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The bow-tie model is a particular generalization of the famous two-state Landau-Zener model to an arbitrary
number of states. Recently, solution of the bow-tie model was found by the contour integral méthidd
Ostrovsky and H. Nakamura, J. Phys.38, 6939 (1997)]. However, its physical interpretation remained
unclear, because the model implies simultaneous strong interaction of all the states apparently irreducible to
any simpler pattern. We introduce here a generalized bow-tie model that contains an additional parameter
and an additional state. It includes the conventional bow-tie model as a particular limiting case -wierin
the generalized model all the state-to-state transitions are reduced to the sequence of pairwise transitions and
the two-state Landau-Zener model is applied to each of them. Such a reduction is well justified at least in the
opposite limit of large parameter. Several paths connect initial and final states; the contributions of different
paths are summed up coherently to obtain the overall transition probability. The dp&diahergy and timge
symmetry intrinsic for the generalized bow-tie model results in a particular property of interference phases:
only purely constructive or purely destructive interference is operative. The complete set of transition prob-
abilities is obtained in a closed form. Importantly, the results do not depend on the paramatdre limit of
conventional bow-tie model all previously derived results are reproduced. This amounts to rationalization of
the bow-tie model by its interpretation in terms of multipath successive two-state transitions.

PACS numbe(s): 34.10:+x, 32.80.Bx, 32.60ti

[. INTRODUCTION similar two-state model was suggested and solved also by
Mayorang 2]. Later the model was rediscovered by Wannier
Many quantum problems of practical significance are re{3] and Horwitz[4] and directly tested experimentally by
ducible to the nonstationary Schiiager equation considered Chigir [5].
in the finite basis oN states. Among them, the case when In many applications one is interested in a description of

the Hamiltonian matrix4 depends linearly on time the time propagation in a general quantum problem when its
HamiltonianH (t) varies slowly with time[6], i.e., when it
H(t)=Bt+A, (1.)  depends orr=uvt wherer is reduced time variable andis

o , o ) , small velocitylike parameter. Description of thigliabatic
is distinguished by its basic simplicity combined with capa-¢ase essentially uses thdiabatic potential curves, (t) and

bility to model general situation. In Eq1.1) AandB are ¢ adianatic states,(t) that are defined, respectively, as the
time-independent HermitiaN X N matrices that generally do  jme_dependent eigenvalues and eigenstates of the instanta-

not commute. Thg expressic(ﬂn.l} can be corjsidgred as @ pegus Hamiltoniam (t): H(t) x.(t)=&.(t) x4(t). The addi-
linear approximation to the Hamiltonian matrix with general . . : : -
ional condition{ x,| x»)=0 introduced originally by Born

trlnrgterig%piesngg;%eﬁa\llye choose the basis of states in which t[imd Fock[7] fixes the time-dependent phases of diabatic

states; in case of re&(t) it implies that the eigenfunctions

Bjx= 185 (1.2)  xn(t) are essentially realwithin a time-independent phase
facton. For the Hamiltonian(1.1) at large|t| the adiabatic
The diagonal elements of the Hamiltonian matrix potential curves asymptotically approach the diabatic curves.

The crossings of the diabatic potential curves correspond
to theavoided crossingor pseudocrossingsf the adiabatic
potential curves, with the splittings increasing\4g grow.
Born and FocK 7] assumedontinuoustime-dependence of
the HamiltonianH(t) and showed that as—0, the prob-

Hic=A=Vic (j#k) (1.4)  ability of transition .between'the adiabatic states tends to
zero, being proportional te in nondegenerate case or to
describe thecoupling between the diabatic basis states.some power of in degenerate case. Landd] noticed that
These coupling matrix elements are time independent. Thig the HamiltonianH(t) is an analytical function of time,
number of statesN depends on the approximation used tothat holds in the most interesting cases, then the transition
describe physical system that usually is infinite dimensionalprobability is exponentially small. This is exemplified by the
The HamiltonianH(t) (1.1) is a straightforward generaliza- two-state Landau-Zener model, as discussed in Sec. IV A.
tion of the famous two-stateN(=2) Landau-Zener model The transitions between the adiabatic states are known to
[1]. Actually almost simultaneously with Landau and Zener abe localized in the vicinities of the avoided crossings. This
circumstance allows one to develop an approximate method
to construct solution of nonstationary Sctiimger equation
*Electronic address: Valentin.Ostrovsky@pobox.spbu.ru applicable when only pairwise crossings occur between the

are nameddiabatic potential curves They are slanted
straight lines with the slope8;. The nondiagonal elements
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diabatic potential curves. The two-state Landau-Zener modeadoupling of all N stateshat apparently could not be disen-
is employed in the vicinity of each avoided crossing. In be-tangled and reduced to some simpler situation such as a se-
tween the pseudocrossings adjacent on the time scale, tlggience of two-state transitions. Therefore the factorization
purely adiabatic time propagation is operative. This meanscheme was not applicable.
that the phasé¢'&,(t')dt’ is gained in thenth adiabatic state. In the present paper we show that the bow-tie model
This scheme implies a simple factorized form of the time-could be considered as a particular limiting case of the gen-
propagation operator being extensively used in the atomieralized bow-tie mode{Sec. Ill). The latter allows an ap-
collision theory[9]. pealing reduction to the sequence of pairwise transitions be-
The factorization scheme could be conveniently cast as aveen the states. We succeed@ec. 1V) in finding the
multipath interferenceoroblem. The time evolution is asso- closed-form expressions for all transition probabilities with-
ciated with propagation along some path in the networkout actually solving the nonstationary Sctimger equation
formed by potential curves. Each path presents some sguyt by using the factorization scheme discussed above. The
quence of pieces of potential curves; the leaps from ongrguments presented in Sec. VI strongly suggest that this
curve to another occur at the crossing points. The factorizagenerally approximate scheme provides exact results in the
tion approach allows one to ascribe some amplitude tQyarticylar case of the generalized bow-tie model as well as in
propagation along each path. Generally, several paths couy e gther situation&Sec. VI B. This conclusion is fairly

nect initial and final states; only the paths with prOpaga.tionsupported by the fact that we are able to reproduce all the
forward in time should be taken into account. The contrlbu—results obtained earlier for the bow-tie mod&b)]. For this

tions of different paths are summed coherently, i.e., withWe lainly consider an appropriate linfBec. \j of the prob-
account for the phases gained along each path. This impli plainly bprop . P

