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Discrete momentum representation of the Lippmann-Schwinger equation
and its application to electron-molecule scattering
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We present a way of using numerical quadrature in momentum space for solving the three-dimensional
Lippmann-Schwinger equation. The integration is performed in spherical coordinates. Test calculations show
that the quadrature is well suited for the electron-molecule scattering problems. Sample results of elastic
scattering of electrons are presented for the empirical Yukawa potential andab initio Hartree-Fock potential of
the hydrogen and methane molecules.

PACS number~s!: 34.80.Bm
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I. INTRODUCTION

Progress in calculations of electron-molecule collisio
has been recently reviewed in several books and review
ticles~see, for example, Refs.@1# and@2#!. Recent variational
treatments of electron-molecule collisions~see, for example
Refs. @3–5#! usually use Gaussian-type functions as
variational basis set. Although the use of Gaussians
bound-state calculations has become a routine task, their
lization in scattering problems is not so simple. One need
large set of diffuse functions to represent properly all
operators appearing in the variational functional. Moreov
the S-matrix Kohn method requires additional continuu
functions with correct asymptotic behavior. The choice
the resulting set is connected with some uncertainty and
lead to linear dependency. For these reasons, it is desirab
separate basis functions used for the construction of
Hartree-Fock potential and those appearing in the solutio
the scattering equations. We attempted this by develop
the cubic grid Gaussian basis sets~CGGBS! @6–10# consist-
ing of s-type Gaussians centered at the points of a reg
cubic lattice. The basic construction principle of th
CGGBS—the best fit of the plane wave—allows the expr
sion of the Green’s function in a separable form and
acquisition of T elements by simple inversion of th
Lippmann-Schwinger~LS! equation. Unfortunately, this
method suffers from two main disadvantages: without se
empirical adjustment it yields infinite diagonal elements
the Green’s function, and the interaction potential matrix
pressed in CGGBS becomes nearly singular at lower e
gies.

To overcome these problems we decided to modify
method originally proposed by Walters@11# who used a nu-
merical quadrature ink space to solve the Lippmann
Schwinger equation. To point out the formal analogy w
the discrete variable representation, we refer to the propo
method as to the discrete momentum representation~DMR!
method. The method leads to a matrix equation for scatte
amplitudes similar to that in theT-matrix expansion@12#.
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The discrete set of quadrature vectors in thek space may be
considered as a basis set which allows to represent
T-operator matrix once the molecular potential is available
any standard basis set.

II. THEORY

A. Standard numerical solution of the Lippmann-Schwinger
equation

The problem of solving the Lippmann-Schwinger equ
tion @13#

T~E!5U1UG0~E!T~E!, ~1!

whereU stands for double of the potential, is encountered
many branches of physics and chemistry and its effici
solution is of a vital importance. The standard way of tac
ling this problem consists in carrying out the partial-wa
expansion of all the quantities and solving a coupled se
one-dimensional partial wave LS equations of the followi
type

t l~p,p8;E!5ul~p,p8!1
1

p E
0

` ul~p,k!t l~k,p8;E!k2dk

k2
22k21 i e

~2!

in momentum space@14#. This equation is singular~singular
integrand and infinite integration range! and special attention
must be paid to the correct treatment of the singularity. Th
exist several more or less satisfactory ways of treating
singularity of the integral kernel~see, for example, Refs
@15–19#!. Here we quote a widely used approach@19# con-
sisting of the following. The infinite integration range~0; `!
is reduced to~21; 1! by means of the transformation

x5
k2k0

k1k0
, ~3!

where
©2000 The American Physical Society01-1
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k05A2mE

\2 , ~4!

which sets the kernel singularity to the middle of the integ
tion range,x50. For computation of the resulting integra
which are of the type

PE
21

1 f ~x!dx

x
, ~5!

the use of 2n-point Gaussian rules is recommended, sin
not only do they have maximum degree of exactness,
because of the symmetry they also integrate exactly the fu
tion 1/x @20#. It is also possible to subtract the singulari
@14# by writing

PE
21

1 f ~x!dx

x
5E

21

1 f ~x!2 f ~0!

x
dx. ~6!

Then also (2n11)-point Gaussian rules may be used. T
symmetric distribution of quadrature nodes with respect
zero permits us to neglect the subtraction term. The pa
wave LS equation is then solved for a series of angular m
mentum quantum numberl and the cross sections obtaine
by summing contributions from all partial waves. This a
proach is very efficient provided the number of contributi
partial waves is low. This is true for very low-energy ele
trons and spherical targets. At higher energies and
heavier particles the number of partial waves increases
idly and soon the method becomes impractical.

