
PHYSICAL REVIEW A, VOLUME 61, 032311
Quantum-information distribution via entanglement
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We present a generalization of quantum teleportation that distributes quantum information from a sender’s
d-level particle toNo particles held by remote receivers via an initially shared multiparticle entangled state.
This entangled state functions as a multiparty quantum information distribution channel between the sender
and the receivers. The structure of the distribution channel determines how quantum information is processed.
Our generalized teleportation scheme allows multiple receivers at arbitrary locations, and can be used for
applications such as optimal quantum information broadcasting, asymmetric telecloning, and quantum error
correction.

PACS number~s!: 03.67.Hk
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I. INTRODUCTION

In the quantum teleportation scheme@1#, quantum infor-
mation of an unknown state of ad-level particle~an ‘‘input’’
particle! is faithfully transmitted from a sender~Alice! to a
remote receiver~Bob! via an initially shared pair of maxi-
mally entangled particles. The distributed entangled partic
shared by Alice and Bob function as a quantum informat
channel for the faithful transmission. Quantum teleportat
has been demonstrated in several successful experiment@2#.
It represents the basic building block of future quantum co
munication networks between distant parties@3#.

In addition to the ‘‘one-to-one’’ quantum communicatio
of teleportation, it is natural to consider ‘‘one-to-many
quantum communication via quantum channels, i.e., qu
tum broadcasting from a sender to several spatially separ
receivers. However, it is not possible to perform one-
many quantum communication perfectly, because the
cloning theorem@4# forbids perfectduplication of quantum
information. Approximate methods for quantum cloning a
known but these methods require all parties~the original and
all the approximate copies! to be in one place.

Our strategy for one-to-many quantum communication
to distributequantum information of a particle from a send
to many distant receivers. Such a strategy, dubbed quan
telecloning, has been suggested in Ref.@5#. In the quantum
telecloning scheme, information of an input qubit~a d5
two-level particle! is distributed intoM particles which are
optimalclones andM21 which are ancilla particles, all spa
tially separated from each other. This transmission
achieved by first establishing a particular initial entang
state between the sender and receivers. The protocol of q
tum telecloning is then similar to that for original quantu
teleportation@1#, consisting of a joint measurement by Alic
two-bit classical communication from Alice to Bob and
local operation by Bob. This ‘‘optimal broadcasting’’ o
quantum information relies on the structure of the distribu
entanglement which functions as a one-to-many quan
communication channel. Recently, the telecloning proto
has been generalized to the case ofN(<M ) identical input
qubits being distributed toM spatially separated parties b
1050-2947/2000/61~3!/032311~11!/$15.00 61 0323
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Dür @6#. In this generalization, the same entangled state
Ref. @5# is used for the quantum channel, but a more gen
alized positive operator valued measure~POVM! is per-
formed for the joint measurement.

We also consider variation of this distribution method f
alternative applications. In this paper, we present optim
quantum information broadcasting ford-level particles,
asymmetric telecloning of qubits, and quantum error corr
tion via entanglement as examples of a generalization
quantum teleportation to one-to-many quantum commun
tion. The important rule of our game is that the receivers
spatially separated from each other so that we do not al
any global operations among receivers.

There is an alternative trivial way to distribute quantu
information from a sender to many receivers if we allow t
sender to run quantum networks that involve global ope
tions of many particles. In this case, the sender first perfo
quantum networks for encoding one particle information in
several particles in her site. Then she transmits the enco
particles to each receiver using the original teleportat
scheme with two particle maximally entangled state@1#. For
the transmission,M log2 d ebits of entanglement are require
to distribute quantum information of ad-level particle into
the spatially separatedM receivers. The sender performs th
measurementM times and usesMd2/2 bits of classical com-
munication from the sender to receivers. On the other ha
in our direct information distribution scheme, multipartic
entanglement is used simultaneously for both encoding in
mation and transmission. We need only a single joint m
surement and require onlyd2/2 bits of classical communica
tion ~announced publically to all the receivers!. The amount
of entanglement between the sender and the receiver a
whole is log2d ebits. Thus our direct information distributio
via entanglement is more efficient in terms of local and g
bal operations, classical communication, and the resourc
entanglement.

Distributing information to several different parties can
useful for protecting against eavesdropping. Thus the in
mation distribution can be used for more secure quan
communication. The ‘‘tele-error-correction’’ scheme w
provide us with another interpretation of quantum error c
©2000 The American Physical Society11-1
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MIO MURAO, MARTIN B. PLENIO, AND VLATKO VEDRAL PHYSICAL REVIEW A 61 032311
rection and an interesting observation about entanglem
required for the quantum channel for encoding. Our inform
tion distribution scheme can be also functions as a ‘‘rea
made network’’ @7# when all the particles of the quantum
channel are at one site, say Alice’s site. The quantum ch
nel is then a ‘‘black box’’ having an input port and sever
output ports to encode a single particle state into a multip
ticle state. The ‘‘manufacturer’’ performs the complicat
quantum operations to produce the black box. Alice,
‘‘user,’’ only needs to perform the joint measurement f
inputting information, and single particle operations depe
ing on the measurement outcome, instead of sev
controlled-NOT ~CNOT! operations required for the global op
erations of particles.

The rest of the paper is organized as follows. In Sec. II
present our generalization of quantum teleportation for inf
mation distribution. Applications of the information distribu
tion scheme are then presented in the following sections.
optimal quantum information broadcasting (1→M teleclon-
ing! for d-level particles is shown in Sec. III the asymmetr
telecloning for distributing information with different fidelity
for each receiver are investigated in Sec. IV. Tele-err
correction, quantum error correction via the information d
tribution scheme, is presented in Sec. V. A summary is gi
in Sec. VI.

