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Generalization of the atomic random-phase-approximation method for diatomic molecules:
N2 photoionization cross-section calculations
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Partial and total photoionization cross sections of N2 molecule are calculated using the generalization of the
random-phase approximation~RPA! which earlier has been successfully applied to the description of the
atomic photoionization processes. According to this method, at first the Hartree-Fock~HF! ground-state wave
functions are calculated in prolate spheroidal coordinates using the fixed-nuclei approximation. With their help
the zero order basis set of single particle Hartree-Fock wave functions containing both discrete excited states
and continuous spectrum is calculated in the field of a frozen core of a singly charged ion. The calculations are
performed for all four valence shells of N2 molecule, 3sg , 1pu , 2su , and 2sg , with the intershell correla-
tions fully taken into account within the RPA method. It is demonstrated that different intershell correlations,
especially between three outer shells, play an important role in photoionization process. Examples of the
influence of intershell correlations on several transitions are presented. Partial and total photoionization cross
sections of N2 molecule obtained by this method in the photon energy range from ionization threshold up to 70
eV are in a good agreement with the existing experimental data and with the recent RPA calculations@Cacelli
et al., Phys. Rev. A57, 1895~1998!#.

PACS number~s!: 33.80.Eh
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I. INTRODUCTION

Molecular nitrogen is one of the best studied diatom
molecules due to its importance as a main constituent of
atmosphere, and due to its relative simplicity for both expe
mental and theoretical investigations. A rather complete
of references on different photoionization studies of the2
molecule can be found in several recent publications devo
to the comparison of theoretical photoionization cro
section calculations with the experimental data@1–7#. These
calculations were performed in the random phase approxi
tion ~RPA! which earlier has been very successfully appl
to the description of the atomic photoionization proces
@8,9#. One of advantages of the RPA method is that
photoionization cross sections calculated in the length
velocity forms coincide, while in the Hartree-Fock~HF! ap-
proximation they can differ substantially, sometimes by
factor of 2. The goal of this work is to generalize the RP
method as it was developed in@8#, for diatomic molecules,
and to check its efficiency in molecular photoionizati
cross-section calculations. As a first demonstration of
method we calculated the photoionization cross section o2
molecule@10# which has been studied previously in a num
ber of papers. Our theory is in a remarkably good agreem
with the recent experimental data. The first results of
analogous calculations for N2 molecule are presented here

There were already several studies of N2 molecule using
different versions of RPA, all of them being different fro
the version described here. In particular, Cacelliet al. @1#
used a largeL2 basis sets of one center Gaussian-type or
als for a description of a short-range behavior of continu
spectrum wave functions, and aK-matrix based technique in
their RPA calculations. Shirmer and Mertins@2# restricted
their consideration of RPA by taking into account only t
first order of perturbation theory, and therefore their cro
1050-2947/2000/61~3!/032704~11!/$15.00 61 0327
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sections in the length and velocity forms do not coincid
Veseth @3# and Yabushitaet al. @5# used the RPA method
based on an analytic continuation of polarizability calcula
for complex values of the frequency, avoiding in this w
calculations of continuous spectrum wave functions,
main problem in applying the RPA for diatomic molecule
Lucchese and Zurales@4# implemented the RPA method i
the form of closed-coupled equations which were solved
ing the Schwinger variational method with Pad´-
approximant corrections. In@6,7# the time-dependen
Hartree-Fock approximation, which is equivalent to t
RPA, was used in combination with the so-called Stieltje
Chebyshev moment theory. These different versions of R
gave rather different results for the photoionization cross s
tion of N2 molecule.

We calculated the partial and total photoionization cro
sections of all four valence shells, 3sg , 1pu , 2su , and
2sg , of N2 molecule with the intershell correlations full
taken into account within the RPA method. We checked t
the correlations with the 1su , and 1sg shells are not impor-
tant at the photon energies considered by us. Earlier the
relations between all four shells have been taken into acco
only in @1,4,5,7#, but in @5,7# the consideration have bee
restricted by the1Su

1 final states, that is by the transition
with Dm50 wherem is the projection of orbital angula
momentum of electron, and in@4# the calculations have bee
restricted by a narrower photon energy region. Only in@1#
the calculations have been performed on the same leve
sophistication as here, and in the same photon energy ra
therefore in the following we shall compare our RPA cro
sections mainly with the results of this paper. Correlatio
between three valence shells, 3sg , 1pu , and 2su , have
been taken into account in@3,6#.

In accord with@8#, our RPA calculations proceed as fo
lowing. At first the HF ground state wave functions are c
©2000 The American Physical Society04-1
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culated in the fixed-nuclei approximation. With their help t
zero order basis set of single particle HF wave functions
discrete excited states and of the continuous spectrum is
culated in the field of a frozen core of a singly charged
~the one particle–one hole excited states!. With this basis the
dipole and the Coulomb matrix elements are calculated.
the next step we are looking for the dipole matrix elements
RPA by solving the corresponding RPA equation, witho
calculating explicitly the wave functions in RPA. In the in
tegral RPA equation for the dipole matrix elements the in
nite integration over the continuous spectrum is substitu
approximately by a finite summation, and in that way t
integral equation is transformed into a set of algebraic eq
tions which is solved by matrix inversion. The dipole matr
elements obtained as a solution of the RPA equation ca
used for calculations of photoionization cross section, an
lar distribution and spin polarization of photoelectrons.
this paper we report only on the partial cross-section ca
lations, the angular distributions will be discussed elsewh
Also we do not discuss the autoionization structures co
sponding to one-particle excitations which can be descri
within the RPA method.

