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Mechanisms of the rearrangement processes in thedtµ system: Nonadiabatic transitions
and interference effects

V. N. Ostrovsky*
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For the rearrangement processdm(ni)1t→d1tm(nf), results of high-precision numerical calculations for
the zero total orbital momentum of the system are compared with those obtained from the analytical Demkov
model. The latter is widely used in atomic collision theory to describe rearrangement processes with small
energy defects. A specific feature of the studied system is that the energy defect has a purely isotopic nature.
Muon transfer within theni5nf51 andni5nf52 manifolds is analyzed. In the latter case the natural reaction
channels correspond to Stark states in the limit of separated atoms. Efficient transitions occur between Stark
states with the muon cloud stretched toward~opposite to! the collision partner both in the initial and final
states. An overall good agreement with accurate results sustains the relevance of the Demkov model for the
studied process, and clarifies the reaction mechanisms. The interference effects strongly suppress the reaction
probability within theni5nf51 manifold, and enhance it forni5nf52. Some intriguing although yet unex-
plained features of the interference phases are revealed and discussed: they are almost energy independent and
close to integer multiples of12 p.

PACS number~s!: 36.10.Dr, 34.70.1e, 34.50.Pi
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I. INTRODUCTION

The dtm system is a particular case of a general thr
body Coulomb system comprising one light particle and t
heavy particles. In the present paper we consider rearra
ment processes

dm~ni !1t→d1tm~nf !1DE ~1!

for zero total angular momentum. In recent years this sys
has attracted a considerable attention@1–14# due to its role in
the muon-catalyzed fusion project@15#. In some of these
papers numerically intensive calculations were carried ou
produce high-precision results. Although the value of su
information is difficult to overestimate, very often it does n
contribute directly to improving our qualitative understan
ing of the collision dynamics, and one still has to look f
interpretations of the calculated results in terms of some
action mechanisms. This can be achieved by simplifying
problem at hand, and reducing it to one of the analyti
models developed for a description of some generic phys
situations. If such a simplification is possible, then a co
parison of accurate numerical results with those obtai
from the model analysis is useful and interesting becaus
facilitates a qualitative understanding of the former and
the same time, examines the range of applicability of
latter.

We are interested in slow collisions when the most e
cient transitions occur in a quasiresonance regime chara
ized by small values of the energy defectDE. This is the
case when the principal quantum numbers in the initial (ni)
and final (nf) bound states coincide,ni5nf[n, and
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DEn5Edm~n!2Etm~n!5
mtm2mdm

2n2 , ~2!

whereEdm(n) andEtm(n) are the energies of the bound stat
of the pairsdm and tm, respectively, andmdm andmtm are
the corresponding reduced masses:

mdm5
mdmm

md1mm
, mtm5

mtmm

mt1mm
. ~3!

Taking into account thatmt;md@mm , we obtain

DEn5mm
2 mt2md

mdmt

1

2n2 F11OS mm

md
D G . ~4!

ThusDE vanishes in the limitmm /md→0 ~or mm /mt→0! as
well as in the limitmd /mt→1 that reveals isotopic nature o
the energy defect.

Process~1! represents transfer of a light particle~muon!
between two heavy ones~d and t!. The semiclassical ap
proach to this type of process is well developed in the the
of slow atomic collision. Here the light particle is an electro
and the process is usually referred to as charge exchang
charge transfer. A two-state model for quasiresonance ch
exchange was developed by Demkov@16#. Being closely re-
lated to the model proposed earlier in different context
Rosen and Zener@17#, the Demkov model is much mor
flexible. It is widely applied to atomic collisions@18–23#; we
also mention application to the theory of muon distributi
among the fission fragments in mesic atoms@24,25,21#. The
explicit time dependence of a two-state Hamiltonian in t
Demkov model corresponds to a classical~or semiclassical!
description of the motion of atomic nuclei. Remarkab
progress in the generalization to account for a quantum
scription of this motion was subsequently achieved. Me
shikov @26# managed to derive an exact quantum express
specifically for the nonadiabatic transition probability wit
©2000 The American Physical Society05-1
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V. N. OSTROVSKY PHYSICAL REVIEW A 61 032505
out actually solving the Schro¨dinger equation. Recently Osh
erov and Voronin@27# gave a complete solution to the two
state quantum problem. However, we consider collis
energies much larger than the resonance defectDE; in this
case the quantum effects are negligible, except in the n
threshold domains, and it is justified to use a semiclass
version of the Demkov model. It should be emphasized t
it is not our aim here to elaborate upon the model appro
to the highest level of sophistication; on the contrary,
prefer to keep it as simple as possible provided that i
capable of reproducing major features of the energy dep
dence of the reaction probability.

