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For the rearrangement procesg(n;) +t—d+tu(n¢), results of high-precision numerical calculations for
the zero total orbital momentum of the system are compared with those obtained from the analytical Demkov
model. The latter is widely used in atomic collision theory to describe rearrangement processes with small
energy defects. A specific feature of the studied system is that the energy defect has a purely isotopic nature.
Muon transfer within the; = n;=1 andn;=n;=2 manifolds is analyzed. In the latter case the natural reaction
channels correspond to Stark states in the limit of separated atoms. Efficient transitions occur between Stark
states with the muon cloud stretched towaogposite t¢ the collision partner both in the initial and final
states. An overall good agreement with accurate results sustains the relevance of the Demkov model for the
studied process, and clarifies the reaction mechanisms. The interference effects strongly suppress the reaction
probability within then;=n;=1 manifold, and enhance it far,=n;=2. Some intriguing although yet unex-
plained features of the interference phases are revealed and discussed: they are almost energy independent and
close to integer multiples of 7.

PACS numbe(s): 36.10.Dr, 34.70+e, 34.50.Pi

. INTRODUCTION My, — My,
AB=EBaum = Brum =52 2
The dtu system is a particular case of a general three-
body Coulomb system comprising one light particle and twowhereE,,(,) andE; () are the energies of the bound states
heavy particles. In the present paper we consider rearrangef the pairsdu andtu, respectively, andng, andm,, are

ment processes the corresponding reduced masses:
mgm,, mym,,
d/.L(nl)+t—>d+t,lL(nf)+AE (1) mdﬂ_md+m’u’ mtl’“_mt+m’u" (3)

4

. Taking into account thatn,~mgy>m,,, we obtain
for zero total angular momentum. In recent years this system
has attracted a considerable attenfiba14] due to its role in ,Mm—my 1 m,
the muon-catalyzed fusion projeft5]. In some of these AEn:mMWW +0 my) |
papers numerically intensive calculations were carried out to
produce high-precision results. Although the value of suchThusAE vanishes in the limitm, /my—0 (orm, /m;—0) as
information is difficult to overestimate, very often it does notwell as in the limitmy/m,— 1 that reveals isotopic nature of
contribute directly to improving our qualitative understand-the energy defect.
ing of the collision dynamics, and one still has to look for  Procesg1) represents transfer of a light partidleuon
interpretations of the calculated results in terms of some repetween two heavy one@ andt). The semiclassical ap-
action mechanisms. This can be achieved by simplifying theproach to this type of process is well developed in the theory
problem at hand, and reducing it to one of the analyticalof slow atomic collision. Here the light particle is an electron
models developed for a description of some generic physicaind the process is usually referred to as charge exchange or
situations. If such a simplification is possible, then a com-charge transfer. A two-state model for quasiresonance charge
parison of accurate numerical results with those obtaineéxchange was developed by DemKd®]. Being closely re-
from the model analysis is useful and interesting because [ated to the model proposed earlier in different context by
facilitates a qualitative understanding of the former and, aRosen and Zenefl7], the Demkov model is much more
the same time, examines the range of applicability of theflexible. It is widely applied to atomic collisiorf48—23; we
latter. also mention application to the theory of muon distribution
We are interested in slow collisions when the most effi-among the fission fragments in mesic atdi24,25,21. The
cient transitions occur in a quasiresonance regime charactegxplicit time dependence of a two-state Hamiltonian in the
ized by small values of the energy defefE. This is the = Demkov model corresponds to a classi@al semiclassical
case when the principal quantum numbers in the initig) (  description of the motion of atomic nuclei. Remarkable
and final fy) bound states coincid®e;,=n;=n, and progress in the generalization to account for a quantum de-
scription of this motion was subsequently achieved. Men-
shikov[26] managed to derive an exact quantum expression
*Electronic address: Valentin.Ostrovsky@pobox.spbu.ru specifically for the nonadiabatic transition probability with-
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YSereafter, unless stated otherwise, we use a muonic system
of units (A=e=m,=1), although we sometimes retain
uonic massn,, in the formulas. The parameter charac-
Wizes the exponential behavior of the exchange coupling
H.p(R) at large separations. The theory asymptotic in large
internuclear(i.e., d—t) separatiorR (for a review see Ref.
31]), gives for the couplindd,,(R) in the case ok states
f a quasimolecule,

o

state quantum problem. However, we consider collision g 4 single passage of the strong-coupling region, the
it is not our aim here to elaborate upon the model approach p=
In ion-atom collisions the energy defect results from theergy E¢:
two bare nuclei. The energy defect in this case originates
application of the Demkov model remains rather straightfor-
Demkov model is not evident. We consider in detail the
model results are successfully compared with the recent
! R 9
SR ©
in combination with theR-matrix propagation technique of

