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Quantum-state estimation by self-learning measurements
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We describe strategies for quantum-state estimation based on self-learning algorithms. In contrast to the
optimal estimation procedures proposed earlier, our schemes rely on measurements performed separately on
each quantum system in a finite ensemble. We numerically simulate our strategies in the case of finite en-
sembles of qubits and compare the resulting average fidelities to the fidelity of optimal quantum-state
estimation.

PACS numbdps): 03.67—a, 03.65.Bz

[. INTRODUCTION the quantum system we are dealing with and the correspond-
ing notation. Section Ill contains the description of the self-
Quantum mechanics is a theory based on ensembles tfarning algorithm that is used in connection with the differ-
objects. Usually these ensembles are assumed to be infinitet optimization strategies presented in Sec. IV. The results
In this case the corresponding quantum state, containing th@f our state estimation schemes are shown and discussed in
complete information about the ensemble, can be determinedec. V followed by some concluding remarks in Sec. VI.
exactly, provided that we perform suitable measuremldnts
In practice, however, we never encounter infinite ensembles Il. QUANTUM SYSTEM AND MEASUREMENT
which would require infinite resources of energy and time. OPERATOR
Therefore, the question arises how much information can be ) ) L
extracted form a finite ensemble of quantum objects. Are we N thiS paper we will concentrate on the state estimation
able to identify the underlying quantum st&88? In general for two-leve_l systems in order to keep the formalism and the
this will be impossible, but we can estimd@4] the state presented ideas as simple as possible. We want to s_tress,
guided by an appropriate strategy. Of course, the fidelity 0]hovyever, that the discussed schemes can also b_e applied to
the estimation strongly depends on this strategy. It wa@rPitrary d-level quantum systems. The problem is the fol-
shown[5-9] that optimal estimation procedures must view I°WiNg- Suppose we are givex identical two-level systems

the finite ensemble of quantum objects as a single composif¥€Pared in the pure stafig). The task is to estimata)) by
system. It is then possible to design a universal algorithmUSing experimentally realizable measurements on the two-

which leads to a finite positive operator valued measuremerlgVe! systems. _

(POVM) for the combined systefi,8]. The result of such a Let us first define the notation and the key elements of our
generalized measurement gives the best possible estimati@f@lySis: Any pure quantum state of a two-level systqm

of the quantum state of the identically prepared quantunp't) can be written down in the Bloch-sphere representation

objects. 0 0
As a consequence, separate measurements on each quan- |g7¢>zcoq2_|0>+sin_ei¢|1>7 (1)
tum object will not result in an optimal estimation. However, 2
separate measurements are in practice relatively easy to re- .
alize. Hence we can ask for the difference between optimd{"here|0> and|1) are the two basis states. The parameters
state estimation and estimation strategies based on measufts [0:7], ¢€[0,2m) uniquely determine a state vector and
ments that are performed on each quantum object separatejence we can associaté, $) to the point ¢,¢) on the
This is the scope of the discussion in the present paper. IRloch sphere. . o
particular, we shall analyze strategies which rest upon self- BY using these state#, ¢) we can find a parametrization
learning algorithms. That is, we optimally design thth  Of general density matrices
measurement by using the results of the-(1)th, (n—2)th, . o
etc., measurement. We shall exemplify these algorithms for p:f desinaf dpw(8,¢)|0,6)(6, | 2)
finite ensembles o spin 1/2 systemsgqubits. 0 0
We emphasize that such a state estimation is not of aca-
demic interest only. Let us imagine a situation in which awith the normalized probability distributiow(6,¢), i.e.,
guantum algorithm has been implemented on a quantum _ .
computer. One wc_)uld now start test runs. A test could be the J dosing | de w(6,é)=1. &)
output of a certain qubit which then has to be measured. 0 0
Since we cannot start the quantum computer infinitely often,
we will always be confronted with a finite ensemble of testTo guarantee the experimental realizability of our proposed
qubits. Moreover, we will only get these qubits sequentiallymeasurement strategy we restrict ourselves to a simple class
[10] and hence we have to measure them one after the othesf measurement operators. This class consists of von Neu-
The paper is organized as follows. In Sec. Il we introducemann measurements, e.g., polarization or spin measurements
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along a certain axisf,,¢,). The tunable parametei,