II. A GENERALIZATION OF QUANTUM
TELEPORTATION

In the quantum teleportation scheme of Bennettet al. @1#,
a pair of maximally entangled particles (d-level particles!
initially shared by a sender~Alice! and a receiver~Bob!
functions as a channel for quantum information with the h
of a classical information channel. Alice’s particle is used
a ‘‘port’’ for information input, and Bob’s particle is used a
the ‘‘output’’ port in the scheme. We may imagine that the
are two processes taking place during the faithful transm
sion of quantum information of an unknown state of an ‘‘i
put particle’’ from Alice to Bob. The first process is th
‘‘information input’’ process. Alice performs a joint mea
surement in the maximally entangled basis of the input p
ticle and her port particle. Alice obtains one of thed2 pos-
sible measurement results. This operation ‘‘injects’’ quant
information from the input particle into the quantum chann
We call this measurement a ‘‘Bell-type measurement’’ n
only in the context of qubits (d52), but in general for
d-level particles and the maximally entangled basis is ca
the Bell basis. Injected information appears at Bob’s out
particle as one of thed2 orthogonal states depending on t
result of the Bell-type measurement. Without informati
about Alice’s measurement result, the output particle of B
is in an equal mixture ofd2 orthogonal states, which does n
provide any information about the original states.~If the out-
put state of Bob gave any information of Alice’s input befo
receiving the measurement result from Alice, Alice and B
could communicate faster than light!! Thus we need a secon
process, the ‘‘recovery unitary operation’’~RUO!. In this
process, Alice notifies which of thed2 possible measuremen
results she obtained. Then Bob performs a unitary opera
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on the output particle depending on the measurement re
to recover the quantum information of the input particle.

Now we generalize the quantum teleportation scheme
distributing quantum information of ad-level particle to
more than one receiver via a multiparty quantum chann
The quantum channel is a multiparticle entangled state
tially shared between the sender and the receivers~Bob,
Charlie, and so on!. The sender and receivers are spatia
separated from each other and no global operation betw
particles held by different receivers is allowed.

In our scheme, the input, port and output particles of
original teleportation scheme are replaced by groups of in
particles, port particles, and output particles. We repres
the number of the input, port and output particles asNi , Np ,
andNo , respectively. To implement quantum information
one d-level particle in the groups of particles, we ‘‘use’’
d-dimensionalsubspacefor each group ofd-level particles.
We denote the basis of thed-dimensional subspace as$uc j&%
for the input particles,$up j&% for the port particles, and
$uf j&% for the output particles, wherej 50,1, . . . ,d21. All
these bases are represented by the states of~multi!particles.
For example, information of ad-level particle implemented
in the sender’sNi input particles is represented as

uc&5 (
j 50

d21

aj uc j& ~1!

under the constraint(uaj u251.
The quantum channel for information distribution b

tween the sender and the receivers is a maximally entan
state of the sender’s port particles and the receivers’ ou
particles:

uj&5
1

Ad
(

j
up j& ^ uf j&. ~2!

The joint state of the input particle and the channel is

uc& ^ uj&5(
n

(
m

uFnm&

^
1

Ad
(

j

d21

exp@22p i jn /d#a j uf j 1m&, ~3!

where j 1m5@( j 1m)modd# and uFnm& is a joint state of
the input particles and the port particle in a maximally e
tangled basis~the Bell-type basis!

uFnm&5
1

Ad
(

k

d21

exp@2p ikn/d#uck& ^ upk1m& ~4!

for 0<n, m<d21. Therefore the RUO for a Bell-type
measurement outcomeuFnm& is given by

Unm5(
j

exp@2p i jn /d#uf j&^f j 1mu. ~5!
1-2
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QUANTUM-INFORMATION DISTRIBUTION VIA ENTANGLEMENT PHYSICAL REVIEW A 61 032311
So far we have just relabeled the basis of the input
output particles from the single particle computational ba
u j & into the multiparticle basisuc j&, up j&, and uf j&. It is
remarkable in our generalization for quantum informati
distribution that the RUOUnm can be replaced by alocal
recovery unitary operation~LRUO! Unm

local, which is a direct
product of local operations for each particle:

Unm
local5U nm

1
^ •••^ U nm

No , ~6!

whereU nm
l denotes the local operation for thel th particle of

the receivers, undercertain conditionsfor the output state
basis $uf i&% which we will describe later in this section
AlthoughUnm

localÞUnm in general for the full Hilbert space fo
theNo particles,Unm

local operates in the same way as the RU
Unm in Eq. ~5! on thesubspacespanned by the output sta
basis$uf j&%,

Unm
localuf j&5Unmuf j&, ~7!

for any j. We note that the LRUO Eq.~6! is not always
determined uniquely for the corresponding~global! RUO de-
fined by Eq.~5!. The condition that the RUO is local place
additional constraints on the output state basis.

Since the RUOUnm can be decomposed into the produc
of U01 and U10 from the definition of Eq.~5!, the LRUO
Unm

local may be decomposed in the similar manner:

~8!

Then the condition for the output state basis is the existe
of the following two LRUO’s:

U01
localuf j&5U 01

1
^ •••^ U 01

Nouf j&5uf j 21&, ~9!

which changes the state fromuf j& to uf j 21&, and

U10
localuf j&5U 10

1
^ •••^ U 10

Nouf j&5exp@2p i jn /d#uf j&,
~10!

which changes the phase depending on the stateuf j&.
The protocol for distributing quantum information from

sender to spatially separated receivers,

uc&sender5 (
j 50

d21

aj uc j&→uf& receivers5 (
j 50

d21

a j uf j&, ~11!

via the quantum channel defined by Eq.~2! is the following:
1. The sender performs a Bell-type measurement on

input particles and the port particles in the basis$uFnm&%.
We expectd2 different measurement outcomes.