out actually solving the Schdinger equation. Recently Osh- AE=2H_(R,). (5)
erov and Voronif27] gave a complete solution to the two-
energies much larger than the resonance deféctin this  ropapility of a transition between adiabatiquasimolecu-
case the quantum effects are negligible, except in the neafyy) states is
threshold domains, and it is justified to use a semiclassical
version of the Demkov model. It should be emphasized that +AE| -1
1+exp< ” . (6)

to the highest level of sophistication; on the contrary, we av
prefer to keep it as simple as possible provided that it is
capable of reproducing major features of the energy depern the simplest approximatiofcf. Eq. (21) below], v is the
dence of the reaction probability. collision velocity related to the center-of-mass collision en-
difference of the effective potentials used to represent each
of two atomic cores. Recently, based on the so-called hidden [2E .,
crossing theory, Jang23] demonstrated the relevance of the v= .
Demkov model for a description of electron transfer between !
from the difference of the nuclear charges or/and the electrol! our case the relevant madg; is
principal quantum numbers in the initial and final states. In
our system the energy defect has an isotopic nature, as Mg, My
stressed above. However, notwithstanding this difference, Mi:m'
ward in the case of ground-to-ground state charge exchan
(nj=n¢=1, Sec. Il A. For excited states, the situation be-
comes more complicated due to the Coulomb degeneracy
the separated atom states, and the relevance of the two-st
=n;=2 manifold, and show that it can be split into two
weakly coupled pairs of strongly interacting adiabatic chan
nels. After that the system is approximately described by tw
independent two-state Demkov modelSec. IIB. The
high-precision benchmark calculations by Tolstikhin and Hap(R) =4mR2%/ " 2ol
Namba [14] based on the hyperspherical method imple- b b 1

. . L. . a b
mented in terms of hyperspherical elliptic coordinaf28] ><exp< T o 2—) a(ER
and the “slow/smooth variable discretization methoi®9] @a £
Ref.[30]. We find that interference effects play an importantWhere a, and ay, are related to the initial- and final-state
role for reaction(1), strongly suppressing the rearrangementPinding energie€, andE, for du andtu systems, respec-
probability forn;=n;=1 and enhancing it fon,=n;=2. In  tively: a;=\2my,E, andap=v2m,Ey. The labela(b) is
addition, the interference phases exhibit some unexpecte@itached hereafter to the initiéinal) state of processl),

behavior discussed in Sec. Ill. and to the adiabatic quasimolecular potential curve which is
correlated to it.
Il. MODELS The wave functionsy, and ¢, describe initial and final
(separated atomstates, respectively. They decrease expo-
A. Ground-to-ground state rearrangement nentially at large distances from the nucleug;(r)

In the Demkov modeldiabatic states correspond to the ~&XP(-r). Therefore Hp(R)~exd—1/2(aa+ ap)R],
atomic orbitals of separated atoms split by the enexgyy ~ @nd one have insett=1/2(era + ap) into Eq. (6). The wave
The coupling of these statés,,(R) is induced by the elec- functionsy, and ¢, actually depend on the electron vectors;
tron exchange between the centers, and decreases exponby-writing #,(3R) and ¢, (3R) in Eq. (9), we imply that
tially with increasing internuclear distancB. Adiabatic  these functions are to be evaluated at the midpoint between
(quasimolecular states coincide with diabatic ones f&  the atomic nuclei. Formuléd) is derived for the space-fixed
—o0, For smallR [whereH ,,(R)> AE], the quasimolecular (i.e., infinitely heavy atomic nuclei separated by a distance
adiabatic states represent linear combinations of atomi® Therefore it is consistent to neglect in it the isotopic ef-
states with almost equal weights. The states rearrange frofects that givex,~ a,~1/n. This approximation is sufficient
an atomic to a molecular pattern, and related strong nonadider an evaluation of the parameter in formula (6): «
batic transitions occur in the vicinity of the poiRt, defined  =1/n. This completes the parametrization of the probability
by the condition p [Eq. (6)].
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In the course of collision, the strong interaction region is -0.2
passed twice for approaching and receding atomic nuclei.
The nonadiabatic transition probability for the double pas- 0.3
sage i§16,19,23 Y E ]
g‘ Py g R U R g P O Qg
P=4p(1-p)sin* @, (10) g
5 —04f 1
(D:A(I)_X, A(I):q)b_q)a, (11) E; du(ls)+t
-05F iotu(ls)+dd
@ (E)—chx/Zm [E_U,(R)dR (12) b |
j Ry dt i ’ Pt Pra Pe
—06,— 10 20 30
Mg;=mgm,/(my+m;). Here &, and ®, are the phases p (wauw)