It should be noted that solving the RPA equations the
selves for molecules is quite similar to that for atoms. T
main problem in realization of the RPA method in molecu
consists in calculation of one-electron Hartree-Fock conti
ous spectrum wave functions forming, together with the d
crete excited states, the orthonormal basis set of HF w
functions. For the success of the RPA calculations it is c
cially important to use the exact HF wave functions witho
any simplification like localization of the exchange intera
tion, and so on. Therefore we paid a special attention to
quality of our HF wave functions. It is becoming usual no
to calculate the bound state wave functions of diatomic m
ecules using a partial wave expansion in prolate sphero
coordinates@11–13#. As compared to usual expansion
spherical coordinates, this method substantially reduces
number of terms necessary to take into account in orde
reach high accuracy in calculations. That is because the
late spheroidal coordinates are more natural in diatomic m
ecules and provide separation of coordinates for one-elec
problem. Therefore we use this method for continuous sp
trum wave function calculations, too. It does not give a
additional difficulties and allows to perform calculation
more efficiently. As to the deep atomiclike bound states
molecules, they are also calculated accurately by
method. This was demonstrated earlier in@14# by calculating
the Ne atom wave functions in prolate spheroidal coordina
with the nuclear chargesZ1510, Z250, and the ‘‘internu-
clear’’ distance equal to 1.5a0 .

II. THEORY

A. General relations

Keeping in mind the further applications for calculatio
of the angular distributions of photoelectrons, it is conv
nient to determine photoionization parameters through
photoelectron orbital ck

(2)(r) with the incoming-wave
boundary condition. Herek is the electron momentum andr
03270
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is its coordinate. The partial wave expansion of this orbita
the molecular frame is given as usual by@15–17#

ck
~2 !~r!5(

l ,m
f « lm~r!Ylm* ~ k̂!, ~1!

where

f « lm~r!ur→`;S 2

pkD 1/2 1

2ir S Ylm~ r̂!eiq~r !

2(
l 8

Yl 8m~ r̂!Sll 8m
* e2 iq~r !D , ~2!

q(r )5kr1k21 ln 2kr, and the function~2! is normalized to
an energyd function. Then the differential photoionizatio
cross section in the length~L! and velocity (V) forms can be
written as~atomic units\5m5e51 are used in this paper!

dsL,V~v!/dVk54p2aa0
2v(

m
uem^c~2 !~k,r!udm

L,Vu i &u2,

~3!

where v is the photon energy,Vk denotes the spherica
angles of the vectork, a is the fine-structure constant,a0 is
the Bohr radius,ui& means the initial state of the molecul
andem are the spherical projections of the photon polariz
tion vector,

dm
L 5A4p

3
rY1m~ r̂!,

dm
V55

1

&
S 7

]

]x
6 i

]

]yD for m561

]

]z
for m50.

~4!

Since the spherical functionsYlm( k̂) form an orthonormal
set, the total photoionization cross section can be obtai
from Eq. ~3! by integrating over the photoelectron ejectio
angle and averaging over all polarizations

sL,V~v!5
4

3
p2aa0

2v(
m

(
l ,m

u^ f « lm~r!udm
L,Vu i &u2. ~5!

Only the electronic degrees of freedom are considered h
within the Born-Oppenheimer approximation.

Instead of the functionsf « lm(r) which include an imagi-
nary part, we prefer to calculate the set of other functio
w« lm(r) which are real and which are the linear combinatio
of the functionsf « lm(r). We shall do it following the ideas o
the K-matrix method@15,17#, and a method of phases@18#.
In the latter paper it was proposed to expand the functi
c (2)(r ) not in spherical harmonics as it is usually done, b
in some other complete basis set which is energy depend
that is for each photoelectron energy there is a new se
basis wave functions. As it was noticed in@15,19#, the sets of
wave functions corresponding to different types of bound
conditions are interrelated by unitary transformations, a
4-2
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we shall use this fact. Our method consists in the followi
For a given photoelectron energy« and momentumk(«
5k2/2) we are looking for a solution satisfying th
asymptotic condition

w« lm~r!ur→`;
1

r S 2

pkD 1/2

(
l 8

cll 8
«mYl 8m~ r̂!sin„q~r !1d l l 8

«m
…,

(
l 8

~cll 8
«m

!251, ~6!

or in another form

w« lm~r!ur→`;S 2

pkD 1/2 1

2ir (
l 8

cll 8
«mYl 8m~V r !

3eid
l l 8
«m

~eiq~r !2e2 iq~r !e22id
l l 8
«m

! ~6a!

and the orthonormalization conditions

^w« lmuw«8 l 8m8&5d l l 8dmm8d~«2«8!. ~6b!

