
n,

PHYSICAL REVIEW A, VOLUME 61, 032702
Partial-wave dispersion relations: Exact left-handE-plane discontinuity computed
from the Born series
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We show that for a superposition of Yukawa potentials, theexactleft-hand cut discontinuity in the complex-
energy plane of the~S-wave! scattering amplitude is given, in an interval depending onn, by the discontinuity
of the Born series stopped at ordern. This establishes aninverseand unexpected correspondence of the Born
series at positive high energies and negative low energies. With the discontinuity on the left-hand axis eluci-
dated, we can construct a viable dispersion relation~DR! for the partial ~S-! wave amplitude. The DR is
numerically verified for the exponential potential at zero scattering energy. Generalization to higher partial
waves, and extension of these ideas to field theory are discussed.

PACS number~s!: 34.90.1q, 34.80.2i, 11.55.Fv
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The main limitation in the application of dispersion rel
tion ~DR! to quantum physics comes from the absence of
reliable and systematic method for computing theleft-hand
cut discontinuity in the complex-energy plane. In a DR in t
complex-energy plane, one has to deal with two differ
problems. The evaluation of theright-hand cut discontinuity
~so-calledphysical! and theleft-hand cut discontinuity~so-
calledunphysical!. While the evaluation of the right-hand cu
discontinuity involves only the knowledge of physical qua
tities such as the partial-wave cross sections that can be
sured experimentally, this is not the case for the left-hand
discontinuity that must be computedtheoretically. Presently,
no reliable and systematic method to solve this problem e
ists. We believe this paper provides a very elegant and p
erful solution to it.

By way of introducing the problem of computing the lef
hand cut discontinuity in energy dispersion relations, let
first discuss, since this is our primary interest, the importa
of dispersion relations in electron-atom scattering. A corr
dispersion relation has not been derived, even after abou
years of trying@1#. The major difficulty has been the unde
standing of the analytic structure of the scattering amplitu
caused by the exchange~i.e., the identity of the incident and
orbital electrons!. Blum and Burke@2# attempted to resolve
the problem whose importance is evident from the quotat
‘‘The future of dispersion relations in atomic physics d
pends critically on a better understanding of the nature of
singularities of the left-hand cut’’~in the complex energy
plane!.

In this paper we initiate an alternative attack on this pro
lem. The key idea in the solution lies in the derivation
dispersion relations forpartial waves. The contribution to the
left-hand cut due to the exchange will be dealt with in a
other paper@3# ~see also the discussion in the conclusion
the extension of our results to the full three-body probl
and to field theory!. In nonrelativistic quantum mechanic
the Born series is an approximation good at high energies
our case, we show that it providesexact results in the un-
physicallow-energy region.

We now provide a complete proof for the basic case
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the two-body nonrelativistic problem with a potential that
a superpositionof Yukawa potentials

V~r !5E
m

1`

C~a!e2arda. ~1!

In Refs. @4#, @5#, it has been shown for a linear superp
sition of Yukawa potentials that the solution of theS-wave
Schrödinger equation~SE!, can be written as usual as

ck~r !5S~k! f ~2k,r !eikr2 f ~k,r !e2 ikr , ~2!

whereE5k2, and

f ~6k,r !→1 for r→1`, ~3!

while theSmatrix, S(k), is given in terms of the Jost func
tions, f (6k,r ), by

S~k!5
f ~k,0!

f ~2k,0!
. ~4!

The Jost function is the solution of the modified SE

F d2

dr222ik
d

dr
2lV~r !G f ~k,r !50, ~5!

wherel is the coupling constant. The solution of Eq.~5! can
be analyzed analytically in terms of Laplace transforms@4#.
Writing

f ~k,r !511E
m

1`

rk~a!e2arda ~6!

one can show thatrk(a) can be calculated in segments@5#,
the general equation for which is

a~a12ik !rk~a!5lC~a!1E
m2

a2m

lC~a2b!rk~b!db.

