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Discrete momentum representation of the Lippmann-Schwinger equation
and its application to electron-molecule scattering
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We present a way of using numerical quadrature in momentum space for solving the three-dimensional
Lippmann-Schwinger equation. The integration is performed in spherical coordinates. Test calculations show
that the quadrature is well suited for the electron-molecule scattering problems. Sample results of elastic
scattering of electrons are presented for the empirical Yukawa potentialbainitio Hartree-Fock potential of
the hydrogen and methane molecules.

PACS numbd(s): 34.80.Bm

[. INTRODUCTION The discrete set of quadrature vectors in khgpace may be
considered as a basis set which allows to represent the
Progress in calculations of electron-molecule collisionsT-operator matrix once the molecular potential is available in

has been recently reviewed in several books and review agny standard basis set.

ticles(see, for example, Refkl] and[2]). Recent variational

treatments of electron-molecule collisiofsee, for example, Il. THEORY

Refs. [3-5]) usually use Gaussian-type functions as the

variational basis set. Although the use of Gaussians in

bound-state calculations has become a routine task, their uti-

lization in scattering problems is not so simple. One needs a The problem of solving the Lippmann-Schwinger equa-

large set of diffuse functions to represent properly all thetion [13]

operators appearing in the variational functional. Moreover,

the Smatrix Kohn method requires additional continuum T(E)=U+UGy(E)T(E), 1)

functions with correct asymptotic behavior. The choice of o )

the resulting set is connected with some uncertainty and maynereU stands for double of the potential, is encountered in

lead to linear dependency. For these reasons, it is desirable Ny branches of physics and chemistry and its efficient

separate basis functions used for the construction of thgolution is of a vital importance. The standard way of tack-

Hartree-Fock potential and those appearing in the solution di"d this problem consists in carrying out the partial-wave

the scattering equations. We attempted this by developin§XPansion of all the quantities and solving a coupled set of

the cubic grid Gaussian basis S6BGGBS [6—10] consist- one-dimensional partial wave LS equations of the following

ing of stype Gaussians centered at the points of a regula‘iype

cubic lattice. The basic construction principle of the

A. Standard numerical solution of the Lippmann-Schwinger
equation

o0 /. 2
CGGBS—the best fit of the plane wave—allows the expres- ¢ (o b1 E)=y,(p.p’) + EJ u(p.k)t(k,p’";E)k“dk
sion of the Green’s function in a separable form and the ' ' ne T k3—k?+ie
acquisition of T elements by simple inversion of the (2

Lippmann-Schwinger(LS) equation. Unfortunately, this

method suffers from two main disadvantages: without semiin momentum spackl4]. This equation is singulaisingular

empirical adjustment it yields infinite diagonal elements ofintegrand and infinite integration rangend special attention

the Green’s function, and the interaction potential matrix ex-must be paid to the correct treatment of the singularity. There

pressed in CGGBS becomes nearly singular at lower enefXxist several more or less satisfactory ways of treating the

gies. singularity of the integral kerne(see, for example, Refs.
To overcome these problems we decided to modify thd15—19). Here we quote a widely used approddi9] con-

method originally proposed by Waltef$1] who used a nu- Sisting of the following. The infinite integration rang@; «)

merical quadrature ink space to solve the Lippmann- is reduced td—1; 1) by means of the transformation

Schwinger equation. To point out the formal analogy with

the discrete variable representation, we refer to the proposed = k—ko 3)

method as to the discrete momentum representdBOfMR) k+kp’

method. The method leads to a matrix equation for scattering

amplitudes similar to that in th@&-matrix expansiof12].  where
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2uE Using this numerical quadrature, we solve a set of linear
ko= T (4)  algebraic equations and we obtain fRienatrix on a three-
dimensional grid in momentum space. For this approach, to
which sets the kernel singularity to the middle of the integra.P€ €fficient, the total number of mesh points must be low. It
tion range,x=0. For computation of the resulting integrals can be achieved by restricting the radial integration region by

which are of the type using the following substitution:
1 f(x)dx _ a+bx
pf_l v (5) Kk ko—a_ b (10

the use of 2-point Gaussian rules is recommended, since/Vith respect to Eq(3), the transformatior(10) diminishes

not only do they have maximum degree of exactness pgonsiderably the extent of the numerical quadrature by cut-

because of the symmetry they also integrate exactly the fundind Off the high-energy region. Without this cutoff it is dif-
tion 1/ [20]. It is also possible to subtract the singularity ficult to reach a convergence of the numerical procedure. The