We do not fix at this moment the boundary conditions of
wave function since we are going to get the generalized
lations for thec (2) function which are valid for any bound
ary condition including those used in@17,18#. In the case of
E

03270
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separable coordinates considered in@18# the phases in Eq.~6!
are independent of the indexl 8, and the coefficientscll 8

«m

5cl
«md l l 8 are found as solutions of the equations for det

mination of a separation constant. Since in our case the
ordinates are not separable, the phases in general depe
l 8, and we could not use the condition of separability f
determining the set of solutions. Instead of that, we are us
the following procedure. We introduce a new set of functio

F lm
« ~ k̂!5(

l 8
cll 8

«mYl 8m~Vk!exp~ id l l 8
«m

!, ~7!

which for any« form a complete orthonormal set on the un
sphere, that is

E F lm
« ~ k̂!F l 1m1

«* ~ k̂!dVk5d l l 1
dmm1

, ~8!

(
l ,m

F lm
« ~ k̂!F lm

«* ~ k̂8!5d~ k̂2 k̂8!. ~9!

Inserting Eq.~7! into Eqs.~8! and~9!, and using the fact tha
the spherical functions form the complete orthonormal set
the unit sphere, we obtain the following conditions for t
parameterscll 8

«m :
E (
l 8

cll 8
«mYl 8m~Vk!exp~ id l l 8

«m
!(

l 9
c

l 1l 9

«m1Yl 9m1
* ~Vk!exp~2 id

l 1l 9

«m1!dVk5(
l 8

cll 8
«mcl 1l 8

«m exp@ i ~d l l 8
«m

2d l 1l 8
«m

!#5d l l 1
, ~10!

(
l

cll 8
«mcll 9

«m exp@ i ~d l l 8
«m

2 id l l 9
«m

!#5d l 8 l 9 . ~11!
ead
e
-
-
an
the
a-
After that we can present the functionck
(2)(r) as an expan-

sion in these functions in the same way as it was done in
~1! with the partial wave expansion,

ck
~2 !~r!5(

l ,m
w« lm~r!F lm

«* ~ k̂!. ~12!

The functionsw« lm(r) having the asymptotic behavior~6!
are connected with the functionsf « lm(r) defined in Eqs.~1!
and ~2! by the relation

w« lm~r!5(
l 8

cll 8
«mf « l 8m~r!exp~ id l l 8

«m
!, ~13!

or, sincecll 8
«m exp(idll8

«m) form a unitary matrix,

f « lm~r!5(
l 8

cl 8 l
«mw« l 8m~r!exp~2 id l 8 l

«m
!. ~14!
q.
To verify the equivalence of the expansions~1! and~12!, let
us insert Eqs.~13! and ~7! into Eq. ~12! and use the condi-
tions ~10! and ~11!

ck
~2 !~r!5(

l ,m
w« lm~r!F lm

«* ~ k̂!

5(
l ,m

(
l 8,l 9

f « l 8m~r!Yl 9m
* ~Vk!cll 9

«mcll 9
«m

3exp@ i ~d l l 8
«m

2 id l l 9
«m

!#

5(
l ,m

f « lm~r!Ylm* ~Vk!. ~15!

So, the proposed method consists in calculation, inst
of the functionsf « lm(r) which include an imaginary part, th
other real functionsw« lm(r) which are the linear combina
tions of the functionsf « lm(r). Since there are simple rela
tions ~13! and ~14! between these two basis sets, we c
easily transform our results into the standard form with
basis set~2! in order to make the comparison with calcul
4-3
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tions of other authors or with the values extracted from
experimental data in a complete experiment@20#. Both con-
ditions ~8! and relations~13! and~14! which are used for the
transformation of our results to the usual expansion
spherical harmonics are simpler than the analogous ma
relations in theK-matrix method@17#.

B. RPA equation and its solution

Originally the RPA approximation has been introduc
for the description of the high density electron gas in soli
ec
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Later it was proved@8# that the RPA can be successful
applied for the description of many-electron correlations
atoms, too, provided the inhomogeneity of atoms is tak
into account from the very beginning by the use of the H
wave functions as the zero order approximation. Eviden
on the same grounds the RPA method can be success
applied to molecules as well. We shall use both the HF a
the RPA approximations for defining the dipole matrix e
ments introduced above, and the cross sections. Accordin
@8# the RPA equation for the dipole matrix elements can
written as
^« lmuDmu i &5^« lmudmu i &1 (
j <F

(
«8.F

(
l 8,m8

F ^«8l 8m8uDmu j &^ j ,« lmuUu«8l 8m8,i &
v2«81« j1 id

2
^ j uDmu«8l 8m8&^«8l 8m8,« lmuUu j ,i &

v1«82« j2 id G . ~16!
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Here i,j mean the set of quantum numbers necessary
specify the bound state wave function including the proj
tion of the angular momentum on the molecular axismi ,
mj , ^« lmuDmu i & and^« lmudmu i & mean the dipole matrix el
ements in the RPA and in the HF approximations, resp
tively, ^ j ,« lmuUu«8l 8m8,i & is the Coulomb matrix elemen
defined as

