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Quantum-state estimation by self-learning measurements
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~Received 28 September 1999; published 11 February 2000!

We describe strategies for quantum-state estimation based on self-learning algorithms. In contrast to the
optimal estimation procedures proposed earlier, our schemes rely on measurements performed separately on
each quantum system in a finite ensemble. We numerically simulate our strategies in the case of finite en-
sembles of qubits and compare the resulting average fidelities to the fidelity of optimal quantum-state
estimation.

PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

Quantum mechanics is a theory based on ensemble
objects. Usually these ensembles are assumed to be infi
In this case the corresponding quantum state, containing
complete information about the ensemble, can be determ
exactly, provided that we perform suitable measurements@1#.
In practice, however, we never encounter infinite ensem
which would require infinite resources of energy and tim
Therefore, the question arises how much information can
extracted form a finite ensemble of quantum objects. Are
able to identify the underlying quantum state@2#? In general
this will be impossible, but we can estimate@3,4# the state
guided by an appropriate strategy. Of course, the fidelity
the estimation strongly depends on this strategy. It w
shown @5–9# that optimal estimation procedures must vie
the finite ensemble of quantum objects as a single compo
system. It is then possible to design a universal algorith
which leads to a finite positive operator valued measurem
~POVM! for the combined system@7,8#. The result of such a
generalized measurement gives the best possible estim
of the quantum state of the identically prepared quant
objects.

As a consequence, separate measurements on each
tum object will not result in an optimal estimation. Howeve
separate measurements are in practice relatively easy t
alize. Hence we can ask for the difference between opti
state estimation and estimation strategies based on mea
ments that are performed on each quantum object separa
This is the scope of the discussion in the present pape
particular, we shall analyze strategies which rest upon s
learning algorithms. That is, we optimally design thenth
measurement by using the results of the (n21)th, (n22)th,
etc., measurement. We shall exemplify these algorithms
finite ensembles ofN spin 1/2 systems~qubits!.

We emphasize that such a state estimation is not of
demic interest only. Let us imagine a situation in which
quantum algorithm has been implemented on a quan
computer. One would now start test runs. A test could be
output of a certain qubit which then has to be measur
Since we cannot start the quantum computer infinitely oft
we will always be confronted with a finite ensemble of te
qubits. Moreover, we will only get these qubits sequentia
@10# and hence we have to measure them one after the o

The paper is organized as follows. In Sec. II we introdu
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the quantum system we are dealing with and the correspo
ing notation. Section III contains the description of the se
learning algorithm that is used in connection with the diffe
ent optimization strategies presented in Sec. IV. The res
of our state estimation schemes are shown and discusse
Sec. V followed by some concluding remarks in Sec. VI.

II. QUANTUM SYSTEM AND MEASUREMENT
OPERATOR

In this paper we will concentrate on the state estimat
for two-level systems in order to keep the formalism and
presented ideas as simple as possible. We want to st
however, that the discussed schemes can also be appli
arbitrary d-level quantum systems. The problem is the fo
lowing. Suppose we are givenN identical two-level systems
prepared in the pure stateuc&. The task is to estimateuc& by
using experimentally realizable measurements on the t
level systems.

Let us first define the notation and the key elements of
analysis. Any pure quantum state of a two-level system~qu-
bit! can be written down in the Bloch-sphere representat

uu,f&5cos
u

2
u0&1sin

u

2
eifu1&, ~1!

where u0& and u1& are the two basis states. The paramet
uP@0,p#, fP@0,2p) uniquely determine a state vector an
hence we can associateuu,f& to the point (u,f) on the
Bloch sphere.

By using these statesuu,f& we can find a parametrizatio
of general density matrices

r̂5E
0

p

du sinuE
0

2p

dfw~u,f!uu,f&^u,fu ~2!

with the normalized probability distributionw(u,f), i.e.,

E
0

p

du sinuE
0

2p

df w~u,f!51. ~3!