interference effects. easbilities derived for the gengralizeq bov_v—tig model. This d(_a-
The multipath propagation scheme certainly is valid Whenvelopme_nt amounts .to physmal ratlor?allzano.n of the bqw—tle
different pseudocrossing regions do not overlap that occurddel via the factorization scheme, i.e., by interpretation of
in the limit of small couplings/; . Fortunately, it seems that the model SO'““‘,’” as a sequgnce.of pairwise transitions in-
the factorization approach often works well in a mucht€rvened by plain “phase gain” time-propagation regions
broader range. An important insight is provided by the ex-Without transitions.
actly solvable generalized Landau-Zener models. As mentioned above, the important feature of the exactly
Discussing the possibility to find an analytical solution to Solvable Demkov-Osherov model is that only diee nong
the multistate generalized Landau-Zener model, wer2, path connects any initial and final state. This means that no
one naturally appeals to the fact that commonly the problemiiterference is operative in this model. It was tempting to
with linear time dependence are efficiently solved by usingsuggest that the absence of interference is a necessary prop-
the Laplace transformation. The latter plainly reduces theerty of any exactly solvable model. The present study shows
problem to single first-order differential equation in the casethat this guess is incorrect by providing a counterexample:
when only one coefficien3; is nonzero. This gives the the exactly solvable generalized bow-tie model includes mul-
Demkov-Oshero10,11] model (see also bibliography in tipath interferencéSec. IV Q, albeit in a quite peculiar situ-
Ref.[10]): one slanted diabatic potential curve crosses paration. Namely, the specidET symmetry intrinsic for the
allel set of horizontal curve®f course, a trivial phase trans- model leads to a particular property of interference phases:
formation makes the horizontal curves also slanted but wittonly purely constructive or purely destructive interference is
equal slopes The remarkable property of the Demkov- operative. The full account for the multipath interference in
Osherov model is that for it the factorization scheme prothe exactly solvable model seems to be an achievement of
vides exact transition probabilities for arbitrarily large cou-general interest in the present study.
plings, i.e., when the strong-coupling regions for various Before concluding the introductory discussion we men-
pseudocrossings overlap substantially. Note, however, that ition another subclass of Landau-Zener-type models where
this model one important physical effect is not operative,some important advancements were made. In these models a
namely there is no multipath transitions and interference. set of parallel diabatic potential curves is crossed by another
A less obvious case when the Laplace transformation alseet of parallel curves. In the simplest case both sets contain
reduces problem to the first-order differential equation coronly two curves N=4) [16,17. The larger sets were also
responds to the so-calldzbw-tie modelsee Sec. Il for de- considered with particular attention paid to the crossing of
tails). Originally it was solved by Carroll and Hidel2] for ~ two infinite bands of equidistant potential curvigz0—22.
the particular cashl= 3, but the method employed could not Two essentially different approaches were employed: direct
be extended to largeéd. Harmin[13] discussed the model in construction of the time evolution operator in the spirit of
connection with transitions within a manifold of Rydberg factorization schem¢18,19 and ab initio solution of the
states. Brundobler and Els¢t4] presented a solution in non-stationary quantum problef20-22. Interestingly, the
form of contour integral for an arbitrary number of stabés similar mathematical models are considered in apparently
but did not find the transition probabilities. The latter goalvery different theory of transitions in quantum networks
was achieved recently by Ostrovsky and Nakamii8]. [23]. Among the vast realm of nonlinear nonstationary mod-
However, the appealing physical interpretation was noels we mention the recent solution of the time-dependent
given. Resolution of the latter problem appeared to be hopeguadratic problem with the inclusion of phase interference
less, since the bow-tie model impliessmultaneous strong effects by Teranishi and Nakamujr24].
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Il. BOW-TIE MODEL -3 5 4

3
In the bow-tie model the diabatic potential curves @je 2
linear in time and(ii) all of them cross at some moment of -1 2
time, that could be chosen as zero. The energy at which the !
multiple crossing occurs is naturally chosen as the origin of
the energy scale that correspondsAg=0 in Eq. (1.1). o 0
Hence in the diabatic basis the diagonal matrix elements ol '
the HamiltonianH are
1
The nondiagonal matrix elements are time independent, mos 3 =2
of them being zero. The nonzero matrix elements couple one 4 5 -3
particular state, labeled §s=0, to all other states: a
t

By a trivial phase transformation one always can turn hori-
zontal the diabatic potential curve wifk=0, i.e., makeB,

=0. The convenient way to label all other states is to ascribe
positive (negative indicesj to the states with3;>0 (B;
<0) in such a way that larggj| correspond to largels;|,

ie.,

< PB3<B_y<B1<Bo=0<B1<Br<B3< ... .
(2.3

The diabatic potential curves are shown in Figa)1l
The general solutiofi¥ (t)) of the nonstationary Schro
dinger equation is expanded over the basis of diabatic state

1)

E

|\P<t>>:$ c;(]), (2.4

FIG. 1. Diabatic potential curves for the bow-tie modal and

the generalized bow-tie modéb). In both cases the potential
curves are linear. The slanted potential curves are labeled by integer
d quantum numbergwith j>0 for the curves with a positive slope
o[ 3 . :
— = 2 ViCp, (2.59 B; andj <0 for the curves with a negative slogg, larger values

dt %o of |j| corresponding to larger values [g8;|. All these curves cross
simultaneously at the point=0, E=0. In the bow-tie model all the

where the expansion coefficientg(t) obey the following
system of equations:

.dg; . diabatic states are coupled only with the single state that is labeled
It = BitCi +tVjco (j#0) (25D 250 and corresponds to horizontal potential curve. In the general-
ized bow-tie model the horizontal potential curve is “doubled,”
(unfortunately the latter equation was cited previoydl§]  i-., replaced by two curves Oand 0" that correspond, respec-

with a misprini. Solution of these equations carried out by tively, to the energies- 3e andzz. The coupling with the slanted
the contour integral methofl5] produced probabilities of Potential curves is “shared” between Gand 0" stategsee text for

transitions between all combinations of initial and final detai). The pairwise crossings between horizontal and slanted di-
states. abatic potential curves are marked by blocks. Note that due to the

well-known optical illusion a human eye perceives horizontal lines
0" and 0 as slightly curved. The adiabatic potential curves are

IIl. GENERALIZED BOW-TIE MODEL shown by dots.