^ j ,« lmuUu«8l 8m8,i &5^ j ,« lmuVu«8l 8m8,i &

2^ j ,« lmuVu i ,«8l 8m8&, ~17!

where

^ j ,« lmuVu«8l 8m8,i &5E w i* ~r!w« lm* ~r8!ur2r8u21

3w«8 l 8m8~r!w i~r8!drdr8, ~18!

the summation overj <F in Eq. ~16! means the summatio
over all occupied states~that is the states below the Ferm
level!, the summation over unoccupied states«8.F above
the Fermi level includes both the summation over the d
crete excited states and integration over the continuous s
trum, so that Eq.~16! is an integral equation, and in th
denominatorsd→10. Since there is a pole in the integran
of Eq. ~16!, the solutionsDm are the complex values whil
the HF matrix elementsdm are real.

One-electron ground state wave functions are the s
tions of the self-consistent HF equations

F2
¹2

2
2

Zi

r 1
2

Z2

r 2
1(

j 51

n

2Jj j ~r!Gw i~r!2(
j 51

n

Jji ~r!w j~r!

5« iw i~r!, ~19!
to
-

c-

-
ec-

u-

where

Ji j ~r!5E w i* ~r8!ur2r8u21w j~r8!dr8 ~20!

describes the exchange interaction wheniÞ j and the direct
interaction wheni 5 j .

For the application of the many-body theory in gener
and of the RPA approximation in particular, we need to d
fine the zero order complete basis set of one-particle w
functions. In the HF approximation we need to use Eq.~19!
with fixed wave functions for all occupied states as an eq
tion generating such a complete basis set. With this basis
we must solve the RPA equation~16! for the dipole matrix
elements. But if we shall use Eq.~19! for calculating the
wave functions of excited states of both discrete and cont
ous spectrum, we obtain the wave functionsw« lm(r) calcu-
lated in the field of a neutral molecule which does not c
respond to the physics of the photoionization process.
reality the photoelectron is moving in the field of a sing
charged molecular ion. To take it into account, we must
clude one electron from the HF field in which the photoele
tron is moving, leaving the one-particle wave functions
the HF potential the same as they have been found for
ground state of the molecule. In other words, we need
calculate the excited state wave functions in the field o
frozen core of a singly charged molecular ion with the ho
state in the shell from which the electron has been ejec
Following the procedure described in@8#, we can perform a
redefinition of the excited state wave functions in order
exclude one electron from the field in which the photoele
tron is moving. If the hole appeared in the statei, the corre-
sponding frozen core HF equation for the new functions
4-4



l-

d

-
nc-

the

nt
d
er-
y
on
ed
HF

-

GENERALIZATION OF THE ATOMIC RANDOM-PHASE- . . . PHYSICAL REVIEW A 61 032704
F2
¹2

2
2

Z1

r 1
2

Z2

r 2
1(

j Þ i

n

2Jj j ~r!G w̃« lm~r!

2(
j Þ i

n

Jj ,« lm̃~r!w j~r!1Jii ~r!w̃« lm~r!1Ji ,« lm̃~r!w i~r!

5«w̃« lm~r!2(
j 51

n

« i j w j~r!, ~21!

where the off-diagonal energy multipliers« i j are determined
by the relation

« i j 5^ i ,« lm̃uUu j ,i &. ~22!

The new excited state wave functionsw̃« lm(r) are connected
with the wave functions found in the field of a neutral mo
eculew« lm(r) by the equation

^« lm̃u5^« lmu

1 (
«8.F

(
l 8

^«8l 8mu
v2«81« i1 id

^ i ,« lm̃uUu«8l 8m,i &.

~23!

To check it, one should act on Eq.~23! by the operator
HHF2«, where HHF means the operator in the right-han
03270
side of Eq.~19! for which w« lm(r) are the eigenfunctions. As
a result Eq.~21! is obtained.

From Eq.~23! it immediately follows that the dipole ma
trix element calculated with the new excited state wave fu
tion satisfies the following equation:

^« lm̃udmu i &5^« lmudmu i &

1 (
«8.F

(
l 8

^«8l 8mudmu i &
v2«81« i1 id

^ i ,« lm̃uUu«8l 8m,i &

~24!

It is easy to check that this equation takes into account
terms with i 5 j of the RPA equation~16!. Just these terms
contain the divergent Coulomb matrix eleme
^ i ,« lmuVu i ,« lm&, therefore the redefinition of the excite
state wave functions allows to avoid the problem of div
gent matrix elements@8#. The terms taken into account b
Eq. ~24! should be omitted when solving the RPA equati
with the dipole and Coulomb matrix elements calculat
with the redefined wave functions. So, if the ground state
wave functions are determined by Eq.~19! and the excited
state wave functions are determined by Eqs.~21! and ~22!,
the RPA equation~16! for the projections of the dipole mo
ment takes the form
e
e since

Then the
integral

ribed in
^« l ~mi1m!uDmu i &5^« l ~mi1m!udmu i &1 (
j <F

~ j Þ i !

