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We present a generalization of quantum teleportation that distributes quantum information from a sender’s
d-level particle toN, particles held by remote receivers via an initially shared multiparticle entangled state.
This entangled state functions as a multiparty quantum information distribution channel between the sender
and the receivers. The structure of the distribution channel determines how quantum information is processed.
Our generalized teleportation scheme allows multiple receivers at arbitrary locations, and can be used for
applications such as optimal quantum information broadcasting, asymmetric telecloning, and quantum error
correction.

PACS numbe(s): 03.67.Hk

[. INTRODUCTION Dur [6]. In this generalization, the same entangled state of
Ref.[5] is used for the quantum channel, but a more gener-
In the quantum teleportation scherfd, quantum infor- alized positive operator valued measuiOVM) is per-
mation of an unknown state ofchlevel particle(an “input” formed for the joint measurement.
particlg is faithfully transmitted from a sendéAlice) to a We also consider variation of this distribution method for
remote receivefBob) via an initially shared pair of maxi- alternative applications. In this paper, we present optimal
mally entangled particles. The distributed entangled particleguantum information broadcasting fad-level particles,
shared by Alice and Bob function as a quantum informationasymmetric telecloning of qubits, and quantum error correc-
channel for the faithful transmission. Quantum teleportatiortion via entanglement as examples of a generalization of
has been demonstrated in several successful experifitgdnts quantum teleportation to one-to-many quantum communica-
It represents the basic building block of future quantum comtion. The important rule of our game is that the receivers are
munication networks between distant par{igg spatially separated from each other so that we do not allow
In addition to the “one-to-one” quantum communication any global operations among receivers.
of teleportation, it is natural to consider “one-to-many”  There is an alternative trivial way to distribute quantum
guantum communication via quantum channels, i.e., quannformation from a sender to many receivers if we allow the
tum broadcasting from a sender to several spatially separatestnder to run quantum networks that involve global opera-
receivers. However, it is not possible to perform one-to-tions of many particles. In this case, the sender first performs
many quantum communication perfectly, because the noquantum networks for encoding one particle information into
cloning theoren{4] forbids perfectduplication of quantum several particles in her site. Then she transmits the encoded
information. Approximate methods for quantum cloning areparticles to each receiver using the original teleportation
known but these methods require all parfie original and  scheme with two particle maximally entangled st For
all the approximate copig¢$o be in one place. the transmissionVilog, d ebits of entanglement are required
Our strategy for one-to-many quantum communication igo distribute quantum information of élevel particle into
to distributequantum information of a particle from a sender the spatially separated receivers. The sender performs the
to many distant receivers. Such a strategy, dubbed quantumeasuremenit! times and useM d?/2 bits of classical com-
telecloning, has been suggested in REl. In the quantum munication from the sender to receivers. On the other hand,
telecloning scheme, information of an input quké d= in our direct information distribution scheme, multiparticle
two-level particle is distributed intoM particles which are entanglement is used simultaneously for both encoding infor-
optimalclones andv — 1 which are ancilla particles, all spa- mation and transmission. We need only a single joint mea-
tially separated from each other. This transmission issurement and require onty?/2 bits of classical communica-
achieved by first establishing a particular initial entangledtion (announced publically to all the receiver§he amount
state between the sender and receivers. The protocol of quaof entanglement between the sender and the receiver as the
tum telecloning is then similar to that for original quantum whole is logd ebits. Thus our direct information distribution
teleportatior] 1], consisting of a joint measurement by Alice, via entanglement is more efficient in terms of local and glo-
two-bit classical communication from Alice to Bob and a bal operations, classical communication, and the resource of
local operation by Bob. This “optimal broadcasting” of entanglement.
qguantum information relies on the structure of the distributed Distributing information to several different parties can be
entanglement which functions as a one-to-many quanturanseful for protecting against eavesdropping. Thus the infor-
communication channel. Recently, the telecloning protocomation distribution can be used for more secure quantum
has been generalized to the caseNgi<M) identical input communication. The *“tele-error-correction” scheme will
gubits being distributed td/ spatially separated parties by provide us with another interpretation of quantum error cor-
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rection and an interesting observation about entanglememin the output particle depending on the measurement result
required for the quantum channel for encoding. Our informato recover the quantum information of the input particle.

tion distribution scheme can be also functions as a “ready Now we generalize the quantum teleportation scheme for
made network”[7] when all the particles of the quantum distributing quantum information of a-level particle to
channel are at one site, say Alice’s site. The quantum charmore than one receiver via a multiparty quantum channel.
nel is then a “black box” having an input port and several The quantum channel is a multiparticle entangled state ini-
output ports to encode a single particle state into a multipartially shared between the sender and the receiyBb,

ticle state. The “manufacturer” performs the complicated Charlie, and so on The sender and receivers are spatially
guantum operations to produce the black box. Alice, theseparated from each other and no global operation between
“user,” only needs to perform the joint measurement for particles held by different receivers is allowed.

inputting information, and single particle operations depend- In our scheme, the input, port and output particles of the
ing on the measurement outcome, instead of severariginal teleportation scheme are replaced by groups of input
controlledNOT (CNOT) operations required for the global op- particles, port particles, and output particles. We represent
erations of particles. the number of the input, port and output particleNasN,,