The diabatic potential curves of the bow-tie model Fig.
1(a), as well as their adiabatic counterpaft®nsidered in
Ref.[15], see also Appendix Yare symmetrical with respect 1 1
to the simultaneou&T reflection:{E=—E, t=—t}. Here Ho+o+= 76 Ho-o-= € (3.9
we suggest a generalization of the bow-tie model in which
this key property is retained. Namely, we replace the singl
state|0) with two state§0™) and|0~). Just as the original
|0) state, these two states correspond to horizontal potential Ho+o-=Hp-o+=0. (3.2

curves that, however, are shifted respectively-bye:

§t is assumed that these states are not coupled to each other:
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The slanted diabatic potential curves are not changed aall four curves correspond to different branches of unique

compared with the bow-tie model. The related stdj¢sare
coupled to the horizontal staté8”) and |0~) by identical
couplings parametrized as

1
H0+j:Hj0+:H0_j:Hj0_:_V'

2

(3.3

The diabatic potential curves for the generalized bow-ti€furves repelled

model are shown in Fig. (). Equations(2.5) are now re-
placed by their generalizations:

| =—=¢C —V,Ch, .
dt \/E o n#0" \/E mr
dcy- 1 1
i——=——=¢eCp-+ —VCy, 3.4h
dt \/E 0 ngi \/E nn ( )
129 pte Vet = j#0
|E—,Bjtcj E iCo+ E iCo- (J#0).
(3.40

In the limit e—0 the horizontal statef0*) and |0~)

become degenerate, and it is natural to introduce the line€gf5rked b

combinations

1
0)=—5110")+/0°)1 (359
* (3.5b

dy= 0")—]07)].
|d) ﬁ[l )=107)]
One can straightforwardly see that for=0 the statdd) is

fully decoupledrom all the other states,

Hjs=Hg;=Hoa=Ho4=0, (3.6

whereas for the sta{@) all the Hamiltonian matrix elements

Ho; are the same as in the conventional bow-tie m¢dee
Eq. (2.2] [note that the factor 12 in the parametrization

(3.3 is chosen so as to reproduce this limiting case with the®

notations of Sec. Il retaingdThis means that in the limit

£—0 the generalized bow-tie model is essentially reduced t

the original bow-tie model.

analytical function&(t) (3.7) defined on the four-sheet Rie-
mann surface of complex-valu¢dariable. The choice of the
sheet(i.e., of the particular potential curyeorresponds to
the choice of* signs in the expressio(8.7). It is worth-
while to note that two adiabatic potential curve®ss ex-
actly at the central poinC: t=0, E=0 just as the diabatic
curves; two other curves correspond t6 Gnd 0 diabatic

by the indirect coupling via the slanted
curves:£(0)=i\/32/4+2V21. It is easy to see how this
property is generalized in case of arbitrary number of states
N. Here fort=0 two adiabatic potential curves have energies

/1
£0)== 282+ 2; V2,

All other (N—2) adiabatic potential curvezoss exactlyat
the pointt=0, E=0.

Generally, as discussed in the Introduction, the crossings
of diabatic potential curves correspond to the pseudocross-
ings of adiabatic curves. In the generalized bow-tie model
this refers to the crossings between the slanted diabatic
curves and either 0 or 0~ curve [these crossings are
y blocks in Fig. (b)]. If the couplingsV; are small,
all the pseudocrossings are well separated. Otherwise the ad-
jacent pseudocrossing regions might strongly overlap. The
pattern of adiabatic potential curves in the generalized bow-
tie model is illustrated by Fig.(b). The plot was constructed
by actual diagonalization of the Hamiltonian matkixt) for
some choice of couplingg; that are not listed here. We only
mention that both weak- and strong-coupling cases are rep-
resented in Fig. (). For instance, the coupling_, is small
and the related pseudocrossing@ithin (—1,0*) and
(—1,0" pairg] are well isolated. The coupling; is large
and the related broad pseudocrossing exhibits strong overlap
with its neighbors.

In the present study we do not pursue solution of the
dynamic Eq.3.4). Instead we reduce the multistate problem
to the sequence of pairwise transitions and find transition
probabilities under this presumption. Such a reduction is pos-
ible only within thegeneralizedbow-tie model where the
interactingpotential curves cross only in paifas seen from

(3.9

6he model statement, the interacting pairs include any slanted

curve and one of two horizontal curye®©n the contrary, in
the conventional version of this model only single multiple

Concerning the adiabatic potential curves in the general AR .
9 P g crossing is preserfsee Fig. 1a)] that apparently does not

ized bow-tie model we note, first of all, that they could be > ) ; .
allow disentangling to some simpler pattern. Of course, in

found analytically in case of symmetric four-state mOdelthe eneralized model. in addition to pairwise crossings be-
(N=4) when two slanted diabatic potential curves corre- 9 Iz ) | " pairwi Ing

- _ .. tween diabatic slanted and horizontal curves, there exists
spond to equal couplings/4=V ) and slopes of opposite also multiple crossing of slanted curves at the central goint

sign (B-1==B4): [see Fig. 1b)]. However, this crossing does not induce any
1 1 transitions since the slanted cunas not interact with each
&)= t—[ﬁ§t2+—sz+ 2V2 other. This is clear even from the simplest exam(8e7): all
V2 4 four branch points of the functioé(t) are associated with

the crossings between diabatic slanted and horizontal curves
and there is no branch point stemming from the central point
C.

2 1/2
+282v§} . (3.7

1
+ \/< Bi2— ZSZ+ 2v?
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Our task is to describe transitions within the generalized
bow-tie model in terms of independent pairwise transitions
in the spirit of factorization scheme discussed in the Intro-
duction. One has to consider some path starting from the
initially populated potential curve and terminating at the
curve that corresponds to the final state of the specific tran-
sition considered. The path goes along some sequence of
intermediate diabatic potential curves: the jump from one
curve to another occurs at the point of crossing of these two
curves. Hence the path represents a broken, piecewise-
straight line. The propagation can proceed only in the direc-
tion of increasing time, but not backwards. Each passage of
individual crossing is characterized by the probabiftyof
diabatic passage and the complementary probability (1
S _ S ) —p;) of sudden turn(that meansadiabatic passage For
FIG. 2. Diabatic(solid) and adiabatid¢dashedl potential curves brevity we denote the crossings of slanted potential cjirve
in the conventional two-state Landau-Zener model. The slanted di\ivith the horizontal potential curves'0and 0°, respectively,

ﬁggt'crgg;‘éﬁit@s;ﬁz :E‘Z ggir:t?;f C;Sr;’: 2' hT;Se C:fl?;;:? Passad@sJa* andJ™ crossings. In the case when several paths are
P YPi P 9 P tyF possible for given initial and final states the related ampli-

(see text tudes are to be summed up coherently.