In ion-atom collisions the energy defect results from t
difference of the effective potentials used to represent e
of two atomic cores. Recently, based on the so-called hid
crossing theory, Janev@23# demonstrated the relevance of th
Demkov model for a description of electron transfer betwe
two bare nuclei. The energy defect in this case origina
from the difference of the nuclear charges or/and the elec
principal quantum numbers in the initial and final states.
our system the energy defect has an isotopic nature
stressed above. However, notwithstanding this differen
application of the Demkov model remains rather straightf
ward in the case of ground-to-ground state charge excha
(ni5nf51, Sec. II A!. For excited states, the situation b
comes more complicated due to the Coulomb degenerac
the separated atom states, and the relevance of the two-
Demkov model is not evident. We consider in detail theni
5nf52 manifold, and show that it can be split into tw
weakly coupled pairs of strongly interacting adiabatic ch
nels. After that the system is approximately described by
independent two-state Demkov models~Sec. II B!. The
model results are successfully compared with the rec
high-precision benchmark calculations by Tolstikhin a
Namba @14# based on the hyperspherical method imp
mented in terms of hyperspherical elliptic coordinates@28#
and the ‘‘slow/smooth variable discretization method’’@29#
in combination with theR-matrix propagation technique o
Ref. @30#. We find that interference effects play an importa
role for reaction~1!, strongly suppressing the rearrangeme
probability forni5nf51 and enhancing it forni5nf52. In
addition, the interference phases exhibit some unexpe
behavior discussed in Sec. III.

II. MODELS

A. Ground-to-ground state rearrangement

In the Demkov model,diabatic states correspond to th
atomic orbitals of separated atoms split by the energyDE.
The coupling of these statesHab(R) is induced by the elec
tron exchange between the centers, and decreases exp
tially with increasing internuclear distanceR. Adiabatic
~quasimolecular! states coincide with diabatic ones forR
→`. For smallR @whereHab(R)@DE#, the quasimolecular
adiabatic states represent linear combinations of ato
states with almost equal weights. The states rearrange
an atomic to a molecular pattern, and related strong nona
batic transitions occur in the vicinity of the pointRc defined
by the condition
03250
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DE52Hab~Rc!. ~5!

For a single passage of the strong-coupling region,
probability of a transition between adiabatic~quasimolecu-
lar! states is

p5F11expS pDE

av D G21

. ~6!

In the simplest approximation@cf. Eq. ~21! below#, v is the
collision velocity related to the center-of-mass collision e
ergy Ecol :

v5A2Ecol

Mi
. ~7!

In our case the relevant massMi is

Mi5
mdmmt

mdm1mt
. ~8!

Hereafter, unless stated otherwise, we use a muonic sy
of units (\5e5mm51), although we sometimes retai
muonic massmm in the formulas. The parametera charac-
terizes the exponential behavior of the exchange coup
Hab(R) at large separations. The theory asymptotic in la
internuclear~i.e., d2t! separationR ~for a review see Ref.
@31#!, gives for the couplingHab(R) in the case ofS states
of a quasimolecule,

Hab~R!54pR2Za /aa1Zb /ab23

3expS 2
Za

2aa
2

Zb

2ab
DcaS 1

2
RDcbS 1

2
RD , ~9!

where aa and ab are related to the initial- and final-stat
binding energiesEa andEb for dm and tm systems, respec
tively: aa5A2mdmEa andab5A2mtmEb. The labela(b) is
attached hereafter to the initial~final! state of process~1!,
and to the adiabatic quasimolecular potential curve which
correlated to it.