2. The sender classically~and publicly! broadcasts the
measurement outcome~on which basis ofuFnm& she ob-
tained by the projection! to the receivers.

3. Depending on the broadcast resultuFnm&, the receivers
perform the LRUOUnm

local.
03231
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Information of an initial stateuc& ~of d-level system! is
faithfully transmitted via the quantum channel to an encod
stateuf& which is the state of the particles distributed amo
No spatially separated receivers. This ‘‘teleportation’’
quantum information of ad-level particle is faithful because
the channel represented by Eq.~2! has log2d ebit entangle-
ment between the sender and the receivers as the whole
appearance of the output information at each receiver’s
ticle is the result of the information distribution. Distributio
of information depends on properties of the output state b
uf j&.

This generalization of quantum teleportation looks sim
in this representation. However, as we will show later, it h
more applications. Optimal quantum information broadca
ing and asymmetric telecloning are just special cases of
scheme. Also quantum error correction can be carried out
entanglement with additional conditions on the output st
and a slight extension of the concept of the Bell-type m
surement in the decoding process.

III. OPTIMAL BROADCASTING FOR MULTILEVEL
PARTICLES

Although information in an unknown quantum state ca
not be copied perfectly~no-cloning theorem! @4#, a way has
been found to obtain ‘‘optimal’’ copies of the original sta
by an global unitary transformation involving several pa
ticles @8#. The optimality of copies is defined by ensuring th
largest fidelity from the original state. This quantum optim
cloning of qubits (d52 particles! has been studied in Refs
@8–11#. While optimal cloning transformations involve glo
bal operations on qubits, we have recently considered
problem of quantum ‘‘telecloning’’ for qubits (d52) in Ref.
@5#. Telecloning is a combination of the universal optim
cloning and quantum teleportation performed simul
neously. The aim of telecloning is to broadcast informati
of an unknown state from a sender to several spatially se
rated receivers exploiting an entangled state as a quan
channel. The properties of the quantum channel for the q
telecloning has been investigated in Ref.@5#.

For the more general case, the problem of optimal clon
of N identical unknown input states toM output copies of
d-level particles, which is called ‘‘N→M optimal quantum
cloning’’ is formulated in Ref.@12#. In that paper, Werner
has shown that the optimal cloning mapT̂ to obtainM opti-
mal clones fromN identical ~unknown! input states is the
projection of the direct product of theN input states andM
2N identity states onto the symmetric subspace ofM par-
ticles:

T̂~r!5
d@N#

d@M #
sM~r ^ 1^ (M2N)!sM , ~12!

wheresM is the projection operator for the symmetrized sta
of M d-level particles,r is the density operator for the inpu
state given by the direct product of an input stateuc&^cu,
1-3
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~13!

and d@N# is the number of the symmetrized state forN
d-level particles given byd@N#5d1N11CN . Werner has
proved the optimality of the clones obtained by the clon
map Eq.~12! mathematically. The cloning map is the com
pletely positive, trace preserving map. However, physi
implementation of the optimal cloning map is not obviou
since the cloning map~12! is not a unitary transformation
To find the corresponding unitary transformation for the
→M optimal cloning ofd-level particles, we need a pur
state representation including ancilla particles.~For a special
case of M52, the unitary transformation of the optima
cloning map ford-level particles has been obtained by Buzˇek
and Hillery @9#.!

In this section, we present optimal quantum informati
broadcasting for multilevel particles (1→M telecloning of a
d-level particle!, as an application of the quantum inform
tion distribution scheme described in the previous section
our scheme, we obtain the pure state representingM optimal
clones of an unknown state andM21 ancillas. Conse-
quently, we find the unitary transformation which impl
ments the Werner’s optimal cloning map ford-level particles
@12#.

For optimal quantum information broadcasting, the inp
state basis and the port state basis are taken in a single
ticle computational basis$u j &%. The output state basis is rep
resented by the states$uf j&% ( j 50,1, . . . ,d21) consisting
of No52M21 d-level particles whereM21 particles are
ancillas andM particles are for presenting optimal clonin
states at the end of the protocol.

The output state basis consisting of 2M21 particles is
represented in terms of the normalized and the symmetr
stateujk

M& of Md-level particles,

uf j&5
Ad

Ad@M #
(
k50

d[ M ] 21

P^ j ujk
M&PA^ ujk

M&C , ~14!

whereP denotes the port particles,A denotes theM21 an-
cilla particles, andC denotes theM particles for optimal
clones. The structure of the symmetrized state is the
feature for our optimal quantum information broadcasting
we will show later. In the computational basis, the symm
trized stateujk

M& can be represented by

ujk
M&5

1

AN~jk
M !

uP~a0 ,a1 , . . . ,aM21!&, ~15!

whereP denotes an operator which creates the sum of
possible states represented by permutation of the elem
$a0 , . . . ,aM21% for anP$0,1, . . .d21% and an11>an un-
der the constraintN(jk

M) imposing the normalization o
ujk

M&. The indexk for the symmetrized state is defined by t
following: First we assign to each string$a0 , . . . ,aM21% a
number
03231
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h~a0 ,a1 , . . . ,aM21!5 (
n50

M21

andM212n. ~16!

Then we sort those numbers in increasing order. The indek
(0<k<d@M #) is then associated with the strin
$a0 , . . . ,aM21%

k5 f M~a0 , . . . ,aM21! ~17!

giving rise to the (k11)th smallest number
h(a0 ,a1 , . . . ,aM21).

The LRUO’s for the output state basis$uf j&% are given by

~18!

where

U nm
A 5 (

j 50

d21

exp@22p i jn /d#u j & ^ ^ j 1mu, ~19!

and

U nm
C 5 (

j 50

d21

exp@2p i jn /d#u j & ^ ^ j 1mu, ~20!

which has the complex conjugate phase of Eq.~20!.
The quantum channel is the maximally entangled st

between the port particle and the output state particles

uj&5
1

Ad
(
j 50

d21

u j &P^ uf j&. ~21!