The rest of the paper is organized as follows. In Sec. Il weandN,, respectively. To implement quantum information of
present our generalization of quantum teleportation for inforone dlevel particle in the groups of particles, we “use” a
mation distribution. Applications of the information distribu- d-dimensionalsubspacdor each group ofi-level particles.
tion scheme are then presented in the following sections. Th#/e denote the basis of tliedimensional subspace §s/;)}
optimal quantum information broadcasting¢M teleclon-  for the input particles{|s;)} for the port particles, and
ing) for d-level particles is shown in Sec. Ill the asymmetric {|¢;)} for the output particles, where=0,1, ... d—1. All
telecloning for distributing information with different fidelity these bases are represented by the statésaifi)particles.
for each receiver are investigated in Sec. IV. Tele-errorfor example, information of d-level particle implemented
correction, quantum error correction via the information dis-in the sender’s\; input particles is represented as
tribution scheme, is presented in Sec. V. A summary is given
in Sec. VI. da-1

=2, ajlvy) @

Il. A GENERALIZATION OF QUANTUM
TELEPORTATION under the constraint|a|®=1.

The quantum channel for information distribution be-
tween the sender and the receivers is a maximally entangled
state of the sender’s port particles and the receivers’ output
pparticles:

In the quantum teleportation scheme of Bene¢tl. [1],
a pair of maximally entangled particlesl-{evel particle$
initially shared by a sendefAlice) and a receiverBob)
functions as a channel for quantum information with the hel
of a classical information channel. Alice’s particle is used as
a “port” for information input, and Bob’s particle is used as &)= i 2 |7)®| bi) )
the “output” port in the scheme. We may imagine that there Jd ! I
are two processes taking place during the faithful transmis-
sion of quantum information of an unknown state of an “in- The joint state of the input particle and the channel is
put particle” from Alice to Bob. The first process is the
“information input” process. Alice performs a joint mea-

surement in the maximally entangled basis of the input par- |¢>®|§>:2 > | m)

ticle and her port particle. Alice obtains one of tt& pos- nem

sible measurement results. This operation “injects” quantum 1 47t

information from the input particle into the quantum channel. ® — 2 exd — Zwijn/d]aj|¢j+—m), 3)
We call this measurement a “Bell-type measurement” not Jd 7

only in the context of qubits {=2), but in general for .

d-level particles and the maximally entangled basis is calledvhere j+m=[(j+m)modd] and|®,,) is a joint state of
the Bell basis. Injected information appears at Bob’s outputhe input particles and the port particle in a maximally en-
particle as one of thd? orthogonal states depending on the tangled basigthe Bell-type basis

result of the Bell-type measurement. Without information
about Alice’s measurement result, the output particle of Bob
is in an equal mixture ofi2 orthogonal states, which does not |® o) = N ; exg 27ikn/d]|¢) @ | mirm) (D)
provide any information about the original statééthe out-

put state of Bob gave any information of Alice’s input before

receiving the measurement result from Alice, Alice and Bobfor O=n, m=d-1. Therefpre_the RUO for a Bell-type
could communicate faster than lighiThus we need a second measurement outcomé ) is given by

process, the “recovery unitary operatiofRUO). In this

process, Alice nqtlfles which of th#? possible mt'easurement' Upm= E exd 2wijn/d]| ¢>j><¢>j+—m|. (5)
results she obtained. Then Bob performs a unitary operation ]

d-1
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So far we have just relabeled the basis of the input and Information of an initial statéy) (of d-level system is
output particles from the single particle computational basidaithfully transmitted via the quantum channel to an encoded
lj) into the multiparticle basigy;), |;), and|¢;). It is  state|¢) which is the state of the particles distributed among
remarkable in our generalization for quantum informationN, spatially separated receivers. This “teleportation” of
distribution that the RUQUJ,,,,, can be replaced by bocal = quantum information of a-level particle is faithful because
recovery unitary operatiofLRUO) U'r?r%a', which is a direct the channel represented by E&) has logd ebit entangle-
product of local operations for each particle: ment between the sender and the receivers as the whole. The
appearance of the output information at each receiver’'s par-
ticle is the result of the information distribution. Distribution
of information depends on properties of the output state basis
wherel{},,, denotes the local operation for thia particle of | ;)
the receivers, undecertain conditionsfor the output state This generalization of quantum teleportation looks simple
basis{|¢;)} which we will describe later in this section. in this repr_ese_ntation. However, as we will sh(_)w later, it has
AlthoughU,%3+ U, .. in general for the full Hilbert space for More applications. Optimal quantum information broadcast-
the N,, particles,U mm operates in the same way as the RUOINY and asymmetric telecloning are just special cases of the

U, in Eq. (5) on thesubspacespanned by the output state scheme. Also quantum error correction can be carried out via
b§§5{|¢->} entanglement with additional conditions on the output state
] 1

and a slight extension of the concept of the Bell-type mea-
surement in the decoding process.

o @UNe

nm’

U= U@ (6)

U ) =Unml ), 7

for any j. We note that the LRUO Eq(6) is not always

determined uniquely for the correspondifggobal) RUO de-
fined by Eq.(5). The condition that the RUO is local places
additional constraints on the output state basis.