(
«8.F

(
l 8

^«8l 8~mj1m!uDmu j &^ j ,« l ~mi1m!uUu«8l 8~mj1m!,i &
v2«81« j1 id

2 (
j <F

(
«8.F

(
l 8

^ j uDmu«8l 8~mj1m!&^«8l 8~mj2m!,« l ~mi1m!uUu j ,i &
v1«82« j2 id

, ~25!

where the selection rules for the projection of the orbital angular momentumm were taken into account explicitly. To solv
this integral equation numerically, we replace the infinite upper limit of integration by a finite one, which can be don
the integrand decreases fast enough, and the integration over energy« is replaced by integration over momentumk in order to
integrate more accurately the region near the ionization threshold where the cross section is varying rather fast.
definite integral in finite limits is approximately replaced by a sum. This procedure enables one to transform the linear
equation~25! into a system of linear algebraic equations which is solved by inversion of a matrix as it has been desc
more details in@8#. Equation~25! contains a pole, therefore the integral in it can be written as

E ^«8l 8~mj1m!uDmu j &^ j ,« l ~mi1m!uUu«8l 8~mj1m!,i &
v2«81« j1 id

d«8

5PrE ^«8l 8~mj1m!uDmu j &^ j ,« l ~mi1m!uUu«8l 8~mj1m!,i &
v2«81« j

d«81 ipr , ~26!

where the integral in the right hand side should be understood in the principal value sense, andr is the residue in the pole

r 5^«8l 8~mj1m!uDmu j &^ j ,« l ~mi1m!uUu«8l 8~mj1m!,i &u«85v1« j
. ~27!

Due to that the solution is a complex value, and it can be written symbolically as

Dm5ReDm1 i Im Dm . ~28!

After inserting Eqs.~26!–~28! into Eq. ~25! the solution of the RPA equation can be written in the matrix form as
4-5
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~ReDm ,ReD̃m ,Im Dm ,Im D̃m!5~dm ,d̃m,0,0!•G21. ~29!

HereDm5^« l (mi1m)uDmu i &, D̃m5^ i uDm* u« l (mi1m)&, the row vectors have the dimension 4N, and the square matrixG has
the dimension 4N34N, with N being the total number of the excited states of discrete and continuous spectra calculate
channels. The RPA matrixG has the following structure:

G5S 1 0

0 1D 2S A B

2B AD , ~30!

where the submatricesA andB have the dimensions 2N32N,

A5S A2«8^« l ~mi1m!; j uUu i ;«8l 8~mj1m!&
v2«81« j

U
j Þ i

A2«8^« l ~mi1m!;«8l 8~mj2m!uUu i , j &
v2«81« j

A2«8^« l ~mi1m!;«8l 8~mj2m!uUu i , j &
2v2«81« j

A2«8^« l ~mi1m!; j uUu i ;«8l 8~mj1m!&
2v2«81« j

U
j Þ i

D , ~31!

and in the matrixB only the residues in the poles are contributing@see Eqs.~26! and~27!#, that is only the lines correspondin
to «85v1« j are different from zero

B«85p^« l ~mi1m!; j uUu i ;«8l 8~mj1m!&, p^« l ~mi1m!;«8l 8~mj2m!uUu i , j &u«85v1« j
. ~32!
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The three-points Lagrange interpolation formula is used
approximating the residue valuer, and the Simpson formula
in numerical integration when transforming the integral RP
equation to the linear system, as it was described in m
detail in @8#.

We need to solve the RPA equation~25! separately for
m50 andm511 ~or 21!, and also separately for the dipo
matrix elements in the length and velocity forms. The so
tions are inserted into Eq.~5! to calculate the photoionizatio
cross section.

C. The numerical procedure

The HF equations are solved in prolate spheroidal coo
natesj, h, w defined as usual

j5~r 11r 2!/R, h5~r 12r 2!/R,
~33!

1<j<`, 21<h<1, 0<w<2p,

wherer 1 and r 2 are the distances to the nuclei, andR is the
internuclear distance~equal to 2.068 a.u. in our calculation
for N2). Since previously the spheroidal coordinates w
already used in calculations of the bound state wave fu
tions @11,12#, and we are using the same procedure for
bound states, it is worth while to mention only some featu
of the continuous spectrum wave function calculations.
are looking for the solutions of the HF equation~21! for
w« lm(r) which correspond to a discrete set of the elect
energy values«5ki

2/2, i 51,2, . . .N, ki5k01( i 21)Dk,
wherek0 is usually equal to 0.1,Dk for different transitions
is varied between 0.7 and 0.1, andN ~which is always odd!
between 21 and 37. That gives the set of points for the
merical integration in the RPA equation~25!. For each« i we
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calculateL orthonormal continuum state wave functions
the form of partial wave expansion in spheroidal coordina

w« lm~r!5(
l 8

Xll 8
«m

~j!Yl 8m~h,w!, l 5 l min,...,l min12~L21!.

~34!

Usually L53 was sufficient to achieve a good convergen
For homonuclear molecules like N2 where the parity is a
good quantum number, bothl and l 8 in Eq. ~34! are only
even or only odd, andl min50 or 1 for even or odd parity
states, respectively. From the comparison between Eqs~6!
and ~34! one can easily find the coefficientscll 8

«m and phase
shiftsd l l 8

«m from the known asymptotic behavior of the corr
sponding functionsXll 8

«m(j).
The numerical integration of the HF equation overj is

divided into two regions, (1,j0) and (j0 ,jmax) wherej021
!1 andjmax560. In the first region the solution is presente
in the form

Xll 8
«m

~j!5~j221!l/2(
k

all 8
km

~j21!k. ~35!