gained in adiabatic propagation along the potential curves
Ua(R) andUp(R), respectively, betweeR. and the turning FIG. 1. Two lowest potential curves fafty system as a func-
pointsR, andRy,. The latter are solutions of the equations tion of the hyperradiug for total orbital momentuni=0. Zero
Uj(R;j)=E. We consider head-on collisiongero impact energy corresponds to the threshold of the three-particle breakup.
parameterthat correspond to the total orbital momentum of The point of localization of strong nonadiabatic transitignsis
the systenlL=0. shown together with the turning pointg, and py, for the motion
An additional so-called dynamic phagds gained in the along upper(@ and lower(b) adiabatic potential curves for some
domain of strong nonadiabatic couplif=R.. According  energyE.
to the book by Nikitin and Umansk[il9], this phase is ex-
pressed as reasonably good agreement between model and numerical
results, particularly concerning the energy dependence of the
AE . ; .
Y=[vV2—In(v2+1)]—. (13 probablllty, though its abso_lute value is somewhat u'nderes-
av timated by the model. In Fig.(B) we show how the single
passage probability6) depends on the enerdy. With in-
creasingE it rapidly approaches the asymptope=3 that
corresponds to the diabatic limit. The produqi(2—p) ap-
proaches the same limit even faster. The latter product is
just the reaction probability that would be anticipated if the
interference effects were to be discarded, i.e?&ineplaced
by its average valugé. However, in fact the reaction prob-

where the vectorsy, r, andr,, define positions of the par- ability is strongly suppressed by destructive interference

ticles in the center-of-mass frame. It is easy to see that nesince sif® is very small(® proves to be close tor. The
glecting a term of the orden,, /my, one can approximately dynamic phase is small in the diabatic regime; taking ac-
relatep to the distanceR between the nucled andt: count of it somewhat enhances the reaction probability, as

seen from Fig. @).
Mgt
p~\/—R=3.2R. (15
m,

In terms of the hyperradius the phases are presented as There are twaX potential curves converging to each of
separated atom statdg.(n;=2)+t andd+tu(n;=2). For
P e large internuclear separatioRghese states correspond to the
<I>]-(E)—Ltj 2m,[E=Uj(p)]dp. (16 muonic atom Stark states. The related potential curves at
large separations are governed by the charge-dipole interac-
The adiabatic hyperspherical potential curves correlatetion. Therefore, they are shifted by 3/R? relative to the
to the separated atom states witl=1 andn;=1 are shown separated atomR— ) limit. We denote these states as
in Fig. 1. The exchange interactig® between two & states andb.., where the labeh is ascribed as before to the initial
is His1s= 2R exp(—R—1). The energy defed&E is given by  du(n;=2) state and the labélto the finaltu(n;=2) states.
formula (2) with n=1. Using Eq.(5) we estimateR.=7.11  The index+ (—) labels the states shifted upwarttown-
(i.e., p.=23.18. Figure 2 shows the phaseb,(E) and ward9 on the energy scale by the charge-dipole interaction
®,(E) and their differenceA®(E). One can see that al- with incident ion. The potential curves in the hyperspherical
though both®,(E) and ®,(E) exhibit substantial energy basis are shown in Fig. 4.
dependences, their difference is almost constant. The transi- Thus we havdour interacting states. In order to identify
tion probability P, calculated according to formuld0) is  the most efficient rearrangement transitions we compare cou-
shown in Fig. 8a) together with the results of high-precision pling H,,(R) between some particular statesand b with
calculations[14]. The quantum counterpart o, is  the related differencAEg';,)(R) of diagonal elements of the
|S1615/%, WhereS;; is element of scattering matrix. There is a Hamiltonian matrix in the diabatic basis. These diagonal el-

Below we employ the adiabatic potentidlg andU, that
are provided by the calculations in the hyperspherical ap
proach[14]. In the hyperspherical method the adiabatic po-
tentials are constructed for fixed values of the hyperragjus

p=(mgri+mrf+m,r?), (14)

B. Rearrangement between excited states1;=2=n;=2
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FIG. 2. Interference phases fos4 1s (a), and for the Stark
states in then=2 manifold:a_—b_ (b) anda, —b, (c) (see text
for detailg. Dash-dotted curve—the phade, gained in adiabatic
propagation along the entrance potential cutvg(p); dashed
curve—the same for the exit chann®l,(p); solid curve—the
phase differenc\® =, —d, [see Eqs.(10—-(12)]. E, is the
collision energy in the entrance channel.