Since the RUQJ,,, can be decomposed into the products

of Uy, and Uq from the definition of Eq.(5), the LRUO

Ill. OPTIMAL BROADCASTING FOR MULTILEVEL
PARTICLES

Although information in an unknown quantum state can-
not be copied perfectlyno-cloning theorem[4], a way has

been found to obtain “optimal” copies of the original state
by an global unitary transformation involving several par-
ticles[8]. The optimality of copies is defined by ensuring the
largest fidelity from the original state. This quantum optimal
cloning of qubits I=2 particles has been studied in Refs.
[8—11]. While optimal cloning transformations involve glo-
bal operations on qubits, we have recently considered the
Then the condition for the output state basis is the existencproblem of quantum “telecloning” for qubitsd=2) in Ref.

of the following two LRUO's: [5]. Telecloning is a combination of the universal optimal
cloning and quantum teleportation performed simulta-

u'°cd may be decomposed in the similar manner:

local __ yrlocal local local local
Unm —Ulo ‘...‘Ulo UOl '---'U01 .

8

n times m times

USE ) =Usi® - - - U b)) =] b7=7), (99 neously. The aim of telecloning is to broadcast information
of an unknown state from a sender to several spatially sepa-
which changes the state frofg;) to |¢7=), and rated receivers exploiting an entangled state as a quantum
channel. The properties of the quantum channel for the qubit
U gy =1y - - .®uTg|¢j>=exq2wijn/d]|¢j>, telecloning has been investigated in Ré&f. _ .
(10) For the more general case, the problem of optimal cloning

of N identical unknown input states td output copies of
d-level particles, which is called N—M optimal quantum
cloning” is formulated in Ref[12]. In that paper, Werner

has shown that the optimal cloning mapto obtainM opti-
mal clones fromN identical (unknowr) input states is the
projection of the direct product of the input states andi
—N identity states onto the symmetric subspace\vbipar-
ticles:

which changes the phase depending on the $tﬁql)e
The protocol for distributing quantum information from a
sender to spatially separated receivers,

d-1 d-1

|¢>sender: jZO aj|¢j>_>|¢>receivers: jZO aj|¢j>v (11)

via the quantum channel defined by E8) is the following:
1. The sender performs a Bell-type measurement on the

input particles and the port particles in the bali®,.)}. ()= d[N] 016M-N)

We expectd? different measurement outcomes. (p)= d[M]SM(p JSu
2. The sender classicallfand publicly broadcasts the

measurement outcom@n which basis of®,,,) she ob-

tained by the projectionto the receivers.

(12

wheresy, is the projection operator for the symmetrized state

3. Depending on the broadcast redd, ..}, the receivers
perform the LRUOU!

of M d-level particlesp is the density operator for the input
state given by the direct product of an input sta /|,
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M-1

p=|v)(Yle---e|y)yl, (13) h(ag,as, ....am-1)= > advion (16)

n times

Then we sort those numbers in increasing order. The ifkdex

and d[N] is the number of the symmetrized state fdr EgsksdgM])} s then associated with the string
d-level particles given byd[N]=g4,.n+1Cy. Werner has 190’ " %M-1

proved the optimality of the clones obtained by the cloning k=fu(ag, - .. au_1) (17)
map Eq.(12) mathematically. The cloning map is the com-

pletely positive, trace preserving map. However, physicabiving rise to the k+1)th smallest number

implementation of the optimal cloning map is not obvious,h(ag,a;, ... ,ay_1).

since the cloning magl2) is not a unitary transformation. The LRUO's for the output state bagis;)} are given by
To find the corresponding unitary transformation for the 1

—M optimal cloning ofd-level particles, we need a pure Uell—A o .. .ot Ul ®- - oUC

state representation including ancilla particigzr a special e MO o (19
case of M=2, the unitary transformation of the optimal M~ 1 ancillas M clones

cloning map ford-level particles has been obtained by Bkiz

and Hillery[9].) where

In this section, we present optimal quantum information
broadcasting for multilevel particles {AM telecloning of a -
d-level particlg, as an application of the quantum informa- Uhn= 2, exd —2mijn/d]|jye(j+m], (19
tion distribution scheme described in the previous section. In 1=0
our scheme, we obtain the pure state represemimgptimal

d-1

and
clones of an unknown state and—1 ancillas. Conse-
guently, we find the unitary transformation which imple- d-1
ments the Werner’s optimal cloning map fibtevel particles us,= > exd 2mijn/d]|j)®(j+m, (20
j=o

[12].

For optimal quantum information broadcasting, the mputWhich has the complex conjugate phase of E).

state basis and the port state basis are taken in a single par-yq quantum channel is the maximally entangled state

ticle computational basifj)}. The output state basis is rep- . !
resented by the statds,)} (j=0,1,...d—1) consisting between the port particle and the output state particles

of N,=2M—1 d-level particles whereM —1 particles are q 972
ancillas andM particles are for presenting optimal cloning |&)=—= > liYe®| ;). (22)
states at the end of the protocol. Jd /=0

The output state basis consisting of12-1 particles is . .
represented in terms of the normalized and the symmetrizel§ c@n also be represented in terms of the symmetrized states

state| &) of Md-level particles, as
\/a d[M]-1 1 diM] -1 " "
|¢j>:—m kZO p(il&)pa®l&)c, (19 |§>:W 2 lad)eael8d)e. (22

. The two groups of particles in the information distribution
whereP denotes the port particled, denotes thevi —1 an- )
port b " channel, thePA group and theC group, are symmetric to

cilla particles, andC denotes theM particles for optimal h
clones. The structure of the symmetrized state is the kefﬁ‘cﬁgl other. This symmetry property leads to an LRUO

feature for our optimal quantum information broadcasting as’nm » Which is the product of the local operations given by
we will show later. In the computational basis, the symme-E0S: (18)—(20). The quantum channel is a maximally en-

trized statd gw can be represented by tangled state ofd[ M ])-level particles between tHeA group
and theC group.

