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Manipulating two-spin coherences and qubit pairs
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A compact derivation is given for propagators of a wide class of time-dependent Hamiltonians that describe
coupled spin~‘‘qubit’’ ! pairs. As many as eight of the 16 operators in the system, each with its own time-
dependent coefficient, can be handled with no more difficulty than a single spin in a magnetic field. A single
first-order~in time!, quadratically nonlinear differential equation for a classical function is the only nontrivial
ingredient in constructing the full quantum propagator for a wide variety of magnetic coherences and qubit
interactions.

PACS number~s!: 03.67.Lx, 03.65.Db, 76.60.2k
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Nuclear magnetic resonance~NMR! and other spin reso
nance spectroscopies have long studied coherences bet
two or more quantum spins, both their establishment
their measurement with the aid of suitable magnetic fi
pulses@1,2#. More recently, coupled spins as models for va
ous logic gates have been of much interest for quantum c
putation@3,4#. NMR itself provides one of the candidate sy
tems as possible ‘‘hardware’’ for a realizable quantu
computer@5#. All these problems involve the study of th
Hamiltonian, often time dependent, for coupled spins.
deed, such a study has an even broader context becau
the well-known mapping of any two-level system into
quantum spin1

2, of four-level systems into two coupled sp
1
2, etc. Pairs of spin1

2, in particular, have modeled a wid
range of problems in physics, from combined spin and is
pin @the groups U~4! and SU~4!# in nuclei and particles@6# to
the states of anf electron in the crystal field of CeB6, which
are associated with unusual magnetic phases@7#. We present
in this paper a general technique for handling such pairs
spins with time-dependent coupling.

Although the general formalism we use@8# applies to ar-
bitrary spin j, we will focus primarily on j 5 1

2 , which has
specific simplifications. For a pair of spin12 ~two qubits in the
terminology of quantum computation@3,4#!,there are in all
434 linearly independent operators that close under mu
commutator brackets. As a result, any Hamiltonian of
system can be solved in terms of these 16 operators. H
ever, most of the NMR coherences and quantum logic g
that are studied involve smaller subsets, typically sets of f
or six of the 16 operators@1,3#. These have been well studie
and documented. The main aim of this paper is to pres
simple, compact, closed form solutions of time-depend
Hamiltonians involving as many as eight of the operators
thus eight arbitrary functions of time as coefficients. Furth
the complete solution of the time-dependent Schro¨dinger
equation, or the equivalent Liouville-Bloch equation for t
density matrix, reduces to the solution of the same class
Riccati ~first order in time with quadratic nonlinearity! equa-
tion that occurs in a single-spin problem as recently p
sented@8#, together with simple integrations and exponent
tions. A key result that underlies our solution may be
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interest by itself. To our knowledge, it does not seem to h
been noted before that our construction below in Eq.~9!
recasts six two-spin operators as a pair of independent p
dospins.

Representing the operators for the two spins by1
2 sW and

1
2 tW , along with their unit operators, wheresW andtW are Pauli
spinors and we have set\51, the 16 independent operato
of the pair are given in Table I in a standard notation@9#.

Any operator describing magnetic couplings between
spins as well as the coupling of each spin to an external fi
can be cast as a linear combination of the 16 operatorsOi
with coefficients which may, in general, be functions of tim

H~ t !5(
i 51

16

ai~ t !Oi . ~1!

Various groupings of the 16Oi have physical signifi-
cance. Thus, in the literature on NMR coherences, the
row in Table I is a ‘‘diagonal’’ set of four, the second an
third rows describe ‘‘transverse, single-quantum coh
ences,’’ respectively, ofs andt spins, and the last row give
‘‘zero- and double-quantum coherences’’@9#. Further subdi-
vision refers toO2 and O3 as ‘‘polarizations’’ of s and t
spins, respectively, andO4 as ‘‘longitudinal two-spin or-
der,’’ whereas in the second and third rows,O5 is called ‘‘x
magnetization’’ or ‘‘in-phasex coherence’’ ofs, O7 as the
‘‘ x coherence ofs in antiphase witht,’’ etc. @1#. An alterna-
tive to the grouping by rows of four is to regard the 434
elements as a scalar singletO1 , two vector triplets
$O5 ,O6 ,O2% and $O9 ,O10,O3% of s and t spins, respec-
tively, and a nonet tensor of rank 2. A ‘‘dipolar coupled
Hamiltonian is described by@3#

H5v1O21v2O312kO4 , ~2!

wherev1 , v2 , andk may be functions of time.
Subsets of the operatorsOi also provide different logic

gates in quantum computation. Thus, as examples, we h
@3#

NOT: 2O5,

XOR: 1
2 O11O31O522O7,
©2000 The American Physical Society01-1
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TABLE I. Operators and matrices for a pair of spins@9#.