It can also be represented in terms of the symmetrized st
as

uj&5
1

Ad@M #
(
k50

d[ M ] 21

ujk
M&PA^ ujk

M&C . ~22!

The two groups of particles in the information distributio
channel, thePA group and theC group, are symmetric to
each other. This symmetry property leads to an LRU
Unm

local, which is the product of the local operations given
Eqs. ~18!–~20!. The quantum channel is a maximally e
tangled state of (d@M #)-level particles between thePA group
and theC group.

As we have shown in the previous paper@5#, for the case
of d52 ~i.e., for qubits!, only theM receivers’ clone qubits
in the quantum broadcasting channel are ‘‘directly’’ e
tangled to the port qubit according to the Peres-Horode
criterion @13#. If the partial transpose of the density operat
is not positive, the two particles are entangled and otherw
they are disentangled. The ‘‘structure’’ based on the t
particle entanglement of the quantum channel is essentia
the optimal quantum information broadcasting ofd-level par-
ticles like in the qubit case. However, because the Pe
Horodecki criterion is only valid for the case of limited d
1-4
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QUANTUM-INFORMATION DISTRIBUTION VIA ENTANGLEMENT PHYSICAL REVIEW A 61 032311
mensional particles~two qubits, or entanglement of a qub
and a ‘‘qutrit’’!, the necessity of the two particle entangl
ment for the distribution of quantum information is still
conjecture.

Exploiting the communication channel given by Eq.~21!
and following the protocol for the quantum information di
tribution described in the previous section, an unknown in
state of the sender

uc&5 (
j 50

d21

a j u j & ~23!

is remotely ‘‘encoded’’ into the output state

uf&5 (
i 50

d21

a j uf j&. ~24!

held by the 2M21 specially separated receivers via t
quantum channel. This output state represents theM21 an-
cillas and theM optimal clones. As we will show in the
following, the reduced density matrix forM optimal clones
coincides with a special case (N51) of theN→M universal
optimal cloning state ford-level particles, which was prove
by Werner@12#.

The key property of the symmetrized state for our proo
that the symmetric state ofM particle can be decompose
into single particle states and symmetric states of the o
M21 particles:

ujk
M&5

1

AN~jk
M !

(
aj P$0, . . . ,d21%

uaj&u

3PM21~a0 , . . . ,aj 21 ,aj 11 , . . . ,aM21!&

5
1

AN~jk
M !

(
aj P$0, . . . ,d21%

AN~jk8
M21

!uaj&ujk8
M21&,

~25!

wherek85 f M(a0 , . . . ,aj 21 ,aj 11 , . . . ,aM21). The sum in
Eq. ~25! is a special sum, it is taken only for different valu
of ajP$0, . . . ,d21% ~if aj5aj 8 , only the smaller indexj
, j 8 is kept in the sum!. To make the relationship betwee
the indexk andk8 clearer, we define another functiong that
gives the indexk of the symmetrized state ofM particles
when a value of the particleaj is inserted in the (j 21)th
position of a symmetrized state ofM21 particle having the
index k8:

k5g~aj ,k8!. ~26!

Then the output state basis Eq.~14! is represented by

uf i&5
Ad

Ad@M #
(

k850

d[ M21]21

R i
k8ujk8

M21&A^ ujg( i ,k8)
M &C ,

~27!

where
03231
t

s

er

R i
k85

AN~jk8
M21

!

AN~jg( i ,k8)
M

!
. ~28!

A detailed derivation of the Eq.~27! is found in the Appen-
dix.

The reduced density matrix of the clones is obtained
tracing over the ancilla variables

rC5trAuf&^fu

5 (
l 50

nM2121

A^j l
M21uf&^fuj l

M21&A

5
d

nM
(
i 50

d21

(
i 850

d21

(
k850

d[ M ] 21

a ia i 8
* R i

k8R i 8
k8ujg( i ,k8)

M &C^jg( i 8,k8)
M u.

~29!

The projection operator to the symmetric subspace ofM par-
ticles in Werner’s cloning map given by Eq.~12! in our
notation is

sM5 (
k50

d[ M ]

ujk
M&^jk

Mu. ~30!

Then the density matrix for 1→M d-level optimal clones
obtained by Werner@12# is represented as

rC5T̂~ uc&^cu!

5
n1

d@M #
sMuc&^cu ^ 1^ M21sM

5
d

d@M # (
i 50

d21

(
i 850

d21

(
k850

nM2121

a ia i 8
* R i

k8R i 8
k8

3ujg( i ,k8)
M &C^jg( i 8,k8)

M u. ~31!

This density matrix coincides with our reduced density m
trix for the clones Eq.~29!. Thus the output stateuf& given
by Eq.~24! represents the optimal cloning state consisting
M21 ancillas andM optimal clones.

IV. ASYMMETRIC TELECLONING

Quantum telecloning described in the previous sect
distributes information from an input state evenly to dista
receivers. However, it may be desirable to distribute inf
mation unevenly to the receivers. For example, if we tr
Alice more than Bob, we may decide to distribute more
formation to Alice. Asymmetric quantum telecloning distrib
utes information from an unknown input particle into seve
different parties withdifferent fidelity for each party. The
corresponding local operation for this information distrib
tion is the asymmetric cloning proposed by Refs.@14# and
@15#. In this section, we show an example of 1→2 asymmet-
ric telecloning for qubits (d52).