~7!
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Equation~7! ~where we definem2 to be lime→01m2e)
determinesrk(a) for anyfinite value ofa in a finite number
of steps. In particular,rk(a)50 for a,m and a(a
12ik)rk(a)5lC(a) for m2<a,2m, etc. Whenk is out-
side the cuti (m/2)→ i`, rk(a) is well defined for all values
of a. Note the fundamental fact thatrk(a) on the interval
m2<a<(n11)m2, n51,2, . . . is apolynomial of degree
exactly n in the coupling constantl ~with no constant term!.

Furthermore, the Jost functionf (k,0) has a cut along the
imaginary positive axis running fromi (m/2)→ i` and no
other singularities. It tends to 1 at infinity, sufficiently rap
idly that one can write a simple dispersion relation for it

f ~k,0!512 i E
m/2

1` v~x!

k2 ix
dx, ~8!

where

v~x!5
21

2ip
Df ~k,0!uk5 ix , x>

m

2
. ~9!

~D represents the discontinuity of a function cut along
positive imaginary axis; it is defined as being the differen
between the right and the left values on the cut. For a fu
tion having its cut along the real axis, it will be the differen
between the upper and lower values on the cut.!

From Eq.~4!, theS matrix can be written in the form

S~k!5

12 i E
m/2

1` v~x!

k2 ix
dx

11 i E
m/2

1` v~x!

k1 ix
dx

. ~10!

Let 2p iD (x) be the discontinuity ofS(k) across the upperk
cut which corresponds to the left-hand cut in theE5k2

plane. It has been shown@5# that

22xD~x!5lC~2x!1E
m2

2x2m2

lC~2x2b!r ix~b!db.

~11!

Equation~11! shows clearly, just as Eq.~7! does forrk(a),
that the discontinuity of the left-hand cut, in the interva
@2(n11)2(m2/4)<E<2(n)2(m2/4)# is exactly a polyno-
mial of degree n inl. It then follows that the exact left-han
cut discontinuity of theS matrix on the interval@2(n
11)2(m2/4)<E<2(n)2(m2/4)# has to be exactly equal t
that of the Born series stopped at ordern. To demonstrate
this statement, let us first assume that the Born series
verges (ulu,lc). We compute the left-hand cut discontin
ity, D left(E), in the interval @2(n11)2(m2/4)<E<
2(n)2(m2/4)#, in two ways. First, using the converge
Born series

D left~E!5 (
p51

`

lpD left,p
~B! ~E! ~12!

and second, using the Martin algorithm defined by Eq.~11!
03270
e
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D left~E!5 (
p51

p5n

lpD left,p
~M ! ~E!. ~13!

Since Eq.~12! has to be identical to Eq.~13! for every ulu
,lc , it follows that the coefficients of eachlp must be
identical. This implies that

D left,p
~B! ~E!5D left,p

~M ! ~E! 1<p<n ~14!

all the D left,p
(B) (E) are identically zero for p.n when

E belongs to the interval @2(n11)2(m2/4)<E<
2(n)2(m2/4)#.

Even if the Born series has a zero radius of converge
~field theory!, it is still an asymptotic series and its left-han
cut discontinuity in the energy can be computed as
asymptotic series. Now, we know from the previous arg
ment that this asymptotic series terminates at thenth
contribution on the interval @2(n11)2(m2/4)<E<
2(n)2(m2/4)# because it has to be a polynomial of exa
degreen. Therefore, all the higher order contributions vani
identically while the lower ones must give the exact resu
We illustrate this result for the first BornS wave. We have

S~B!~k!5122ikF1
~B!~k!, ~15!

where

F1
~B!~k!5

1

k2 E
0

1`

sin2~kr !V~r !dr. ~16!

Substituting forV(r ) from Eq. ~1! and carrying out the inte-
gration overr gives

F1
~B!~k!5

l

2 E
m2

1` C~a!

S a

2 D 2

1k2

da

a

52
l

2 E
m2

1`F 1

a

2
1 ik

1
1

a

2
2 ikG C~a!

a2 da. ~17!

Only the first term of in the second expression of Eq.~17!
contributes to the left-hand cut discontinuity in theE com-
plex plane. From it we derive that the discontinuity~up to a
factor of 2ip) is

D ~B!~x!52l
C~2x!

2x
. ~18!

Also, directly from Eq.~11!, in the first interval@m/2,x
,m#, the exact discontinuity~up to a factor of 2ip) is ex-
actly what is given by Eq.~18!.