O15I5S1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D O25
1

2
sz5

1

2S1 0 0 0

0 1 0 0

0 0 21 0

0 0 0 21

D O35
1

2
tz5

1

2S1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 21

D
O45

1
4

sztz

5
1

4S1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

D
O55

1

2
sx5

1

2S0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

D O65
1

2
sy5

i

2S0 0 21 0

0 0 0 21

1 0 0 0

0 1 0 0

D
O75

1
4

sxtz

5
1

4S0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D
O85

1
4

sytz

5
i

4S0 0 21 0

0 0 0 1

1 0 0 0

0 21 0 0

D
O95

1

2
tx5

1

2S0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

D
O105

1
2

ty

5
i

2S0 21 0 0

1 0 0 0

0 0 0 21

0 0 1 0

D
O115

1
4

sztx

5
1

4S0 1 0 0

1 0 0 0

0 0 0 21

0 0 21 0

D
O125

1
4

szty

5
i

4S0 21 0 0

1 0 0 0

0 0 0 1

0 0 21 0

D
O135

1
4

sxtx

5
1

4S0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

D
O145

1
4

syty

5
1

4S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D
O155

1
4

sxty

5
i

4S0 0 0 21

0 0 1 0

0 21 0 0

1 0 0 0

D
O165

1
4

sytx

5
i

4S0 0 0 21

0 0 21 0

0 1 0 0

1 0 0 0

D
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Pound-Overhauser~PO! XOR: 1
2 O11O21 i ~O1022O12!,

Square root ofXOR: ~c* 1c/2!O11c~O31O522O7!,

c5~12 i !/&,

Spin coherenceXOR: ~1/& !@ 1
2 O11O31 iO21 iO5

1 iO612iO422iO722iO8#.

~3!

The NMR and quantum computation literatures have c
sidered the effects of such operator combinations on pa
spins and the solutions of the corresponding Hamiltonia
All the coefficients in Eq.~3! are constants and, except fo
the last item, the literature deals only with sets of four or
operators. Thus, more general than Eq.~2!, which involves
only operators diagonal in thez representation, is the so
called ‘‘scalar coupling Hamiltonian,’’ which replaces th
last termsztz by the scalar productsW •tW @1,3#. Such Hamil-
tonians, with all coefficients arbitrary, would be described

H~ t !5E0O11v1O21v2O312kO412kxO1312kyO14

5E0I 1 1
2 @v1sz1v2tz1ksztz1kxsxtx1kysyty#,

~4!
03230
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whereE0 , v1 , v2 , k, kx , andky may be distinct functions
of time. Reference@3# has constructed propagators in clos
form for a slightly less general Hamiltonian with some coe
ficients equal and all constant in time while Sec. 4.5.3 of R
@1# has considered solutions of Eq.~4! for the problem of
‘‘cross polarization’’ in liquids.

We will now construct general solutions for an eve
larger Hamiltonian than in Eq.~4!, embracing two additiona
‘‘cross terms’’ inx andy, namely the operatorsO15 andO16
describing ‘‘heteronuclear two-spin coherences,’’

H~ t !5E0I 1 1
2 @v1sz1v2tz1ksztz1kxsxtx

1kysyty1kxysxty1kyxsytx#. ~5!

Remarkably, our procedure calls for no more effort than t
involved in solving single-spin problems. Before turning
the derivation, we note a physical context for the last t
heteronuclear-coherence terms in Eq.~5!. Ref. @1# considers
two spins initially in thermal equilibrium that are subjecte
to a pulse sandwich withv15v25cospJt and kxy5kyx
5sinpJt. Such an interaction converts the polarization e
tirely to double-quantum coherences in timet5(2J)21.
Thus, whereas the terms in Eq.~4! are involved in chemical
shifts and dipolar couplings in oriented solid and liquid cry
tal phases@1#, the heteronuclear terms in Eq.~5! are of in-
terest when an axially symmetric quadrupole interaction
also present.
1-2
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MANIPULATING TWO-SPIN COHERENCES AND QUBIT PAIRS PHYSICAL REVIEW A61 032301
Wave functions or density matrices can be obtained o
the evolution operator or propagator for the Hamiltonian
constructed@8#. This propagatorU(t) obeys the equation,

iU̇ ~ t !5H~ t !U~ t !,U~0!5I , ~6!