The wave functionsca and cb describe initial and final
~separated atom! states, respectively. They decrease ex
nentially at large distances from the nucleus:c j (r )
;exp(2ajr). Therefore Hab(R);exp@21/2(aa1ab)R#,
and one have inserta51/2(aa1ab) into Eq. ~6!. The wave
functionsca andcb actually depend on the electron vector

by writing ca( 1
2 R) and cb( 1

2 R) in Eq. ~9!, we imply that
these functions are to be evaluated at the midpoint betw
the atomic nuclei. Formula~9! is derived for the space-fixed
~i.e., infinitely heavy! atomic nuclei separated by a distan
R. Therefore it is consistent to neglect in it the isotopic e
fects that giveaa'ab'1/n. This approximation is sufficien
for an evaluation of the parametera in formula ~6!: a
51/n. This completes the parametrization of the probabil
p @Eq. ~6!#.
5-2
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MECHANISMS OF THE REARRANGEMENT PROCESSES . . . PHYSICAL REVIEW A 61 032505
In the course of collision, the strong interaction region
passed twice for approaching and receding atomic nuc
The nonadiabatic transition probability for the double p
sage is@16,19,22#

P54p~12p!sin2 F, ~10!

F5DF2x, DF5Fb2Fa , ~11!

F j~E!5E
Rt j

RcA2mdt@E2U j~R!#dR, ~12!

mdt5mdmt /(md1mt). Here Fa and Fb are the phases
gained in adiabatic propagation along the potential cur
Ua(R) andUb(R), respectively, betweenRc and the turning
pointsRta andRtb . The latter are solutions of the equatio
U j (Rt j )5E. We consider head-on collisions~zero impact
parameter! that correspond to the total orbital momentum
the systemL50.

An additional so-called dynamic phasex is gained in the
domain of strong nonadiabatic couplingR'Rc . According
to the book by Nikitin and Umanskii@19#, this phase is ex-
pressed as

x5@&2 ln~&11!#
DE

av
. ~13!

Below we employ the adiabatic potentialsUa andUb that
are provided by the calculations in the hyperspherical
proach@14#. In the hyperspherical method the adiabatic p
tentials are constructed for fixed values of the hyperradiur,

r5A~mdr d
21mtr t

21mmr m
2 !, ~14!

where the vectorsrd , r t , andrm define positions of the par
ticles in the center-of-mass frame. It is easy to see that
glecting a term of the ordermm /md , one can approximately
relater to the distanceR between the nucleid and t:

r'Amdt

mm
R53.26R. ~15!

In terms of the hyperradius the phases are presented as

F j~E!5E
r t j

rcA2mm@E2U j~r!#dr. ~16!

The adiabatic hyperspherical potential curves correla
to the separated atom states withni51 andnf51 are shown
in Fig. 1. The exchange interaction~9! between two 1s states
is H1s1s52R exp(2R21). The energy defectDE is given by
formula ~2! with n51. Using Eq.~5! we estimateRc57.11
~i.e., rc523.18!. Figure 2 shows the phasesFa(E) and
Fb(E) and their differenceDF(E). One can see that al
though bothFa(E) and Fb(E) exhibit substantial energy
dependences, their difference is almost constant. The tra
tion probabilityP1s1s calculated according to formula~10! is
shown in Fig. 3~a! together with the results of high-precisio
calculations @14#. The quantum counterpart ofP1s1s is
uS1s1su2, whereSi f is element of scattering matrix. There is
03250
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reasonably good agreement between model and nume
results, particularly concerning the energy dependence of
probability, though its absolute value is somewhat under
timated by the model. In Fig. 3~b! we show how the single
passage probability~6! depends on the energyE. With in-
creasingE it rapidly approaches the asymptotep5 1

2 that
corresponds to the diabatic limit. The product 2p(12p) ap-
proaches the same limit12 even faster. The latter product i
just the reaction probability that would be anticipated if t
interference effects were to be discarded, i.e., sin2 F replaced
by its average value12 . However, in fact the reaction prob
ability is strongly suppressed by destructive interferen
since sin2 F is very small~F proves to be close to 2p!. The
dynamic phasex is small in the diabatic regime; taking ac
count of it somewhat enhances the reaction probability,
seen from Fig. 3~a!.