141 by writin transformation(10) also cuts off the low-energy region,
[14) by g though this is less justifiable than the cutoff of the high-
1 f(x)dx 1 f(x)—f(0) energy region. However, the parametarandb may be set
Pf_l < f_l X dx. (6) so that the disregarded region is small and its exclusion does

not affect the result. By numerical tests we choae

Then also (2+1)-point Gaussian rules may be used. The= 10.3333 and)=9.666_7 as default values since they repre-
symmetric distribution of quadrature nodes with respect t€nt @ good compromise between the computational effort
zero permits us to neglect the subtraction term. The partidigiven by the number of quadrature poinasid accuracysee
wave LS equation is then solved for a series of angular mo>€¢- I D for details. The transformationf10) gives a sym-
mentum quantum numbérand the cross sections obtained metric distribution of the quadrature nodes and the subtrac-
by summing contributions from all partial waves. This ap-tion term in Eq.(6) vanishes.

proach is very efficient provided the number of contributing _ APPlication of both the radial and angular quadratures to
partial waves is low. This is true for very low-energy elec- EQ- (7) converts it to the matrix form

trons and spherical targets. At higher energies and for B .

heavier particles the number of partial waves increases rap- T=U+UG, T, (1D
idly and soon the method becomes impractical. in which the matrix elements are defined as

B. Essence of the discrete momentum representation Tai pi=<kqnj|T|kpni), (12

We propose a different method which avoids the partial-

wave expansion and which is directly applicable to non- Vai,pi= (Kqnj VIkpni), (13
spherical targets. The idea is to solve the LS equation in the B : v
full three-dimensional momentum space: Sqpdii Wikol /2 if p=0,
(Gg)gjpi= 2abwowikiky
Kq|U|k)(k|T|ko)dk ’ Sii if p#0.
(Tl = Ui + [ LATOUTTII g ey 20K
kg—k“+ie (14)

To do so, we express the LS equation in spherical coordisypscriptg, qandi, j are indices of nodes in the radial and
nates in thek space and treat separately the radial and anguangular quadratures, respectivelyjs the weight, and,, is
lar integrations. Let us write th&matrix element as defined by Eq.(10). V is the interaction potential and
=2V. The matrixT may be obtained by the matrix inversion

(k| TIko) = (ko UK >+f°° k2f(kq,ky;K)dk ®
k) =l * | e e T=(1-UG{) u. (15
where the functiorf(k,,k;;k) is defined as A peculiar feature of the DMR approach is that we do not

obtain directly the scattering amplitude for anpriori se-

) — lected scattering angle, but for a set of discrete angular co-
fk,k,k—fkoUan kn(Q)|T|ky), (9 3 . . .
(ki ko k) (ke Ulkn(@))kn(D)]Tlkz). (9) ordinates given by the numerical quadrature. The scattering
amplitude for a particular scattering angle can be obtained by

and the symboh((2) stands for the unit vector in the direc- 5 54ditional computational proceduiee Sec. Il

tion . The solution of Eq.(8) may be in principle per-
formed by the numerical technique described in the previous
subsection. An efficient method for angular numerical
quadrature was developed by Lebed@l] and has been Calculations of electron-molecule collisions are usually
applied to problems in electronic-structy@?] and electron-  performed with the use of the optical potential in static-
scattering theorief23]. exchange approximation

C. Scattering of electrons on molecular targets
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TABLE I. Dependence of the differentidDCS) and integral(ICS) cross sections of the elaseCH,
scattering on the extent of the integration rangeb—parameters of Eq.10); Kpin ,Kmax—lower and upper
limit of the integration rangeN,,q,Nang—number of radial and angular quadrature points necessary for the

convergence.

DCS[A%sr]
E Krmin Kmax ICS
(eV) a b (a.u) @u)  Npag  Nang 0° 90° 180°  (A?

