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Partial-wave dispersion relations: Exact left-handE-plane discontinuity computed
from the Born series
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We show that for a superposition of Yukawa potentials,ekactleft-hand cut discontinuity in the complex-
energy plane of théSwave scattering amplitude is given, in an interval dependingipby the discontinuity
of the Born series stopped at orderThis establishes aimverseand unexpected correspondence of the Born
series at positive high energies and negative low energies. With the discontinuity on the left-hand axis eluci-
dated, we can construct a viable dispersion relatibR) for the partial(S-) wave amplitude. The DR is
numerically verified for the exponential potential at zero scattering energy. Generalization to higher partial
waves, and extension of these ideas to field theory are discussed.

PACS numbg(s): 34.90:+q, 34.80-i, 11.55.Fv

The main limitation in the application of dispersion rela- the two-body nonrelativistic problem with a potential that is
tion (DR) to quantum physics comes from the absence of anya superpositionof Yukawa potentials
reliable and systematic method for computing te#-hand
cutdiscontinuity in the complex-energy plane. In a DR in the V()= f“"
complex-energy plane, one has to deal with two different
problems. The evaluation of thigght-hand cut discontinuity
(so-calledphysica) and theleft-hand cut discontinuityso- In Refs.[4], [5], it has been shown for a linear superpo-
calledunphysical. While the evaluation of the right-hand cut sition of Yukawa potentials that the solution of tBavave
discontinuity involves only the knowledge of physical quan-Schralinger equatior{SE), can be written as usual as
tities such as the partial-wave cross sections that can be mea- A A
sured experimentally, this is not the case for the left-hand cut (1) =Sk F(—k,r)e* —f(k,re ', 2)
discontinuity that must be computéueoretically Presently,
no reliable and systematic method to solve this problem ex-whereE=k?, and
ists. We believe this paper provides a very elegant and pow-
erful solution to it. f(xkr)—1 for r—+e, ©)
By way of introducing the problem of computing the left- _ . _
hand cut discontinuity in energy dispersion relations, let ugVhile theSmatrix, S(k), is given in terms of the Jost func-
first discuss, since this is our primary interest, the importanc80ns: f(£k.r), by
of dispersion relations in electron-atom scattering. A correct £(k,0)
dispersion relation has not been derived, even after about 40 S(k)= ————. (4)
years of trying[1]. The major difficulty has been the under- f(—k,0)
standing of the analytic structure of the scattering amplitude o ) B
caused by the exchangiee., the identity of the incident and ~ The Jost function is the solution of the modified SE
orbital electrons Blum and Burke[2] attempted to resolve 5
the problem whose importance is evident from the quotation, d__ 2ik i_ AV(r)
“The future of dispersion relations in atomic physics de- dr? dr
pends critically on a better understanding of the nature of the ) ) )
singularities of the left-hand cut(in the complex energy Where\ is the coupling constant. The solution of E§) can
plane. be analyzed analytically in terms of Laplace transfofes
In this paper we initiate an alternative attack on this prob-Writing
lem. The key idea in the solution lies in the derivation of i
dispersion relations fgpartial WavesTh_e contr|but|0n_ to _the f(k,r)=1+ f pu(@)e “da (6)
left-hand cut due to the exchange will be dealt with in an-
other papei3] (see also the discussion in the conclusion of
the extension of our results to the full three-body problemone can show thai(«) can be calculated in segmeiits,
and to field theory In nonrelativistic quantum mechanics, the general equation for which is
the Born series is an approximation good at high energies. In
. ) i ) a—p
SE;Scigzﬁ(,)v\\ll\insehrg\;v r?;to;[. providexactresults in the un (@t 2iK)p( @) =NCla) + L NC(a— B)pul B)dB.
We now provide a complete proof for the basic case of @

