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Partial and total photoionization cross sections gimblecule are calculated using the generalization of the
random-phase approximatiqiRPA) which earlier has been successfully applied to the description of the
atomic photoionization processes. According to this method, at first the HartregHfBriground-state wave
functions are calculated in prolate spheroidal coordinates using the fixed-nuclei approximation. With their help
the zero order basis set of single particle Hartree-Fock wave functions containing both discrete excited states
and continuous spectrum is calculated in the field of a frozen core of a singly charged ion. The calculations are
performed for all four valence shells of,Molecule, 3y, 17, 20, and 2r4, with the intershell correla-
tions fully taken into account within the RPA method. It is demonstrated that different intershell correlations,
especially between three outer shells, play an important role in photoionization process. Examples of the
influence of intershell correlations on several transitions are presented. Partial and total photoionization cross
sections of N molecule obtained by this method in the photon energy range from ionization threshold up to 70
eV are in a good agreement with the existing experimental data and with the recent RPA calc[Gaieis
et al, Phys. Rev. A57, 1895(1998].

PACS numbs(s): 33.80.Eh

[. INTRODUCTION sections in the length and velocity forms do not coincide.
Veseth[3] and Yabushiteet al. [5] used the RPA method
Molecular nitrogen is one of the best studied diatomicbased on an analytic continuation of polarizability calculated
molecules due to its importance as a main constituent of théor complex values of the frequency, avoiding in this way
atmosphere, and due to its relative simplicity for both expericalculations of continuous spectrum wave functions, the
mental and theoretical investigations. A rather complete listnain problem in applying the RPA for diatomic molecules.
of references on different photoionization studies of the N Lucchese and Zurald€] implemented the RPA method in
molecule can be found in several recent publications devotethe form of closed-coupled equations which were solved us-
to the comparison of theoretical photoionization crossding the Schwinger variational method with Pade
section calculations with the experimental deta7]. These approximant corrections. In[6,7] the time-dependent
calculations were performed in the random phase approximadartree-Fock approximation, which is equivalent to the
tion (RPA) which earlier has been very successfully appliedRPA, was used in combination with the so-called Stieltjes-
to the description of the atomic photoionization processe€hebyshev moment theory. These different versions of RPA
[8,9]. One of advantages of the RPA method is that thegave rather different results for the photoionization cross sec-
photoionization cross sections calculated in the length antion of N, molecule.
velocity forms coincide, while in the Hartree-FodKF) ap- We calculated the partial and total photoionization cross
proximation they can differ substantially, sometimes by asections of all four valence shellsog, 1m,, 20, and
factor of 2. The goal of this work is to generalize the RPA20, of N, molecule with the intershell correlations fully
method as it was developed (i8], for diatomic molecules, taken into account within the RPA method. We checked that
and to check its efficiency in molecular photoionizationthe correlations with thed,, and 1o shells are not impor-
cross-section calculations. As a first demonstration of thigant at the photon energies considered by us. Earlier the cor-
method we calculated the photoionization cross section,of Hrelations between all four shells have been taken into account
molecule[10] which has been studied previously in a num-only in [1,4,5,7, but in [5,7] the consideration have been
ber of papers. Our theory is in a remarkably good agreemenestricted by the'> . final states, that is by the transitions
with the recent experimental data. The first results of thevith Am=0 wherem is the projection of orbital angular
analogous calculations for,Nmolecule are presented here. momentum of electron, and [4] the calculations have been
There were already several studies of iNolecule using restricted by a narrower photon energy region. Onlydih
different versions of RPA, all of them being different from the calculations have been performed on the same level of
the version described here. In particular, Cacetlal. [1]  sophistication as here, and in the same photon energy range,
used a largé.? basis sets of one center Gaussian-type orbittherefore in the following we shall compare our RPA cross
als for a description of a short-range behavior of continuousections mainly with the results of this paper. Correlations
spectrum wave functions, andkamatrix based technique in between three valence shellsy3 1m7,, and 2r,, have
their RPA calculations. Shirmer and Mertihg] restricted been taken into account [i3,6].
their consideration of RPA by taking into account only the In accord with[8], our RPA calculations proceed as fol-
first order of perturbation theory, and therefore their crosdowing. At first the HF ground state wave functions are cal-
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culated in the fixed-nuclei approximation. With their help theis its coordinate. The partial wave expansion of this orbital in
zero order basis set of single particle HF wave functions othe molecular frame is given as usual [i—17
discrete excited states and of the continuous spectrum is cal-
culated in the field of a frozen core of a singly charged ion (=)o — * (D
(the one particle—one hole excited statd¥ith this basis the P (n)= % faim(NYin(k), (N
dipole and the Coulomb matrix elements are calculated. As
the next step we are looking for the dipole matrix elements ifvhere
RPA by solving the corresponding RPA equation, without 112
calculating explicitly the wave functions in RPA. In the in- fslm(r)|r%x~(_) — | Y,(P)E D
tegral RPA equation for the dipole matrix elements the infi- wk) 2ir
nite integration over the continuous spectrum is substituted
approximately by a finite summation, and in that way the _2 Y. (F)S* e—iﬂ(r)) 2
: . . : . | m( )Sl’m ) ()
integral equation is transformed into a set of algebraic equa- K
tions which is solved by matrix inversion. The dipole matrix
elements obtained as a solution of the RPA equation can b&(r)=kr+k™*In2kr, and the function(2) is normalized to
used for calculations of photoionization cross section, anguan energys function. Then the differential photoionization
lar distribution and spin polarization of photoelectrons. Incross section in the lengtih) and velocity §) forms can be
this paper we report only on the partial cross-section calcuwritten as(atomic unitsh =m=e=1 are used in this paper
lations, the angular distributions will be discussed elsewhere.
Also we do not discuss the autoionization structures corre- do"V(w)/dQ=4maadw >, |eﬂ<¢/f(’)(k,r)|dh'vli>|2,
sponding to one-particle excitations which can be described ©
within the RPA method. )
e e e sne, "Shere i the photon energyt denotes the spheria
main problem in realization of the RPA method in molei:ulesangles of the. vegtok, a s the f.|n_e.-structure constardy IS