5 10.67 9.33 0.040 9.09 21 110 2.73 0.882 2.67 17.16
10.5 9.5 0.030 12.12 21 110 2.64 0.892 2.4 16.6
10.4 9.6 0.024 15.15 21 110 251 0.89 2.2 16.0
10.33 9.67 0.020 18.19 25 110 2.48 0.88 2.15 15.7

20 11.00 9.00 0.121 12.12 21 146 10.50 0.495 1.436 16.49
10.67 9.33 0.081 18.19 23 194 10.56 0.40 1.44 16.6
10.50 9.50 0.061 24.25 25 194 10.59 0.40 1.42 16.7
10.40 9.60 0.048 30.31 25 194 10.58 0.40 1.41 16.7
10.33 9.70 0.040 36.37 29 194 10.59 0.41 1.40 16.7

V=V + V. (16)  The elements of density matriR,; can be used also to
calculate second moments. The exchange integrals may be
The static part includes electrostatic interaction of the scatevaluated in a similar manner
tered electron with the charge density

1 1
<k1|Vex|k2>:_§§a: 2;;' Pa,8< Kia r_lzlﬂk2>’ (21)

p(r>:—§ zA5<r—F<A>+22i g2 1)

whereZ,, R4, and¢; have their usual meaning of nuclear and no special treatment is required for diagonal elements.
[} I i

charges, atomic positions, and occupied molecular orbitals.. Packages_for Har_tree-Fock calculations use alr_nost exclu-
The corresponding matrix element is expressed as S|_vely Gaussian bas!s sets. The formu_las for.hybrld g:oulom—
bic and exchange integrals are available in the literature
Aar ' [12,24-24.

<k1|Vs|k2>:Ff e "p(rydr, (18

D. Test of the truncated radial integration
whereK =k,—k; . Using second-order Taylor expansion for . . :
the exponential in Eq18) one can show that the last expres- ir|1n éhls(i(e))ctlgn Vi;'i? g?r:;]rgecrgnosrt‘aﬁ:'gaéhbevsggséa'hoa:e'?]
sion diverges for the targets with nonzero dipole moment aP 1 =d- D). A palr ) 7 ’
hich defines the integration range. For this integration

K =0, whereas for systems with zero dipole moment the ter . . : )
. . . range the calculations of the differential cross section were

becomes undefined. Since the forward element is used L . X
erformed with increasing number of both the radial and

only for integration and represents a zero-measure set, m};en ular quadrature mesh points, until the convergence was
can replace it by a point very close ko=0. In the limitK 9 q P ' g

_.0 the forward Coulombic term vields the following for- reached. Then the integration range was extended and a con-
y 9 verged result was calculated again. This procedure was re-

mula, peated so many times, until the result was stable. The con-
o stantsa andb so obtained were accepted as standard values
(k|Vglk)=— FkTMk, (19  for all other calculations. These tests were done on the meth-
ane molecule with the molecular valence doubleasis set
whereM is the molecular second moment. [27]. The results for 5 and 20 eV are summarized in Table .
Finally, let us substitute for charge density of a closed
shell target molecule from Eq17) and apply the linear com- E. Averaging over the molecular orientation

bination of atomic orbitals eXpanSion of molecular orbitals. The results for electron scattering on molecules in the gas
The Coulombic matrix elementd8) in a nonforward direc-  phase should account for random orientation of molecular

tion become targets. This fact requires an additional procedure to obtain
4 differential cross sections averaged over molecular coordi-

(k| Vylko) = _7; = 7l Ra nates. As is usugl23], we keep the molecular target fixed

K A and integrate the differential cross section over the paiks of

vectors with a fixed scattering angle. The procedure is per-
k,8)|. (20 formed in the following manner. Around each vector from
the angular set we assume a circle on the sphere with the

+
=M

% Paﬁ< kla

1
2
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TABLE |I. Differential cross sectiongin A?/sr) of elastic scat- T T T T T T T T
tering of 1-eV electrons on the Yukawa potential. The results for
different numbers of radial quadrature nodes) (are compared 4r- 7
with those obtained by partial-wave expansi®@WE). The number A
of angular quadrature nodes has been set to 38.