Cla)e “"da. 1)
M

f(k,r)=0, (5

o
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Equation(7) (where we defingu™ to be lim._g+u—¢€)
determines(«) for anyfinite value of« in afinite number
of steps. In particular,p(a)=0 for a<u and a(a
+2ik) pi (@) =NC(a) for u~ <a<2u, etc. Wherk is out-
side the cut(u/2)—iwo, py (@) is well defined for all values
of «. Note the fundamental fact that(«) on the interval
u <as(n+1l)u", n=1,2,... is apolynomial of degree
exactly n in the coupling constaint(with no constant term

Furthermore, the Jost functidr{k,0) has a cut along the

imaginary positive axis running from(u/2)—ic~ and no
other singularities It tends to 1 at infinity, sufficiently rap-
idly that one can write a simple dispersion relation for it

. [Tre()
f(k,0)=1 IJMZ —k—iXdX’ )
where
-1 ,LL
0(0)= 57 PIHKOl-iy: x> 73 )
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p=n

Aie(E)= 2, NPALi(E). (13
Since Eq.(12) has to be identical to Eq13) for every|\|
<\, it follows that the coefficients of each® must be
identical. This implies that

Alfp(E)=AlRH(E)  1=p=n (14)
all the A{R) (E) are identically zero forp>n when
E belongs to the interval [—(n+1)?(u?/4)<E<
—(n)*(u?14)].

Even if the Born series has a zero radius of convergence
(field theory, it is still an asymptotic series and its left-hand
cut discontinuity in the energy can be computed as an
asymptotic series. Now, we know from the previous argu-
ment that this asymptotic series terminates at tith
contribution on the interval [—(n+1)?(u?/4)<E<
—(n)?(u?/4)] because it has to be a polynomial of exact
degreen. Therefore, all the higher order contributions vanish
identically while the lower ones must give the exact result.

(D represents the discontinuity of a function cut along thewe illustrate this result for the first Bor& wave. We have
positive imaginary axis; it is defined as being the difference

between the right and the left values on the cut. For a func- S®(k)=1-2ikF®(k), (15)
tion having its cut along the real axis, it will be the difference
between the upper and lower values on the)cut. where
From Eq.(4), the S matrix can be written in the form 1 (e
FgB>(k)=E2-f sirf(kr)V(r)dr. (16)
0

[t o(x)
Y
w2 K—iy X

S(k)= (10

= w(x)
i [0

ul2 k+|X X
Let 27D (x) be the discontinuity 08(k) across the uppésc

cut which corresponds to the left-hand cut in thHe=k?
plane. It has been shows] that

—2xD(x)=\C(2y)+ f T NC(2x—B)piy(B)dB.
M
(11)

Equation(11) shows clearly, just as Eq7) does forp,(a),

that the discontinuity of the left-hand cut, in the interval

[—(n+1)%(u?4)<E<—(n)%(u?/4)] is exactly a polyno-

mial of degree n in\. It then follows that the exact left-hand

cut discontinuity of theS matrix on the interval[ —(n

+1)%(u?14)<E<—(n)?(n?/4)] has to be exactly equal to

that of the Born series stopped at oraderTo demonstrate

Substituting forV(r) from Eg. (1) and carrying out the inte-
gration overr gives

N[t C(a) da
(B) — -
FP0=5 [ -
2
N [+ 1 1 Cla)
:——f + Y da. (17)
SR T
2 2

Only the first term of in the second expression of E)
contributes to the left-hand cut discontinuity in tBecom-
plex plane. From it we derive that the discontinuitip to a
factor of 2 7) is

C(2x)
2x

D®(x)=-\ (18

this statement, let us first assume that the Born series COlX|so directly from Eq.(11), in the first interval[ u/2<y

verges (\|<\.). We compute the left-hand cut discontinu-

ity, Aer(E), in the interval [—(n+1)?(u?/4)<E<

—(n)2(x?/4)], in two ways. First, using the convergent

Born series

Ajer(E)= pgl NPALS (E) (12)

and second, using the Martin algorithm defined by @4)

<u], the exact discontinuityup to a factor of 27) is ex-
actly what is given by Eq(18).