B. Essence of the discrete momentum representation

We propose a different method which avoids the part
wave expansion and which is directly applicable to no
spherical targets. The idea is to solve the LS equation in
full three-dimensional momentum space:

^k1uTuk2&5^k1uUuk2&1E ^k1uUuk&^kuTuk2&dk

k0
22k21 i e

. ~7!

To do so, we express the LS equation in spherical coo
nates in thek space and treat separately the radial and an
lar integrations. Let us write theT-matrix element as

^k1uTuk2&5^k1uUuk2&1E
0

` k2f ~k1 ,k2 ;k!dk

k0
22k21 i e

, ~8!

where the functionf (k1 ,k2 ;k) is defined as

f ~k1 ,k2 ;k!5E dV^k1uUukn~V!&^kn~V!uTuk2&, ~9!

and the symboln(V) stands for the unit vector in the direc
tion V. The solution of Eq.~8! may be in principle per-
formed by the numerical technique described in the previ
subsection. An efficient method for angular numeric
quadrature was developed by Lebedev@21# and has been
applied to problems in electronic-structure@22# and electron-
scattering theories@23#.
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Using this numerical quadrature, we solve a set of lin
algebraic equations and we obtain theT matrix on a three-
dimensional grid in momentum space. For this approach
be efficient, the total number of mesh points must be low
can be achieved by restricting the radial integration region
using the following substitution:

k5k0

a1bx

a2bx
. ~10!

With respect to Eq.~3!, the transformation~10! diminishes
considerably the extent of the numerical quadrature by c
ting off the high-energy region. Without this cutoff it is dif
ficult to reach a convergence of the numerical procedure.
transformation~10! also cuts off the low-energy region
though this is less justifiable than the cutoff of the hig
energy region. However, the parametersa andb may be set
so that the disregarded region is small and its exclusion d
not affect the result. By numerical tests we chosea
510.3333 andb59.6667 as default values since they rep
sent a good compromise between the computational e
~given by the number of quadrature points! and accuracy~see
Sec. II D for details!. The transformation~10! gives a sym-
metric distribution of the quadrature nodes and the subt
tion term in Eq.~6! vanishes.

Application of both the radial and angular quadratures
Eq. ~7! converts it to the matrix form

T5U1UG0
1T, ~11!

in which the matrix elements are defined as

Tq j ,pi5^kqnj uTukpni&, ~12!

Vq j ,pi5^kqnj uVukpni&, ~13!

~G0
1!q j ,pi5H 2dqpd j i wik0i /2 if p50,

dqpd j i

2abwpwikp
2k0

~a2bxp!2~k0
22kp

2!
if pÞ0.

~14!

Subscriptsp, q and i, j are indices of nodes in the radial an
angular quadratures, respectively,w is the weight, andxp is
defined by Eq.~10!. V is the interaction potential andU
52V. The matrixT may be obtained by the matrix inversio

T5~12UG0
1!21U. ~15!

A peculiar feature of the DMR approach is that we do n
obtain directly the scattering amplitude for ana priori se-
lected scattering angle, but for a set of discrete angular
ordinates given by the numerical quadrature. The scatte
amplitude for a particular scattering angle can be obtained
an additional computational procedure~see Sec. II E!.

C. Scattering of electrons on molecular targets

Calculations of electron-molecule collisions are usua
performed with the use of the optical potential in stat
exchange approximation
1-2
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TABLE I. Dependence of the differential~DCS! and integral~ICS! cross sections of the elastice-CH4

scattering on the extent of the integration range.a, b—parameters of Eq.~10!; kmin ,kmax—lower and upper
limit of the integration range;Nrad,Nang—number of radial and angular quadrature points necessary fo
convergence.

E
~eV! a b

kmin

~a.u.!
kmax

~a.u.! Nrad Nang

DCS @Å2/sr#
ICS
~Å2!0° 90° 180°

5 10.67 9.33 0.040 9.09 21 110 2.73 0.882 2.67 17.1
10.5 9.5 0.030 12.12 21 110 2.64 0.892 2.4 16.6
10.4 9.6 0.024 15.15 21 110 2.51 0.89 2.2 16.0
10.33 9.67 0.020 18.19 25 110 2.48 0.88 2.15 15.7

20 11.00 9.00 0.121 12.12 21 146 10.50 0.495 1.436 16.4
10.67 9.33 0.081 18.19 23 194 10.56 0.40 1.44 16.6
10.50 9.50 0.061 24.25 25 194 10.59 0.40 1.42 16.7
10.40 9.60 0.048 30.31 25 194 10.58 0.40 1.41 16.7
10.33 9.70 0.040 36.37 29 194 10.59 0.41 1.40 16.7
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V5Vs1Vex. ~16!