To guarantee the experimental realizability of our propos
measurement strategy we restrict ourselves to a simple c
of measurement operators. This class consists of von N
mann measurements, e.g., polarization or spin measurem
©2000 The American Physical Society06-1
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along a certain axis (um,fm). The tunable parametersum
and fm define the direction of the projection on the Bloc
sphere surface. The corresponding projection operator re

P̂~um,fm!5uum,fm&^um,fmu ~4!

with

uum,fm&5cos
um

2
u0&1sin

um

2
eifmu1&. ~5!

We therefore find two measurement results. Either the s
tem described byuu,f&, Eq. ~1!, is polarized in the direction
(um,fm) or in the opposite direction given by (p2um,p
1fm). We encode the first result by the number 1 and
second by the number 0.

The two possible outcomes of the measurement oc
with the probabilities

P1~u,fuum,fm!5u^um,fmuu,f&u2

5cos2
u2um

2
cos2

f2fm

2

1cos2
u1um

2
sin2

f2fm

2
~6a!

and

P0~u,fuum,fm!512P1~u,fuum,fm!

5sin2
u2um

2
cos2

f2fm

2

1sin2
u1um

2
sin2

f2fm

2
~6b!

and clearly depend on the chosen direction and on the m
sured quantum state.

III. SELF-LEARNING ALGORITHMS

We now propose a self-learning measurement strat
@11# to optimize the estimation of a quantum state

uc&5cos
Q

2
u0&1sin

Q

2
eiFu1& ~7!

from a finite ensemble ofN identically prepared quantum
systems. Note that the Bloch angles (Q,F) are the same for
all N systems. Contrary to the optimal measurement sche
presented in Refs.@6–9#, in which simultaneous measure
ments on allN quantum systems are used, we do rest
ourselves to simple projection measurements on single q
tum systems because of their experimental realizability.
will show that it is possible to come close to the theoreti
optimal estimation limit by using a measurement strate
based on the following self-learning algorithm, cf. Fig.
which consists of five steps.
03230
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~1! We take the first,n51, of theN quantum systems an
perform a measurement with randomly chosen direct
(um,fm).

~2! Each measurement yields one of the two possible o
comes that we denote byi 50 andi 51. By using this infor-
mation we modify the distributionwn21(u,f) of the esti-
mated density operator

r̂n215E
0

p

du sinuE
0

2p

dfwn21~u,f!uu,f&^u,fu ~8!

according to Bayes’ rule@12#

wn~u,f!5Z21Pi~u,fuum,fm!wn21~u,f! ~9!

with normalization constant

Z5E
0

p

du sinuE
0

2p

dfPi~u,fuum,fm!wn21~u,f!

~10!

and with the probabilitiesPi , Eqs.~6a! and ~6b!. Hence we
get the updated distributionwn and the corresponding den
sity operatorr̂n , Eq. ~2!. Before we have acquired any in
formation about the system, we assume our knowledge to
randomly distributed over the Bloch sphere; that is, we s
from the initial distribution

w0~u,f!5
1

4p
. ~11!

~3! This updated probability distributionwn(u,f) de-
scribes the present knowledge about the quantum state.
its help we determine the (n11)th measuring operator, i.e
the parametersum andfm by which it is quantified. The new
measuring operator should be designed in such a way th
allows us to gain the maximum amount of information abo
the unknown quantum stateuc&. For this purpose we have t
apply a criterion by which we quantify the notion of max

FIG. 1. Schematic picture showing the sequence of steps in
self-learning algorithm. The algorithm starts with performing t
nth experiment. The measurement result is then used to updat

estimated density operatorr̂n21. With the help of the updated den

sity operatorr̂n the measuring operator for the (n11)th measure-
ment is selected and the algorithm restarts.
6-2
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mum information gain. The different criterions that we use
this context will be described in detail in the next sectio
This step reflects the self-learning aspect of our algorith
because the choice of a measuring operator is based or̂n
and thereby on the history of all previous measurement
comes.