. . m T th t: result 0 or 1
and ¢,, define the direction of the projection on the Bloch M easiTement: TR T o

sphere surface. The corresponding projection operator reads
16, bim) = O, S Orn, Sl (4) i
Pn—1
with { n—on+1
Pn
Om O
|0m,¢m>=cos7|0>+sm 7e‘¢m|1>. (5)
We therefore find two measurement results. Either the sys- Design of optimized (n + 1)th measurement
tem described by#, ¢), Eq. (1), is polarized in the direction
(0m.m) or in the opposite direction given bym{- 6, m FIG. 1. Schematic picture showing the sequence of steps in the
+ ¢m). We encode the first result by the number 1 and theself-learning algorithm. The algorithm starts with performing the
second by the number 0. nth experiment. The measurement result is then used to update the

The two possible outcomes of the measurement ocCUstimated density operatpy,_;. With the help of the updated den-

with the probabilities sity operatorp, the measuring operator for the{ 1)th measure-
ment is selected and the algorithm restarts.

P1(01¢| OmsPm) = |<9ma¢m| 0!¢>|2
(1) We take the firstn=1, of theN quantum systems and

=cod 0_26'“ Co§¢_2¢m perform a measurement with randomly chosen direction
(Om, Pm)-
0+ 0 b— b (2) Each measurement yields one of the two possible out-
+cog > T sir? 5 T (68  comes that we denote by=0 andi=1. By using this infor-
mation we modify the distribution,,_4(6,®) of the esti-
mated density operator
and
R T ) 2w
Po(0, 8|0, pm)=1—P1(6,¢| 0, dm) Pn-1= fo désing 0 dow,_1(6,9)]6,0)(0,¢| (8)
0—6 -
=sir? 5 il coszd) 2¢m according to Bayes' rulgl2]
-1
0+ 6 _ Wn(01¢)zz Pi(6a¢|0m:¢m)wn—l(01¢) (9)
+ it — m 2 2¢m (6b)

with normalization constant

2
déPi(0,| 0, pm)Wn-1(6,¢)

0

and clearly depend on the chosen direction and on the mea- 7o Wd )
sured quantum state. =/, 0sing

(10)

Ill. SELF-LEARNING ALGORITHMS . i
and with the probabilitie®;, Eqs.(6a) and(6b). Hence we

We now propose a self-learning measurement strategyet the updated distributiow,, and the corresponding den-

[11] to optimize the estimation of a quantum state sity operatorp,, Eq. (2). Before we have acquired any in-
® ® formation about the system, we assume our knowledge to be
— coS— |0} + sin — e ®|1 7 randomly distributed over the Bloch sphere; that is, we start
|4) 2 10) 2 R @ from the initial distribution

from a finite ensemble oN identically prepared quantum

systems. Note that the Bloch anglé3,(b) are the same for Wo( 8, )= A
all N systems. Contrary to the optimal measurement schemes

presented in Refd.6—-9], in which simultaneous measure- (3) This updated probability distributionv,(6,¢) de-
ments on allN quantum systems are used, we do restrictscribes the present knowledge about the quantum state. With
ourselves to simple projection measurements on single quaits help we determine then(+1)th measuring operator, i.e.,
tum systems because of their experimental realizability. Wehe parameters,,, and ¢, by which it is quantified. The new
will show that it is possible to come close to the theoreticalmeasuring operator should be designed in such a way that it
optimal estimation limit by using a measurement strategyallows us to gain the maximum amount of information about
based on the following self-learning algorithm, cf. Fig. 1, the unknown quantum state). For this purpose we have to
which consists of five steps. apply a criterion by which we quantify the notion of maxi-