IV. TRANSITION PROBABILITIES IN GENERALIZED
BOW-TIE MODEL B. Single-path transitions

A. Transitions at the crossing of two diabatic curves We start with the simplest case of transition when only

According to the standard time-dependent two-staté"® path connects particular initial and final states, hence a
Landau-Zener model, the probability afiabatic passage coherent summation does not emerge. There are three essen-

(i.e., the nonadiabatic transition probabilitg tially distinct situations when such a single-path regime is
operative. For definiteness below we consider the initial

277V].2 slanted statg¢ with a positive slope, i.e., the staje-0, or
PJ:GXD( —W ) (4.7) initial 0~ horizontal state. All the results are straightfor-

! wardly extended to the initiaj <0 or 0* states(see Sec.

. L . . . IV D).

assuming that one diabatic potential curve is horizontal, the
other one has the slopg;, and the coupling between the 1. j»0" transitions
diabatic states i/;. The probability ofadiabatic passage ) ) ,
(i.e., staying in the same adiabatic sjdteQ;=(1-P;) (see As seen from Fig. @), the only path possible for the
Fig. 2). The diabatic passage amounts to transition between’Q  transition implies adiabatic passage of the crossing
adiabatic states; its probability is exponentially small, withfollowed by diabatic propagation along thorizontal poten-
the argument of exponent in E@t.1) often referred to as the tidl curve tot—o. The latter means diabatic passage of all
Massey parameter. the crossmg's\l . with n>j>0 and withn<0. The transi-

As discussed abovéSec. I1l), in the generalized bow-tie tion probability is
model the coupling/; is “shared” between two horizontal
states 0 and O . Namely, each of these two states is
coupled to the slanted stajeby the coupling (1{/§)Vj. PjHo—=(1—pj)(H_ pn>< 1T pn). (4.9
Hence, if all other states except Gandj would be absent, n=1 n<0
the probabilities of transition for diabatic passage €90
or j=j) and adiabatic passage(&>j or j=0%) were, re-
spectively,p; and (1-p;) with

Note that hereafter in all expressions that include the product
sign1l the running index is denoted agn+0~).

2
p= exp( _ %) _ (4.2) 2. 0 —0" transitions

] The only way to achieve the 3—0" transition is to fol-
low along O horizontal potential curve passing diabatically
all the N~ crossings with slanted potential curves. The tran-
sition probability for this simplest case reads

The same probabilities describe transitions within the iso
lated pair of states 0 andj. It is important to emphasize that
the definitions ofP; andp; differ by a factor 2 in the expo-
nential. This circumstance leads to the remarkable relation

P=p?. 4.3 PO‘HO‘:].;.[ an( 11 pn)( 11 pn)- (4.9

n>0 n<o0
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-3 5 4
-2
2
o+ ot
[V > > 0"
1 -1
E 2
-2
3 4 5 -3
a
t
-3 5 4 3
-2
2
o0+ o+

0~ > 0

1
E 2
-2
3 4 5 -3
b
t
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o+

FIG. 4. Diabatic geometrical phases in the generalized bow-tie
model. The paths) = (C)=J" and J =K =(C)=K"'=J"
correspond to the same geometrical phase. This is seen from the
fact that the phase difference is proportional to the sum of areas of
two congruent triangled K~ C andK*J*C. The opposite signs
are to be ascribed to these areas since the first path lies higher at
t<0 whereas the second path lies higher intthe® domain.

and “dynamical” parts. The geometrical phases arise from
the standard integrglE(t)dt over the path under consider-
ation.

The difference of diabatic geometrical phases between
two paths is given by the integrdlE(t)dt over the loop
formed by one path passed in the direction of increasing time
and another path passed in the opposite direction. Generally
this phase difference has a simgjeometricalmeaning that
justifies our terminology: it equals tlarea of the loopn the
(E,T) plane. In the case of the generalized bow-tie model
this phase difference is always zemince the part of the

FIG. 3. Single-path transitions in the generalized bow-tie model!00p that lies aE>0 exactly compensates the part lying at

The transition paths are shown by thick broken line with arrdajs:

j— 0~ transitions(the casej=3 is shown; (b) j—k transitions
with j>0, k<0 (the casg =3, k= —2 is shown.

3. j—k transitions (50, k<0)

The path shown in Fig.(8) implies adiabatic transition of
the J™ crossing, development along Qootential curve with

diabatic passage of all the crossings with n>j>0 and
with n<k<0 and finally adiabatic passage of tKé cross-
ing. The overall transition probability is

Pjak:(l_pj)(l_pk)<nl_>[j pn)(nl;[k pn)- (4.6

C. Multipath transitions and interference

E<O0 (see Fig. 4. It should be stressed that this property of
the phases follows directly from the sped&l’ symmetry of

the generalized bow-tie model, namely its symmetry under
the reflectionlE= —E, t=—t}. From this we conclude that
the difference of adiabatic geometrical phases also is zero in
this model.

The dynamic phase is the phase increment due to the
strong interaction in the domain of intensive nonadiabatic
transitions. Conventionally this phase is derijé&d for de-
scription in the basis ofdiabatic states when the related
potential curve<(t) are used for evaluation of phase inte-
grals. These results are not applicable to our scheme based
on diabatic representation. We use the following simple rules
to incorporate the dynamic phase: for the diabatic passage of
the crossing the phase is zero; each adiabatic passage induces
increment of phase by. In order to support this choice we
consider crossing within an isolated pair of states, the hori-
zontal one and the slanted one with the slgpe Within the
first-order nonstationary perturbation theory in the basis of

If several paths connect initial and final potential curves diabatic states the amplitude of adiabatic passage is evalu-
then at first the transition amplitude is to be evaluated foated as
each individual path. The amplitudes characterizing various

quires an information about the phases of different contribu-"

i o 1 2 T
paths are to be summed up coherently. The latter step reA:if v exp{iiﬁjtz)dhi . /W\/j ex%izsgdﬂj))
— 0 J

tions. The phases are generally comprised of “geometrical”

(4.7)
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FIG. 5. Multipath transitionj—0™" in the generalized bow-tie modéhe casg =2 is shown. Each plot(a), (b), (c), (d) pictures an
individual transition paththick broken line with arrowscorresponding to intermediate states respectivety2,3,4,5.