where an overdot denotes differentiation with respect
time. For HermitianH(t), that is, real coefficients in Eqs.~4!
and~5!, U(t) is unitary. We have recently explored a varie
of such problems involving single particles by writingU(t)
as a product of exponential factors, involving in the exp
nents each of the operators occurring inH(t) and all subse-
quent operators that arise as a result of successive comm
tions between them@8,10#. For a single spin-12 problem, there
are four such factors, the set$I ,sW % closing under commuta
tion. For paired spins, since the 16 operators in Table I si
larly afford a closed set, the most generalU(t) will involve
16 factors, exp@2imi(t)Oi#. Our procedure leads to couple
first-order, nonlinear differential equations for the classi
functionsm i(t). We saw further the advantage of workin
with the operators$s65sx6 isy%, rather than the Cartesia
set because it leads to simpler equations for them i and also,
as a result of the relationss6

2 50, simpler evaluations when
the exponentials inU operate on some initial spin statec~0!.
Even though each exponential factor is not individually u
tary when one usess6 rather thansx andsy , the finalU(t)
remains unitary@8#.

We take this opportunity to note that some of these res
of @8# have existed in earlier literature, seemingly havi
been rediscovered several times. Instead of the Magnus
pansion that writes the solution of Eq.~6! as a single expo-
nential, Wei and Norman@11# gave the alternative of a prod
uct of exponentials, each involving one of the operatorsOi
that form a closed Lie algebra. In a series of papers@12#,
Sanctuary and co-workers used this technique for
Liouville-Bloch equation for a general spinj, writing the
solution of Eq.~6! in terms of three exponential factors in
volving successivelyJz , Jy , andJz , the coefficients identi-
fied as Euler parameters. Reference@8# used insteadJz , Jy ,
and Jx . Siminovitch and Habot@13# had similar results,
along with the alternative of usingJz , J1 , andJ2 , which
leads directly to a Riccati equation as the key one in solv
for the Euler parameters. Further, Siminovitch@14# recast the
set of three nonlinear equations as four coupled linear o
for the so-called Euler-Rodrigues parameters that have a
history in rigid-body kinematics. And, independently, a
early paper@15# had also recorded both the Cartesian and
$Jz ,J6% set of equations for solving Eq.~6!.

Recasting Eq.~5! in terms ofs6 andt6 , which obey the
relations

@sz ,s6#562s6 , @s1 ,s2#54sz , ~7a!

szs656s652s6sz , s6s752~ I 6sz!, ~7b!

and a similar set fort, we have
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H~ t !5E0I 1 1
2 @v1sz1v2tz1ksztz#

1 1
4 @K1s1t11K2s2t21k1s1t21k2s2t1#,

~8!

where

K65 1
2 ~kx2ky7 ikxy7 ikyx!, k65 1

2 ~kx1ky6 ikxy7 ikyx!.

Once again, the coefficientsE0 , v, K, andk may be arbitrary
functions of time.

The central result of this paper hinges on the recognit
that the eight operators in Eq.~8! divide into two triplets
defined by

Sz5
1
2 ~sz1tz!, S65 1

2 s6t6 ;
~9!

sz5
1
2 ~sz2tz!, s65 1

2 s6t7 .

These obey the commutation relations

@Sz ,S6#562S6 , @S1 ,S2#54Sz ;
~10a!

@sz ,s6#562s6 , @s1 ,s2#54sz ,

and

S6
2 505s6

2 . ~10b!

Further each member of the triplet$Sz ,S6% commutes with
each of the other triplet$sz ,s6% and the two remaining op
erators in Eq.~8!, I andsztz , commute with all six of them.
Thus, upon rewritingv1sz1v2tz in Eq. ~8! as v1Sz
1v2sz , with v65v16v2 , the Hamiltonian splits into tha
of two decoupled ‘‘pseudospins’’S and s, obeying in Eq.
~10! the same commutations as those obtained betwees
and t in Eq. ~7a!, and two ‘‘diagonal’’ objects,I 5O1 and
sztz54O4 . This recognition ofSW andsW as two independen
sets of ‘‘pseudospins’’ may be of more general interest
NMR coherences than its use below to write the solution
Eq. ~8! with no more input than the solution for a single spi
We use the term independent sets only to mean that the
erators of one commute with every member of the other