e ; . ““the Bohr radiusli) means the initial state of the molecule,
consists in calculation of one-electron Hartree-Fock continu- d th herical proiections of the bhoton polariza-
ous spectrum wave functions forming, together with the dis2nd €. are the sp proj P P

. ; tion vector,

crete excited states, the orthonormal basis set of HF wave
functions. For the success of the RPA calculations it is cru- (4
cially important to use the exact HF wave functions without db= ?rYlﬂ(?),
any simplification like localization of the exchange interac-
tion, and so on. Therefore we paid a special attention to the 1 3
quality of our HF wave functions. It is becoming usual now il _) for u==1
to calculate the bound state wave functions of diatomic mol- v_| V2 ay
ecules using a partial wave expansion in prolate spheroidal d.= 4
coordinates[11-13. As compared to usual expansion in — for u=0.
spherical coordinates, this method substantially reduces the 9z

number of terms necessary to take into account in order tq,. . . A
Y since the spherical functiong,(k) form an orthonormal

reach high accuracy in calculations. That is because the pr h | bhotoionizati . be obtained
late spheroidal coordinates are more natural in diatomic mol§et’ the total p 'ot0|on|z.at|on cross section can be 0 tgme
ecules and provide separation of coordinates for one—electrofr'ﬂom Ea. (3) by Integrating over th? photoelectron ejection
problem. Therefore we use this method for continuous speca-mgle and averaging over all polarizations
trum wave function calculations, too. It does not give any 4
additional difficulties and allows to perform calculations UL’V(w)=§7T2aa(2)w2 > KfamOILYDZ (5
more efficiently. As to the deep atomiclike bound states in wobm

molecules, they are also calculated accurately by thigpynly the electronic degrees of freedom are considered here
method. This was demonstrated earlief1#] by calculating  jthin the Born-Oppenheimer approximation.

the Ne atom wave functions in prolate spheroidal coordinates |nstead of the function \~(r) which include an imagi-
with the nuclear chargeg,=10, Z,=0, and the “internu- a1y part, we prefer to calculate the set of other functions

]
F— i
ax

clear” distance equal to 1d. ®.1m(r) which are real and which are the linear combinations
of the functions ,;,(r). We shall do it following the ideas of
Il. THEORY the K-matrix method[15,17), and a method of phas¢$8].

In the latter paper it was proposed to expand the functions
#7)(r) not in spherical harmonics as it is usually done, but
Keeping in mind the further applications for calculationsin some other complete basis set which is energy dependent,
of the angular distributions of photoelectrons, it is conve-that is for each photoelectron energy there is a new set of
nient to determine photoionization parameters through th@asis wave functions. As it was noticed[itb,19, the sets of
photoelectron orbital 4 ’(r) with the incoming-wave wave functions corresponding to different types of boundary
boundary condition. Herk is the electron momentum amd  conditions are interrelated by unitary transformations, and

A. General relations
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we shall use this fact. Our method consists in the following.separable coordinates considereflli] the phases in Ed6)