For asymmetric telecloning, the input state basis is ta
as the one qubit computational basis$u j &%. The output basis
1-5
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consist of three qubits, one ancilla qubitA held by Anne
~note: she is not Alice! and two clone qubitsB andC held by
the receivers, Bob and Claire, as

uf0&5
1

AN ~ u000&1pu101&1qu110&), ~32!

uf1&5
1

AN ~ u111&1pu010&1qu001&), ~33!

where q512p, N is a normalization factor given byN
511p21q2 and the order of the qubits is$A,B,C%. The
LRUO’s are given by U01

local5sz^ sz^ sz and U10
local5

sx^ sx^ sx . The information distribution channel for asym
metric telecloning, which is a maximally entangled state
the port qubit and the output basisf0 andf1, is given by

uj&5
1

A2
~ u0&uf0&1u1&uf1&)

5
1

A2N $u0000&1u1111&1p~ u0101&1u1010&)

1q~ u0110&1u1001&)%. ~34!

The channel can be illustrated as follows~Fig. 1! in the case
p.q.

The information distribution channel for symmetric tel
cloning is, of course, given by the choice of parameterp
5q51/2. If we choosep50 or q50, the asymmetric tele
cloning state consist of two maximally entangled pa
Einstein-Podolsky-Rosen~EPR! pairs#. In this case, the re
ceiver who is sharing the EPR pair with Alice obtains fait
ful information of the input state and the other, who is sh
ing the EPR pair with Anne, obtains no information at a
We now investigate how the parameters control the as
metric distribution of quantum information via entangleme

Our generalized teleportation protocol with the choice
the distribution channel~33! maps the unknown input stat
uc&5a0u0&1a1u1& to the three qubit state:

uf&ABC5a0uf0&1a1uf1&. ~35!

The asymmetric clones are represented by the reduced
sity matrices

FIG. 1. An asymmetric telecloning state. The width of lin
between two particles represents the ‘‘strength’’ of entanglem
between the two particles. The difference of strength of entan
ment causes asymmetric telecloning.
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rB5trACuf&^fu

5
11p2

N uc&^cu1
q2

N uc '&^c 'u ~36!

for Bob’s clone and

rC5trABuf&^fu

5
11q2

N uc&^cu1
p2

N uc '&^c 'u ~37!

for Claire’s clone, whereuc '& represents a state orthogon
to the input stateuc&.

To investigate the structure of the quantum channel
asymmetric telecloning based on two-particle entanglem
we calculate the Peres-Horodecki criterion@13#. For asym-
metric telecloning, the Peres-Horodecki criterion for the
duced density matrix of the port qubit and Bob’s qubit~for
the asymmetric clone! rPB is

cB~p!5
124p1p2

4~12p1p2!
~38!

and that for the reduced density matrix for the port qubit a
Claire’s qubitrPC is

cC~p!5
2212p1p2

4~12p1p2!
. ~39!

There is an interesting case,cC50, which is given for the
parameterp5A321. In this case, the port qubit and th
clone qubit of Claire are not directly entangled with ea
other and the fidelities of the clones, which is the mat
element of the reduced density matrix in terms of the in
state^curBuc&, are

f B5
2

3
1

A3

6
~40!

for Bob’s asymmetric clone and

f C5
2

3
~41!

for Claire’s asymmetric clone. The state of fidelity 2/3
obtained in the classical limit@16#. That is, only the ‘‘clas-
sical’’ information of the input statec is transmitted via this
disentangled channel.

Here we note that some classical information of the in
state has also been transmitted to the ancilla qubits of An
Since the reduced density matrix of the ancilla qubit is giv
by

rA5trBCuf&^fu

5
1

N uc&^cu1
p21q2

N uc '&^c 'u, ~42!

nt
e-
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the ancilla qubit~after the telecloning protocol! can be con-
sidered to be a ‘‘clone’’ of very low quality, the fidelity
1/N<2/3, where the equality is taken atp5q51/2 ~symmet-
ric telecloning!. The ancilla qubits only contains classic
information of the input state. For the asymmetric case,
ratio of the fidelity of the clones for Bob, Claire, and Anne
@11p2#:@11(12p)2#:1, and Anne always keeps a ‘‘junk’
clone which only contains some classical information of
input state irrespective of the parameterp.

As pointed out by Du¨r @6#, the reduced density matrix o
the symmetric telecloning state of the port and clone qu
rPB is a Werner staterW @12#. A Werner state is a stat
which is diagonal in the maximally entangled state ba
$F15F00, F25F01, C15F10, C25F11%. The larg-
est diagonal element ofrPB ~fidelity! is

^F1urWuF1&5
3~M11!

6M
. ~43!

Thus if we only ‘‘see’’ the port qubit and the one of th
receivers’ qubit, 1→M ~symmetric! quantum telecloning is
equivalent to the standard teleportation using an imper
quantum channel made of the Werner staterW . For the case
of M52, the fidelity of the Werner state is 3/4.

For asymmetric telecloning, the reduced density matrix
the quantum channel is also represented by the Werner
as

rPB5
1

2N $~11p!2uF1&^F1u1q2~ uF2&^F2u

1uC1&^C1u1uC2&^C2u!%. ~44!

This representation of the quantum channel shows the r
tion between the asymmetric telecloning and Cerf’s Pa
cloning machines@14#. Cerf has suggested that a Pauli clo
ing machine performs as a universal~i.e., independent of
input states! asymmetric cloning machine only in the case
depolarizing channels represented by the Werner state.

V. TELE-ERROR-CORRECTION

Since decoherence is the main obstacle to quantum in
mation processing, the discovery of quantum error correc
schemes@17# is very important for the practical realization o
quantum computation and quantum communication. In
section, we show how quantum error correction can be p
formed via distributed entanglement as another exampl
our information distribution scheme.

The standard quantum error correction schemes@17# con-
sist of the following four processes.

~i! The first process involves encoding information. Info
mation of a qubit is encoded into a state ofNe qubits (Ne
53 for the case that only one kind of error happening to o
of the qubits,Ne55 or Ne57 for the case that one of th
three kinds of errors happening to one of the qubits! by an
global unitary transformation ofM qubits.