Scatt. angle 3l
(deg N=5 N=7 N=9 N=11 N=15 PWE

0.00 0.3969 0.3946 0.3939 0.3938 0.3937 0.3936
35.26 0.3658 0.3639 0.3632 0.3631 0.3630 0.3629
54.74 0.3296 0.3281 0.3274 0.3273 0.3273 0.3271
70.53 0.2971 0.2960 0.2953 0.2952 0.2951 0.2950
90.00 0.2587 0.2580 0.2573 0.2573 0.2572 0.2571

109.47 0.2262 0.2258 0.2251 0.2251 0.2250 0.2249
125.26 0.2054 0.2053 0.2047 0.2046 0.2046 0.2045
144.74 0.1873 0.1874 0.1867 0.1867 0.1866 0.1866
180.00 0.1747 0.1749 0.1743 0.1742 0.1742 0.1741

Differential Cross Section [R%/sr]

0 20 40 60 80 100 120 140 160 180
radiusky. The radius of the circle corresponds to the scat-
tering angle. By numerical integration along this circle we
obtain the averaged differential cross section for a particular g 2. Angular dependence of the differential cross section of
k vector. This is performed consecutively for all vectors gjastic electron scattering onyldt 10 eV. See Fig. 1 for details. The
from the angular set and the final value of the differentialcrosses represent results of static-exchange calculations of Ref.
cross section is obtained by averaging the values calculatgd2].

for individual k vectors. The procedure is general and may

be used for any set of scattering angles. However, it is profy_matrix elements needed in the numerical integration on

itable to select scattering angl_es given by the angular quadrgre circles. Presently we are working on a more efficient
ture, because such a selection reduces the number of tl&?/eraging procedure.

Scattering Angle [deg.]

350 ) IIl. RESULTS AND DISCUSSION
‘ As the first test of the radial and angular quadratures de-
a0l i scribed in this paper we calculated angular dependence of the
_ A ¥ T T T T T T T
Boas| ]
< 4L 4
8 A
S20f a i
» <
s
] 3 4
,Tg 1.5
] A
£
=]

-
o

0.5

0 20 40 60 80 100 120 140 160 180

Differential Cross Section [AZ/sr]

Scattering Angle [deg.]

FIG. 1. Angular dependence of the differential cross section of
elastic electron scattering onpldt 5 eV. The calculated results were
obtained with 11 radial and 38 angular points. The lines represent- 5 2'0 4'0 slo slo 1(')0 150 1"‘0 1('50 T80
ing results obtained for 13, 15, and 17 radial points and higher
numbers of angular points are indistinguishable from the presented
line. The dashed line represents the static result without inclusion of
the exchange term. The experimental data are taken from [R8ls. FIG. 3. Angular dependence of the differential cross section of
(squaresand[29] (triangles. elastic electron scattering ot 15 eV. See Fig. 1 for details.

Scattering Angle [deg.]
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N

Differential Cross Section [3%sr]
Differential Cross Section [/Z\zlsr]

1
o
T
i

L 1 Il )
0 20 40 60 80 100 120 140 160 180

] | L 1 1 1 1 |

0 20 40 60 80 100 120 140 160 180
Scattering Angle [deg.]

Scattering Angle [deg.]

FIG. 4. Angular dependence of the differential cross section of

elastic electron scattering on,Ht 20 eV. See Fig. 1 for details. FIG. 6. Angular dependence of the differential cross section of

elastic electron scattering on the methane molecule at 5 eV. The
éalculated results obtained by different numbers of angular points
are represented as follows: 86, dotted line; 110, long dashes; 146,
solid line. The experimental data are taken from H&D| (tri-

e’ angle$. The circles represent the results of static-exchange calcula-
V=—. (220  tions of Ref.[33]. The static results are out of scale in this figure.

differential cross section for elastic electron scattering on th
Yukawa potential

The calculated elastic cross sections at 1 eV compared with
those obtained by partial wave expansion are shown in Table
II. We present results for five sets of radial quadrature nodes.
Because of spherical symmetry of the potential, the calcu- oo T T
lated cross sections depend only very little on the number of