For a given photoelectron energy and momentumk(e

=k?/2) we are looking for a solution satisfying the

asymptotic condition

1( 2 1/2 o . .
—(H) 3 ciMNim DI+ 57,

‘Pelm(r)|raw~ r

> (cfh?=1, (6)
l!
or in another form
2 1/2 1 .
(Palm(r)|reoc~ ﬁ) ﬁ; CIlr’nYI’m(Qr)

xe 5ﬁT(ei 9 _ g=i9(g2i 53’?) (6a)
and the orthonormalization conditions

<‘Pe|m|‘Pe’l’m’>:5II’5mm’5(s_sl)- (6b)

are independent of the indeX, and the coefficients;”
=c/™Ms,, are found as solutions of the equations for deter-
mination of a separation constant. Since in our case the co-
ordinates are not separable, the phases in general depend on
I, and we could not use the condition of separability for
determining the set of solutions. Instead of that, we are using
the following procedure. We introduce a new set of functions

s =2 cf™Ym(Qexpi s, @)
II

which for anye form a complete orthonormal set on the unit
sphere, that is

f Of (KO, (K= Sy, ®)

;n PR (k)= 8(k—Kk'). 9

We do not fix at this moment the boundary conditions of thelnserting Eq(7) into Egs.(8) and(9), and using the fact that
wave function since we are going to get the generalized rethe spherical functions form the complete orthonormal set on
lations for they(™) function which are valid for any bound- the unit sphere, we obtain the following conditions for the

ary condition including those used [7,18. In the case of

parameterg; " :

f 2 oY Qexpi &) X eI (Quexp(—i 8] =2 ciTelT exdi(8,)— &)=, (10
|! |H l!

> cieimexdi(5]7—i o 1= 6. an

After that we can present the functiaty ’(r) as an expan- To verify the equivalence of the expansicfi and(12), let
sion in these functions in the same way as it was done in Eqys insert Eqs(13) and (7) into Eq. (12) and use the condi-

(1) with the partial wave expansion,
Ui (D=2 @am(DPI (K). (12

The functionse,,(r) having the asymptotic behavid6)
are connected with the functioris,(r) defined in Eqs(1)
and(2) by the relation

om(N)=2 &7 om(r)expli &), (13
I!
or, sincecﬁrf‘ exp@bﬁ',“) form a unitary matrix,

foim(1) =2 €@t m(r)exa —i 8. (14)
II

tions (10) and (11)
U (0= @am( O ()

=2 2 farm(DYh(Qcime

I,m |’,|”

xexdi(sy—ismM]
=§1 Faim(D) Y (). (15)

So, the proposed method consists in calculation, instead
of the functionsf ;,(r) which include an imaginary part, the
other real functionsp,,(r) which are the linear combina-
tions of the functions ;,(r). Since there are simple rela-
tions (13) and (14) between these two basis sets, we can
easily transform our results into the standard form with the
basis sef(?2) in order to make the comparison with calcula-
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tions of other authors or with the values extracted from theLater it was proved8] that the RPA can be successfully

experimental data in a complete experimg2fl]. Both con-  applied for the description of many-electron correlations in
ditions (8) and relationg13) and(14) which are used for the atoms, too, provided the inhomogeneity of atoms is taken
transformation of our results to the usual expansion innto account from the very beginning by the use of the HF

spherical harmonics are simpler than the analogous matriwave functions as the zero order approximation. Evidently,
relations in theK-matrix method 17]. on the same grounds the RPA method can be successfully

applied to molecules as well. We shall use both the HF and
the RPA approximations for defining the dipole matrix ele-
ments introduced above, and the cross sections. According to

Originally the RPA approximation has been introduced[8] the RPA equation for the dipole matrix elements can be
for the description of the high density electron gas in solidswritten as

B. RPA equation and its solution

(e'l'm’|D,|j)(j,elm|U[e"l"'m’ i)
w—g'+eg+id

(slm|DM|i)=<sIm|dM|i>+jZF > >

SEg'>SE I m!

(16)

B <j|DM|8'|’m'><8'|'m',8|m|U|j,i>
w+8’—s]-—i5 ’

Here i,j mean the set of quantum numbers necessary twhere

specify the bound state wave function including the projec-

tion of the angular momentum on the molecular amis,

m;, (elm|D |i) and(eIm|d,|i) mean the dipole matrix el- . o

ements in the RPA and in the HF approximations, respec- Jij(r)zj @ (r)[r=r'|"*g;(r")dr (20
tively, (j,elm|U|e’l'm’,i) is the Coulomb matrix element