~4! Once having found the next measuring opera
P̂(um,fm) we now take one of the remaining quantum sy
tems, and measure it. If we still have some more quan
systems left, we continue with step 2.

~5! After we have used up allN qubits we analyze the
final probability distributionwN(u,f). As we know that our
unknown qubit was initially prepared in a pure stateuc&
5uQ,F& we now select the estimated stateuce&5uue ,fe&
from wN(u,f).

As the measure of our state estimation quality, expres
by an estimated pure stateuce&, we will use the fidelity

F5u^ceuc&u25u^ue ,feuQ,F&u2, ~12!

which is just the absolute value squared of the scalar pro
between the initial and estimated state.

IV. OPTIMIZATION STRATEGIES

In this section we will describe the optimization strateg
that we have used to find the sequence of projection op
tors P̂(um,fm)5uum,fm&^um,fmu and the corresponding
estimated stateuce& finally estimated afterN measurements

A. Random selection

The easiest way to select a new measuring oper
P̂(um,fm) is to choose the parametersum andfm randomly
on the Bloch sphere, independent of any knowledge ab
the state. That is, each infinitesimal surface elem
sinumdumdfm occurs with the same probability 1/4p. Thus
this strategy is not self-learning becauseP̂(um,fm) does not
depend on previous measurement outcomes. Neverthe
the estimated density operatorr̂n can still be updated afte
each measurement as described in step 2 of our algorith

The random choice implements a measurement prot
lacking any constructive strategy. Thus the results of t
method will serve as a reference to which we can comp
the outcomes of the two optimization strategies descri
below.

Eventually, our knowledge about the initial quantum st
uc& is stored in the final probability distributionwN . Since
we assume that the initial state was pure, our estimated
should be pure as well. For this reason we select the m
probable pure state fromwN , which means nothing else tha
choosing the estimated stateuce&5uue ,fe& such that

wN~ue ,fe!5max$u,f%wN~u,f!. ~13!

B. Maximization of average information gain

If we look at the measurement procedure from an inf
mation theoretic point of view then our aim will be to max
03230
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mize the average classical information that we can get in
measurement step fromn21 to n. This average information
is defined in general as

S52(
i

pi ln pi , ~14!

with pi being the probability of the measurement outcomei.
As we do not know the initial state, we can only calculate
estimated average information gain based on our already
timated density operatorr̂n21. In our case we have only two
possible outcomesi 50,1 and the estimated probabilitiespi
are given by

p1~um,fm!5^um,fmur̂n21uum,fm&

5E
0

p

du sinuE
0

2p

dfwn21~u,f!

3u^um,fmuu,f&u2

p0~um,fm!512p1~um,fm!. ~15!

Using these expressions we get the estimated average i
mation gain

S~um,fm!52p1~um,fm!ln p1~um,fm!

2p0~um,fm!ln p0~um,fm! ~16!

that depends on the parametersum, fm of the nth measure-
ment. Hence we can maximizeS(um,fm) by adjusting these
parameters and select the measuring operatorP̂(um,fm)
that yields the maximum average information gain.

The estimated stateuce&5uue ,fe& is finally again deter-
mined as in the previous measurement method, namely
choosing the most probable pure state fromwN .

C. Fidelity maximization

The criterion for the quality of our state estimation is t
fidelity, Eq. ~12!. It is the target function that we want t
maximize in the end. Therefore, we now consider a strat
that tries to maximize a mean fidelity after each measu
ment step.