B. Rearrangement between excited states:niÄ2×nfÄ2

There are twoS potential curves converging to each
separated atom statesdm(ni52)1t andd1tm(nf52). For
large internuclear separationsR these states correspond to th
muonic atom Stark states. The related potential curves
large separations are governed by the charge-dipole inte
tion. Therefore, they are shifted by63/R2 relative to the
separated atom (R→`) limit. We denote these states asa6

andb6 , where the labela is ascribed as before to the initia
dm(ni52) state and the labelb to the finaltm(nf52) states.
The index1 ~2! labels the states shifted upwards~down-
wards! on the energy scale by the charge-dipole interact
with incident ion. The potential curves in the hyperspheri
basis are shown in Fig. 4.

Thus we havefour interacting states. In order to identif
the most efficient rearrangement transitions we compare c
pling Hab(R) between some particular statesa and b with
the related differenceDEab

(L)(R) of diagonal elements of the
Hamiltonian matrix in the diabatic basis. These diagonal

FIG. 1. Two lowest potential curves fordtm system as a func-
tion of the hyperradiusr for total orbital momentumL50. Zero
energy corresponds to the threshold of the three-particle brea
The point of localization of strong nonadiabatic transitionsrc is
shown together with the turning pointsr ta andr tb for the motion
along upper~a! and lower~b! adiabatic potential curves for som
energyE.
5-3
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V. N. OSTROVSKY PHYSICAL REVIEW A 61 032505
ements include the long-range part of the interaction tha
not related to the particle rearrangement~in the case of a
1s-1s reaction, the long-range part of the interaction is ne
ligible, being governed by polarization forces!. In particular,
for the interaction betweena1 andb2 states one has

DEa1b2

~L ! ~R!5DE21
6

R2 . ~17a!

For the interaction of paira2 andb1 , one has

DEa2b1

~L ! ~R!5DE22
6

R2 , ~17b!

FIG. 2. Interference phases for 1s→1s ~a!, and for the Stark
states in then52 manifold:a2→b2 ~b! anda1→b1 ~c! ~see text
for details!. Dash-dotted curve—the phaseFa gained in adiabatic
propagation along the entrance potential curveUa(r); dashed
curve—the same for the exit channelUb(r); solid curve—the
phase differenceDF5Fb2Fa @see Eqs.~10!–~12!#. Ecol is the
collision energy in the entrance channel.
03250
is

-

where DE2 is given by Eq.~2! with n52. For the pairs
(a1 ,b1) and (a2 ,b2) the long-range level splitting is no
operative:DEa1b1

(L) (R)5DEa2b2

(L) (R)5DE2 .

Equation~5! is to be modified@16,21# in order to account

FIG. 3. ~a! Model probability of thedm(1s)1t→d1tm(1s)
reaction~solid curve! and its quantum counterpartuS1s1su2 obtained
in the high-precision calculations~dot-dashed curve!. Ecol is the
collision energy in the entrance channel. The dotted curve sh
the model probability evaluated neglecting the dynamic phasx
@Eq. ~13!#. The dashed curve, almost coinciding with the solid on
presents sin2 F. ~b! Model single passage probabilityp @Eq. ~6!#
~dotted curve!, product 2p(12p) ~dash-dotted curve! and model
reaction probability@solid curve; same as in~a!#.

FIG. 4. Same as in Fig. 1, but for four higher-lying potent
curves which converge todm(ni52) and dm(nf52) separated
atom limits.
5-4
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MECHANISMS OF THE REARRANGEMENT PROCESSES . . . PHYSICAL REVIEW A 61 032505
for the long-range interaction:

uDEab
~L !~Rc!u52H12~Rc!. ~18!