In the second region the Numerov method is used for
numerical integration. In contrast with@10# the modified
boundary conditions have been used here for the continu
wave function calculation

(
K

~all 8
km

!251, Xll 8
«m

~jmax!50,

~36!

l 8Þ l , l 5 l min,...,l min12~L21!.
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The first condition fixes the function on the molecular a
and improves convergency. It is achieved by the iterat
process of determination of the phased l l 8

«m . The second con-
dition gives the linear independency of the solutions w
different l.

The nonlocal exchange interaction is fully taken into a
count in the procedure of the iterative numerical solution
the HF equation. This is done as usual by calculating
exchange potential at each iteration with the wave funct
obtained from the previous iteration@11,12#.

III. RESULTS OF CALCULATIONS

The partial photoionization cross sections have been
culated for all four valence orbitals of N2 molecule, namely
for 3sg , 1pu , 2su , and 2sg . Correspondingly in the RPA
equations~25! and ~29! the many-electron correlations be
tween all four shells have been taken into account. In
expansion~34! usually three terms were included. It wa
checked that the higher order terms are giving a neglig
contribution. The experimental thresholds have been use
calculations which differ from the theoretical ones by abo
2 eV ~see Table I of@1#!. Important is also that in the exper
ment the 3sg orbital is the outermost one, while in calcula
tions the 1pu orbital has the lowest ionization threshold. Du
to this shift of ionization thresholds the cross sections in
length and velocity forms in the RPA do not coincide as th
do when the theoretical thresholds are used. In order to k
the agreement between them, we multiplied the HF ma
elements in the length and velocity forms when solving E
~29! by the following correcting factor:

c5Av1I theor2I expt

v
5A«1I theor

«1I expt
~37!

according to the equations

~dL!corr5cdL, ~dv!corr5dv/c, ~38!

wherev is the photon energy,« is the photoelectron energy
I theor and I expt are the theoretical and the experimental io
ization thresholds of the shell~positive values!, respectively.
This correction allows us to greatly reduce the differen
between the length and velocity cross sections in RPA
pearing when the experimental thresholds are used.

Let us consider now the partial photoionization cross s
tions for each shell separately. Figure 1 shows our results
the outermost 3sg orbital. In the HF approximation the cros
sections in the length and velocity forms usually differ
20–30 %, while in the RPA they nearly coincide, therefo
only one RPA curve is shown in the most cases below. O
HF cross sections for the 3sg→«su transition are in a close
agreement with the results of@2,5# both in the length and
velocity forms, as well as with the length results reported
@7,21–23#. The broads* shape resonance near 30 eV
reproduced fairly well already in the HF approximation, a
does not appear to be sensitive to the details of nume
calculations. The inclusion of the RPA correlations increa
the cross section for this transition at all photon energies,
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just above the threshold a sharp peak appears correspon
to the strong 1pu→1pg resonance excitation. Figure
shows the influence of different two-channel correlations
the partial 3sg→«su cross section. Evidently, the large
effect is given by the correlations with the 1pu→«pg tran-
sition.

The cross section for the 3sg→«pu transition in the HF
approximation is rather flat in a broad energy range, and
length result is in agreement with that of@22,23#. The influ-
ence of correlations on the 3sg→«pu transition is less pro-
nounced. Finally, the total photoionization cross section
the production ofN2

1(X2Sg
1) state in the RPA is shown in

the lower part of Fig. 1. The maximum in the shape re
nance is higher in magnitude and shifted to higher energ
as compared to the experimental data, so that the HF res
even in a better agreement with the experiment than the R
one. The analogous results in the RPA have also been
tained by the other authors@1,4,5#, and for comparison the
results of@1# are shown in the figure.

Figure 3 shows our cross sections calculated for the 1pu
orbital. In the HF approximation our cross sections for t

FIG. 1. Partial photoionization cross sections for different tra
sitions from the 3sg orbital of N2 molecule in the HF and RPA
approximations calculated in the length~L! and velocity (V) forms.
In the RPA theL and V cross sections nearly coincide, therefo
only one line is shown. The experimental data are taken from S
son et al. @24#, Woodruff and Marr@25#, and Hamnettet al. @26#.
The theoretical results of Cacelliet al. @1# in RPA are also shown.
4-7
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transitions 1pu→«sg and 1pu→«dg are in a good agree
ment with the analogous results of@27#. As to the 1pu
→«pg transition, it usually has an unphysical behavior
the HF approximation, namely, a very strong maximum j
above the ionization threshold mentioned in several ea
publications@7,21,27#. We are using another method to pe

FIG. 2. Comparison between the cross sections for thesg

→«su transition calculated in the HF approximation and in t
RPA taking into account different two-channel correlations se
rately. In all cases the upper line corresponds to the cross secti
the length form and the lower one in the velocity form.

