
This feature also stems from the fact that the interfere
phase cannot be varied continuously thus preventing
probability oscillations characteristic of the convention
multipath interference problems.

Our scheme to describe the multipath interference follo
simple rules outlined above. Since we do not resort to ac
solution of the nonstationary Schro¨dinger equation one can
question their validity. The latter is supported by two arg
ments. First, our scheme reproduces~Sec. V! all the results
obtained by the contour integral method@15# in the limit of
the conventional bow-tie model. This method provides
mathematically rigorous and complete solution of the no
stationary Schro¨dinger equation. Second, the arguments p
sented in Sec. VI, to our mind, strongly support our resu
for the generalized bow-tie model. In a sense we give h
solution of the problem essentially without actual calcu
tions, in contrast to the paper by Brundobler and Elser@14#
who presented calculations~wave function in terms of con-
tour integral!, but not the solution~that implies derivation of
transition probabilities! for the conventional bow-tie model
To make the treatment complete we plan to publish a
solution of the generalized bow-tie model@i.e., of Eqs.~3.4!#
by the contour integral method@25#. The general scheme o
calculations is similar to that employed in Ref.@15#, but
some important distinctions appear in realization. All t
transition probabilities for the generalized bow-tie model a
reproduced by this rather elaborate mathematical deve
ment that lies outside the scope of the present paper dev
to physically appealing aspects.

The important theoretical problem, still unresolved, is
find all cases within the generalized Landau-Zener mo
~Sec. I! which are exactly solvable. Probably this is the sa
as to find the cases when the matrix of transition amplitu
is composable from elementary matrices.

An attractive feature of the bow-tie and generalized bo
tie models is flexibility in the sense that the number of a
justable parameters is large~the slopesb j , the couplingsVj ,
and additionally the parameter« in the generalized model!.
In this respect the model is similar to the Demkov-Oshe
@10# model, whereas the exactly solvable multistateSU(2)
model considered by Hioe@26# effectively contains only one
parameter. The physical realization of the bow-tie and g
eralized bow-tie models remains an important and not fu
resolved question. The set of potential curves that are lin
in time and cross at the same moment could be obtained
Rydberg atom placed into uniform electric and/or magne
field with linear time dependence. The high-l members of the
Rydberg manifold are non-core-penetrating and therefore
hibit the hydrogenic degeneracy in the absence of exte
fields. When the fields are switched on, the energy splitt
is linear in the field strengths within the range of applicab
ity of the first-order perturbation theory. An additional sta
that interacts with all other states can be some state of
ferent nature that occasionally is degenerate with the z
field Rydberg manifold and interacts with it. Alternativel
5-12
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an extra state could correspond to the core-penetrating s
for instance, one withl 50. The experimentator can app
initially a strong external field, populate one of the leve
under consideration by using the well developed laser te
nique, then change the external field strength linearly in ti
so as to obtain again the strong field but with opposite dir
tion. After that repopulation of different levels could be i
vestigated. The applicability of bow-tie model to this sort
problem needs an additional analysis.
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APPENDIX: SLOPES OF ADIABATIC POTENTIAL
CURVES IN THE BOW-TIE MODEL AT tÄ0

The equation defining the adiabatic potential curvesE(t)
for the bow-tie model was presented in Ref.@15# as

S)
j

~b j t2E! D S E1(
j

Vj
2

b j t2ED 50. ~A1!

In this appendix we derive an interesting property of t
slopes of adiabatic potential curves att50. We seek for the
adiabatic potential curves in the linear formE(t)5gt, where
various solutions forg give the set of slopes under consi
eration. The equation forg follows from Eq.~A1! considered
in the limit t→0:
in

f
ti
th
u

-
e

03270
te,

h-
e
-

f

F~g!50, F~g!5(
j

Vj
2

b j2g
. ~A2!

Obviously, F(g) behaves similarly to the tangent functio
increasing monotonically from2` to 1` in each interval
bn21,g,bn . In such an interval inevitably the functio
F(g) crosses the abscissa axis at some pointgn that gives
one of the slopes of interest. Thus we conclude that
slopes of adiabatic potential curves at zero time lie in
tween the adjacent slopes at infinite time~the latter ones
coincide withb j ). From Eq.~A1! it is readily seen that the
adiabatic curves never cross the diabatic ones, except a
origin t50, E50. They stay in the sector between th
straight linesE5bn21t andE5gnt.

Equation~A2! has (N22) solutions for the slopesgn . As
discussed in Ref.@15#, there are also two adiabatic potenti
curves that take nonzero values att50:

E~0!56A(
j

Vj
2. ~A3!

The related slopes are easily calculated using Eq.~A1!. They
coincide for both curves:

g5
1

2@E~0!#2 (
j

b jVj
2 . ~A4!

Note that g turns zero in the symmetric case:b2 j
52b j ,V2 j5Vj .
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Jex, J. Opt. B1, 8 ~1999!.

@24# Y. Teranishi and H. Nakamura, J. Chem. Phys.107, 1904
~1997!.

@25# Yu.N. Demkov and V.N. Ostrovsky~unpublished!.
@26# F.T. Hioe, J. Opt. Soc. Am. B4, 1327~1987!.
5-14