18

Integral Cross Section [A7]

Differential cross section [A%/sr]

Energy [eV]

FIG. 5. Elastic integral cross section ferH, scattering. The P S R T R R R
solid line represents results obtained by use of the quadrature with 0 20 40 60 80 100 120 140 160 180
11 radial and 38 angular points. Higher quadratures give lines that Scattering Angle [deg.]
are indistinguishable from the presented line. The dashed line rep-
resents the static result without inclusion of the exchange term. The FIG. 7. Angular dependence of the differential cross section of
experimental datécircles are taken from Refl29]. The triangles elastic electron scattering on the methane molecule at 10 eV. See
and squares represent the results of static-exchange calculationsfefy. 6 for details. The dashed line represents the static result with-
Refs.[31] and[32], respectively. out inclusion of the exchange term.
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12 T T T T T T T T 12 T T T T T T T T

Differential Cross Section [A%/sr]
Differential Cross Section [Azlsr]

1 1 L Il 1 1
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
Scattering Angle [deg.] Scattering Angle [deg.]

FIG. 8. Angular dependence of the differential cross section of FI_G. 9. Angular dependence of the differential cross section of
elastic electron scattering on the methane molecule at 15 eV. Sénéastlc electron scatte_rlng on the methane molecule at 20 eV. See
Figs. 6 and 7 for details. Figs. 6 and 7 for details.

angular nodes, and it is not necessary to apply Lebedeshows good convergence of the results with the increasing
quadratures with more than 38 points. As can be seen igize of the angular set. The calculated differential cross sec-
Table Il, the DMR approach yields results exact to four dig-tions for three angular sets are plotted in Figs. 6—9. The
its. number of radial nodes has been set to 21 in all three cases.
In order to show the applicability of the DMR approach to As it is seen, DMR calculations provide results very close to
real molecular systems, we calculated the cross sections ekperimental data. The agreement is worse for 5 eV because
elastic electron scattering on hydrogen and methane mobf the neglect of polarization effects.
ecules. Since the present version of our computer code al-
lows only calculations in the static-exchange approximation,
the polarization effects are not taken into account. For both
H, and CH, the standard valence douhjéasis sef27] has We presented a method for the calculation of the cross
been used for construction of the Hartree-Fock potentiabections of electron-molecule collisions based on a numerical
(16). The calculated cross sections for the elastic electromguadrature applied to the Lippmann-Schwinger equation in
scattering on K are presented in Figs. 1-4 along with two momentum space. The suggested distribution of quadrature
sets of experimental data. The angular quadrature set with 38@des maintains a relatively high precision of the numerical
points is large enough in this case, and the extension of thprocedure. The method seems to be feasible for calculations
angular set does not change the results. The curves in each electron scattering on polyatomic molecules. Since the
one of Figs. 1-4 represent results obtained with differensize of the resulting set of linear equations is not related to
numbers of radial points ranging from 11 to 17. The minimalthe number of atoms of the molecule, the presented treatment
radial set with 11 points is large enough to represent theould be suitable for economical calculations of electron-
converged results. The absence of polarization contributionsiolecule scattering on personal computers.
to the potential causes well-known underestimation of the At the present time the method is restricted to calculations
calculated cross section near the forward direction. As can bef elastic electron or positron scattering cross sections on
seen in Fig. 5, the calculated cross section of elastid,  nonpolar targets. Further extension to polar systems as well
scattering follows closely the results of two other approachesas the treatment of various types of inelastic collisions and
[31,32. Since the resulting integral cross section is mostlyinclusion of polarization effects will be the subject of subse-
affected by near-forward contributions and no polarizationquent papers.
effects have been introduced in the calculations, the calcu-
lated velues differ significantly from the. experimental ones. ACKNOWLEDGMENTS
In all figures we also present the static resilts., cross
sections obtained without the exchange potenhtglggested This work was supported by Grant No. 203/99/0839 of
for future comparison with other techniques. the Grant Agency of the Czech Republic. The computer time
The second example, dependence of the cross section pfovided by Supercomputing Center Brno is gratefully ac-
the elastic electron scattering on the methane molecul&knowledged.

IV. CONCLUSION
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