ements include the long-range part of the interaction that isg

not related to the particle rearrangeméint the case of a
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FIG. 3. (a) Model probability of thedu(1s)+t—d+tu(1s)
reaction(solid curvé and its quantum counterpd®,;;|> obtained
in the high-precision calculation&lot-dashed curve E. is the
collision energy in the entrance channel. The dotted curve shows
the model probability evaluated neglecting the dynamic phase
[Eqg. (13)]. The dashed curve, almost coinciding with the solid one,
presents sitd. (b) Model single passage probability [Eq. (6)]
(dotted curve product (1—p) (dash-dotted curyeand model

reaction probabilitysolid curve; same as i@)].

where AE, is given by Eq.(2) with n=2. For the pairs
(a;,b,) and @_,b_) the long-range level splitting is not

operative:A Egi)m(R) = AEgLf)bi(R) =AE,.

Equation(5) is to be modified 16,21 in order to account

-0.06

-0.08
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9 _o012

1s-1s reaction, the long-range part of the interaction is neg- 2

ligible, being governed by polarization forgefn particular,
for the interaction betweea, andb_ states one has

L 6
AEa+b7(R):AE2+ @ (17@
For the interaction of paia_ andb. , one has
(L) 6
AEY, (R)=AE;— o, (17b)

> -0.14
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FIG. 4. Same as in Fig. 1, but for four higher-lying potential
curves which converge tdu(n;=2) and du(n;=2) separated

atom limits.
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for the long-range interaction:
|AELR(Ro)|=2H 1AR,). (18)

Now we have to evaluate the exchange couplhg(R)
for various pairs of states. The Stark statesrfer2 are a,

)= (129 % 200)). 19

Here|2po) is the 2p state with a zero orbital momentum
projection on the internuclead(-t) axis. Taking the well-
known expressions forand 2 states, and using formulas
(9) and (19), we obtain asymptotes of exchange interaction
between the Stark states:

100 200 300
(@)

1 1
Ha b (RI=5R%exp — 5R-2], (209
b 2 2
A
1
Hab+(R):Ha+b(R)ZRzeXF{—ER—Z), (20b)
1
Ha,b, (R)=2Rexg — 5R-2|. (200 00 | |
100 200 300
(b) Eeo (€V)

The transition probability6) is to be evaluated by substi-
tuting AES-(R,) asAE. This magnitude proves to be much  giG. 5. (a) Qualitative features in the transfer probabilities ob-
larger thaAE, for (a. ,b_) and @_ ,b.) pairs. Therefore, tained in high-precision quantum calculatidrig!] for the reaction
the rearrangement transitions within these pairs are stronglyu(n;=2)+t—d+tu(n;=2). E,, is the collision energy in the
suppressed. In simple terms this means that the long-rangmtrance channel. The approximate equalifes,s~Pop2, [EQ.
interaction effectively induces an additional splitting of the (233] and P,s,,~ P50 [EQ. (23b)] make the related curves very
related potential curves which is large as compared with thelose on the plot scal@ote that the probabilities with initial2and
process energy defeat=,. The enhancement of the splitting 2p states are shown by dotted and solid curves, respeciviely
suppresses the reaction probability. The reaction can effe@greement with Eq(24), a tight bunch is formed by four curves
tively proceed only between pairs of potential curves wherdepresenting pairwise sums of transfer probabilities, nantgjy,

the long-range splitting is absent, i.e., withia,(,b,) and  *+Paszp (A short-dashed curyeP,es+ Popas (B, dot-dot-dashed
(a_,b_) pairs. curve), Popopt Posyp (C, dot-dashed curyeandPpp,+ Popos (D,

. ; ; _ long-dashed curye (b) Model probability of reactiordu(n;=2)
The transition point for thed ,b-) pair R;_=28.4 +t—d+tu(n;=2) compared with high-precision results. Four

(pe—= 9.2'56) corresponds to substanpally larger Ir]temumea{:urvesA—D [the same as if®)] in the model approach correspond
separations than for thea( ,b.) pair (R.;,=16.7, pc_ ; . L .

. to a single solid curve, which is the sw}lﬁP_ +P,). The effective
=54.48). This stems f'.“".ml th2e fact that the Coupliigl. |, crion channel contributionsP _ and 1P, are also shown.
(20a)] for the former pair is; R“ times larger than the cou-
plmg [Eq. (209] in the latter case. The origin of this fe?‘t“re (6)] was calculated with collision velocity=v ... evaluated
is clear. The(—) Stark states are shifted downwards in en- e .