Now we have to evaluate the exchange couplingHab(R)
for various pairs of states. The Stark states forn52 are

u6&5
1

&
~ u2s&6u2ps&). ~19!

Here u2ps& is the 2p state with a zero orbital momentum
projection on the internuclear (d2t) axis. Taking the well-
known expressions for 2s and 2p states, and using formula
~9! and ~19!, we obtain asymptotes of exchange interact
between the Stark states:

Ha2b2
~R!5

1

2
R3 expS 2

1

2
R22D , ~20a!

Ha2b1
~R!5Ha1b2

~R!5R2 expS 2
1

2
R22D , ~20b!

Ha1b1
~R!52R expS 2

1

2
R22D . ~20c!

The transition probability~6! is to be evaluated by subst
tuting DE2

(L)(Rc) asDE. This magnitude proves to be muc
larger thanDE2 for (a1 ,b2) and (a2 ,b1) pairs. Therefore,
the rearrangement transitions within these pairs are stro
suppressed. In simple terms this means that the long-ra
interaction effectively induces an additional splitting of t
related potential curves which is large as compared with
process energy defectDE2 . The enhancement of the splittin
suppresses the reaction probability. The reaction can ef
tively proceed only between pairs of potential curves wh
the long-range splitting is absent, i.e., within (a1 ,b1) and
(a2 ,b2) pairs.

The transition point for the (a2 ,b2) pair Rc2528.4
(rc2592.56) corresponds to substantially larger internucl
separations than for the (a1 ,b1) pair (Rc1516.7, rc2

554.48). This stems from the fact that the coupling@Eq.
~20a!# for the former pair is1

4 R2 times larger than the cou
pling @Eq. ~20c!# in the latter case. The origin of this featu
is clear. The~2! Stark states are shifted downwards in e
ergy because the muonic cloud is stretched towards an
proaching collision partner which is a bare atomic nucleu~t
in the initial state ord in the final state!. The same effect
enhances the exchange couplingH12, since it is proportional
to the overlap of the initial- and final-state electron wa
functions at the midpoint between the nuclei, as discus
below Eq.~9!. The similar situation was revealed previous
@32,33# in a discussion of charge exchange betwe
Na(3p)1H1→Na11H(n52).

Thus the efficient reactive transitions are operative o
within (a2 ,b2) and (a1 ,b1) pairs of Stark states. The re
lated probabilitiesP2 and P1 evaluated using Eq.~10! are
shown in Fig. 5~b!. The single-passage probabilityp @Eq.
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~6!# was calculated with collision velocityv5vc6 evaluated
at the transition point

vc65A2E2@Ua~rc6!1Ub~rc6!#

Mi
. ~21!

For transitions withinni5nf51 the difference betweenv
@Eq. ~7!# andvc is negligible. In the present case this diffe
ence is substantial, leading to important features. Sincea2

and b2 potential curves correspond to attraction, the hea
particles are accelerated as they approach each other,
hence the transition probabilityP2 remains finite as collision
energy tends to zero, in contradistinction withni⇒nf51
transitions where the probability tends to zero. Moreov

FIG. 5. ~a! Qualitative features in the transfer probabilities o
tained in high-precision quantum calculations@14# for the reaction
dm(ni52)1t→d1tm(nf52). Ecol is the collision energy in the
entrance channel. The approximate equalitiesP2s2s'P2p2p @Eq.
~23a!# and P2s2p'P2p2s @Eq. ~23b!# make the related curves ver
close on the plot scale~note that the probabilities with initial 2s and
2p states are shown by dotted and solid curves, respectively!. In
agreement with Eq.~24!, a tight bunch is formed by four curve
representing pairwise sums of transfer probabilities, namely,P2s2s

1P2s2p ~A, short-dashed curve!, P2s2s1P2p2s ~B, dot-dot-dashed
curve!, P2p2p1P2s2p ~C, dot-dashed curve!, andP2p2p1P2p2s ~D,
long-dashed curve!. ~b! Model probability of reactiondm(ni52)
1t→d1tm(nf52) compared with high-precision results. Fo
curvesA–D @the same as in~a!# in the model approach correspon
to a single solid curve, which is the sum12 (P21P1). The effective
reaction channel contributions12 P2 and 1