1 As we have shown in the previous papgt, for the case
|§|'2">= —M|7)(a0,a1, coaAv-)), (15) of d=2 (i.e., for qubit3, only theM receivers’ clone qubits
VME) in the quantum broadcasting channel are “directly” en-

) tangled to the port qubit according to the Peres-Horodecki
where P denotes an operator which creates the sum of altriterion[13]. If the partial transpose of the density operator
possible states represented by permutation of the elementsnot positive, the two particles are entangled and otherwise,
{ao, ....au-1} for a,e{0,1,...d=1} anda,.;=a, Un-  they are disentangled. The “structure” based on the two
der the constraint\(&') imposing the normalization of particle entanglement of the quantum channel is essential for
|€V). The indexk for the symmetrized state is defined by the the optimal quantum information broadcastingid&vel par-
following: First we assign to each striq@,, ....ay_1} @ ticles like in the qubit case. However, because the Peres-
number Horodecki criterion is only valid for the case of limited di-
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mensional particlestwo qubits, or entanglement of a qubit [nreM—1

and a “qutrit”), the necessity of the two particle entangle- RK = Mée ) 28)
ment for the distribution of quantum information is still a : [hr oM '

conjecture. N(fg(i,k’))

Exploiting the communication channel given by E81) A detailed derivation of the Ed27) is found in the Appen-
and following the protocol for the quantum information dis- iy

tribution described in the previous section, an unknown input  The reduced density matrix of the clones is obtained by

state of the sender tracing over the ancilla variables
d-1
) pc=tral#)( 4|
=2 ali) 23 !
= ny_1-1

= IZO A<§IM71|¢><¢|§IM71>A

is remotely “encoded” into the output state

d-1 d ko K s K| M M
= i rRer P k! AAYE
|¢>: IEO a/j|¢j>' (29 Ny =0 igo kgo i T ! |§g(|,k )>C<§g(| ok )|
(29)
held by the M —1 specially separated receivers via the o .
quantum channel. This output state representdvthel an-  The projection operator to the symmetric subspack qfar-
cillas and theM optimal clones. As we will show in the ticles in Werner's cloning map given by E@12) in our

following, the reduced density matrix fovl optimal clones  notation is

coincides with a special casbl& 1) of theN— M universal d[M]
optimal cloning state fod-level particles, which was proved G = M\ / £M 30
by Werner[12]. M kZO |6 (30

The key property of the symmetrized state for our proof is . . _
that the symmetric state dfl particle can be decomposed Then the density matrix for 2-M d-level optimal clones
into single particle states and symmetric states of the othepbtained by Wernef12] is represented as

M —1 particles: .
pc=T( )W)

. ) e
k ./\/'(gl'l/') aje{O ..... d—1} ) = d[M]SM|¢><¢|®1® Sm

XPM_l(ao, Ce ,aj_l,aj+1, e ,aM_1)>

1 — _
=T ey E DI
K aje .....

d d-1 d-1 ny_;-1
* 1~ k' o K’
= @S RERS
a2 2, 2, “RIR

X €xti oyl gtir |- 31)

(25 This density matrix coincides with our reduced density ma-
wherek'=fy(ag, ... &_1,841, - . . Ay_1). The sum in trix for the clones Eq(29). Thgs the ou_tput statep) giygn
Eq. (25) is a special sum, it is taken only for different values by Eq.(24)_ represents th_e optimal cloning state consisting of
of a;e{0,... d—1} (if aj=a;,, only the smaller inde) M—1 ancillas andV optimal clones.
<j' is kept in the sum To make the relationship between
the indexk andk’ clearer, we define another functigrthat IV. ASYMMETRIC TELECLONING

gives the indexk of the symmetrized state d¥l particles
when a value of the particlg; is inserted in the j(—1)th

position of a symmetrized state bf — 1 particle having the
indexk’:

Quantum telecloning described in the previous section
distributes information from an input state evenly to distant
receivers. However, it may be desirable to distribute infor-
mation unevenly to the receivers. For example, if we trust
Alice more than Bob, we may decide to distribute more in-
formation to Alice. Asymmetric quantum telecloning distrib-
utes information from an unknown input particle into several
different parties withdifferent fidelityfor each party. The

k=g(a;,k"). (26)

Then the output state basis EG4) is represented by

dM—-1]-1 corresponding local operation for this information distribu-
)= Vd D R_k'|§M71> ®|§M_ ) tion is the asymmetric cloning proposed by Rdfs4] and
! drm ~ ISk AT ISk Co [15]. In this section, we show an example of2 asymmet-
[M] k=0

(27)  ric telecloning for qubits ¢=2).
For asymmetric telecloning, the input state basis is taken
where as the one qubit computational basjg)}. The output basis
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pe=tracl®)(d|

BOb 1+ 2 2
p aQ -, i
=— + — 36
ol e et @8
. for Bob’s clone and
Claire
(ancilla) pc=1rap| )|
FIG. 1. An asymmetric telecloning state. The width of lines B +q2 p2 i L
between two particles represents the “strength” of entanglement TN )l + X/W’ Nyl (37)
between the two particles. The difference of strength of entangle-
ment causes asymmetric telecloning. for Claire’s clone, wheréy ) represents a state orthogonal
. . , : to the input statéy).
consist of three qubits, one ancilla quiAitheld by Anne To investigate the structure of the quantum channel for
(note: she is not Aliceand two clone qubit8 andC held by gymmetric telecloning based on two-particle entanglement,
the receivers, Bob and Claire, as we calculate the Peres-Horodecki criterifd8]. For asym-
1 metric telecloning, the Peres-Horodecki criterion for the re-
= ——(|000)+ p|101) +q|110)), 39  duced density matrix of the port qubit and Bob’s quibar
o) \/JT/H 0+ pl103) +4l110) 32 the asymmetric cloneppg is
6= (11D +pl010 +qlo0), (33 ca(p)= 20T 39
1/~ T ’ B N
VN 4(1-p+p?)