The static part includes electrostatic interaction of the s
tered electron with the charge density

r~r !52(
A

ZAd~r2RA!12(
i

uf i~r !u2, ~17!

whereZA , RA , andf i have their usual meaning of nucle
charges, atomic positions, and occupied molecular orbit
The corresponding matrix element is expressed as

^k1uVsuk2&5
4p

K2 E eik•rr~r !dr , ~18!

whereK5k22k1 . Using second-order Taylor expansion f
the exponential in Eq.~18! one can show that the last expre
sion diverges for the targets with nonzero dipole momen
K50, whereas for systems with zero dipole moment the te
becomes undefined. Since the forwardVS element is used
only for integration and represents a zero-measure set
can replace it by a point very close toK50. In the limit K
→0 the forward Coulombic term yields the following fo
mula,

^kuVsuk&52
2p

k2 kTMk , ~19!

whereM is the molecular second moment.
Finally, let us substitute for charge density of a clos

shell target molecule from Eq.~17! and apply the linear com
bination of atomic orbitals expansion of molecular orbita
The Coulombic matrix elements~18! in a nonforward direc-
tion become

^k1uVsuk2&5
4p

K2 S 2(
A

ZAeik•RA

1(
a

(
b

PabK k1aU 1

r 12
Uk2b L D . ~20!
03270
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The elements of density matrixPab can be used also to
calculate second moments. The exchange integrals ma
evaluated in a similar manner

^k1uVexuk2&52
1

2 (
a

(
b

PabK k1aU 1

r 12
Ubk2L , ~21!

and no special treatment is required for diagonal elemen
Packages for Hartree-Fock calculations use almost ex

sively Gaussian basis sets. The formulas for hybrid Coulo
bic and exchange integrals are available in the literat
@12,24–26#.

D. Test of the truncated radial integration

In this section we comment on setting the constantsa and
b in Eq. ~10!. A pair of the constantsa and b was chosen,
which defines the integration range. For this integrat
range the calculations of the differential cross section w
performed with increasing number of both the radial a
angular quadrature mesh points, until the convergence
reached. Then the integration range was extended and a
verged result was calculated again. This procedure was
peated so many times, until the result was stable. The c
stantsa andb so obtained were accepted as standard va
for all other calculations. These tests were done on the m
ane molecule with the molecular valence doublez basis set
@27#. The results for 5 and 20 eV are summarized in Table

E. Averaging over the molecular orientation

The results for electron scattering on molecules in the
phase should account for random orientation of molecu
targets. This fact requires an additional procedure to ob
differential cross sections averaged over molecular coo
nates. As is usual@23#, we keep the molecular target fixe
and integrate the differential cross section over the pairs ok
vectors with a fixed scattering angle. The procedure is p
formed in the following manner. Around each vector fro
the angular set we assume a circle on the sphere with
1-3
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radiusk0 . The radius of the circle corresponds to the sc
tering angle. By numerical integration along this circle w
obtain the averaged differential cross section for a partic
k vector. This is performed consecutively for all vecto
from the angular set and the final value of the differen
cross section is obtained by averaging the values calcul
for individual k vectors. The procedure is general and m
be used for any set of scattering angles. However, it is p
itable to select scattering angles given by the angular qua
ture, because such a selection reduces the number o

FIG. 1. Angular dependence of the differential cross section
elastic electron scattering on H2 at 5 eV. The calculated results wer
obtained with 11 radial and 38 angular points. The lines repres
ing results obtained for 13, 15, and 17 radial points and hig
numbers of angular points are indistinguishable from the prese
line. The dashed line represents the static result without inclusio
the exchange term. The experimental data are taken from Refs.@28#
~squares! and @29# ~triangles!.

TABLE II. Differential cross sections~in Å2/sr! of elastic scat-
tering of 1-eV electrons on the Yukawa potential. The results
different numbers of radial quadrature nodes (N) are compared
with those obtained by partial-wave expansion~PWE!. The number
of angular quadrature nodes has been set to 38.

Scatt. angle
~deg! N55 N57 N59 N511 N515 PWE

0.00 0.3969 0.3946 0.3939 0.3938 0.3937 0.39
35.26 0.3658 0.3639 0.3632 0.3631 0.3630 0.36
54.74 0.3296 0.3281 0.3274 0.3273 0.3273 0.32
70.53 0.2971 0.2960 0.2953 0.2952 0.2951 0.29
90.00 0.2587 0.2580 0.2573 0.2573 0.2572 0.25

109.47 0.2262 0.2258 0.2251 0.2251 0.2250 0.22
125.26 0.2054 0.2053 0.2047 0.2046 0.2046 0.20
144.74 0.1873 0.1874 0.1867 0.1867 0.1866 0.18
180.00 0.1747 0.1749 0.1743 0.1742 0.1742 0.17
03270
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U-matrix elements needed in the numerical integration
the circles. Presently we are working on a more efficie
averaging procedure.