11
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mum information gain. The different criterions that we use inmize the average classical information that we can get in the
this context will be described in detail in the next section.measurement step from—1 to n. This average information
This step reflects the self-learning aspect of our algorithmis defined in general as

because the choice of a measuring operator is basgg), on
and thereby on the history of all previous measurement out- S=-> pi Inpi, (14)
comes. [

(4) Once having found the next measuring operator

f1(6,,,,,) we now take one of the remaining quantum Sys_with p; being the probak.)iliit.y of the measurement outcame
tems, and measure it. If we still have some more quanturd*S W€ do not know the initial state, we can only calculate an

systems left, we continue with step 2. estimated average information gain based on our already es-

(5) After we have used up al qubits we analyze the timated density operatgr,_;. In our case we have only two
final probability distributionwy( 6, ¢). As we know that our ~ possible outcomes=0,1 and the estimated probabilities
unknown qubit was initially prepared in a pure sty ~ are given by
=|0,®) we now select the estimated state,)=| 0, be)

from wy (6, ). Pa( 0my¢m):<0ma¢m|;)n—1|0m:¢m>

As the measure of our state estimation quality, expressed - .
by an estimated pure stafté.), we will use the fidelity :f dasinef dow,_1(6,¢)

0 0
F=[(sel 9)|*=1(0e, ¢e|©,P)I%, (12
° o X[( O bl 0, 0)17
which is just the absolute value squared of the scalar product
between the initial and estimated state. Po(Om, Pm) =1—P1(Om, Pm)- (15
V. OPTIMIZATION STRATEGIES Using these expressions we get the estimated average infor-
mation gain

In this section we will describe the optimization strategies
that we have used to find the sequence of projection opera- S(O0m, dm) =~ P1(Om, Pm)IN P1( O, drm)
tors T1(6m, ém) = Oms Pm){ Om,dml and the corresponding — Do Orns b 1N Po( Oums bir) (16)

estimated stat@y,) finally estimated afteN measurements.

that depends on the parametés, ¢,, of the nth measure-
A. Random selection ment. Hence we can maximi& 6,,,, ¢,,) by adjusting these

The easiest way to select a new measuring operatdparameters and select the measuring operBto,,, ¢,

1(6,,, ¢, is to choose the parametefis and ¢, randomly that yields the maximum average information gain.

on the Bloch sphere, independent of any knowledge about  1N€ estimated stat@le) = | 6e , ) is finally again deter-

the state. That is, each infinitesimal surface elemenflined as in the previous measurement method, namely, by
sing,d6,,d¢,, occurs with the same probability 1# Thus ~ ch0osing the most probable pure state frof.

this strategy is not self-learning becalﬁ;eam,¢m) does not o S
depend on previous measurement outcomes. Nevertheless, C. Fidelity maximization

the estimated density operatpy, can still be updated after The criterion for the quality of our state estimation is the

each measurement as described in step 2 of our algorithmfidelity, Eq. (12). It is the target function that we want to
The random choice implements a measurement protocahaximize in the end. Therefore, we now consider a strategy

lacking any constructive strategy. Thus the results of thighat tries to maximize a mean fidelity after each measure-

method will serve as a reference to which we can comparenent step.

the outcomes of the two optimization strategies described Let us again assume that we have already performed

below. —1 measurements and possess an estimated density operator
Eventually, our knowledge about the initial quantum statej, .. with this knowledge we can now determine the esti-

|¢) is stored in the final probability distributiowy . Since  mated density operator

we assume that the initial state was pure, our estimated state

should be pure as well. For this reason we select the most ~iy [T 2m ()
probable pure state fromuy, which means nothing else than Pn = 0 dgsing 0 dgwy’(6,¢)|6,4)(6.¢|  (17)
choosing the estimated stdig,)=| 0., $e) such that
_ after thenth measurement, assuming that the outcome of the
WN( e, de) =mMax, s Wn( 6, d). 13 measurement was=0 ori=1. The probability distribution
w()(6,4) can be expressed in terms of the already known
B. Maximization of average information gain w,_1(6,¢) by using Bayes’ rule
If we look at the measurement procedure from an infor- 0 .
mation theoretic point of view then our aim will be to maxi- Wy'(0,4)=2""Pi(0,¢| 0, dr)Wn-1(0,4) (18
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with Z given by Eq.(10). Note thatw{ also explicitly de- Y

pends on the measuring parametefs (¢,). The expected
mean fidelityF , after the next measurement is then given by 0.34