(it is related to the probability of adiabatic passage discussed The other paths proceed via the intermediate slanted po-
in Sec. IVA ast=1f73,-%|Aj|2). One can easily check tential curve with the positive slopg,, larger thang; [see
that in all application below the phase in Ed4.7) is equiva-  Figs. §b)-5(d)]. We label this intermediate curve ag(m
lent to the phasé . Indeed, when one evaluates the phase>j). The same indexn is employed also to label the path
difference between the interfering paths, the factorforthej—0" transition. The propagation along theh path
exdi(w/4)sgn(@;)] in the right-hand side of Eq4.7) does implies adiabatic passage of the crossihg followed by
not play role (the turns clockwise and counterclockwise diabatic passage of the crossinys with n lying in the
compensate each otheherefore only the factor in Eq.  interval m>n>j, then adiabatic passage of the crossing
(4.7) is effectively operative. Since the number of turns isM ~, adiabatic passage of the crossMd and finally diaba-
even, the interference phase could accept only vaities  tic passage of the crossings’ with m>n>0. The related
27 depending on the specific path as detailed below. transition probability reads

1. j—0" transitions

m
Various paths for th¢—0* transition are shown in Fig. 1(30+ (1-pp) ( H pn)(l Pm)(1— pm)< H pn)
5. The path shown in Fig.(8 presents a particular, most
simple case. It implies diabatic passage of #hecrossing (4.93
followed by adiabatic passage of thé crossing and subse-
quent propagation along the” Qotential curve with diabatic
passage of the crossmgis with j>n>0. We denote the 5
related probability a$3HO+ It is straightforwardly evalu- I:,J(m) (1-pj) ( H Dn)( H _ pn) (1-p.)2.
ated as j=n>0 n>

It is conveniently rewritten as

(4.9b

) —n. =(1—n:
Pior=pi(1 pj)(j>1;[>0 p”) (1 pj)(pllo p“) ' The amplitude of transition along tmath path has modu-
(4.8 lus \/Pj@m. The phase of this amplitude is denoted¢gs.
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FIG. 6. Same as in Fig. 3, but for multipath transitips-k(j >0, k>0) (the particular cas¢=2, k=3 is shown. Plots(a), (b), (c)
correspond to intermediate states, respectivaly,3,4,5.

The coherent summation of contributions from different
paths to find the probability of transitian—f generally im-
plies that

IT |on)<1—|om>=1—nljj pr. (412

m>j \ m>n>j

Finally we obtain

Pi 1= 2 JP.@fexmcpm) (4.10 2
P;ﬁo+=(l—pj)(j21;[>0 pn)(gj pn) ., (4133

In the present casé £€j,f=0") we extend the summation . )
in Eq. (4.10 over m=j in order to embrace contribution ©OF. in equivalent form,

from the pathm=| [Eq. (4.8)]. The latter path includes only

one adiabatic passage, whereas all other paths mv'u:h'_ Pi_o+=(1-p;) (H pn)( H pn>, (4.13b
imply three adiabatic passages. Consequently, according to n>j n>0

the rules formulated above, all the phasgs with m>|j

coincide (@yn=¢), Whereas the phase; differs by :¢; 2. j—k transitions (70, k>0)

=¢—. Using these phases and the representat{dr®

As in the previous case, the—k transitions proceed via
and (4.9b we obtain from Eq(4.10 P f P

various intermediate slanted potential curaeg-igure 6 cor-
responds to the case whén>j; the feasible intermediate
or=(1—p, )( H pn) states .havenz k. _ . .
P P i=hzo0 At first we consider separately the intermediate state
) =k [Fig. 6(@)]. The related path implies adiabatic passage of
(4.1 theJ™ crossing followed by diabatic passage of the crossings
N~ with j<n<k. After that the crossing( "~ is passed adia-
batically and the crossing(™ diabatically. This sequence
The summation ovem is carried out employing the useful leads to the following expression for the probability of tran-
formula (cf. Ref.[15]) sition along the patm=k:

1->

m>j

X

H ) pn)(l_pm)

m>n>j
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® for k>] (as it was presumed in the present derivatidout
PiZk=(1-p)) ( 1T pn) (1—- PP also fork<j. This conclusion could be checked by a similar
K=n=l direct calculation that we omit here for brevity. However the
transitionsj— ] are to be considered separately.

=(1-p)(Ll- pk)( 1L pn) (4.14

3. j—] transitions

The casem>k corresponds to more complicated path  The calculations for thg— | transitions differ from the
[Figs. @b) and Gc)]. It passes thd ™ crossing adiabatically, previous case only in some details that are emphasized be-
then follows the O potential curve passing diabatically the low. For the intermediate state=j (i.e., for direct propa-
crossingsN™ with j<n<m. After that the crossing$1~ gation along the initial potential curg only two crossings
andM ™ are passed adiabatically. Subsequently the crossingse metJ~ andJ™, both of them being passed diabatically.
N* with m>n>k are passed diabatically. The propagationThe probability is
is completed by adiabatic passage of the crossirig The
probability of transition along this path is P =p?. (4.18

o For the path with intermediate staté m>j) the sequence is
P(M = (1~ p;)( H>_ pn) (1= Pm) (1= Pm) as follows: thel ™~ crossing is passed adiabatically, the cross-
m=n=) ingsN~ with m>n>j are passed diabatically, the crossings
M~ andM™* are passed adiabatically, the crossihgswith
x| 1 pn) (1-py)- (4158 m>n>]j are passed diabatically, and finally the crosslfig
m>n>k . . . P e
is passed adiabatically. The overall transition probability is

The following equivalent representation is convenient for

further calculations: P}@J—(l—p]—)( IT pn)(l—pm)(l—pm)
m>n>j

2

(M =(1-p)(1- 1-pw? :
—k™ ( pj)( pk)( >]'—ﬁ[>j pn)( pm) (m!'_n'[>k pn) % H pn)(l_pj)
(4.15h m=n=]
As in the previous case, we carry out coherent summation =(1-p)3(1- ( ) ) 4.1

(4.10 (i=j,f=k) over m=k, taking into account that the AL H P “19

phasesp,,= ¢ coincide form>k, whereas fom=k one has ) , ,
o=@~ (respectively, two or four adiabatic passages _The coherent summatio.10 (i=f=j) over all fea-
along the path Using formulag4.14) and(4.150 we obtain ~ Sible paths (=]) gives

+Z (1-pp(1- pm>( H_pn)r

r-al-{ [ e |
efo-(Me)[. w2

where we used the same summation formidld?2 as be-
Pi_x=(1—p)(1— pk)( H pn><H pn> , fore. Note that all the phases, effectively coincide in the
n=k present case, since zero or four adiabatic passages are met
(4.173 along the pathm=j or m>j, respectively.