defined as

describes the exchange interaction wherj and the direct
_ B ) B interaction wher =j.
(I.elm[U[e"I"'m",i)=(j,eIm|V]e"l"m’,i) For the application of the many-body theory in general,
—(j,elm|V]i,e'l'm’), (17)  and of the RPA approximation in particular, we need to de-
fine the zero order complete basis set of one-particle wave
where functions. In the HF approximation we need to use @§)
with fixed wave functions for all occupied states as an equa-
tion generating such a complete basis set. With this basis set
(j,elm|V]e'l ’m’,i>=J eF (N@am(r)r—r'[7 we must solve the RPA equatidf6) for the dipole matrix
elements. But if we shall use E@l9) for calculating the
X@grm(Nei(r)drdr’,  (18)  wave functions of excited states of both discrete and continu-
ous spectrum, we obtain the wave functiapg,(r) calcu-
the summation ovey<F in Eq. (16) means the summation |ated in the field of a neutral molecule which does not cor-
over all occupied stateghat is the states below the Fermi respond to the physics of the photoionization process. In
level), the summation over unoccupied states-F above  egjity the photoelectron is moving in the field of a singly
the Fermi level includes both the summation over the d's'charged molecular ion. To take it into account, we must ex-
crete excited states anq integration over thg continUC}US SPEE€lude one electron from the HF field in which the photoelec-
trum, so that Eq/(16) is an integral equation, and in the ¢4 is moving, leaving the one-particle wave functions in
denominators)— +0. Since there is a pole in the integrand the HF potential the same as they have been found for the
of Eq. (16), the solutionsD , are the complex values while ground state of the molecule. In other words, we need to

the HF matrix elementd,, are real. . calculate the excited state wave functions in the field of a
~ One-electron ground state wave functions are the soluygzen core of a singly charged molecular ion with the hole
tions of the self-consistent HF equations state in the shell from which the electron has been ejected.
Following the procedure described [i@], we can perform a
V2 7 Z, < " redefinition of the excited state wave functions in order to
T2 EJFJZl 23;(r) ¢i(r)_j=1 Jii (N ¢;(r) exclude one electron from the field in which the photoelec-
tron is moving. If the hole appeared in the stgtéhe corre-
=g;¢;(r), (19 sponding frozen core HF equation for the new functions is
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v2 oz, 7z, & B side of Eq.(19) for which ¢,(r) are the eigenfunctions. As
S ==+ 23i(1) [@eim(D) a result Eq(21) is obtained.
fl1 T2 = From Eq.(23) it immediately follows that the dipole ma-
n trix element calculated with the new excited state wave func-
_2 ijél‘rﬁ(r)(pj(r)+J”(r)"(bslm(r)_l,_‘]iy’sl‘rﬁ(r)goi(r) tion satisfies the following equation:
7
- " (eIm|d,|i)=(elm|d,|i)
:S‘Pslm(r)_z &ijej(r), (21 . _
j=1 <8 I m|d#|l> L~ .
+ 2 2 T_’_.a<l,8|m|U|8’|,m,l>
where the off-diagonal energy multipliess; are determined e/>F 1 @TE TETI
by the relation (24)

It is easy to check that this equation takes into account the
The new excited state wave functio@s,,(r) are connected terms withi=| of the RPA equatior{16). Just these terms
with the wave functions found in the field of a neutral mol- contain  the divergent Coulomb matrix element

eculegp,n(r) by the equation (i,elm|V]i,elm), therefore the redefinition of the excited
state wave functions allows to avoid the problem of diver-

(eTm|=(elm| gent matrix elementf8]. The terms taken into account by
(e'1'm| . Eq. (24 should be omitted when solving the RPA equation
+ 2 E (i,elm|U|e'l"m,i). with the dipole and Coulomb matrix elements calculated

Jop 1 w—e tetio with the redefined wave functions. So, if the ground state HF
(23 Wwave functions are determined by H39) and the excited
state wave functions are determined by E@i) and (22),
To check it, one should act on EqR3) by the operator the RPA equatior{16) for the projections of the dipole mo-
Hue— e, whereHe means the operator in the right-hand ment takes the form

(e"l"(mj+w)[D,|j)(j,el(mi+w)|Ule"l" (mj+pw),i)
w—s'+8j+i5

_2 E 2 <j|D,u|8,|/(mj+M)><8/|/(mj_M),Sl(mi+M)|U|jii>

wte' —g;—io

(25

ISF gr>fF 17

where the selection rules for the projection of the orbital angular momentuvere taken into account explicitly. To solve

this integral equation numerically, we replace the infinite upper limit of integration by a finite one, which can be done since
the integrand decreases fast enough, and the integration over ernisrggplaced by integration over momentlrin order to

integrate more accurately the region near the ionization threshold where the cross section is varying rather fast. Then the
definite integral in finite limits is approximately replaced by a sum. This procedure enables one to transform the linear integral
equation(25) into a system of linear algebraic equations which is solved by inversion of a matrix as it has been described in
more details if8]. Equation(25) contains a pole, therefore the integral in it can be written as

f <£,|,(mj+/-L)|DM|j><jaSI(mi+M)|U|8II,(mj+ﬂ)vi>d ,
w—s’+sj+i5 &

=Prf <8’|,(mj+/~‘“)|Du|j><jvgl(mi+/~l“)|u|8,|,(mj+ﬂ)vi>d8,+iwr’ 26

w—g'+g;
where the integral in the right hand side should be understood in the principal value sensés #melresidue in the pole
r=(&"l"(mj+w)|D[1){J el (mi+ w)[Ule 1" (my+ ), )]s = o (27)