whereq=1-p, N is a normalization factor given byv"  and that for the reduced density matrix for the port qubit and
=1+p?+q? and the order of the qubits #§A,B,C}. The  Claire’s qubitppc is

LRUO's are given byUS?=0,00,00, and U%Y=

o, 0y® oy . The information distribution channel for asym- —2+2p+p?
metric telecloning, which is a maximally entangled state of Cc(p)= DY
the port qubit and the output basig and ¢4, is given by 4(1=p+p9)

(39

1 There is an interesting casegz=0, which is given for the
|€)=—=(|0)| o) +]|1)| p1)) parameterp=+/3—1. In this case, the port qubit and the
V2 clone qubit of Claire are not directly entangled with each
other and the fidelities of the clones, which is the matrix

1 element of the reduced density matrix in terms of the input
= ——={|0000 + 111D+ p(|010D +|101
\/mﬂ Q | ]> p(| :D | Q) State< ¢|pB|¢>a are
+q(]0110 +|1001)}. (39 2 /3
fe=3%% &

The channel can be illustrated as folloi¥sg. 1) in the case
p>q.

The information distribution channel for symmetric tele-
cloning is, of course, given by the choice of parameters
=qg=1/2. If we choosgp=0 or q=0, the asymmetric tele-
cloning state consist of two maximally entangled pairs
Einstein-Podolsky-Rose(EPR pairg. In this case, the re- ) ) o )
ceiver who is sharing the EPR pair with Alice obtains faith- for Claire’s asymmetric clone. The state of fidelity 2/3 is
ful information of the input state and the other, who is shar-0btained in the classical lim[tL6]. That is, only the “clas-
ing the EPR pair with Anne, obtains no information at all. 5|_cal” information of the input state is transmitted via this
We now investigate how the parameters control the asymdiséntangled channel. o _ _
metric distribution of quantum information via entanglement.  Here we note that some classical information of the input

Our generalized teleportation protocol with the choice ofState has also been transmitted to the ancilla qubits of Anne.
the distribution channel33) maps the unknown input state Since the reduced density matrix of the ancilla qubit is given
| )= ap|0) + @1| 1) to the three qubit state:

| ) apc= ol Po) + a1| d1). (39 pa=trgc|d)(d|

The asymmetric clones are represented by the reduced den-
sity matrices

for Bob’s asymmetric clone and

2
3 (41

1 peHa®
—N|¢><¢|+T|¢ Wb, (42)
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the ancilla qubit(after the telecloning protocpbtan be con- (iii) The decoding process is performed by a reverse glo-
sidered to be a “clone” of very low quality, the fidelity bal unitary transformation of encoding. After the decoding
1/IN<2/3, where the equality is takenjat=q=1/2 (symmet-  process, one of the qubits is an “output qubit” and the oth-
ric telecloning. The ancilla qubits only contains classical ers are ancilla qubits which indicates whether an error oc-
information of the input state. For the asymmetric case, theurred. The relationship of the states of the ancilla qubits and
ratio of the fidelity of the clones for Bob, Claire, and Anne is in which qubit the error occurred is given in the syndrome
[1+p?]:[1+(1—p)?]:1, and Anne always keeps a “junk” table.
clone which only contains some classical information of the (iv) The fourth process is to correct errors. We measure
input state irrespective of the parameper the ancilla qubits and correct an error indicated by the mea-
As pointed out by Du[6], the reduced density matrix of surement result and the syndrome table. Alternatively, some
the symmetric telecloning state of the port and clone qubitglobal transformation among the decoded qubits may be per-
ppg is @ Werner statey, [12]. A Werner state is a state formed for error correction instead of measuring ancilla qu-
which is diagonal in the maximally entangled state basidits.
{ @ =Dy, P =Dy, ¥V =Dy, ¥~ =Dy}, The larg- The first process, encoding qubit information into a state
est diagonal element qfpg (fidelity) is of many qubits for error correction, is carried out via our
information distribution scheme with the appropriate choice
of output state basis consisting Nf qubits. We limit our-
selves to the case of correction of a single error. Three kinds
of errors may happen to a qubit in the encoded state. These
Thus if we only “see” the port qubit and the one of the are equivalent to the single qubit operation (type 1, o
receivers’ qubit, -M (symmetrig quantum telecloning is (type 2 or o, o, (type 3. An error of the typel (I
equivalent to the standard teleportation using an imperfect 1,2 3) happening to theth particle (7=1, ...N.), €/,
quantum channel made of the Werner siafe For the case maps from an output state bagis;) to a state|<pf). The
of M=2, the fidelity of the Werner state is 3/4. __index ¢ is determined by = (1 —1)Ng+ 7. We define that
For asymmetric tele_clomng, the reduced density matrix of;_ g represents no error. In some other cases, only one type
the quantum channel is also represented by the Wemner stgi¢ errors is expected. In this case, we only need to consider
as I=1. If we denote the total possible types of errors_ag
1 takes (Nq+1) different values{=0, ... LN.. The state
PPB:W{(PF P)2|® WD T|+%(|D WD | changes through the encoding process and error as follows:

3(M+1)

+ \

(43

W W]+ [P 44 ! ! !
e =3 al-0=3, alen-ler=3 aled.
This representation of the quantum channel shows the rela- 1=0 1=0 =0 45
tion between the asymmetric telecloning and Cerf's Pauli (45)
cloning machine$14]. Cerf has suggested that a Pauli clon- , . . .
ing machine performs as a universak., independent of For successful information distribution scheme via tele-

input statesasymmetric cloning machine only in the case of p?g;tgtion, the output state basis is required to have the LRUO

depolarizing channels represented by the Werner state. ~ Unm - In @ddition, it has to satisfy the following condition:

V. TELE-ERROR-CORRECTION b€ Tl iy =(o" | E) =8 118, (46)
il € €1 Pj i’ 1P 1,190

Since decoherence is the main obstacle to quantum infor-
mation processing, the discovery of quantum error correctiofior error correction(the necessary and sufficient condition
scheme$17] is very important for the practical realization of for quantum error correctiofi8]). This condition states that
quantum computation and quantum communication. In thiglifferent errors map a state into different states so that it is
section, we show how quantum error correction can be perPossible to distinguish different errors. The state after an
formed via distributed entanglement as another example dffror indicated byZ is not in the subspace of the original

our information distribution scheme. output state basi§|¢;)} but in the subspace of tr{é;gof)}.

The standard quantum error correction schep@i@scon- We now treat the Hilbert space of dimensioh.+1,
sist of the following four processes. which is the sum of all subspaces for givéninstead of two

(i) The first process involves encoding information. Infor- dimensions for a qubit and the subspace of the output state.
mation of a qubit is encoded into a statef qubits (N, The decoding and the error correction steps can be de-

=3 for the case that only one kind of error happening to onescribed by the information distribution scheme analogous to
of the qubits,N.=5 or N.=7 for the case that one of the telecloning instead of performing a global unitary operation.
three kinds of errors happening to one of the qukitg an  We use a pair of maximally entangled qubits for the quantum
global unitary transformation d¥1 qubits. channel(| &)= (|00)+|11))/\/2), and an “extended” Bell-

(ii) After encoding, you may have an error in one of thetype measurement for the enlarged space occupied by the
encoded qubits. The second process is for decoding informatate after an error occurs. The joint state of the error state
tion of the state after an error occurs. and the channdiy) is
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Bell M. The communication channel for encoding is given by the

Bell M. ) ;

four-particle maximally entangled state of Greenberger-

w @ Horne-Zeilinger type GHZ type:
&d
- : ; 1
encoding decoding+correction €)= 5(/0000 +]1113). (52)
error

o —— @ @ O : . o

The sender and the receivers follow the information distribu-
N4 (0] o© 4

tion protocol. The sender performs the Bell-type measure-

ment of the input and port qubits and broadcasts the mea-
FIG. 2. Amplitude (or phasg error correction via generalized Surement result to the receivers. Depending on the four

teleportation is illustrated, denotes the quantum channel for en- different measurement outcome® ), the receivers per-

coding andé, denotes the quantum channel for decoding and erroform the LRUO’s. Then information of the input qubit is

correction. The first raw represents the protocol and the second ra@gncoded into the three-qubit state

represents how quantum information is encoded in each process.

sender receivers sender receiver

|¢) = o|000) + a1|112). (53
1
1 L
|¢>®|§d)=2 E |‘I’§m>® E E eXF[—WIJ“]ajH +m), For decoding and error correction, we require all the en-
nem : a7 coded qubitsiwhich may have a phase erydo be at the
same site of the port qubit. We exploit a maximally en-
tangled staté¢y) = (|00)+|11))/\2 as the quantum channel.
¢ L d
whzreJ(I;nrﬂ> denotes the measurerpent odut)con;es of ;he %the RUO's are given by o= o, andU o=, . We perform
tended Bell type measurement performed by the sender o oytanded Bell-type measurement with the encoded qubits
and the port qubit. After an error occurs, the encoded state is
L - . NP T mapped to one of the four different states orthogonal to each
|Phm) = 2 kzo ex mikn]|¢j) ® |k+m) 48 Gther depending on the error indék=0,1,2,3). For eacl,
we have one of four different Bell measurement outcomes,
therefore we have one measurement outcome out of 16 pos-
ible joint states. These 16 joint states are equivalent to the
6 maximally entangle states for the four-qubit GHZ-type

finding the appropriate RUO. So the sender only needs t8tate. We use the “full” Hilbert space of four qubits for error

broadcast two bits of classical information to the receiver.correcuon'
The RUO for the output qubit If no error occurs, the extended Bell-type measurement

projects onto one of the only four stat¢®? )=|®d, )
1 (n,m=0,1), the same as in the standard teleportation
Unm=z ex;{wijn]lj)(jJr_mL (49) scheme. If a phase error occurs in thih qubit (out of the
j=0 three qubity the phase error interchanges the staje—|1)
of the nth qubit. The extended Bell-type measurement
will give the error corrected original state) (in a remote  projects into the|®},.), which is different from|®=) or

1

for n,m=0,1 and{=0,LN.. There are 4(N.+ 1) different
outcomes possible measured by the extended Bell measur
ment. However, we only need information nfand m for

place from the error state | =). We perform the appropriate local operation depending
onnandmto the output qubit. Then we decode it back to the
A. Three-qubit code original input statg ¢).