Pjﬂk:(l_pj)(l_pk)( IT pn) Pi_j=

k=n>j

X 1—m2>k (1—|om)<mﬂ>k Pn (4.16

The summation formul#4.12) allows us to cast expression
(4.16 as

=1+

or, equivalently, as 4. 0" —0" transitions
. _ Here all the slanted potential curves withi>0 play the
Pi—k=(1=pp(L pk)( ,1;[] p”) ( nl;[k p”)’ (4170 ol of intermediate states. For thh path the crossingsd ™
with m<n are passed diabatically, the crossings and
that coincides with Eq(4.6). This is a remarkable and quite M* are passed adiabatically and then the crossigswith
unexpected result: the analytical expressions for the transm<n are passed diabatically. The probability of transition
tion probabilities in case of the single-path transitipprk  via such a path is
(j>0,k<0) proves to be the same as these for the multipath
transitionj—k (j,k>0). p(m 1— 1—
The symmetry of the expressigd.17b with respect to 07—0%" H Pn | (1= Pm) (1~ Pm) H Pn)-
permutation of andk labels indicates that it applies not only (4.21
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All the phasesp,, coincide. The coherent summation is car- #0* our results for thej—k transitions probabilities as

ried out as above: given by formulag4.6), (4.17b, (4.20 coincide with those
5 ) obtained earlief15] for the conventional bow-tie model.
_ _ _|q_ Further, the following relation is easily checked by using the
Po-—o mzo (1 pm)(ﬂn p”” [1 (nl;[() p”” ' formulas(4.4), (4.13b:

(4.22
Pjeo++PjH0:(H_ pn)(l_pj)(H pn+H pn)
D. Time reversal and detailed balance n=>| n>0 n<o0
The time-dependent Schtimger equation in the general- =Pj_o, (5.7

ized bow-tie model is invariant under the transformation _ o N o
{t=—t;e=—e}. From this we obtain the following “de- Where the right-hand side is the transition probability in the

tailed balance” relations: bow-tie mode[15]. The formula(5.1) reflects the fact that O
state of the bow-tie model absorbs transitigns0* and
Pi_«=Pij (j.k# 0), (4.233 —07 in the limit e —0 of the generalized bow-tie model.
At last, for the transitions within thE0* 0~} manifold we
Pox_j=Pj_o+ (j#07), (4.23h  obtain by using formulag4.5), (4.22),
Po+ _o+=Po-_o-- (4.239 Po+ o+t Po-—o-1tPo+ o-tPo-_o+=1+ Po-»o,(5 2

Our derivation above was carried out for initial states with )

positive slope, or for initial O state, and for all final states. P —|1- _ 5.3
The detailed balane relatiorid.23 extend these results to 0-0 nl;Io P r];[O Pn] 63
the initial states with negative slope and to the initidl O _ 3 N

state. Thus the complete set of transition probabilities is obwherePq_.q is the probability of the 6-0 transition found
tained. Note that the probabilitfy+ - is unrelated to the earlier[15] within the bow-tie model. The relatiof5.2) re-

probability Py- o+ [Eq. (4.22] flects the fact that in the limit of the bow-tie model the sum
in the left-hand side of Eq5.2) reduces to the sum of prob-
_ 1—[ 2 abilities of transitions 8-0 andd—d, where for the fully
Po+o-=|1- o Pn (4.24 decoupled statd [Eq. (3.5b] one has identicallyPy_.4=1.
The sum

The fact thatPy-_ o+ andPg+_,o- are different is obvious, 1
since th(_a first pr'obability is govemeq by the intermediate “[Po+ ot +Po-—o-+Pgr - +Po-_o+] (5.4
states with positive slope, whereas in the second case the 2

negative slope intermediate states are operative. i . ) o
can be interpreted as a probability to remain within the

{0*,07} manifold averaged over initial states. According to

Egs.(5.2), (5.3 it cannot be less thah. The latter value is
The following probability conservation conditions are sat- gchieved wherP, ,=0, i.e.,

isfied:

E. Probability conservation

+ =1. 5.

Pio-+Pj ot > Pji=1, (4.253 nl;[o P nﬂo Pn 59
k#0*

It is worthwhile to mention that when one considers continu-
ous transition from adiabatic to diabatic regime at the indi-
vidual pseudocrossings, i.e., augments the probabilies
from O to 1(that is equivalent to decreasing the couplifgs
They are easily checked using the summation formulas simiffom % to 0), one inevitably passes the borderline where the
lar to Eq.(4.12. The complete formulation d&matrix uni-  condition (5.5) is satisfied. Note also that among the entire
tarity (i.e., orthogonality of its columns and royalso could ~ Set of transition probabilities in the bow-tie or generalized
be checked but it needs identification of phases of transitioROw-tie model only one, namely the probabil® . (5.3)
amplitudes. We postpone analysis of this issue to the futur# the bow-tie model, can turn zero for some choice of pa-

Po-o-+tPo-o++ > Po-_i=1. (4.25D
k#0*

mathematical papd25]. rameters. Zero of transition probability is to be attributed to

the interference effects, albeit their manifestation in the gen-

V. BOW-TIE MODEL PROBABILITIES AS A LIMITING eralized bow-tie model as a minimum in the averaged prob-
CASE OF GENERALIZED BOW-TIE MODEL ability (5.4) does not look very lucid.