) . at the transition point
ergy because the muonic cloud is stretched towards an ap-
proaching collision partner which is a bare atomic nuclgus
|

2E—[U4(pc+) +Up(pe+)]
M, .

in the initial state ord in the final state The same effect
enhances the exchange coupliig, since it is proportional
to the overlap of the initial- and final-state electron wave
functions at the midpoint between the nuclei, as discusseBor transitions withinnj=n;=1 the difference between
below Eq.(9). The similar situation was revealed previously [Eq. (7)] andv. is negligible. In the present case this differ-
[32,33 in a discussion of charge exchange betweerence is substantial, leading to important features. Sance
Na(3p)+H*—Na"+H(n=2). andb_ potential curves correspond to attraction, the heavy
Thus the efficient reactive transitions are operative onlyparticles are accelerated as they approach each other, and
within (a_,b_) and @, ,b.) pairs of Stark states. The re- hence the transition probabili§y_ remains finite as collision
lated probabilitiesP_ and P evaluated using Eq10) are  energy tends to zero, in contradistinction with=n;=1
shown in Fig. %b). The single-passage probability[Eq.  transitions where the probability tends to zero. Moreover,

(21
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repulsivea, andb, potential curves lead to heavy particle sum over final stateB,s,s+ P,s,,, €xhibits a smooth energy
deceleration, and thea(. ,b ) transitions become substantial dependence. The same situation is observed for the prob-
only provided the collision energy is sufficiently higle  abilities P55 and P55, and their sum. The explanation for
>Ua(pes)~Up(pes)]. This is the reason for the appear- this fact is obvioug11]. The 2 and 2 states are linear
ance of an effective threshold for tiie_ probability atE, combinations of(+) and (—) Stark states. Therefore, the
~105eV. The interference phasés. and® . exhibit only  relative phases of the fingk-) and(—) Stark states are im-
a weak energy dependence similar to the 1k case dis- portant to calculate transitions into the spherical states. The
cussed above. Distinct from the latter case, we now havenagnitude of these phases is governed mostly by the long-
constructive interference, €. being close to unity for range charge-dipole interaction. It changes rapidly with col-
both (+) and (—) Stark channels in a broad interval of col- lision energy, and induces interference oscillations in the
lision energies. The neglect by the dynamic phgseimost  probability distribution over the final2and 2 states seen
does not change the model probabilities in the scale of Fign Fig. 5@a). In this study we do not aim to reproduce these
5(b) (not shown. Within the same accuracy the model prob- oscillations, being interested mostly in a bulk evaluation of
abilities coincide with the factors .. (also not shown  the reaction efficiency.
These features are due to a diabatic regime that is operative At smallerp thea_ potential curve is strongly promoted,
in the energy domain considerédf. Sec. Il A). and crosses tha, andb, potential curves ap~40—41
In Fig. 5a) squared modulP;=|S;|? of Smatrix ele- (see Fig. 4 (for b_ curve similar crossings occur at even
ments for the reaction obtained in high-precision calculationsmallerp and higher energies not shown in Fig. # fact
[14] are presented in terms of initial and final states labeledhere are curve pseudocrossings, but with splittings so small
by the spherical quantum numbe(samely, Z and 2  that they could not be discerned on the scale of Fig. 4. There-
state$. The strong suppression of transitions within fore these pseudocrossings are passed diabatically and do not
(ay,b_) and @_,b,) pairs means that in th8tark basis play any role in the transition dynamics. This conclusion is at
one has variance with that done by Hino and MacgKl], who inter-
preted results of their numerical calculation in terms of such
Sa,b ~Sa p,~0. (220 a pseudocrossing.
From this we obtain lll. DISCUSSION. INTERFERENCE PHASES
Pasas™ P2p2p%|5afb7+sa+b+|2 (233 Procesq1) is a particular case of light particle exchange
between two heavy particles with a small energy defect. Its
and prototypes are well studied in atomic physics. However, re-
Pocon=Ponse~|S _s 2 (23D action(1) .has tvyo generic feature&) the energy defect has
2s2p " 2p2s ~1Pa b Paib,l - a purely isotopic nature; ang) the excited states of sepa-

A nb n from Fig.(®, th roximat lit rated atoms are degenerate in orbital momentum both in en-
s can be seen fro 9(®, these approximate equalities - oo avit channels.