Although the objectsSands do not behave in all respect
like Pauli spinors@results analogous to Eq.~7b! are not ob-
tained, and Sx

25Sy
25Sz

25 1
2 (I 1sztz), sx

25sy
25sz

25 1
2 (I

2sztz)#, since their behavior under commutation rema
the same and this is all we need for our constructive pro
dure for the propagatorU(t), the solution of Eq.~6! for the
Hamiltonian in Eq.~8! follows immediately from our earlier
result for single spins@8# to give

U~ t !5exp@2 iV0~ t !#exp@2 1
2 iVz~ t !sztz#

3exp@2 1
2 in1~ t !S1#exp@2 1

2 in2~ t !S2#

3exp@2 1
2 in3~ t !Sz#exp@2 1

2 im1~ t !s1#

3exp@2 1
2 im2~ t !s2#exp@2 1

2 im3~ t !sz#, ~11!

where the classical functions in the exponents obey
1-3
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A. R. P. RAU PHYSICAL REVIEW A 61 032301
V̇05E0~ t !, V̇z5k~ t !, ~12a!

ṁ12m1
2 k2~ t !1 iv2~ t !m15k1~ t !,

~12b!
ṁ22 im2ṁ35k2~ t !, ṁ322ik2~ t !m15v2~ t !,

ṅ12n1
2 K2~ t !1 iv1~ t !n15K1~ t !,

~12c!
ṅ22 in2ṅ35K2~ t !, ṅ322iK 2~ t !n15v1~ t !.

In our procedure@8#, in evaluatingiU̇ from Eq. ~11!, opera-
tors have to be moved to the left through exponentials
noncommuting operators~with the aid of an operator identity
for eABe2A) so as to cast the expression in the form of t
right-hand side of Eq.~6!. Because I andsztz commute with
all the other six operators and becauseS and s behave as
independent mutually commuting sets, the maximum any
erator has to be moved is through two exponentials, just a
the treatment of a single spin in@8#.

The full quantum solution in Eq.~11! for Eqs.~6! and~8!
is thereby obtained as soon as the classical equations in
~12! are solved, together with the boundary conditions t
all these functions vanish att50. The only nontrivial equa-
tions are the first of Eqs.~12b! and~12c!, which are of Ric-
cati form for m1 and n1 , respectively. Once they are ob
tained, all the rest of the equations yield to simple first-or
integrations in time.

As previously observed@8#, the Riccati equations may b
transformed instead into linear second-order differen
equations through

m1~ t !52~1/k2!@ ġ~ t !/g~ t !#, ~13a!

to obtain

g̈1~ iv22 k̇2 /k2!ġ1~k1k2!g50, g~0!51, ġ~0!50,
~13b!

and similarly forn1(t). These may be more convenient f
handling, particularly for certain time dependences of
coefficientsv, K, and k. In particular, for constant coeffi
cients, Eq.~13b! is trivially solved.

Returning to Table I, our principal result is that intera
tions involving various sets of eight of these operators can
solved through appropriate choices ofS and s that act like
decoupled spins. Hamiltonians in which the original spinss
and t are uncoupled, each individually interacting with a
arbitrary external magnetic field can, of course, be imme
ately solved. The set involved in this case
$O1 ; O4 ;O5 ,O6 ,O2 ;O9 ,O10,O3%, corresponding to diago
nal plusx andy magnetizations separately ofs andt spins.
Whens and t are coupled according to the Hamiltonian
Eq. ~5!, the set involved is$O1 ;O2 ;O3 ,O4 ,O13;O14,
O15,O16%, that is, the first and last rows in Table I, compri
ing both diagonal and double-quantum coherences. The
item in Eq.~3! corresponds to yet another set, comprising
first and second rows of the table, diagonal plus sing
quantum coherences ofs. Thus, all these instances that i
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volve nontrivial couplings ofs andt spins can be solved a
easily as the case of uncoupled spins through our recastin
terms ofS ands.