Due to that the solution is a complex value, and it can be written symbolically as
D,=ReD,+ilmD,,. (28)

After inserting Eqs(26)—(28) into Eqg. (25) the solution of the RPA equation can be written in the matrix form as
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(ReD, ,ReD,,ImD,,ImD,)=(d,,d,,0,0-G ™% (29)

HereD ,=(el(mj+u)|D i), 5ﬂ=<i|D;|sI (m;+u)), the row vectors have the dimensioN 4and the square matri@ has
the dimension Al X 4N, with N being the total number of the excited states of discrete and continuous spectra calculated in all
channels. The RPA matrig has the following structure:

10 (A B
G:(o 1)_(—5 A)’ 30

where the submatrices and B have the dimensionsNex 2N,

V2&' (el (mi+w);jU[ie" " (my+ w)) V2&' (el (mi+p);e'l" (m— w)|U]ij)

w—s’-l-sj i< w—s'+8j
A= - o . - o : (31
v2e'(el(mi+p);e'l"(m—w)|Ui,j)  v2&'(el(mi+p);j|U]ise 1" (my+u))
—a)—s’-l-sj —w—s’-i—sj

j#i

and in the matriX8 only the residues in the poles are contributisge Eqs(26) and(27)], that is only the lines corresponding
to e’ = w+eg; are different from zero

Ber= (el (my+ )i |Uie V' (my+ ), m(el(m+ )il (M= w)| Ul (32

]

The three-points Lagrange interpolation formula is used forcalculateL orthonormal continuum state wave functions in
approximating the residue valugand the Simpson formula the form of partial wave expansion in spheroidal coordinates
in numerical integration when transforming the integral RPA

equation to the linear system, as it was described in more om

detail in[8]. Peiml(r) = E X|| A EYrm(me), 1=lgin. Imint2(L—1).

We need to solve the RPA equatié®5) separately for V (34)
u=0 andu=+1 (or —1), and also separately for the dipole
matrix elements in the length and velocity forms. The solu-
tions are inserted into E@5) to calculate the photoionization
Cross section.

Usually L =3 was sufficient to achieve a good convergence.
For homonuclear molecules like,Nvhere the parity is a
good quantum number, bothand|’ in Eq. (34) are only
even or only odd, and,,;,=0 or 1 for even or odd parity

C. The numerical procedure states, respectively. From the comparison between &js.
The HF equations are solved in prolate spheroidal coordiand (34) one can easily find the coefficients’’ and phase
nates¢, », ¢ defined as usual shifts 5ﬁr,” from the known asymptotic behavior of the corre-

sponding functions<;;7(&).
The numerical integration of the HF equation ovgis
(33 divided into two regions, (%g) and (g,&ma) Where&y—1
Isésow, —1lsgy<1, 0<e<2m, <1 andé¢,.=60. In the first region the solution is presented
in the form

E=(r1+r)/R, 7=(r;—ry)/R,

wherer; andr, are the distances to the nuclei, aRds the
internuclear distancéequal to 2.068 a.u. in our calculations
for N,). Since previously the spheroidal coordinates were
already used in calculations of the bound state wave func-

tions[11,12], and we are using the same procedure for thg, the second region the Numerov method is used for the
bound states, it is worth while to mention only some features, ,merical integration. In contrast witFL0] the modified

of the continuous spectrum wave function calculations. W&, nqary conditions have been used here for the continuum
are looking for the solutions of the HF equati¢dl) for | -\« function calculation

@m(r) which correspond to a discrete set of the electron
energy valuese=k%/2, i=1,2,...N, ki=ko+(i—1)AKk,

XiTE =@ -k @9

wherek, is usually equal to 0.1Ak for different transitions > (@M2=1, XZT(émad =0,

is varied between 0.7 and 0.1, aNdwhich is always odd K

between 21 and 37. That gives the set of points for the nu- (36)
merical integration in the RPA equatid®5). For eache; we I'#1, 1= nine ool mint 2(L—=1).
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The first condition fixes the function on the molecular axis
and improves convergency. It is achieved by the iterative
process of determination of the pha@eﬁ‘. The second con-
dition gives the linear independency of the solutions with
different].