2 P1 are also shown.
5-5
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V. N. OSTROVSKY PHYSICAL REVIEW A 61 032505
repulsivea1 andb1 potential curves lead to heavy partic
deceleration, and the (a1 ,b1) transitions become substanti
only provided the collision energy is sufficiently high@E
.Ua(rc1);Ub(rc1)#. This is the reason for the appea
ance of an effective threshold for theP2 probability atEcol
'105 eV. The interference phasesF2 andF1 exhibit only
a weak energy dependence similar to the 1s-1s case dis-
cussed above. Distinct from the latter case, we now h
constructive interference, sin2 F6 being close to unity for
both ~1! and ~2! Stark channels in a broad interval of co
lision energies. The neglect by the dynamic phasex almost
does not change the model probabilities in the scale of
5~b! ~not shown!. Within the same accuracy the model pro
abilities coincide with the factors sin2 F6 ~also not shown!.
These features are due to a diabatic regime that is oper
in the energy domain considered~cf. Sec. II A!.

In Fig. 5~a! squared moduliPi f [uSi f u2 of S-matrix ele-
ments for the reaction obtained in high-precision calculati
@14# are presented in terms of initial and final states labe
by the spherical quantum numbers~namely, 2s and 2p
states!. The strong suppression of transitions with
(a1 ,b2) and (a2 ,b1) pairs means that in theStark basis
one has

Sa1b2
'Sa2b1

'0. ~22!

From this we obtain

P2s2s'P2p2p'uSa2b2
1Sa1b1

u2 ~23a!

and

P2s2p'P2p2s'uSa2b2
2Sa1b1

u2. ~23b!

As can be seen from Fig. 5~a!, these approximate equalitie
indeed hold rather well, which gives an independent con
mation of the decoupling~22!. Next, from Eqs.~23!, we
obtain:

P2s2s1P2s2p'P2s2s1P2p2s'P2p2p1P2s2p'P2p2p1P2p2s

'
1

2
~P21P1!, ~24!

whereP65uSa6b6
u2. The accurate results for the first fou

expressions here are shown by curvesA–D in Fig. 5~a!.
According to Eq.~24!, these curves must approximately c
incide with each other, which is indeed the case. The exp
sion in the last line in Eq.~24! evaluated according to th
Demkov model is plotted in Fig. 5~b! by a solid line. This
curve reproduces the major features of accurate results:
close to 0.5 at small collision energy and in the interval 1
eV,Ecol,200 eV rises to values somewhat lower th
unity. The largest deviations are observed near the effec
threshold of the~1! channel, apparently because the pres
model neglects tunneling transitions below the threshold.
stated in Sec. I, the development of more sophisticated m
els is beyond the scope of the present study.

Figure 5~a! demonstrates thatP2s2s andP2s2p oscillate in
antiphase as functions of the collision energyE, whereas the
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sum over final statesP2s2s1P2s2p exhibits a smooth energy
dependence. The same situation is observed for the p
abilities P2p2s andP2p2p and their sum. The explanation fo
this fact is obvious@11#. The 2s and 2p states are linear
combinations of~1! and ~2! Stark states. Therefore, th
relative phases of the final~1! and ~2! Stark states are im
portant to calculate transitions into the spherical states.
magnitude of these phases is governed mostly by the lo
range charge-dipole interaction. It changes rapidly with c
lision energy, and induces interference oscillations in
probability distribution over the final 2s and 2p states seen
in Fig. 5~a!. In this study we do not aim to reproduce the
oscillations, being interested mostly in a bulk evaluation
the reaction efficiency.