Our results have two major implicationét) they show
that it is possibleland how to calculate results on the un-
physical cut from finite order perturbation theofiye., the
Born seriesand(2) they are both theoretical and practical in
nature. Because the left-hand cut discontinuity inEhgdane
can now be evaluated from the Born series, while the right-
hand cut discontinuity can be evaluated from physical mea-
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surements, self-consistent evaluations of the amplitude can TABLE I. Swave dispersion relation for the exponential poten-
be achieved usinglispersion relationdor the partial wave tial V(r)=—exp() atE=0, Eq.(19).
amplitudes. To illustrate this point, let us consider the expo

nential potentialV(r)= —exp(-r). For this potential thes Exact value )
wave SE is analytically solvablgs]. In particular, the left- N (=A) Residue sum Integral Total
hand cut reduces to an infinite series of poles, which is regp > 37376476295 5.737647
flected in the sum term of the dispersion relation for the, 295 5 087647
scattering lengttA, (i.e., the scattering amplitude &=0) 2I25815 5' 89500
given below 3 2.26937 6.007018

= f(E)] 1 (+=Imf(E") *  6.00706264  2.26941500 6.00706264

~A=> Re +—f ————dE’. (19
n=0 En mJo E

The terms of the residue sum can be evaluated expligitly 2 single positive masg) the analytic continuation of the
this particular case either from the analytic solution or, as weon-shell or off-shell t-channel scattering function has dis-

have shown, from the Born serjes continuities (i.e., absorptive parisin the crosseds and u
channels whose values in any given energy strip)?<s
f(En) 2 (respectivelyy) <(n+1)%u? (att<0) are completely deter-
Re E, :(n+ D[(n+1)1]* (20 mined in terms of the firsn iterates of the underlying
t-channel Bethe-Salpeter type kernel of the theory. The sym-
They are seen to vanish even faster tham+1)!]"2. Al-  bolss, t, andu have their usual meaning=4u?+4k?, t
though this convergence will diminish somewhat with in- = — 2k?(1— cosé), u= — 2k?(1+ cosé), whereE=Kk? is the
creasingE, Eq. (20) is fairly representative of the conver- kinetic energy and is the scattering angle.
gence of the Born serieon the left-hand cutfor Finally, the possibility of extending the same type of re-

exponentially damped potentials. A simple heuristic argu-sults to theN-body collision theory is also indicated by some
ment shows that one can expect a decrease of the left-hasid|d theoretical results for the 6-point function and 3 to 3
discontinuity on the interval [~ (n+1)*(u*4)<E<  collision amplitudes, where similar structures of subchannel
—(n)%(u?/4)], to be of the order of n*(u%/4)]™", corre-  or crossed channel discontinuities are exhibj@dBy using
sponding to an enlargement of the domain of analyticity toyhe close structural similarity between the Lippman-
wards the left on?(,.?/4). o Schwinger and théexac) Bethe-Salpeter type integral equa-
Numerical values for the DR Eq19) are given in Table g in off-shell momentum space, one can make use of the

I. The positive energy term was computed from the formula,gmmon properties to Yukawa-type potential theory and lo-
Im f(E)=(JE/4m) s §(E), whereo(E) is the Swave cross  ca| quantum field theorjL0], to make a direct extension of
section at energf. The entries in Table | are exact up to the {gse results in the nonrelativistic case.

significant figures given. Note the convergenceNirof the
residue sum(coming from the Born serieglwhich is the We wish to thank Dr. Richard J. Drachman for valuable
counterpart of the left-hand cut discontinuity in this case. discussions and for usingATHEMATICA to evaluate the in-
We conclude by pointing out some possible generalizategral in Table I. One of ugA.T.) would like to thank Pro-
tions. From Ref[7], it is clear that our result can be ex- fessor Alfred Msezane for the kind hospitality extended to
tended readily to any physical partial waves as well as tdim at the Center for Theoretical Studies of Physical Sys-
complex angular momentum partial waves and coupledems, Clark Atlanta University. Both of us thank him for a
channels. It has been shoy8] that for any field theorye.g.,  careful reading of the manuscript.
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