~ii ! After encoding, you may have an error in one of t
encoded qubits. The second process is for decoding infor
tion of the state after an error occurs.
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~iii ! The decoding process is performed by a reverse g
bal unitary transformation of encoding. After the decodi
process, one of the qubits is an ‘‘output qubit’’ and the o
ers are ancilla qubits which indicates whether an error
curred. The relationship of the states of the ancilla qubits
in which qubit the error occurred is given in the syndrom
table.

~iv! The fourth process is to correct errors. We meas
the ancilla qubits and correct an error indicated by the m
surement result and the syndrome table. Alternatively, so
global transformation among the decoded qubits may be
formed for error correction instead of measuring ancilla q
bits.

The first process, encoding qubit information into a st
of many qubits for error correction, is carried out via o
information distribution scheme with the appropriate cho
of output state basis consisting ofNe qubits. We limit our-
selves to the case of correction of a single error. Three ki
of errors may happen to a qubit in the encoded state. Th
are equivalent to the single qubit operationsz ~type 1!, sx
~type 2! or sz•sx ~type 3!. An error of the typel ( l
51,2,3) happening to thehth particle (h51, . . .Ne), e l

h ,
maps from an output state basisuf j& to a stateuw j

z&. The
index z is determined byz5( l 21)Ne1h. We define that
z50 represents no error. In some other cases, only one
of errors is expected. In this case, we only need to cons
l 51. If we denote the total possible types of errors asL, z
takes (LNe11) different values,z50, . . . ,LNe . The state
changes through the encoding process and error as follo

uc&5(
j 50

1

a j u j &→uf&5(
j 50

1

a j uf j&→uw&5(
j 50

1

a j uw j
z&.

~45!

For successful information distribution scheme via te
portation, the output state basis is required to have the LR
Unm

local. In addition, it has to satisfy the following condition

^f j 8ue l 8
h8†e l

huf j&5^w j 8
z8uw j

z&5d j , j 8dz,z8 ~46!

for error correction~the necessary and sufficient conditio
for quantum error correction@18#!. This condition states tha
different errors map a state into different states so that i
possible to distinguish different errors. The state after
error indicated byz is not in the subspace of the origina
output state basis$uf j&% but in the subspace of the$uw j

z&%.
We now treat the Hilbert space of dimensionsLNe11,
which is the sum of all subspaces for givenz, instead of two
dimensions for a qubit and the subspace of the output st

The decoding and the error correction steps can be
scribed by the information distribution scheme analogous
telecloning instead of performing a global unitary operatio
We use a pair of maximally entangled qubits for the quant
channel„ujd&5(u00&1u11&)/A2…, and an ‘‘extended’’ Bell-
type measurement for the enlarged space occupied by
state after an error occurs. The joint state of the error s
and the channelujd& is
1-7
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uw& ^ ujd&5(
n

(
m

uFnm
z & ^

1

A2
(

j

1

exp@2p i jn #a j u j 1m&,

~47!

whereuFnm
z & denotes the measurement outcomes of the

tended Bell type measurement performed by the sender

uFnm
z &5

1

A2
(
k50

1

exp@p ikn#uwk
z& ^ uk1m& ~48!

for n,m50,1 andz50,LNe . There are 4(LNe11) different
outcomes possible measured by the extended Bell mea
ment. However, we only need information ofn and m for
finding the appropriate RUO. So the sender only need
broadcast two bits of classical information to the receiv
The RUO for the output qubit

Unm5(
j 50

1

exp@p i jn #u j &^ j 1mu. ~49!

will give the error corrected original stateuc& ~in a remote
place from the error state!.

A. Three-qubit code

To illustrate our tele-error-correction scheme, we pres
a simple example, a three-qubit error correction code~Fig.
2!. This code is able to correct an error, which is known to
one of $sz ,sx ,sz•sx% that happens to one of the qubits
the encoded state. In the following, we investigate the c
of an amplitude error~type 2!. We start from the encoding
process. The output state basis for encoding is the three-q
state:

uf0&5u000&, ~50!

uf1&5u111&. ~51!

The LRUO is given byU01
local5sx^ sx^ sx and U10

local5sz

^ sz^ sz in the computational basis.

FIG. 2. Amplitude~or phase! error correction via generalize
teleportation is illustrated.je denotes the quantum channel for e
coding andjd denotes the quantum channel for decoding and e
correction. The first raw represents the protocol and the second
represents how quantum information is encoded in each proce
03231
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The communication channel for encoding is given by t
four-particle maximally entangled state of Greenberg
Horne-Zeilinger type~GHZ type!:

uje&5
1

2
~ u0000&1u1111&). ~52!

The sender and the receivers follow the information distrib
tion protocol. The sender performs the Bell-type measu
ment of the input and port qubits and broadcasts the m
surement result to the receivers. Depending on the f
different measurement outcomesuFnm&, the receivers per-
form the LRUO’s. Then information of the input qubit i
encoded into the three-qubit state

uf&5a0u000&1a1u111&. ~53!

For decoding and error correction, we require all the e
coded qubits~which may have a phase error! to be at the
same site of the port qubit. We exploit a maximally e
tangled stateujd&5(u00&1u11&)/A2 as the quantum channe
The RUO’s are given byU015sx andU105sz . We perform
the extended Bell-type measurement with the encoded qu
and the port qubit. After an error occurs, the encoded sta
mapped to one of the four different states orthogonal to e
other depending on the error indexz(50,1,2,3). For eachz,
we have one of four different Bell measurement outcom
therefore we have one measurement outcome out of 16
sible joint states. These 16 joint states are equivalent to
16 maximally entangle states for the four-qubit GHZ-ty
state. We use the ‘‘full’’ Hilbert space of four qubits for erro
correction.