At smallerr the a2 potential curve is strongly promoted
and crosses thea1 and b1 potential curves atr'40241
~see Fig. 4! ~for b2 curve similar crossings occur at eve
smallerr and higher energies not shown in Fig. 4!. In fact
there are curve pseudocrossings, but with splittings so sm
that they could not be discerned on the scale of Fig. 4. Th
fore these pseudocrossings are passed diabatically and d
play any role in the transition dynamics. This conclusion is
variance with that done by Hino and Macek@11#, who inter-
preted results of their numerical calculation in terms of su
a pseudocrossing.

III. DISCUSSION. INTERFERENCE PHASES

Process~1! is a particular case of light particle exchang
between two heavy particles with a small energy defect.
prototypes are well studied in atomic physics. However,
action~1! has two generic features:~a! the energy defect ha
a purely isotopic nature; and~b! the excited states of sepa
rated atoms are degenerate in orbital momentum both in
trance and exit channels.

The analysis of Sec. II shows that the Demkov mod
works rather well for the studied cases. The model appli
bility was tested for the partial rearrangement cross sect
in the case when the system has zero total orbital momen
L. Only for this case were high-precision calculations carr
out ~see Ref.@14#, where a comparison with earlier calcula
tions was considered in detail!. This, of course, is not acci
dental since in the general caseLÞ0 some additional sub
stantial problems appear in high-precision quant
calculations. The model approach, albeit less accurate, d
not meet such difficulties. It is easily extendable to arbitra
L, and hence to an evaluation of the total rearrangem
cross sections. To illustrate this, in Fig. 6 we present the t
cross sections of the 1s⇒1s rearrangement as a function o
the collision energyEcoll . A well-known formula of semi-
classical nature was employed,

s52pE
0

R0
P~b!b db, ~25!

where the rearrangement probabilityP(b) @Eq. ~10!# is now
a function of impact parameterb (L5kb, k is the wave
number!. This dependence enters, first, via the formulas~6!
and ~13!, where v is to be understood as the radial co
5-6
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lision velocity at the transition point R5R0 @v
5A2Ecoll(12b2/R0

2)/Mi #. Second, in a calculation of th
phasesF j @Eq. ~12!#, one has to account for the effectiv
centrifugal repulsion by replacingU j (R) with U j (R)
1Ecollb

2/R2.
No less important is a conceptual side, namely, a cla

cation of the mechanisms of reaction~1! between states o
theni5nf51 andni5nf52 manifolds. The reaction occur
via nonadiabatic transitions in localized regions via t
Demkov mechanism. The multistate case of theni52⇒nf
52 rearrangement is particularly interesting. The oscillat
energy dependence of the state-to-state transition proba
ties together with other particular features@as expressed by
our Eqs. ~23!# were noticed in the numerical calculation
@14#, but the interpretation was left for the model approa
The latter effectively reduces the four-state problem to t
pairwise Demkov-type transitions. One of them has a hig
effective threshold than the other, that was physically int
preted in Sec. II. The present study confirms the validity
the Demkov model for treating quasiresonance rearran
ment processes in the situation where the energy defect h
purely isotopic nature.

Interference effects are neglected in many studies wh
amounts to replacing the sin2 F factor in Eq. ~10! by its
average value12 . The averaging is usually meant to go ov
the impact parameter~see, for instance, the recent applic
tions to the muon transfer problem@8,13#!. We do not resort
to this approximation in our calculations of the total cro
section~25!. Of course, there are no reasons for this wh
the particular partial waveL50 is considered. Our analysi
demonstrates the crucial importance of interference eff
that strongly suppress the reaction probability in the cas
1s⇒1s transitions, and enhance it to almost unity in the ca
of ni52⇒nf52 transitions. In fact it is the sin2 F factor that
essentially defines the energy dependence of the rea
probability ~10!. Note that a description of interference e
fects requires a knowledge of adiabatic potential curves
broad range ofr ~or R!; otherwise a large-R asymptotic ap-
proach is sufficient to estimate the Demkov model pa
meters.