Thus the relation between the transition probabilities in

The set of transition probabilities in the generalized bow-the generalized bow-tie model and the original bow-tie
tie model (4.4), (4.5), (4.6), (4.13b, (4.17h, (4.20, (4.22 model is quite simple and straightforward. The generalized
gives the major result of the present study. For gpy  bow-tie model could be also related to the Demkov-Osherov
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model[10] in some limiting situation. Namely, one has to Landau-Zener-type model discussed in Sec. I. Namely, we
augments and simultaneously vary the slopes of the slantecevaluatethe probabilities of survivabn the diabatic potential
diabatic potential curves. If all the slopes tend to two limiting curves possessing the largest or the smallest value of the
values (one for positive slopes and another for negativesiopeg;. Consider the general Landau-Zener-type model of
oneg, then we obtain patterns characteristic of the Demkovsec. | defined by the set of\3 parametergs;,3;,V;} and
Osherov model: crossing of the diabatic potential curve (0 |et g,, be the largest slope available. By increasing the value
or 07) by the set ofalmos} parallel linear potential curves. of the related parametes, one can always achieve situation
Such a pattern is repeated four timesossings of 0 and  where the crossings of thdth potential curve with all the
0~ curves by the slanted curves with positive and negativeyther curves are well separated. In such a case reduction of
slopes. the time propagation to the sequence of pairwise transitions
is well justified.
The other point is that only a single propagation path is
MODEL REDUCTION TO SEQUENCE OF PAIRWISE available for theM — M transition. Indeed, at the moment of
TRANSITIONS time when the initially populated curve with the largest slope
A. Generalized bow-tie model crosses any other curve the latter remains still unpopulated

. just because propagation in time proceeds only in forward
A remarkable property of the probabilities derived abovedirection. Therefore at each pseudocrossing betwden

for the bow-tie model is that th(_ay are independent of theandjth diabatic curves only loss of théth curve population
parametere. It leads to far-reaching consequences. Indeed

for the fixed couplingsv; one can always choose large occurs with the probability of diabatic transition described

. . . . try a standard Landau-Zener expression:
enough to ensure that the crossings of diabatic potentia
curves(or pseudocrossings of adiabatic potential cunage ;{ 27-,\/%/” )
Pmj=e€x

VI. ON JUSTIFICATION OF LANDAU-ZENER-TYPE

well separated irE andt scales to justify reduction of the — T (6.1

problem to the sequence of independent pairwise transitions. |Bm = Bi'

Since the expressions for the transition probabilities thus del't is to be emphasized again that the populatiomdh state
rived prove to be: independent, one can argue that the for-qoeq not receive any influx from thigh state because the
mulas are applicable also for small valuessobnd in the |5yer js not populated as discussed above. As a result the

lirit ‘?HO‘ - . . ..__probability of survival on theMth curve ast varies from
This heuristic mode of reasoning looks quite convincing_ to %, i.e., the probability of the single-pat— M tran-

bglng complementary to rigorous mathemapcal treatment, agiq, js evaluated as a product of diabatic-propagation fac-
discussed more in Sec. VII. Here we mention some subtletyOrS (6.1) for all j:

in application of this kind of arguments. To see it consider

the shifted bow-tie modethat differs from the conventional 2.7\2
bow-tie model of Sec. Il in one respect: the horizontal po- PMHM=exp< —E —Mn) (6.2
tential curve has some nonzero eneegyvhile the multiple 7 [Bu— B

crossing of slanted potential curves lies, as befor&-a0. . . :
One can consider the simplest three-state case when only tv""c€ this result does not dependap it could be extended

slanted potential curves are present with the slopes of oppd? arPitrary values of this parameter. Previously the formula
site sign. At first it seems that only a single path connect§?'2) for the states |W|th extren&aﬂbma;qmal_ﬁor 'Emémaj
each initial and final state in this model, since the slanted® °P€S Was tentatively suggested by Harifii8] and Brun-

curves are not coupled directly, as presumed in the bow-tigobler and Elsef14] and tested numerically for various
choices of parameters id(t) including the situations with

model. If this would be true, then the interference effects I £ adi ided ) ) lidi

were absent and the transition probabilities were independeﬁ‘gor‘,g overlap of adjacent avoided crossing regions. vali ity
of € just as in the case of the generalized bow-tie model® this formula in the bow-tie model was demonstrated in
However, in fact the slanted curves are coupled, alibelit Ref. [15].

rectly (via intermediate horizontal curyeand the Landau- ‘ Nothe thal‘t mcfierp])endence of the transrﬁon prot)l?bllrl]tles
Zener-type transitions are actually operative in the vicinity of /0™ the value of the parameterreflects mathematically the

their crossing. This is seen, for instance, from the fact tha{aCt that. the probabillities. do_not depend on the gepmetrical
the adiabatic potential curves exhibipseudocrossingn the phase difference. This situation emerges not only in case of

region where two slantediabaticcurves cross. Therefore, in Single-path transitions as in Sec. VI B, but also for multipath
fact, the shifted bow-tie model allows multipath interference.ransitions in the generalized bow-tie model, where the geo-
Consequently, the transition probabilities in this model de.Metrical phase is always zero due to particidrsymmetry
pend on the value ot. The latter fact was tested in the property of the model.

numerical example by Brundobler and El$&#].
VII. CONCLUSION
B. Probability of survival on the steepest diabatic

ential In the present paper, among a variety of feasible multi-
potential curve

state Landau-Zener-type problems we seek those which al-
The similar reasoning could be applied to evaluation oflow an exact solution with appealing physical interpretation.
some particular transition probabilities in the generalWe show that the exactly solvable bow-tie model can be
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embedded into the generalized bow-tie model as some pastructive interference. One of these two possibilities takes
ticular limit of the latter. The dynamics of the generalized place for each path independent of other parameters of the
bow-tie model is interpreted as a sequence of two-state tramproblem, such as couplings. Note that the calculated transi-
sitions each of which is described by the conventionalion probabilities never turn zero due to interference effects.
Landau-Zener model. In the limit of the bow-tie model the This feature also stems from the fact that the interference
multicrossing pattern is contracted into a point. It seems thaﬁ)hase cannot be varied continuously thus preventing the
the only way to provide an appealing interpretation of thepropapility oscillations characteristic of the conventional
transition probability in the bow-tie model is to consider it asmultipath interference problems.

a limiting case of the generalized bow-tie model as done oy scheme to describe the multipath interference follows

above. _ _ N _ simple rules outlined above. Since we do not resort to actual
The rules used in evaluation of the transition amplitudesso|ytion of the nonstationary Scltinger equation one can
could be summarized as follows. question their validity. The latter is supported by two argu-