1
Fo=2 PilOm (65 V160168, 4)), (19 0.2, .

*
%
>
>
-
*

wherep;(6,,,¢m), given by Eq.(15), are the estimated prob- 0.1 +
abilities to find result, if the measuring operatdi(6,,, ¢ .

was used. Additionally|6(’,4{") is the pure state that ; y y ; J + N
would be estimated after theh measurement, if the result
was found. As we are not restricted to a special estimated F|G. 2. Plot of the ratioy= (f — fop)/ fopt VErsus numbeN of

pure state by any criterion, the parameta?$)(¢ﬂ)) can be  quantum systems. The three curves show the results of numerical
varied independently of each other and of the parametersmulations for three optimization strategies. The biggest errors are

(O, dm)- found for the random selection strategstarg. By optimizing the
Therefore, the expected mean fidelity average information gaifrhombs we already get smaller errors.
The best results are found for the fidelity maximization strategy
Fr=Fn(0m,bm, 9510) ’ ¢§10) ’ 9511) ’ (1)511)) (200 (triangles.

is a function of six parameters that can be chosen indeper¥he initial states), Eq.(7), are chosen randomly weighted
dently of each other. by an isotropic probability distribution 1/(#) over the sur-
We now want to select the next measuring operatoface of the Bloch sphere. Such an average fidelity really

[1(6,,,¢,,) in such a way thafE, will be maximized. This duantifies the performance of an estimation strategy since it

leads to the optimal expected fidelity is not biased by any specific choice of initial states.
The average fidelity for eadl was obtained by averaging
FOPY(goPt 4Pt (0)0Pt 4(0)0Pt ((1).0pt 4(1).0PE) over 1¢ experiments, i.e., ZOinitial states equally distrib-
n m %m Yn »%n +Un » Pn .
- uted over the Bloch sphere. For the sake of a clear graphical
=maxF (O, m, 0,0, 6 41y, (21)  presentation not the average fidelities themselves but the av-

erage errors
Having found thisFSP' we then perform theth measure-

ment using the operatdi (6™, #5P"). The actual values of

the stateg 6 °P", ) °P") are not yet needed as long as we are calculated for differenn [13]. In Fig. 2 the average
still have some more quantum systems left. Only after thexrrorsf are compared to the average error

Nth measurement the actually estimated state will be chosen

according to the parameterg{{ °P', {{-°PY), if the Nth out- fopt=1—(Fopy

come had been i.e., |ge) =6 P! $(?°PY for i=0 and

f=1—(F) (23)

N+1 1

| ey = 6Pt p°PY for i=1. Hence in contrast to the - =~ (24)
two other methods described above the final selectidggf N+2 N+2
is implemented in the fidelity maximization procedure itself. . .
P y P of the optimal measurement schehée-8| by plotting
V. NUMERICAL SIMULATIONS AND RESULTS f—f f
opt
yi= — =1 (25)

In this section we will describe the numerical simulations
for the fidelity calculation and our results. Our aim is to
calculate the average fidelities for the self-learning state estersusN. This quantity is the relative difference between the
timation schemes described above. These average fideliti@yerage errof of our state estimation scheme and the opti-
will depend on the numbeN of identically prepared quan- mal one. The points for the information gain and fidelity
tum systems that we have at our disposal. Thus one sta@ptimization strategies are all positive but lie below the
estimation experiment consists of a sequenchl afieasure- points for random selection. This means that we can indeed
ments performed ol identical systems in states) and a  improve the quality of state estimation by applying these
subsequent estimation of a pure sthige)=|6.,¢.). The oOptimization strategies. Note that for random selectipn
fidelity F, Eq. (12), of the state estimation is then calculatedtakes values up to 0.35. This means thas up to 35%
by comparing| ) to the statd ), Eq. (7). bigger thanf,,; whereas this worst case value drops to 20%