FIG. 3. The same as in Fig. 1 for the 1pu orbital of N2 mol-
ecule.
03270
t
rform calculations for this transition. Namely, we are solvi
Eq. ~22! for the «pg HF wave functions which does no
contain the terms given by Eqs.~57! and~58! of @21#, that is
the terms corresponding to the interaction between the t
sitions 1pu

1→«pg
1 and 1pu

2→«pg
2 where the super-

script 1 or 2 means the sign of projectionm. These terms
are taken into account later when solving the RPA equa
~25!. As a result, in the HF approximation we do not ha
the strong maximum in the continuum, but we do have
when the one channel correlations between the 1pu

1

→«pg
1 and 1pu

2→«pg
2 transitions only are taken into

account, as is shown in Fig. 4, in accord with the previo
conclusions~we call these correlations as one channel cor
lations since the bound states 1pu

1 and 1pu
2 are degener-

ate and are described by the same wave functions!. Never-
theless the maximum in our case is not as strong as
@7,21,27# because in Eq.~25! we are taking into account bot
time forward and time backward terms simultaneously wh
in the HF equation only the time forward terms are include
It is worth while to mention that the time forward terms a
giving much larger contribution than the time backwa
terms, and that the diagonal time forward terms are cont
uting only in the case of 1p shell ionization due to our par
ticular choice of the initial HF wave functions. In the case
ionization ofns shells the diagonal time forward terms a
fully taken into account by the HF wave functions as it w
described above@see Eq.~24!#, and therefore the inclusion o
the RPA correlations within one channel means the inclus
of time backward terms only which have a minor effect
the cross section, mainly bringing the length and veloc
cross sections closer to each other. The influence of corr
tions with the other shells on the 1pu→«pg transition is also
shown in Fig. 4. Since in all two channel calculations sho
in Fig. 4 the RPA correlations between the 1pu

1→«pg
1

and 1pu
2→«pg

2 transitions discussed above are alwa

-
in

FIG. 4. Comparison between different cross sections for
1pu→«pg transition. For simplicity, only the length form result
are shown; in the velocity form the cross sections are 10–5
lower. Thin full line shows the HF cross section from Fig. 3; thi
full line is the RPA result with one-channel correlations betwe
the 1pu

1→«pg
1 and 1pu

2→«pg
2 transitions only taken into

account~see text for details!. The RPA results with different two-
channel correlations taken into account separately are show
explained in the figure.
4-8
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GENERALIZATION OF THE ATOMIC RANDOM-PHASE- . . . PHYSICAL REVIEW A 61 032704
taken into account, and since these correlations are
strong, it is more appropriate to compare the results of
channel calculations not with the HF cross section~as we do
in all other cases! but with the RPA one channel cross se
tion shown in Fig. 4 by full line. In particular, the interactio
with the 2su→«sg transition increases further the cross se
tion near threshold but makes it smaller at higher energ
while the 3sg→«su transition greatly reduces the cross se
tion in the vicinity of threshold and creates a small seco
maximum at about 32 eV. The interaction with the 2sg
→«su transition reduces the cross section below 30 eV
produces a small additional maximum at about 50 eV. Th
interactions explain the complicated behavior of the fu
correlated cross section for the 1pu→«pg transition in RPA
shown in Fig. 3.

The total cross section for the production ofN2
1(A2Pu)

state is presented in the lower part of Fig. 3. In general, th
is a good agreement with the experimental data, as we
with the RPA results of@1# and@4#. We could not reproduce
the maximum at 23 eV which is connected with the simul
neous excitation of one 3sg and one 1pu electrons into the
discrete excited states with the subsequent autoionization
cay @28–30# because the two-electron processes are
taken into account by the RPA method.

Figure 5 shows the results for the 2su shell. In the HF
approximation the agreement with the previous calculati

FIG. 5. The same as in Fig. 1 for the 2su orbital of N2 mol-
ecule.
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is not as good as before. For the 2su→«sg transition our
cross section has a maximum 1 eV above threshold, w
the cross sections published in@7,22# have the maximum a
about 10 eV above threshold, though the magnitudes of
cross sections are similar. The cross section for the 2su
→«pg transition published in@22# has some additiona
maximum at about 33 eV photon energy which is absen
our case. It was mentioned by several authors that the in
channel interaction is particularly important for this sh
@31,1,4#. Figure 6 demonstrates the strong influence of d
ferent two-channel interactions on the cross section of
2su→«sg transition. From these curves it is evident that t
maximum at the threshold~see Fig. 5! is mainly due to the
interaction with the 1pu→«pg channel, the minimum a
about 37 eV appears due to the influence of the 3sg→«su
channel, and the second maximum at about 50 eV is
result of the interactions with both 3sg→«su and 2sg
→«su channels. Figure 7 shows the analogous results
the 2su→«pg transition. Here the important role play onl
the correlations with the 3sg→«pu channel which reduce
the cross section by approximately a factor of 2 and brin
the length and velocity cross sections much closer to e
other. The influence of correlations with the 1pu→«sg
channel is rather small and is not shown in Fig. 7. The fu
correlated cross section for the 2su→«pg transition shown
in Fig. 5 essentially follows the behavior of the cross sect

FIG. 6. The same as in Fig. 2 for the 2su→«sg transition.