The nonlocal exchange interaction is fully taken into ac-
count in the procedure of the iterative numerical solution of
the HF equation. This is done as usual by calculating the
exchange potential at each iteration with the wave function
obtained from the previous iteratigl1,12.

Ill. RESULTS OF CALCULATIONS

The partial photoionization cross sections have been cal-
culated for all four valence orbitals of,Nnolecule, namely
for 3oy, 1m,, 20, and Zry. Correspondingly in the RPA
equations(25) and (29) the many-electron correlations be- [
tween all four shells have been taken into account. In the O+ e
expansion(34) usually three terms were included. It was 14
checked that the higher order terms are giving a negligible 4,
contribution. The experimental thresholds have been used in

Cross section (Mb)

RPA ]
e Samsonetal -

10 +  Woodruff et al
calculations which differ from the theoretical ones by about 8 ©  Hamnettetal ]
2 eV (see Table | of 1]). Important is also that in the experi- " # &~ N, = ----- Cacelli et al (L)]
ment the 3r orbital is the outermost one, while in calcula- o e, Cacelli et al (V)]
tions the %, orbital has the lowest ionization threshold. Due 4 - ~Son 7]
to this shift of ionization thresholds the cross sections in the 2 R
length and velocity forms in the RPA do not coincide as they 0 bt b L :
do when the theoretical thresholds are used. In order to keep 20 8 40 50 60 0
the agreement between them, we multiplied the HF matrix Photon energy (eV)
elements in the length and velocity forms when solving Eq.
(29) by the following correcting factor: FIG. 1. Partial photoionization cross sections for different tran-
sitions from the & orbital of N, molecule in the HF and RPA
\/w+ | theor— | expt \/e + I theor approximations calculated in the lendth and velocity §/) forms.
c= = (37) In the RPA theL andV cross sections nearly coincide, therefore
@ &+ lexpr only one line is shown. The experimental data are taken from Sam-

sonet al. [24], Woodruff and Marr{25], and Hamnetet al. [26)].

according to the equations The theoretical results of Cacedt al.[1] in RPA are also shown.

(dL)corr:CdLv (d”)con=0d"/c, (39 . )
just above the threshold a sharp peak appears corresponding
wherew is the photon energy; is the photoelectron energy, to the strong ir,— 1wy resonance excitation. Figure 2
| theor N | oy are the theoretical and the experimental ion-shows the influence of different two-channel correlations on
ization thresholds of the sheflpositive valuey respectively. the partial Irg—eo, cross section. Evidently, the largest
This correction allows us to greatly reduce the differenceeffect is given by the correlations with ther}— &4 tran-
between the length and velocity cross sections in RPA apsition.
pearing when the experimental thresholds are used. The cross section for thedd— &, transition in the HF
Let us consider now the partial photoionization cross secapproximation is rather flat in a broad energy range, and our
tions for each shell separately. Figure 1 shows our results fdength result is in agreement with that [@2,23. The influ-
the outermost 3, orbital. In the HF approximation the cross ence of correlations on theo— & m, transition is less pro-
sections in the length and velocity forms usually differ by nounced. Finally, the total photoionization cross section for
20-30 %, while in the RPA they nearly coincide, thereforethe production oN}(XZEQ*) state in the RPA is shown in
only one RPA curve is shown in the most cases below. Outhe lower part of Fig. 1. The maximum in the shape reso-
HF cross sections for theoy— o, transition are in a close nance is higher in magnitude and shifted to higher energies
agreement with the results ¢2,5] both in the length and as compared to the experimental data, so that the HF result is
velocity forms, as well as with the length results reported ineven in a better agreement with the experiment than the RPA
[7,21-23. The broads* shape resonance near 30 eV isone. The analogous results in the RPA have also been ob-
reproduced fairly well already in the HF approximation, andtained by the other authofd,4,5], and for comparison the
does not appear to be sensitive to the details of numericaksults of[1] are shown in the figure.
calculations. The inclusion of the RPA correlations increases Figure 3 shows our cross sections calculated for thg 1
the cross section for this transition at all photon energies, andrbital. In the HF approximation our cross sections for the
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FIG. 4. Comparison between different cross sections for the

—eo, transition calculated in the HF approximation and in the 3 ;7 transition. For simplicity, only the length form results
RPA taking into account different two-channel correlations sepazre shown; in the velocity form the cross sections are 10-50 %

rately. In all cases the upper line corresponds to the cross section |Bwer. Thin full line shows the HF cross section from Fig. 3; thick
the length form and the lower one in the velocity form.