indeed hold rather well, which gives an independent confir- The analysis of Sec. Il shows that the Demkov model

g]b?g?nq of the decoupling22). Next, from Egs.(23), we works rather well for the studied cases. The model applica-
' bility was tested for the partial rearrangement cross sections
in the case when the system has zero total orbital momentum
L. Only for this case were high-precision calculations carried
1 out (see Ref[14], where a comparison with earlier calcula-
= Q(PJ‘ Py, (24 tions was considered in detilThis, of course, is not acci-
dental since in the general caset0 some additional sub-
whereP. =S, ,_|?. The accurate results for the first four stantial problems appear in high-precision quantum
expressions here are shown by curvesD in Fig. 5a). calculations. Thg mod.el app.roach3 albeit less accuratg, does
According to Eq.(24), these curves must approximately co- not meet such difficulties. It is easily extendable to arbitrary
incide with each other, which is indeed the case. The expred @nd hence to an evaluation of the total rearrangement
sion in the last line in Eq(24) evaluated according to the Cr0SS sectl_ons. To illustrate this, in Fig. 6 we present t_he total
Demkov model is plotted in Fig.(B) by a solid line. This ~ Cr0SS sgqtlons of thest 1s rearrangement as a functlon_ of
curve reproduces the major features of accurate results: it i€ collision energyEcy . A well-known formula of semi-
close to 0.5 at small collision energy and in the interval 100°lassical nature was employed,
eV<E <200 eV rises to values somewhat lower than R
unity. The largest deviations are observed near the effective 0'=27Tf Op(b)b db, (25)
threshold of thg+) channel, apparently because the present 0
model neglects tunneling transitions below the threshold. As
stated in Sec. |, the development of more sophisticated modvhere the rearrangement probabilyb) [Eq. (10)] is now
els is beyond the scope of the present study. a function of impact parametds (L=kb, k is the wave
Figure Sa) demonstrates tha,.,s andP,s,, oscillate in  numbej. This dependence enters, first, via the formuls
antiphase as functions of the collision enefywhereas the and (13), wherev is to be understood as the radial col-

P2sosT Posop™ Pasos T Popas™~Popopt Posop™~ Popop T Papas
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1000 T T T T e / ’:\ Rb

800

600 FIG. 7. Branch point®, andR} , turning pointsR,, andRy,,

and integration contour in the compl&qplane for evaluation of the

400 interference phasgeqg. (273)].

O1s-1s (1 @a.u.)

energy dependence of the adiabatic phabgsand ®,, de-
fined by Eq.(16), and their differenc& ® =d,— &, for all
‘ . ‘ ‘ three studied cases. As can be seen from the figure, while
0 500 1000 1500 =000 phasesb, ,, vary considerably, their differencé® demon-

Eca (€V) strates a much weaker dependence on the collision energy,
being approximately equal tor2for the casen;=n¢=1, Z7
for the (—) states of then,=n;=2 manifold, and rapidly
rising to 3 = and then stabilizing for thé+) states. We con-
sider A® instead ofd because this phase has a more clear
physical meaning and because the dynamical phase

200

FIG. 6. Total cross section ofst 1s rearrangement procegb
as a function of collision energi. -

lision velocity at the transition pointR=R, [v

_ STV : : : .
= V2Ecai(1—b?/R5)/M;]. Second, in a calculation of the ¢, except in the near-threshold regions, so thét~®.

phases®; [Eq. (12)], one has to account for the effective  he very weak dependence of the interference phabe

centrlfugalz repulsion by replacingJ;(R) with Uj(R)  gn the collision energy is a quite unexpected and intriguing

+Ecqb”/R ; ) ) _fact. It can be cast as an approximate isochronous property,
No less important is a conceptual side, namely, a clarifi ¢ the equality of time needed for the system to travel from

cation of the mechanisms of re_acu(m) between.states of the pointR, to the turning pointR,, or Ry, along each of

the ni:nfz'l ar?dniznf.z_z ma_mfolds..The reaqtlon OCCUrS {0 adiabatic states concerned:

via nonadiabatic transitions in localized regions via the

Demkov mechanism. The multistate case of the 2=n; \/ant R. dr

=2 rearrangement is particularly interesting. The oscillatory T.(E)=Ty(E), Ti(E)= —f B

energy dependence of the state-to-state transition probabili- : 2 Rij VE=U;j(R)

ties together with other particular features expressed by

our Egs.(23)] were noticed in the numerical calculations — _

[14], but the interpretation was left for the model approach. riV2[E—Uj(p)]

The latter effectively reduces the four-state problem to two

pairwise Demkov-type transitions. One of them has a higher The interference phast® can be represented by an in-

effective threshold than the other, that was physically interiegral over a closed contour in the complplane. This

preted in Sec. Il. The present study confirms the validity ofpossibility is based on the observation that the potential

the Demkov model for treating quasiresonance rearrangesurvesU;(R) are different branches of a unique multivalued

ment processes in the situation where the energy defect haggalytical functionU(R) of complexR (this idea was origi-

purely isotopic nature. nally put forward by Demko\34], and extensively devel-
Interference effects are neglected in many studies whicleped and applied by Solov'@85]). This concept leads to a

amounts to replacing the i factor in Eq.(10) by its  Vviewpoint of collision dynamics as traveling on the multival-

average valug. The averaging is usually meant to go over ued potential-energy surface being the essence of the so-

the impact parametefsee, for instance, the recent applica- called hidden-crossing theory. The transition from one po-

tions to the muon transfer problef@,13]). We do not resort tential curve to another is achieved by following some path

to this approximation in our calculations of the total crossin the Riemann surface that encircles tiranch point R .