(i) Only forward propagation in time is to be considered. nents. First, our scheme reproduc¢&gc. \) all the results
(if) Only the phase factors are gained in the course of timgpiained by the contour integral methfib] in the limit of
propagation between crossings of adiabatic potential curvege conventional bow-tie model. This method provides a
adjacent on the time axis. The phases could be evaluatgfathematically rigorous and complete solution of the non-
“geometrically” as areas in theHt) plane (Sec. IVQ.  stationary Schidinger equation. Second, the arguments pre-
They are zero in the generalized bow-tie model due to itsented in Sec. VI, to our mind, strongly support our results
specialET symmetry. o _ . for the generalized bow-tie model. In a sense we give here
(iii) The crossing of two diabatic potential curves inducessop|ution of the problem essentially without actual calcula-
rearrangement within the related two-dimensional subspacgons, in contrast to the paper by Brundobler and E[4¢i
of Hilbert space. It is described by the transformation matrixyho presented calculationfave function in terms of con-
. tour integral, but not the solutiorithat implies derivation of
( \/p—l 1= pj) transition probabilitiesfor the conventional bow-tie model.
i , (7.
NI

To make the treatment complete we plan to publish a full
solution of the generalized bow-tie modek., of Eqs.(3.4)]
wherep; is the Landau-Zener probability of diabatic passageby the contour integral methd@5]. The general scheme of
of the related crossindn Fig. 1(b) these transformations are calculations is similar to that employed in Réfl5]|, but
marked symbolically by small blocks around each croslsing some important distinctions appear in realization. All the
The expressior(7.1) shows that the dynamic phager is  transition probabilities for the generalized bow-tie model are
gained in the transition from one diabatic state to another. reproduced by this rather elaborate mathematical develop-
According to these rules the matrix of transition ampli- ment that lies outside the scope of the present paper devoted
tudes is constructed as a producf\bk N unitary matrices of  to physically appealing aspects.
simple structure, namely either diagonal phase matrices of The important theoretical problem, still unresolved, is to
the item 2 above, or quasidiagonal matrices of item 3, thafind all cases within the generalized Landau-Zener model
differ from the unit matrix only by one diagonal block of the (Sec. ) which are exactly solvable. Probably this is the same
form (7.1). The structure of these factor matrices is so simpleas to find the cases when the matrix of transition amplitudes
that it is convenient to reformulate the problem in terms ofis composable from elementary matrices.
propagation paths. The path is defined as a piecewise straight An attractive feature of the bow-tie and generalized bow-
line that can change its slope only at the points where théie models is flexibility in the sense that the number of ad-
diabatic potential curve intersect. The rules summarizedustable parameters is lar¢ide slopegs;, the couplings/;,
above are straightforwardly reformulated as the rules thaand additionally the parameterin the generalized model
ascribe the transition amplitude to each path connectingn this respect the model is similar to the Demkov-Osherov
given initial and final states. The contributions of all paths[10] model, whereas the exactly solvable multistatg(2)
are to be added coherently. model considered by Hide6] effectively contains only one
Analysis of the generalized bow-tie model includes someparameter. The physical realization of the bow-tie and gen-
features that hopefully might be of broad interest. Generallyeralized bow-tie models remains an important and not fully
one has to account for the interference between various pathesolved question. The set of potential curves that are linear
that connect initial and final states. It is universally knownin time and cross at the same moment could be obtained for
that in such a situation the interference phases play crucidkydberg atom placed into uniform electric and/or magnetic
role in the result. Commonly it is assumed that the phasefeld with linear time dependence. The higmembers of the
vary smoothly when the system parameters are change®ydberg manifold are non-core-penetrating and therefore ex-
This leads to the characteristic interference oscillations in théibit the hydrogenic degeneracy in the absence of external
transition probabilities. The generalized bow-tie model prefields. When the fields are switched on, the energy splitting
sents an instructive exception from this common situationis linear in the field strengths within the range of applicabil-
Due to the particulaET symmetry the phases cannot be ity of the first-order perturbation theory. An additional state
altered continuously. Only two discrete values of the inter-that interacts with all other states can be some state of dif-
ference phase are realized, one possibility corresponds ferent nature that occasionally is degenerate with the zero-
purely constructive interference, another one gives purely deield Rydberg manifold and interacts with it. Alternatively,
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an extra state could correspond to the core-penetrating state, V2
for instance, one with=0. The experimentator can apply F(y)=0, F(7)=2 _J . (A2)
initially a strong external field, populate one of the levels T ATy
under consideration by using the well developed laser teChObvioust F(v) behaves similarly to the tangent function
nique, then change the external field strength linearly in tim?ncreasing' monotonically from- to +o in each interval
S0 as to obtain again the strong field but with opposite direcl—B <y<fB,. In such an interval inevitably the function
tion. After that repopulation of different levels could be in- F’(‘;)l crossens. the abscissa axis at some pginthat gives
vestigated. The applicgpility of bow-_tie model to this sort of one of the slopes of interest. Thus we conclude that the
problem needs an additional analysis. slopes of adiabatic potential curves at zero time lie in be-
tween the adjacent slopes at infinite tinftbe latter ones
ACKNOWLEDGMENTS coincide with 3;). From Eq.(A1) it is readily seen that the
The authors are thankful to Dr. P. N. Price for providing ad_ia}batic curves never cross th_e diabatic ones, except at the
part of his unpublished thesis. origin tfo, E=0. They stay in the sector between the
straight linesE=B,,_1t andE= y,t.
Equation(A2) has (N—2) solutions for the slopeg, . As
discussed in Refl15], there are also two adiabatic potential
curves that take nonzero valuestatO:

E0)=%~/> V2 (A3)
]

vi
&t 2 Bjt—c‘?) =0. (A1) The related slopes are easily calculated using(Efy). They
coincide for both curves:

In this appendix we derive an interesting property of the

slopes of adiabatic potential curvestatO. We seek for the . 1
adiabatic potential curves in the linear fott) = yt, where Y= 2[£(0)]2
various solutions fory give the set of slopes under consid-

eration. The equation foy follows from Eq.(Al) considered Note that y turns zero in the symmetric cases_;

APPENDIX: SLOPES OF ADIABATIC POTENTIAL
CURVES IN THE BOW-TIE MODEL AT t=0

The equation defining the adiabatic potential curgé&y
for the bow-tie model was presented in Rieif5] as
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