full line is the RPA result with one-channel correlations between
the 1m," —emy" and lm,"—emy transitions only taken into

transitions Iry—eoy and lr,—edy are in a good agree- account(see text for details The RPA results with different two-

ment with the analogous results §27]. As to the br,

channel correlations taken into account separately are shown as

— &y transition, it usually has an unphysical behavior inexplained in the figure.

the HF approximation, namely, a very strong maximum just . _ N ]
above the ionization threshold mentioned in several earlieform calculations for this transition. Namely, we are solving
publications[7,21,27. We are using another method to per- EQ. (22) for the ey HF wave functions which does not

Cross section (Mb)

FIG. 3. The same as in Fig. 1 for ther} orbital of N, mol-

ecule.
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contain the terms given by Eq&7) and(58) of [21], that is

the terms corresponding to the interaction between the tran-
sitions 1m,*—emy" and lm,~—em,~ where the super-
script + or — means the sign of projectiom. These terms
are taken into account later when solving the RPA equation
(25). As a result, in the HF approximation we do not have
the strong maximum in the continuum, but we do have it
when the one channel correlations between the,"1
stg+ and 1, —em," transitions only are taken into
account, as is shown in Fig. 4, in accord with the previous
conclusiongwe call these correlations as one channel corre-
lations since the bound statesr]" and 17,~ are degener-
ate and are described by the same wave functidvisver-
theless the maximum in our case is not as strong as in
[7,21,27 because in Eq25) we are taking into account both
time forward and time backward terms simultaneously while
in the HF equation only the time forward terms are included.
It is worth while to mention that the time forward terms are
giving much larger contribution than the time backward
terms, and that the diagonal time forward terms are contrib-
uting only in the case of & shell ionization due to our par-
ticular choice of the initial HF wave functions. In the case of
ionization ofng shells the diagonal time forward terms are
fully taken into account by the HF wave functions as it was
described abovesee Eq(24)], and therefore the inclusion of
the RPA correlations within one channel means the inclusion
of time backward terms only which have a minor effect on
the cross section, mainly bringing the length and velocity
cross sections closer to each other. The influence of correla-
tions with the other shells on therl,— & 7 transition is also
shown in Fig. 4. Since in all two channel calculations shown
in Fig. 4 the RPA correlations between ther ]’ —&my"

and lm,~—emy transitions discussed above are always
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FIG. 5. The same as in Fig. 1 for therg orbital of N, mol-
ecule.

taken into account, and since these correlations are very

strong, it is more appropriate to compare the results of tw
channel calculations not with the HF cross sectias we do

in all other casesbut with the RPA one channel cross sec-
tion shown in Fig. 4 by full line. In particular, the interaction

with the 20— £ o4 transition increases further the cross sec-

tion near threshold but makes it smaller at higher energies, - el is rather small and is not shown in Fig. 7. The fully

Gcorrelated cross section for therg— e my transition shown
in Fig. 5 essentially follows the behavior of the cross section

—e 0, transition reduces the cross section below 30 eV and
produces a small additional maximum at about 50 eV. These

while the 30y— e 0, transition greatly reduces the cross sec-
tion in the vicinity of threshold and creates a small secon
maximum at about 32 eV. The interaction with ther

interactions explain the complicated behavior of the fully
correlated cross section for therl— e transition in RPA
shown in Fig. 3.

The total cross section for the production$™ (A1)

state is presented in the lower part of Fig. 3. In general, there
is a good agreement with the experimental data, as well as

with the RPA results of1] and[4]. We could not reproduce
the maximum at 23 eV which is connected with the simulta-
neous excitation of oned; and one I, electrons into the

discrete excited states with the subsequent autoionization de
cay [28—-30 because the two-electron processes are not

taken into account by the RPA method.
Figure 5 shows the results for therg shell. In the HF
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FIG. 6. The same as in Fig. 2 for therg— e o transition.

is not as good as before. For ther2-eoy transition our
cross section has a maximum 1 eV above threshold, while
the cross sections published[in,22] have the maximum at
about 10 eV above threshold, though the magnitudes of the
cross sections are similar. The cross section for thg 2
—emy transition published in[22] has some additional
maximum at about 33 eV photon energy which is absent in
our case. It was mentioned by several authors that the inter-
channel interaction is particularly important for this shell
[31,1,4. Figure 6 demonstrates the strong influence of dif-
ferent two-channel interactions on the cross section of the
20— &0y transition. From these curves it is evident that the
maximum at the thresholtsee Fig. % is mainly due to the
interaction with the Ir,—emy channel, the minimum at
about 37 eV appears due to the influence of thg-3 co,
channel, and the second maximum at about 50 eV is the
result of the interactions with botha§—eo, and 2,

g0, channels. Figure 7 shows the analogous results for

%he 20— ey transition. Here the important role play only
the correlations with the &,— &, channel which reduce
the cross section by approximately a factor of 2 and brings
the length and velocity cross sections much closer to each
other. The influence of correlations with therl—eoy