Let us again assume that we have already performen
21 measurements and possess an estimated density op
r̂n21. With this knowledge we can now determine the es
mated density operator

r̂n
( i )5E

0

p

du sinuE
0

2p

dfwn
( i )~u,f!uu,f&^u,fu ~17!

after thenth measurement, assuming that the outcome of
measurement wasi 50 or i 51. The probability distribution
wn

( i )(u,f) can be expressed in terms of the already kno
wn21(u,f) by using Bayes’ rule

wn
( i )~u,f!5Z21Pi~u,fuum,fm!wn21~u,f! ~18!
6-3
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FISCHER, KIENLE, AND FREYBERGER PHYSICAL REVIEW A61 032306
with Z given by Eq.~10!. Note thatwn
( i ) also explicitly de-

pends on the measuring parameters (um,fm). The expected
mean fidelityF̄n after the next measurement is then given

F̄n5(
i 50

1

pi~um,fm!^un
( i ) ,fn

( i )ur̂n
( i )uun

( i ) ,fn
( i )&, ~19!

wherepi(um,fm), given by Eq.~15!, are the estimated prob
abilities to find resulti, if the measuring operatorP̂(um,fm)
was used. Additionally,uun

( i ) ,fn
( i )& is the pure state tha

would be estimated after thenth measurement, if the resulti
was found. As we are not restricted to a special estima
pure state by any criterion, the parameters (un

( i ) ,fn
( i )) can be

varied independently of each other and of the parame
(um,fm).

Therefore, the expected mean fidelity

F̄n5F̄n~um,fm,un
(0) ,fn

(0) ,un
(1) ,fn

(1)! ~20!

is a function of six parameters that can be chosen indep
dently of each other.

We now want to select the next measuring opera
P̂(um,fm) in such a way thatF̄n will be maximized. This
leads to the optimal expected fidelity

F̄n
opt~um

opt ,fm
opt ,un

(0),opt,fn
(0),opt ,un

(1),opt ,fn
(1),opt!

5maxF̄n~um,fm,un
(0) ,fn

(0) ,un
(1) ,fn

(1)!. ~21!

Having found thisF̄n
opt we then perform thenth measure-

ment using the operatorP̂(um
opt ,fm

opt). The actual values o
the statesuun

( i ),opt ,fn
( i ),opt& are not yet needed as long as w

still have some more quantum systems left. Only after
Nth measurement the actually estimated state will be cho
according to the parameters (uN

( i ),opt ,fN
( i ),opt), if the Nth out-

come had beeni, i.e., uce&5uuN
(0),opt ,fN

(0),opt& for i 50 and
uce&5uuN

(1),opt ,fN
(1),opt& for i 51. Hence in contrast to the

two other methods described above the final selection ofuce&
is implemented in the fidelity maximization procedure itse

V. NUMERICAL SIMULATIONS AND RESULTS

In this section we will describe the numerical simulatio
for the fidelity calculation and our results. Our aim is
calculate the average fidelities for the self-learning state
timation schemes described above. These average fide
will depend on the numberN of identically prepared quan
tum systems that we have at our disposal. Thus one s
estimation experiment consists of a sequence ofN measure-
ments performed onN identical systems in stateuc& and a
subsequent estimation of a pure stateuce&5uue ,fe&. The
fidelity F, Eq. ~12!, of the state estimation is then calculat
by comparinguce& to the stateuc&, Eq. ~7!.

However, we have to perform such a single run of t
~numerical! experiment over and over again for differe
statesuc& in order to get the average fidelity

^F&5^u^ceuc&u2&c . ~22!
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The initial statesuc&, Eq. ~7!, are chosen randomly weighte
by an isotropic probability distribution 1/(4p) over the sur-
face of the Bloch sphere. Such an average fidelity rea
quantifies the performance of an estimation strategy sinc
is not biased by any specific choice of initial states.