III. RESULTS AND DISCUSSION

As the first test of the radial and angular quadratures
scribed in this paper we calculated angular dependence o
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FIG. 2. Angular dependence of the differential cross section
elastic electron scattering on H2 at 10 eV. See Fig. 1 for details. Th
crosses represent results of static-exchange calculations of
@32#.

FIG. 3. Angular dependence of the differential cross section
elastic electron scattering on H2 at 15 eV. See Fig. 1 for details.
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differential cross section for elastic electron scattering on
Yukawa potential

V5
e2r

r
. ~22!

The calculated elastic cross sections at 1 eV compared
those obtained by partial wave expansion are shown in T
II. We present results for five sets of radial quadrature nod
Because of spherical symmetry of the potential, the ca
lated cross sections depend only very little on the numbe

FIG. 4. Angular dependence of the differential cross section
elastic electron scattering on H2 at 20 eV. See Fig. 1 for details.

FIG. 5. Elastic integral cross section fore-H2 scattering. The
solid line represents results obtained by use of the quadrature
11 radial and 38 angular points. Higher quadratures give lines
are indistinguishable from the presented line. The dashed line
resents the static result without inclusion of the exchange term.
experimental data~circles! are taken from Ref.@29#. The triangles
and squares represent the results of static-exchange calculatio
Refs.@31# and @32#, respectively.
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FIG. 6. Angular dependence of the differential cross section
elastic electron scattering on the methane molecule at 5 eV.
calculated results obtained by different numbers of angular po
are represented as follows: 86, dotted line; 110, long dashes;
solid line. The experimental data are taken from Ref.@30# ~tri-
angles!. The circles represent the results of static-exchange calc
tions of Ref.@33#. The static results are out of scale in this figur

FIG. 7. Angular dependence of the differential cross section
elastic electron scattering on the methane molecule at 10 eV.
Fig. 6 for details. The dashed line represents the static result w
out inclusion of the exchange term.
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angular nodes, and it is not necessary to apply Lebe
quadratures with more than 38 points. As can be see
Table II, the DMR approach yields results exact to four d
its.

In order to show the applicability of the DMR approach
real molecular systems, we calculated the cross section
elastic electron scattering on hydrogen and methane m
ecules. Since the present version of our computer code
lows only calculations in the static-exchange approximati
the polarization effects are not taken into account. For b
H2 and CH4 the standard valence doublez basis set@27# has
been used for construction of the Hartree-Fock poten
~16!. The calculated cross sections for the elastic elect
scattering on H2 are presented in Figs. 1–4 along with tw
sets of experimental data. The angular quadrature set wit
points is large enough in this case, and the extension of
angular set does not change the results. The curves in
one of Figs. 1–4 represent results obtained with differ
numbers of radial points ranging from 11 to 17. The minim
radial set with 11 points is large enough to represent
converged results. The absence of polarization contribut
to the potential causes well-known underestimation of
calculated cross section near the forward direction. As ca
seen in Fig. 5, the calculated cross section of elastice-H2
scattering follows closely the results of two other approac
@31,32#. Since the resulting integral cross section is mos
affected by near-forward contributions and no polarizat
effects have been introduced in the calculations, the ca
lated values differ significantly from the experimental on
In all figures we also present the static results~i.e., cross
sections obtained without the exchange potential!, suggested
for future comparison with other techniques.

The second example, dependence of the cross sectio
the elastic electron scattering on the methane molec

FIG. 8. Angular dependence of the differential cross section
elastic electron scattering on the methane molecule at 15 eV.
Figs. 6 and 7 for details.
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shows good convergence of the results with the increas
size of the angular set. The calculated differential cross s
tions for three angular sets are plotted in Figs. 6–9. T
number of radial nodes has been set to 21 in all three ca
As it is seen, DMR calculations provide results very close
experimental data. The agreement is worse for 5 eV beca
of the neglect of polarization effects.

IV. CONCLUSION

We presented a method for the calculation of the cr
sections of electron-molecule collisions based on a numer
quadrature applied to the Lippmann-Schwinger equation
momentum space. The suggested distribution of quadra
nodes maintains a relatively high precision of the numeri
procedure. The method seems to be feasible for calculat
of electron scattering on polyatomic molecules. Since
size of the resulting set of linear equations is not related
the number of atoms of the molecule, the presented treatm
could be suitable for economical calculations of electro
molecule scattering on personal computers.

At the present time the method is restricted to calculatio
of elastic electron or positron scattering cross sections
nonpolar targets. Further extension to polar systems as
as the treatment of various types of inelastic collisions a
inclusion of polarization effects will be the subject of subs
quent papers.
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FIG. 9. Angular dependence of the differential cross section
elastic electron scattering on the methane molecule at 20 eV.
Figs. 6 and 7 for details.
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