1 »4 T T T T T
[ RPA, two channel ]

correlations with: ]

——HF

(Mb)

0on

t

Q
QL

Cross s

Photon energy (eV)

approximation the agreement with the previous calculations FIG. 7. The same as in Fig. 2 for therg— & transition.
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8 1 SN HF(V) ] coincide within the thickness of the curve; therefore only one curve
8.0 H— et is shown. The theoretical results of Caceliial.[1] in RPA in the
- 5 —— RPA(L) 1 length(L) and velocity §/) forms are also shown. The experimental
25 B 9, total /™ L RPA(V) ] data are from Wighet al.[35], Cole and Dextef36], and Samson
20}k e Krummacher et al] et al. [37].
i ? o Hamnett wet al
1.5 | AMEE 10 i . . . .
I oy A N (C:ace::! e: a: (\L/) ] culated in the RPA and compared with the experimental
10 | gy Cacelietal (V) data. Since our length and velocity cross sections nearly co-
05 | incide, only one RPA result is shown in the figure. There is
L ; a good overall agreement with the experiment, though in the
s — photon energy region between 18 and 38 eV the experimen-
40 50 60 70 80 90 :
tal points are somewhat lower than our curve. We also could
Photon energy (eV) not reproduce the sharp variation of the experimental cross
section around 23 eV which is connected with the simulta-
FIG. 8. The same as in Fig. 1 for therg orbital of N, mol- neous excitation of oned, and one 1r, electrons into the
ecule. The experimental data are from Krummad#teal. [32] and  discrete excited states with the subsequent autoionization de-
Hamnettet al. [26]. cay[28-30. These two-electron excitation processes are not

taken into account in the RPA method. In general, our cross

corresponding to the two channel interaction with the,3 section is rat'her (;Iose to the recent RPA results of_Cace]Ii
— &, channel. et al. [1]_ obtained in _the same approximation, though in the|_r

The total cross section for the productioniof™ (B3, ) calculations some difference between the length and velocity
state shown in the lower part of Fig. 5 is in a good agreemerf€SUlts remains.
with the RPA results of 1] and[4]. The experimental data
for this shell are rather unsteady, therefore it is difficult to
judge whether the agreement of the RPA result with the ex-
periment is good or not, but it is likely that at photon ener- The RPA method in the form developed earlier for atoms
gies between 30 and 45 eV our RPA cross section is tof8], is generalized here for diatomic molecules. The calcula-
small. tions of the Hartree-Fock wave functions of the discrete and

The cross sections for ionization of thegshell are pre-  continuous spectrum forming an orthonormal zero-order ba-
sented in Fig. 8. In the HF approximation our cross sectiorsis set have been performed in prolate spheroidal coordi-
for the 20,— £, channel in the shape resonance is a factonates. In a numerical solution of the HF equations, the angu-
of 1.6 higher than in the previous calculatigig. The role lar variables were separated by using the expansion of wave
of correlations for this shell is less pronounced, partly befunctions in spherical harmonics. The procedure of solving
cause its ionization threshold is about 20 eV higher than théhe RPA equations was similar to that used earlier in atomic
ionization thresholds of three other valence shells. The totatalculations. The photoionization cross section of iol-
photoionization cross section in the RPA in the maximum ofecules calculated by this method in the photon energy range
the shape resonance is about 30% higher than both the eftom ionization threshold up to 70 eV is in a good agreement
perimental cross section and the RPA cross section of Cacelliith the recent experimental data. The partial photoioniza-
et al. [1]. The deviation from the experiment can be attrib-tion cross sections for each shell separately have been also
uted to the influence of the vibrational motidB83], and calculated and compared with the existing experimental data.
probably also to core relaxatigB4] which for the innermost  The agreement between theory and experiment for the 3
valence shell can play some role. and 2o shells is less satisfactory than for the-2and 1,

Figure 9 shows the total photoionization cross section calshells, namely, the theoretical cross sections in the shape

IV. CONCLUSIONS
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resonances are too high. This discrepancy can be attributedork together with our recent investigation of the photoion-
to several effects not taken into account in our method. Inzation of H, molecule[10] demonstrate a high reliability of
particular, we used the fixed nuclei approximation, while it isthe RPA method developed by us for molecular photoioniza-
known that the cross section, especially in the shape res@ion cross section calculations.

nances, depends on the internuclear distdB88¢23. There-

fore inclusion of the vibrational degree of freedom into con-

sidgration ~can quify our Ccross sgction. Another effect ACKNOWLEDGMENTS
which we ignored is the core relaxati¢p®4], which we be-
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