However, we have to perform such a single run of thefor the information gain and 10% for the fidelity optimiza-
(numerical experiment over and over again for different tion strategies. However, we clearly cannot reach the optimal

fopt fopt

states| ) in order to get the average fidelity limit, Eqg. (24), for simultaneous measurements. Moreover,
the fidelity optimization turns out to be better than the infor-
(FY={(|{(s z/;>|2)¢. (22 mation gain optimization. This is a consequence of the fact
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(F) schemes. Instead one can use simple polarization measure-
(Fopt ) ments in connection with a clever choice of their direction to
get a comparable estimation quality. It also illustrates the
N STRT T TTE Y above argument that the consideration of optimizations with
" . : * respect to more than just the next measurement can only lead
0.9844% * to minor improvements of the average fidelities.
¢ We also see that we get the largest deviations b))
* for small N<10. Here the collective measurements of the
0.96 1~ optimal schemes offer the biggest advantage compared to
* our single ones. However, in this rangeMfve can also get
* . . . . LN the biggest improvement of the state estimation by the self-
10 20 30 40 50 60 learning optimization strategies compared to the random se-

lection method.
FIG. 3. Relative values of the fidelifF) of separate measure-
ment strategies divided by the fideli(Fopo of optimal measure- VI. CONCLUSION

ments. Again stars denote the results of the random selection strat- o
egy, while rhombs and triangles symbolize information gain and e have presented a state estimation method based on a

fidelity optimization, respectively. self-learning algorithm and simple single-quantum-system
measurements and demonstrated it for pure qubits. The algo-
that the fidelity itself is the target function of our state esti-"Ithm iS used to update the knowledge about the true quan-
mation scheme. Therefore, maximizing this function has tdgum stqte after each measurement and to choose .the bgst
lead to the maximum fidelity in the end. For this reason theN€asuring operator for the next measurement. With this
fidelity maximization strategy sets a lower error bound for allScheéme we are able to get average fidelities that are very

schemes based on single measurements and optimizatiop9Se to the optimal upper limit. Moreover, we do not need to
with respect only to the next, namely, theh measurement. perform a complicated collective measurement that would be

In principle this bound could be further improved, if optimi- reql_Jired to reach this upper limit, but can festrict ourselves
zations with respect to then@-1)th, (n-+2)th mea- © simple separate measurements. An additional advantage of

surement are taken into consideration. We will, however, noPU Scheme is tg_at therle is rr:o need to ha\1e|\laﬂuantum H
deal with these kinds of optimization strategies, because thejYStems at our disposal at the same time. In contrast to the

only complicate the optimization expressions without yield- ptimal measurement schemes it can also be used iNthe
ing much insight or promising great improvements. quantum systems can only be prepared one after the other.

To explore the quantitative relation between the averaga_ hgse features ensure the applipabil_ity of our schgme to ex-
fidelity (Fopy of the optimal measurement and the fidelities periments and practical state estimation problems in quantum

of our self-learning algorithms we plotted the relative values|nf0rmatl0n theory.
(F)/{Fopy in Fig. 3. They show that it is possible to reach
fidelities of more than 0.9%,,) by applying our self-
learning algorithms for alN. Moreover the fidelities folN We acknowledge support by the DFG program
>10 are even bigger than 089,,). This is a remarkable “Quanten-Informationsverarbeitung” and by the European
result and shows that one can avoid using the very compliScience Foundation QIT program. S.H.K. acknowledges
cated measurement prescript of the optimal measuremestpport by the Studienstiftung des deutschen Volkes.
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