FIG. 7. The same as in Fig. 2 for the 2su→«pg transition.
4-9



e

to
ex
r
to

io
to

e
th
ot
o
e

ce
ib

ca

tal
co-
is

the
en-
uld
oss
lta-

de-
not
oss
elli
eir
city

ms
la-
nd

ba-
rdi-
gu-
ave
ing
mic

nge
ent
za-
also
ata.
3

ape

ults
rve

al

SEMENOV, CHEREPKOV, FECHER, AND SCHO¨ NHENSE PHYSICAL REVIEW A61 032704
corresponding to the two channel interaction with the 3sg
→«pu channel.

The total cross section for the production ofN2
1(B2Su

1)
state shown in the lower part of Fig. 5 is in a good agreem
with the RPA results of@1# and @4#. The experimental data
for this shell are rather unsteady, therefore it is difficult
judge whether the agreement of the RPA result with the
periment is good or not, but it is likely that at photon ene
gies between 30 and 45 eV our RPA cross section is
small.

The cross sections for ionization of the 2sg shell are pre-
sented in Fig. 8. In the HF approximation our cross sect
for the 2sg→«su channel in the shape resonance is a fac
of 1.6 higher than in the previous calculations@7#. The role
of correlations for this shell is less pronounced, partly b
cause its ionization threshold is about 20 eV higher than
ionization thresholds of three other valence shells. The t
photoionization cross section in the RPA in the maximum
the shape resonance is about 30% higher than both the
perimental cross section and the RPA cross section of Ca
et al. @1#. The deviation from the experiment can be attr
uted to the influence of the vibrational motion@33#, and
probably also to core relaxation@34# which for the innermost
valence shell can play some role.

Figure 9 shows the total photoionization cross section

FIG. 8. The same as in Fig. 1 for the 2sg orbital of N2 mol-
ecule. The experimental data are from Krummacheret al. @32# and
Hamnettet al. @26#.
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culated in the RPA and compared with the experimen
data. Since our length and velocity cross sections nearly
incide, only one RPA result is shown in the figure. There
a good overall agreement with the experiment, though in
photon energy region between 18 and 38 eV the experim
tal points are somewhat lower than our curve. We also co
not reproduce the sharp variation of the experimental cr
section around 23 eV which is connected with the simu
neous excitation of one 3sg and one 1pu electrons into the
discrete excited states with the subsequent autoionization
cay @28–30#. These two-electron excitation processes are
taken into account in the RPA method. In general, our cr
section is rather close to the recent RPA results of Cac
et al. @1# obtained in the same approximation, though in th
calculations some difference between the length and velo
results remains.

IV. CONCLUSIONS

The RPA method in the form developed earlier for ato
@8#, is generalized here for diatomic molecules. The calcu
tions of the Hartree-Fock wave functions of the discrete a
continuous spectrum forming an orthonormal zero-order
sis set have been performed in prolate spheroidal coo
nates. In a numerical solution of the HF equations, the an
lar variables were separated by using the expansion of w
functions in spherical harmonics. The procedure of solv
the RPA equations was similar to that used earlier in ato
calculations. The photoionization cross section of N2 mol-
ecules calculated by this method in the photon energy ra
from ionization threshold up to 70 eV is in a good agreem
with the recent experimental data. The partial photoioni
tion cross sections for each shell separately have been
calculated and compared with the existing experimental d
The agreement between theory and experiment for thesg
and 2sg shells is less satisfactory than for the 2su and 1pu
shells, namely, the theoretical cross sections in the sh

FIG. 9. The total photoionization cross section of N2 molecule
calculated in the RPA approximation, the length and velocity res
coincide within the thickness of the curve; therefore only one cu
is shown. The theoretical results of Cacelliet al. @1# in RPA in the
length~L! and velocity (V) forms are also shown. The experiment
data are from Wightet al. @35#, Cole and Dexter@36#, and Samson
et al. @37#.
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resonances are too high. This discrepancy can be attrib
to several effects not taken into account in our method
particular, we used the fixed nuclei approximation, while it
known that the cross section, especially in the shape r
nances, depends on the internuclear distance@33,23#. There-
fore inclusion of the vibrational degree of freedom into co
sideration can modify our cross section. Another eff
which we ignored is the core relaxation@34#, which we be-
lieve can play some role in the calculations for the 2sg shell.

Since previously many calculations have been perform
on the HF level, it was demonstrated explicitly what is t
influence of different intershell RPA correlations on the H
cross section. The results show that unlike the atomic ni
gen@38#, the many-electron correlations in the molecular
trogen are very important. This is because the correlati
between closely spaced many electron shells are usually
most important, and in N2 there are eight electrons in thre
closely spaced valence shells, 3sg , 1pu , and 2su , having
the ionization potentials within just a few eV. The prese
ev

ls

.

d-

ys

n,

ys
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work together with our recent investigation of the photoio
ization of H2 molecule@10# demonstrate a high reliability o
the RPA method developed by us for molecular photoioni
tion cross section calculations.
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