There is also another surprising property of the interf
ence phases to be discussed here. In Fig. 2 we show

FIG. 6. Total cross section of 1s⇒1s rearrangement process~1!
as a function of collision energyEcoll .
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energy dependence of the adiabatic phasesFa and Fb de-
fined by Eq.~16!, and their differenceDF5Fb2Fa for all
three studied cases. As can be seen from the figure, w
phasesFa,b vary considerably, their differenceDF demon-
strates a much weaker dependence on the collision ene
being approximately equal to 2p for the caseni5nf51, 7

2 p
for the ~2! states of theni5nf52 manifold, and rapidly
rising to 1

2 p and then stabilizing for the~1! states. We con-
sider DF instead ofF because this phase has a more cl
physical meaning and because the dynamical phasex is
small except in the near-threshold regions, so thatDF'F.

The very weak dependence of the interference phaseDF
on the collision energy is a quite unexpected and intrigu
fact. It can be cast as an approximate isochronous prop
i.e., the equality of time needed for the system to travel fr
the pointRc to the turning pointsRta or Rtb along each of
two adiabatic states concerned:

T1~E!'T2~E!, Tj~E!5Amdt

2 E
Ri j

Rc dR

AE2U j~R!

5E
r t j

rc dr

A2@E2U j~r!#
. ~26!

The interference phaseDF can be represented by an in
tegral over a closed contour in the complex-R plane. This
possibility is based on the observation that the poten
curvesU j (R) are different branches of a unique multivalue
analytical functionU(R) of complexR ~this idea was origi-
nally put forward by Demkov@34#, and extensively devel-
oped and applied by Solov’ev@35#!. This concept leads to a
viewpoint of collision dynamics as traveling on the multiva
ued potential-energy surface being the essence of the
called hidden-crossing theory. The transition from one p
tential curve to another is achieved by following some p
in the Riemann surface that encircles thebranch point Rb .
Two branch pointsRb and Rb* are essential in the presen
case with ReRb close toRc(Im Rb!Rc). The phase difference
is cast as an integral

2 DF~E!5 R
C
A2mdt@E2U j~R!#dR ~27a!

or

2 DF~E!5 R
C
A2mm@E2U j~r!#dr ~27b!

over the contourC schematically shown in Fig. 7. The con
tour goes from the initial to final sheet encirclingRb , and

FIG. 7. Branch pointsRb andRb* , turning pointsRta andRtb ,
and integration contour in the complexR plane for evaluation of the
interference phase@Eq. ~27a!#.
5-7
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then returns, encirclingRb* . It hooks on the turning points
Rta andRtb that also are branch points of the integrand. T
importance of the contour integral representation stems f
the fact that it casts the phase difference as a basic e
independent of any model. It is invariant under deformatio
of the contour~without crossing integrand singularities!, and
characterizes properties of the potential curve as a multi
ued analytical function.

Strictly speaking, the branch pointRb does not belong to
the series discussed in the hidden crossing theory where
heavy particles are considered as space-fixed center
force, and thus the isotopic effects are not included. Inde
if the isotopic effects are ‘‘switched off,’’ then one ha
DEn→0 andRb→1`. However, one can presume that t
small difference of the heavy particle masses could be m
icked by a small difference of the charges, that is, in
spirit of Sec. II. Then the branch points emerging in t
present study belong to theQ series studied in the hidde
crossings framework@23#. In practical applications of the
hidden-crossing theory, till now phase effects were mos
ignored, with some rare exceptions@36#. Perhaps a subse
quent development of this theory would be able to expl
the properties of the interference phases discussed abov
conclusion, we also note that the model approach discu
u

.
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in this paper can be extended to higher manifolds that m
result in a simple method for estimating cumulative react
probability @12#.

Note added in proof.Recently, the article by S. J. Ward,
H. Macek, and S. Yu. Ovchinnikov appeared@Phys. Rev. A
59, 4418~1999!#. These authors applied the hidden-cross
theory to study the rearrangement process in another th
body Coulomb system,e1e2p. In particular, they found tha
for S scattering the interference phase in the ground
ground rearrangement channel is close top, in agreement
with our result in Sec. II A. Additionally, forD scattering the
phase proved to be about1

2p. The rearrangement betwee
excited states was not considered in the cited publication
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