If no error occurs, the extended Bell-type measurem
projects onto one of the only four statesuFnm

0 &5uFnm&
(n,m50,1), the same as in the standard teleportat
scheme. If a phase error occurs in thehth qubit ~out of the
three qubits!, the phase error interchanges the stateu0&↔u1&
of the nth qubit. The extended Bell-type measureme
projects into theuFnm

z &, which is different fromuF6& or
uC6&. We perform the appropriate local operation depend
on n andm to the output qubit. Then we decode it back to t
original input stateuf&.

Now we investigate the quantum channel for error corr
tion. For the GHZ-type maximally entangled state ofN par-
ticles, there is no direct entanglement between any two
bits. If we trace out any one of the qubits of the GHZ-ty
state, the rest is in complete mixture of the two orthogo
states consisting ofN21 qubits. We have seen that quantu
information is transmitted only via an entangled channel
the previous sections. How can we explain flow of quant
information in our error correction scheme via entang
ment? In the information encoding process, quantum inf
mation of the input state should not be transmitted into a
of the qubits. However, the port qubit is maximally e
tangled with all the three output qubits. From this fact, w
may consider that quantum information is transmitted
entanglement among the three qubits and no informatio
implemented in the local state of each qubit.

r
w
.

1-8
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QUANTUM-INFORMATION DISTRIBUTION VIA ENTANGLEMENT PHYSICAL REVIEW A 61 032311
The tele-error-correction scheme via entanglement ch
nel is a method for quantum communication that is sec
against a single-qubit single-type error attack of an eav
dropper. The single-qubit single-type attack of an eavesd
per appears in the encoded state as an error. We can co
the error and retain information of the input state. Thus
attack of the eavesdropper should not gain any informa
of the input state. We may consider an error correction
peater using a combination of the tele-error-correct
schemes~Fig. 3!. Here we present an example for a
amplitude-type attack, so we do not use the tilded ba
Consider Alice sending quantum information to Fred. Bo
Charlie, David, Elizabeth are located between Alice and F
and pass through the quantum information. Alice and B
Charlie and David, Elizabeth and Fred are separated f
each other and connected via secure quantum channels
and Charlie are connected via an insecure channel and s
David and Elizabeth, there may be a single error. Their ch
nels can be nonperfect EPR pairs or even optical fibers w
which one may transmit a particle~photon!. Alice shares the
quantum channel for encodinguje& with Bob and so does
Charlie and David. Elizabeth and Fred share a quan
channel for decodingujd&. Alice performs the Bell-type mea
surement in the maximally entangled state basis for two
bits denoted byB(2) and send two-bit classical informatio
to Bob. Bob perform the appropriate~L!RUO of his three
qubits. Bob sends information from the encoded three qu
via the insecure channel. Charlie receives the three qu
from Bob. An error might have happen to one of the thr
qubits. Charlie performs the joint measurement on the th
qubits and the port qubit, which he shares with David in
maximally entangled state basis of four qubits denoted
B(4). Charlie and David follow the protocol of the informa
tion distribution scheme. David sends his three qubits
insecure channel to Elizabeth. Finally Elizabeth perfor
B(4) together with her three qubits and the port qubit of
quantum channel for decoding. The information of the ori
nal state of Alice is now found at the qubit hold by Fred.

We note that the distribution of quantum information f
encoding is similar to quantum secret sharing and splitt
scheme@19,20# if all the output state qubits are spatial
separated as pointed out in Ref.@20#. In Ref. @20#, Cleve,
Gottesman, and Lo stress that every quantum secret sh

FIG. 3. The error correcting repeater using a combination of
three-qubit error-correction via entanglement. In this figure,B(2)
andB(4) represent Bell-type measurement for two and four qub
respectively.je denotes the quantum channel for encoding~the
four-qubit maximally entangled state! andjd denotes the quantum
channel for decoding~the two qubit maximally entangled state!.
The dotted lines represent insecure channels. The channels
nected through the telephone signs are classical channels.
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scheme is a quantum error correcting code~in some sense!,
but that error correction codes are not necessarily quan
secret sharing codes.

B. Correcting amplitude and phase errors

Here we will show the output state basis for encoding
five-qubit, seven-qubit, nine-qubit quantum error correct
codes and their LRUO’s. Now the extended Bell-type me
surement involves six qubits and eight qubits; it is alm
impossible to distinguish all the different outcomes, so
may not be practical, but it is interesting to investigate e
tanglement of these quantum channels. As we will show
the following, the quantum channel for encoding the fiv
qubit code requires three-ebit entanglement, the seven-q
code requires two-ebit entanglement and the nine-qubit c
requires one-ebit entanglement. It is interesting that the m
condensed error correction code requires the most entan
ment.

We first show the seven-qubit quantum error correct
code via entanglement because it contains higher symm
The two output state basis for encoding are

uf0&5
1

2A2
$u000&~ u0000&1u1111&)1u011&~ u0011&

1u1100&)1u101&~ u0101&1u1010&)

1u110&~ u0110&1u1001&)%, ~54!

uf1&5
1

2A2
$u111&~ u0000&1u1111&)1u100&~ u0011&

1u1100&)1u010&~ u0101&1u1010&)

1u001&~ u0110&1u1001&)%. ~55!

The LRUO’s are given byU105sz^ •••^ sz and U015sx
^ •••^ sx . In this case, one of the even~or odd! order of
qubits will be the error corrected using the rest of the qu

The broadcasting channel for encoding

uje&5~1/A2!~ u0&uf0&1u1&uf1&)

can be written in the following two ways:

uje&5
1

4
$~ u0000&1u1111&)~ u0000&1u1111&)

1~ u0011&1u1100&)~ u0011&1u1100&)

1~ u0101&1u1010&)~ u0101&1u1010&)

1~ u0110&1u1001&)~ u0110&1u1001&)% ~56!