section(25). Of course, there are no reasons for this whenTwo branch pointsR, and R§ are essential in the present

the particular partial wave =0 is considered. Our analysis case with Ré&, close toR.(Im R,<R.). The phase difference

demonstrates the crucial importance of interference effectis cast as an integral

that strongly suppress the reaction probability in the case of

1s=1stransitions, and enhance it to almost unity in the case = ¢ 2myE-U,(R)]

of n;=2=n;=2 transitions. In fact it is the sfb factor that ZA%(E) ﬁz 2Ma E-U;(R)JdR (279

essentially defines the energy dependence of the reaction

probability (10). Note that a description of interference ef- or

fects requires a knowledge of adiabatic potential curves in a

¢ d
’ P (26)

broad range op (or R); otherwise a larg&k asymptotic ap- 2 AD(E)= fﬁ 2Zm [E—U.(p)] 27
proach is sufficient to estimate the Demkov model para- (E) c m,[E=Uj(p)]dp @79
meters.

There is also another surprising property of the interfer-over the contou schematically shown in Fig. 7. The con-
ence phases to be discussed here. In Fig. 2 we show theur goes from the initial to final sheet encirclifg,, and
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then returns, encirclingr} . It hooks on the turning points in this paper can be extended to higher manifolds that may
R.a andRy, that also are branch points of the integrand. Theresult in a simple method for estimating cumulative reaction
importance of the contour integral representation stems fromrobability [12].
the fact that it casts the phase difference as a basic entity Note added in proofRecently, the article by S. J. Ward, J.
independent of any model. It is invariant under deformationsH. Macek, and S. Yu. Ovchinnikov appeargehys. Rev. A
of the contour(without crossing integrand singularitiegnd 59, 4418(1999]. These authors applied the hidden-crossing
characterizes properties of the potential curve as a multivakheory to study the rearrangement process in another three-
ued analytical function. body Coulomb systene e p. In particular, they found that
Strictly speaking, the branch poiRt, does not belong to  for S scattering the interference phase in the ground-to-
the series discussed in the hidden CrOSSing theory where tV\g}‘ound rearrangement channel is C|oseﬂtoin agreement
heavy particles are considered as space-fixed centers @fith our result in Sec. Il A. Additionally, fob scattering the
force, and thus the isotopic effects are not included. Indeecshase proved to be abodtr. The rearrangement between

if the isotopic effects are “switched off,” then one has excited states was not considered in the cited publication.
AE,—0 andR,— +c°. However, one can presume that the

small difference of the heavy particle masses could be mim-
icked by a small difference of the charges, that is, in the
spirit of Sec. Il. Then the branch points emerging in the
present study belong to th@ series studied in the hidden | am thankful to O. I. Tolstikhin for providing results of
crossings framework23]. In practical applications of the his calculations prior to publication, and for many enlighten-
hidden-crossing theory, till now phase effects were mostlying discussions. This work was initiated during my stay at
ignored, with some rare exceptioh36]. Perhaps a subse- The Institute for Molecular Sciences in Okazaki supported
quent development of this theory would be able to explainby the Ministry of Education, Science, Culture, and Sports of
the properties of the interference phases discussed above.Japan. | am indebted to H. Nakamura for support, hospitality,
conclusion, we also note that the model approach discusseahd much useful advice.

ACKNOWLEDGMENTS

[1] K. Kobayashi, T. Ishihara, and N. Toshima, Muon Catal. Fu-[19] E. E. Nikitin and S. Ya. UmanskiiTheory of Slow Atomic