The average fidelity for eachN was obtained by averagin
over 104 experiments, i.e., 104 initial states equally distrib-
uted over the Bloch sphere. For the sake of a clear graph
presentation not the average fidelities themselves but the
erage errors

f 512^F& ~23!

are calculated for differentN @13#. In Fig. 2 the average
errorsf are compared to the average error

f opt512^Fopt&

512
N11

N12
5

1

N12
~24!

of the optimal measurement scheme@6–8# by plotting

g:5
f 2 f opt

f opt
5

f

f opt
21 ~25!

versusN. This quantity is the relative difference between t
average errorf of our state estimation scheme and the op
mal one. The points for the information gain and fideli
optimization strategies are all positive but lie below t
points for random selection. This means that we can ind
improve the quality of state estimation by applying the
optimization strategies. Note that for random selectiong
takes values up to 0.35. This means thatf is up to 35%
bigger thanf opt whereas this worst case value drops to 20
for the information gain and 10% for the fidelity optimiza
tion strategies. However, we clearly cannot reach the opti
limit, Eq. ~24!, for simultaneous measurements. Moreov
the fidelity optimization turns out to be better than the info
mation gain optimization. This is a consequence of the f

FIG. 2. Plot of the ratiog[( f 2 f opt)/ f opt versus numberN of
quantum systems. The three curves show the results of nume
simulations for three optimization strategies. The biggest errors
found for the random selection strategy~stars!. By optimizing the
average information gain~rhombs! we already get smaller errors
The best results are found for the fidelity maximization strate
~triangles!.
6-4
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QUANTUM-STATE ESTIMATION BY SELF-LEARNING . . . PHYSICAL REVIEW A61 032306
that the fidelity itself is the target function of our state es
mation scheme. Therefore, maximizing this function has
lead to the maximum fidelity in the end. For this reason
fidelity maximization strategy sets a lower error bound for
schemes based on single measurements and optimiza
with respect only to the next, namely, thenth measurement
In principle this bound could be further improved, if optim
zations with respect to the (n11)th, (n12)th, . . . mea-
surement are taken into consideration. We will, however,
deal with these kinds of optimization strategies, because
only complicate the optimization expressions without yie
ing much insight or promising great improvements.

To explore the quantitative relation between the aver
fidelity ^Fopt& of the optimal measurement and the fideliti
of our self-learning algorithms we plotted the relative valu
^F&/^Fopt& in Fig. 3. They show that it is possible to reac
fidelities of more than 0.98^Fopt& by applying our self-
learning algorithms for allN. Moreover the fidelities forN
.10 are even bigger than 0.99^Fopt&. This is a remarkable
result and shows that one can avoid using the very com
cated measurement prescript of the optimal measurem

FIG. 3. Relative values of the fidelitŷF& of separate measure
ment strategies divided by the fidelity^Fopt& of optimal measure-
ments. Again stars denote the results of the random selection s
egy, while rhombs and triangles symbolize information gain a
fidelity optimization, respectively.
e
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r
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ct

ry
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schemes. Instead one can use simple polarization mea
ments in connection with a clever choice of their direction
get a comparable estimation quality. It also illustrates
above argument that the consideration of optimizations w
respect to more than just the next measurement can only
to minor improvements of the average fidelities.

We also see that we get the largest deviations from^Fopt&
for small N,10. Here the collective measurements of t
optimal schemes offer the biggest advantage compare
our single ones. However, in this range ofN we can also get
the biggest improvement of the state estimation by the s
learning optimization strategies compared to the random
lection method.

VI. CONCLUSION

We have presented a state estimation method based
self-learning algorithm and simple single-quantum-syst
measurements and demonstrated it for pure qubits. The a
rithm is used to update the knowledge about the true qu
tum state after each measurement and to choose the
measuring operator for the next measurement. With
scheme we are able to get average fidelities that are
close to the optimal upper limit. Moreover, we do not need
perform a complicated collective measurement that would
required to reach this upper limit, but can restrict ourselv
to simple separate measurements. An additional advantag
our scheme is that there is no need to have allN quantum
systems at our disposal at the same time. In contrast to
optimal measurement schemes it can also be used if thN
quantum systems can only be prepared one after the o
These features ensure the applicability of our scheme to
periments and practical state estimation problems in quan
information theory.
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