Now we investigate the quantum channel for error correc-
To illustrate our tele-error-correction scheme, we presenfion. For the GHZ-type maximally entangled stateNopar-
a simple example, a three-qubit error correction cléig. ticles, there is no direct entanglement between any two qu-
2). This code is able to correct an error, which is known to beyits, If we trace out any one of the qubits of the GHZ-type
one of{c;,0y,0, 0y} that happens to one of the qubits in state, the rest is in complete mixture of the two orthogonal
the encoded state. In the following, we investigate the casgiates consisting dfi— 1 qubits. We have seen that quantum
of an amplitude erroftype 2. We start from the encoding information is transmitted only via an entangled channel in
process. The output state basis for encoding is the three-quljte previous sections. How can we explain flow of quantum
state: information in our error correction scheme via entangle-
-~ ment? In the information encoding process, quantum infor-
|¢0)=1000, (50 mation of the input state should not be transmitted into any
of the qubits. However, the port qubit is maximally en-
|¢1)=11D). (51 tangled with all the three output qubits. From this fact, we
may consider that quantum information is transmitted via
The LRUO is given byU?=o,®@ o,® 0, and U=,  entanglement among the three qubits and no information is
®o,® a, in the computational basis. implemented in the local state of each qubit.
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B(4) scheme is a quantum error correcting cdutesome senge
ol but that error correction codes are not necessarily quantum
) d secret sharing codes.

= =

Alice Bob Charlie David Elizabeth Fred

B. Correcting amplitude and phase errors

FIG. 3. The error correcting repeater using a combination of the  Here we will show the output state basis for encoding in
three-qubit error-correction via entanglement. In this figl3€2) five-qubit, seven-qubit, nine-qubit quantum error correction
andB(4_) represent Bell-type measurement for two and four q”bitscodes and their LRUO’s. Now the extended Bell-type mea-
respectively.§, denotes the quantum channel for encoditlte ¢\ - ment involves six qubits and eight qubits; it is almost
four-qubit maximally entangled statand £y denotes the quantum .o o distinguish all the different outcomes, so it
channel for decodingthe two qubit maximally entangled state may not be practical, but it is interesting to investigallte en-
The dotted lines represent insecure channels. The channels cop‘,:l-n lement of these ’ t h Is. A ill sh .
nected through the telephone signs are classical channels. 9 . quantum channels. AS we will show in

the following, the quantum channel for encoding the five-
qubit code requires three-ebit entanglement, the seven-qubit

The tele-error-correction scheme via entanglement charcode requires two-ebit entanglement and the nine-qubit code
nel is a method for quantum communication that is secureequires one-ebit entanglement. It is interesting that the most
against a single-qubit single-type error attack of an eavessondensed error correction code requires the most entangle-
dropper. The single-qubit single-type attack of an eavesdropment.
per appears in the encoded state as an error. We can correctWe first show the seven-qubit quantum error correction
the error and retain information of the input state. Thus thecode via entanglement because it contains higher symmetry.
attack of the eavesdropper should not gain any informatior he two output state basis for encoding are
of the input state. We may consider an error correction re-

peater using a combination of the tele-error-correction _ 1 000/(10000 + 1111 + 1011 (1001
| #0)= - 751000/(|0009 +[1111) +[011)([0011)

schemes(Fig. 3. Here we present an example for an J2

amplitude-type attack, so we do not use the tilded basis.

Consider Alice sending quantum information to Fred. Bob, +[1100) +[101)(]0103) +[1010)

Charlie, David, Elizabeth are located between Alice and Fred +]110(]0110 +|1002)}, (54)
and pass through the quantum information. Alice and Bob,

Charlie and David, Elizabeth and Fred are separated from

each other and connected via secure quantum channels. Bob |¢,)= i
and Charlie are connected via an insecure channel and so are V2
David and Elizabeth, there may be a single error. Their chan-

nels can be nonperfect EPR pairs or even optical fibers with +/1100) +(010/(/0103) +[1010)
which one may transmit a particighoton. Alice shares the +]001)(|0110 +|1001))}. (55
quantum channel for encoding,) with Bob and so does _

Charlie and David. Elizabeth and Fred share a quantunfhe LRUO's are given byJ;o=0,® - --® 0, andUg,= oy
channel for decodinfg ). Alice performs the Bell-type mea- ®---®0y. In this case, one of the eveor odd order of
surement in the maximally entangled state basis for two qudubits will be the error corrected using the rest of the qubit.
bits denoted by3(2) and send two-bit classical information ~ he broadcasting channel for encoding

to Bob. Bob perform the appropriate)RUO of his three _

qubits. Bob sends information from the encoded three qubits €)= (12)(|0)] o) +1)] h1))

via the insecure channel. Charlie receives the three qubit . . . )
from Bob. An error might have happen to one of the threeéan be written in the following two ways:

{|111)(]0000 +|1111)) +|100)(|0011)

gubits. Charlie performs the joint measurement on the three 1

qubits and the port qubit, which he shares with David in the |&e)= Z{(|OOOQ+|111]))(|OOOQ+|111]))
maximally entangled state basis of four qubits denoted by

B(4). Charlie and David follow the protocol of the informa- +(|0011) +]1100)(|0011) +|1100)

tion distribution scheme. David sends his three qubits via

insecure channel to Elizabeth. Finally Elizabeth performs +(|0103+[1010)(/0103) +[1010)