Our results have two major implications:~1! they show
that it is possible~and how! to calculate results on the un
physical cut from finite order perturbation theory~i.e., the
Born series! and~2! they are both theoretical and practical
nature. Because the left-hand cut discontinuity in theE plane
can now be evaluated from the Born series, while the rig
hand cut discontinuity can be evaluated from physical m
2-2
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surements, self-consistent evaluations of the amplitude
be achieved usingdispersion relationsfor the partial wave
amplitudes. To illustrate this point, let us consider the ex
nential potentialV(r )52exp(2r). For this potential theS
wave SE is analytically solvable@6#. In particular, the left-
hand cut reduces to an infinite series of poles, which is
flected in the sum term of the dispersion relation for t
scattering lengthA, ~i.e., the scattering amplitude atE50)
given below

2A5 (
n50

1`

ResF f ~En!

En
G1

1

p E
0

1` Im f ~E8!

E8
dE8. ~19!

The terms of the residue sum can be evaluated explicitly~in
this particular case either from the analytic solution or, as
have shown, from the Born series!

ResF f ~En!

En
G5

2

~n11!@~n11!! #2 . ~20!

They are seen to vanish even faster than@(n11)!#22. Al-
though this convergence will diminish somewhat with i
creasingE, Eq. ~20! is fairly representative of the conve
gence of the Born serieson the left-hand cut for
exponentially damped potentials. A simple heuristic arg
ment shows that one can expect a decrease of the left-
discontinuity on the interval @2(n11)2(m2/4)<E<
2(n)2(m2/4)#, to be of the order of@n2(m2/4)#2n, corre-
sponding to an enlargement of the domain of analyticity
wards the left ofn2(m2/4).

Numerical values for the DR Eq.~19! are given in Table
I. The positive energy term was computed from the form
Im f(E)5(AE/4p)ss(E), wheress(E) is the S-wave cross
section at energyE. The entries in Table I are exact up to th
significant figures given. Note the convergence inN of the
residue sum~coming from the Born series!! which is the
counterpart of the left-hand cut discontinuity in this case

We conclude by pointing out some possible generali
tions. From Ref.@7#, it is clear that our result can be ex
tended readily to any physical partial waves as well as
complex angular momentum partial waves and coup
channels. It has been shown@8# that for any field theory~e.g.,
03270
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a single positive massm! the analytic continuation of the
~on-shell or off-shell! t-channel scattering function has di
continuities ~i.e., absorptive parts! in the crosseds and u
channels whose values in any given energy strip (nm)2,s
(respectively,u),(n11)2m2 ~at t,0) are completely deter
mined in terms of the firstn iterates of the underlying
t-channel Bethe-Salpeter type kernel of the theory. The s
bols s, t, and u have their usual meaning,s54m214k2, t
522k2(12cosu), u522k2(11cosu), whereE5k2 is the
kinetic energy andu is the scattering angle.

Finally, the possibility of extending the same type of r
sults to theN-body collision theory is also indicated by som
field theoretical results for the 6-point function and 3 to
collision amplitudes, where similar structures of subchan
or crossed channel discontinuities are exhibited@9#. By using
the close structural similarity between the Lippma
Schwinger and the~exact! Bethe-Salpeter type integral equ
tions in off-shell momentum space, one can make use of
common properties to Yukawa-type potential theory and
cal quantum field theory@10#, to make a direct extension o
those results in the nonrelativistic case.

We wish to thank Dr. Richard J. Drachman for valuab
discussions and for usingMATHEMATICA to evaluate the in-
tegral in Table I. One of us~A.T.! would like to thank Pro-
fessor Alfred Msezane for the kind hospitality extended
him at the Center for Theoretical Studies of Physical S
tems, Clark Atlanta University. Both of us thank him for
careful reading of the manuscript.

TABLE I. S-wave dispersion relation for the exponential pote
tial V(r )52exp(r) at E50, Eq. ~19!.

N
Exact value

(2A) Residue sum Integral Total

0 2 3.7376476295 5.737647
1 2.25 5.987647
2 2.25815 5.89500
3 2.26937 6.007018

` 6.00706264 2.26941500 6.0070626
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