5~ u00&1u11&)~ u00&1u11&)~ u00&1u11&)

^ ~ u00&1u11&)1~ u00&2u11&)

^ ~ u00&2u11&)~ u00&2u11&)~ u00&2u11&)

1~ u01&1u10&)~ u01&1u10&)~ u01&1u10&)

e

,

on-
1-9
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~ u01&1u10&)1~ u01&2u10&)

^ ~ u01&2u10&)~ u01&2u10&)~ u01&2u10&). ~57!

Both representations suggest that this state can be consid
to be a maximally entangled state of four levels.~The first
representation is in two maximally entangled four-level p
ticles and the second is in four maximally entangled fo
level particles.! Thus the state has log2452 e-bit entangle-
ment.

For the five-qubit error correction code via entangleme
the output state basis for encoding is given by~in the repre-
sentation of Barencoet al. @21#!

uf0&5u0001111&u00&2u0101101&u11&

1u0011110&u01&1u0111100&u10&, ~58!

uf1&52u0002111&u11&2u0102101&u00&

2u0012110&u10&1u0112100&u01&. ~59!

In this case, the first qubit will be error corrected using t
rest of qubits. The role of qubits are rather asymmetric in t
case. The LRUO’s are given by

U105sx^ sx^ sx^ 1^ 1 ~60!

and

U0152sz^ sz^ sx^ sz•sx^ sz•sx . ~61!

The quantum channel for this case can be represented b
maximally entangled state of an eight-level system, wh
contains three ebits of entanglement.

For the nine-qubit error correction code, the encoding o
put state basis are:

uf0&5u0001111&u0001111&u0001111&, ~62!

uf1&5u0002111&u0002111&u0002111&. ~63!

The LRUO’s are given byU105sx^ •••^ sx and U015
sx^ •••^ sx ~although these LRUO’s are not unique!. In
this case, any of the qubits in the state can be error corre
using the rest of qubits, so the role of each qubit is v
symmetric. The quantum channel for encoding is represe
by the maximally entangled state of two-level system, wh
suggests the amount of entanglement is one ebit.

VI. SUMMARY

We have presented a generalization of quantum telepo
tion for distributing quantum information of ad-level par-
ticle from a sender toM remote receivers via an initially
shared multiparticle entangled state. The entangled s
functions as a multiparty quantum channel for distributi
information. This entangled state is a maximally entang
state between the port particle of the sender and the ou
particles of the receivers. The existence of two LRUO (U10

local

and U01
local) for the output state basis is essential for our
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formation distribution to allow multiple receivers at arbitra
locations.

We have presented optimal quantum information bro
casting of ad-level particle, asymmetric telecloning of qu
bits, and tele-error-correction as examples of the quan
information distribution scheme. For the quantum inform
tion broadcasting, we show the pure output state for 1→M
optimal cloning ofd-level particles including ancillas. This
output state is a physical implementation of the optimal clo
ing map presented by Werner@12#. The investigation of the
asymmetric telecloning for qubits suggests thatquantumin-
formation of the input qubit is only transmitted by adirectly
entangled channel. The tele-error-correction scheme prov
another interpretation of quantum error correction from
viewpoint of entanglement and allows an interesting obs
vation of the amount of entanglement required for the qu
tum channel for encoding. This scheme can be used for
cure communication.
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APPENDIX

We show a detailed derivation of Eq.~27!. First we show
the casei 50 and then show the caseiÞ0. For the case of
i 50, the terms which give nonvanishing contribution of t
scalar product in Eq.~27! are the terms which contains a
least one$0% in the computational basis representation. T
requiresa050. Only the firstnM21 out of nM terms in the
symmetrized statesujk

M& area050 and contribute in the sum
of Eq. ~27!. For 0<k<nM2121, a symmetric state can b
decomposed into the two parts:

ujk
M&5

1

AN~jk
M !

uPM~0,a1 , . . . ,aM21!&PA

5
1

AN~jk
M !

u0&P^ uPM21~a1 , . . . ,aM21!&

1
1

AN~jk
M !

(
ajÞ0

uaj& ^ uPM21~0, . . . ,aj 21 ,

aj 11 , . . . ,aM21!&. ~A1!

The scalar product is now given by
1-10
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(
k50

nM21

P^0ujk
M&PA^ ujk

M&C

5 (
k50

nM2121

P^0ujk
M&PA^ ujk

M&C

5 (
k50

nM2121 AN~jk
M21!

N~jk
M !

ujkM21& ^ ujk
M&C ~A2!

which is a special case of Eq.~27! with k5g (0,k8)5k8.
For iÞ0, the decomposition of theM particle symme-

trized state in terms of theM21 symmetrized state is

ujk
M&5

1

AN~jk
M !

uPM~a0 ,a1 ,•••,aM21!&PA

5
1

AN~jk
M !

uaj5 i &P^ uPM21~a0 , . . . ,

aj 21 ,aj 11 , . . . ,aM21!&A1
1

AN~jk
M !

(
ajÞ i

uaj&
d

r-

cu
,
ci

s

a-

03231
^ uPM21~a0 , . . . ,aj 21 ,aj 11 , . . . ,aM21!&A .

~A3!

Then the scalar product is

(
k50

nM21

P^ i ujk
M&PA^ ujk

M&C

5 (
k850

nM2121 AN~jk8
M21

!

N~jk
M !

ujk8
M21&PA^ ujk

M&C

5 (
k850

nM2121 AN~jk8
M21

!

N~jg( i ,k8)
M

!
ujk8

M21&PA^ ujg( i ,k8)
M &C

~A4!

sincek5g( i ,k8).
.
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@8# V. Bužek and M. Hillery, Phys. Rev. A54, 1844 ~1996!; M.
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