B(4) together with her three qubits and the port qubit of the +(]0110 +]1002)(]0110 +|1001)}  (56)
guantum channel for decoding. The information of the origi-
nal state of Alice is now found at the qubit hold by Fred. =(|00)+|11))(|00) +]11))(|00) +|11))

We note that the distribution of quantum information for
encoding is similar to quantum secret sharing and splitting ®(]00)+[11)) +(|00)—[11))
scheme[19,2( if all the output state qubits are spatially _ _ _
separated as pointed out in RE20]. In Ref. [20], Cleve, ®(|00)—|11))(]00)—[11))(|00) - [11))
Gottesman, and Lo stress that every quantum secret sharing +(]01)+]10))(|01) +|10y)(|01) +|10))
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(]02)+]10)) +(|01) — | 10)) formation distribution to allow multiple receivers at arbitrary
locations.
®(]02)—[10))(|01)—[10))(|01) - [10)). (57) We have presented optimal quantum information broad-

, ) . casting of ad-level particle, asymmetric telecloning of qu-
Both representations suggest that this state can be considerggs and tele-error-correction as examples of the quantum
to be a maximally entangled state of four levelshe first  jnformation distribution scheme. For the quantum informa-
representation is in two maximally entangled four-level par-;q, broadcasting, we show the pure output state ferM
ticles and the second is in four maximally entangled four-4timal cloning ofd-level particles including ancillas. This
level particles. Thus the state has lgg=2 e-bit entangle-  oytput state is a physical implementation of the optimal clon-
ment. _ _ _ _ ing map presented by Werngt2]. The investigation of the
For the five-qubit error correction code via entangIementasymmetriC telecloning for qubits suggests thaantumin-
the output state basis for encoding is given(lythe repre-  formation of the input qubit is only transmitted bydaectly
sentation of Barencet al. [21]) entangled channel. The tele-error-correction scheme provides
_ another interpretation of quantum error correction from the
| $o)=1000+112)[00) —|010+ 103)[11) viewpoint of entanglement and allows an interesting obser-
+|001+110)|01) +|011+100)|10), (58  Vation of the amount of entanglement required for the quan-
tum channel for encoding. This scheme can be used for se-

|p1)=—]000—111)[11)—|010- 101)|00) cure communication.

—]001—-110)|10)+|011-100)|01). (59
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The quantum channel for this case can be represented by the

maximally entangled state of an eight-level system, which

contains three ebits of entanglement. APPENDIX
For the nine-qubit error correction code, the encoding out-
put state basis are: We show a detailed derivation of EQ7). First we show
the casé =0 and then show the case 0. For the case of
| po) =000+ 111|000+ 111)| 000+ 111y, (620 =0, the terms which give nonvanishing contribution of the

scalar product in Eq(27) are the terms which contains at
|#1)=]000—111)|000—-111)|000—-111). (63  least ong{0} in the computational basis representation. This
requiresag=0. Only the firstny,_4 out of ny terms in the
The LRUO’s are given byJ,p=0,®---®0, and Ug;= symmetrized statdg} ) area,=0 and contribute in the sum
ox® - - - @0y (although these LRUO’s are not uniquén  of Eq. (27). For O<k=n,,_,—1, a symmetric state can be
this case, any of the qubits in the state can be error correctatecomposed into the two parts:
using the rest of qubits, so the role of each qubit is very
symmetric. The quantum channel for encoding is represented

by the maximally entangled state of two-level system, which e 1 |
suggests the amount of entanglement is one ebit. &)= ——=—==|Pu(0ay, ..., au-1))pa
VMERD
VI. SUMMARY 1
o = ——|0)p®|Py_1(as, - - - Am_
We have presented a generalization of quantum teleporta- Jj\/(g}l")' yp®|Pu-a(as w-1))

tion for distributing quantum information of d-level par-

ticle from a sender taM remote receivers via an initially 1

shared multiparticle entangled state. The entangled state T 2 |aj)®|73,\,|,1(0,...,aj,1,
functions as a multiparty quantum channel for distributing

information. This entangled state is a maximally entangled A1, .- Au_1))- (A1)

state between the port particle of the sender and the output
particles of the receivers. The existence of two LRUGF§?
and U@ for the output state basis is essential for our in-The scalar product is now given by
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w1 ®|Pw-1(ag, - - - @j-1,8j+1, - - - Bu—1))A-
go P<0|§I'¥|>PA®|§I’Y|>C (A3)
-1

v -1
_ M M
B go P(Ol& ) Pa®ic)c Then the scalar product is

Mv-1—1 N(gl\/l
- kZO V' Aced) |§kM D®l&)c (A2) ny -1

go p(ilE0) Pa® &) c
which is a special case of ER7) with k=g (0k’)=k’.

For i#0, the decomposition of th&! particle symme- matt Mg
trized state in terms of th®l —1 symmetrized state is = 2 —N(gM) |§k, )pA®|§kM>c
k'=0 Kk

" 1 n 1 M- 1
E—— ) A, -,y M 1
[&k) N(§M)| wm(@0,21 am-1))pa ‘\/ gk |§ >PA®|§gﬂ(i,k’)>C
k’—O

g(l k’

1
:—|aj:i>p®|PM,l(ao, 0y (A4)
JMED
sincek=g(i,k’).
aj-1,8j+1, cooAn-))at 2 la 1> 9(hk)
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