sion 2, 191 (1988. Collisions (Berlin, Springer, 1984
[2] M. Kamimura, Muon Catal. FusioB, 335(1988. [20] R. K. Janev, L. P. Presnyakov, and V. P. Shevelaysics of
[3] H. Fukuda, T. Ishihara, and S. Hara, Phys. Rev4$# 145 Highly Charged longSpringer, Berlin, 1986
(1990. [21] F. F. Karpeshin and V. N. Ostrovsky, J. Phys.1B, 4513
[4] J. S. Cohen and M. C. Struenee, Phys. Re¥3A3460(1991). (1981).
[5] C. Chiccaoli, V. I. Korobov, V. S. Melezhik, P. Pasini, L. I. [22] H. Nakamura, Chem. Phys. Left41, 77 (1987; Adv. Chem.
Ponomarev, and J. Wozniak, Muon Catal. FusipB87 (1992. Phys. LXXXII , 243 (1992; A. Ohsaki and H. Nakamura,
[6] Y. Kino and M. Kamimura, Hyperfine Interad2, 45 (1993. Chem. Phys. Lett142 37 (1987.
[7] V. V. Gusey, L. I. Ponomarev, and E. A. Solov'ev, Hyperfine [23] R. K. Janev, Phys. Rev. B5, R1573(1997); 55, 4285(1997.
Interact.82, 53 (1993. [24] Yu. N. Demkov, D. F. Zaretskii, F. F. Karpeshin, M. A. Lis-
[8] W. Czaplirski, A. Gula, A. Kravtsov, A. Mikhailov, and N. tengarten, and V. N. Ostrovsky, Pis'ma Zh. Eksp. Teor. Fiz.
Popov, Muon Catal. Fusio®6, 59 (1990/92; Phys. Rev. A 28, 287 (1978 [JETP Lett.28, 263(1978)].
50, 518(19949; 50, 525 (1994. [25] D. F. Zaretskii, F. F. Karpeshin, M. A. Listengarten, and V. N.
[9] A. Igarashi, N. Toshima, and T. Shirai, Phys. Rev5@ 4951 Ostrovsky, Yad. Fiz31, 47 (1980 [Sov. J. Nucl. Phys31, 24
(1994. (1980].
[10] A. A. Kvitsinsky, C. Y. Hu, and J. S. Cohen, Phys. Rev53, [26] L. I. Menshikov, Zh. Eksp. Teor. FiZ5, 1159(1983 [Sov.
255(1996. Phys. JETR58, 675 (1983].
[11] K. Hino and J. H. Macek, Phys. Rev. Le#7, 4310(1996. [27] V. 1. Osherov and A. I. Voronin, Phys. Rev. 49, 265(1994).
[12] O. I. Tolstikhin, V. N. Ostrovsky, and H. Nakamura, Phys. [28] O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, Phys. Rev.
Rev. Lett.80, 41 (1998. Lett. 74, 3573(1995; The Physics of Electronic and Atomic
[13] L. I. Ponomarev and E. A. Solov’ev, Pis'ma Zh. Eksp. Teor. Collisions edited by L. J. Dubel. B. A. Mitchell, J. W. Mc-
Fiz. 68, 9 (1998 [JETP Lett.68, 7 (1998]. Conkey, and C. E. Brion, AIP Conf. Proc. No. 368IP, New
[14] O. I. Tolstikhin and C. Namba, Phys. Rev.68, 5111(1999. York, 1999, p. 887.

[15] See, e.g., L. I. Ponomarev, Contemp. P8k.219(1990; J. [29] O. I. Tolstikhin, S. Watanabe, and M. Matsuzawa, J. Phys. B
S. Cohen, inReview of Fundamental Processes and Applica- 29, L389(1996.
tions of Atoms and lonedited by C. D. LinfWorld Scientific,  [30] K. L. Baluja, P. G. Burke, and L. A. Morgan, Comput. Phys.

Singapore, 1993 p. 61. Commun.27, 299 (1982.
[16] Yu. N. Demkov, Zh. Eksp. Teor. Fiz5, 195 (1963 [Sov. [31] M. I. Chibisov and R. K. Janev, Phys. Rei66, 1 (1988.
Phys. JETPLS, 138(1964)]. [32] V. N. Ostrovsky, Phys. Rev. A9, 3740(1994).
[17] N. Rosen and C. Zener, Phys. Ré@, 502 (1932. [33] Y. Wang, J. Westphal, Z. Roller-Lutz, V. N. Ostrovsky, and H.
[18] W. E. Mayerhof, Phys. Rev. Let81, 1341(1973. O. Lutz, Z. Phys. D30, 217 (1994.

032505-8



MECHANISMS OF THE REARRANGEMENT PROCESSE .. PHYSICAL REVIEW A 61 032505

[34] Yu. N. Demkov, inThe Physics of Electronic and Atomic Col- [35] E. A. Solov'ev, Usp. Fiz. Naukl57, 437 (1989 [Sov. Phys.

lisions, Leningrad 1967Invited Papers of the Xl International Usp. 32, 228(1989].
Conference on The Physics of Electronic and Atomic Colli- [36] R. K. Janev, J. Pop-Jordanov, and E. A. Solovyov, J. Phys. B
sions, edited by I. P. Flaks and E. A. Solov'&oint Institute 30, L353(1997.

for Laboratory Astrophysics, Boulder, CO, 1968. 186.

032505-9