Rearranging the entries in Table I as a direct product
the operators of the two spins

S O1 O5 O6 O2

O9 O13 O16 O11

O10 O15 O14 O12

O3 O7 O8 O4

D 5S I
sx

2

sy

2

sz

2

tx

2

sxtx

4

sytx

4

sztx

4

ty

2

sxty

4

syty

4

szty

4

tz

2

sxtz

4

sytz

4

sztz

4

D ,

~14!

the alternative sets of eight mentioned above correspon
choosing the four corner elements together with one of
quartets$O5 ,O6 ,O7 ,O8% ~remaining entries in first and las
rows!, $O9 ,O10,O11,O12% ~remaining entries in first
and last columns!, $O5 ,O6 ,O9 ,O10%, and a similar
$O7 ,O8 ,O11,O12%, and $O13,O14,O15,O16% ~four ‘‘inte-
rior’’ elements!. An interesting and instructive analogy ca
be drawn to similar alternative choices in other 434 con-
texts such as the electromagnetic field’s tensorFmn ,

S 0 iEx iEy iEz

2 iEx 0 Bz 2By

2 iEy 2Bz 0 Bx

2 iEz By 2Bx 0

D ,

with EW andBW the electric and magnetic fields@16#, and the
O(4) symmetry operators of the hydrogen atom

S 0 2Ax 2Ay 2Az

Ax 0 Lz 2Ly

Ay 2Lz 0 Lx

Az Ly 2Lx 0

D ,

whereLW is the orbital angular momentum andAW the Laplace-
Runge-Lenz vector@17#. In both these examples, as well a
in the Euler-Rodrigues parameters of@14#, the 434 matrix is
antisymmetric, the only nonzero elements beingEW and BW

fields @16#, or the orbital angular momentumLW and the
Laplace-Runge-Lenz vectorAW @17#. The decomposition
scalar1two triplets1nonet corresponds to the basic vecto
(EW ,BW ) and (AW ,LW ), both triplets reducing to the same pol
vector (EW or AW ) apart from a minus sign, and the antisym
metric nonet becoming an axial vector (BW or LW ). Alternative
divisions into sets of eight as discussed for Eq.~14! corre-
spond to the choice appropriate to an electromagnetic w
or that involved in the parabolic separation of the hydrog
Hamiltonian@17#.
1-4
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The operator combinations in the quantum gates~3! in-
volve different subsets ofOi than in Eqs.~5! or ~8!. Here
again, our solution of Eq.~5! in the form of Eq.~11! applies.
First, since the only input we need is the commutators in
~7!, our procedure is not tied to any specific representat
This feature can be exploited to relabel thex, y, andz in the
Pauli spinors as most convenient, choosing which ever
to be diagonal that makes the Hamiltonian easiest to han
In the most general case, again involving eight operators
somewhat different from Eq.~5!, all such gates are specia
cases of

H~ t !5E0I 1 1
2 @v1sz1v2tz1ksztz1kxsx1kysy

1kxzsxtz1kyzsytz#

5E0I 1 1
2 @v1sz1v2tz1ksztz1k2s1

1k1s21K2s1tz1K1s2tz#, ~15!

with E0 , v1 , v2 , k, k6[ 1
2 (kx6 iky) and K6[ 1

2 (kxz
6 ikyz) arbitrary functions of time.

In writing the solution forU(t), the order of the noncom
muting exponential factors may also be chosen for con
nience, the simplest equations for the classical function
the exponents resulting when allsz terms are kept to the
right of s6 ,

U~ t !5exp@2 iV0~ t !#exp@2 1
2 iVz~ t !tz#

3exp@2 1
2 in1~ t !s1tz#exp@2 1

2 im1~ t !s1#

3exp@2 1
2 in2~ t !s2tz#exp@2 1

2 im2~ t !s2#

3exp@2 1
2 in3~ t !sztz#exp@2 1

2 im3~ t !sz#. ~16!
o
nd

el
.

.
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This leads to a pair of coupled nonlinear equations,

ṁ12m1
2 k11 iv1m11 ikn122K1m1n12n1

2 k15k2 ,
~17!

ṅ12n1
2 k11 iv1n11 ikm122K1m1n12m1

2 K15K2 ,

an obvious counterpart of the first equations in Eqs.~12b!
and~12c!. Once solved form1 andn1 , the other four clas-
sical functions can be obtained in turn through simple in
grations (V0 and Vz are again trivially integrals ofE0 and
v2 , respectively!

ṁ322ik1m122iK 1n15v1 , ṁ22 im2ṁ32 in2ṅ35k1

~18!
ṅ322ik1m122iK 1n15k, ṅ22 in2ṁ32 im2ṅ35K1 .

Most quantum gates as in Eq.~3! are simpler subsets of thi
general case, involving fewer coefficients, some of which
further time independent. In these cases, particularly w
K6 /k6 is constant, Eqs.~17! further simplify with m andn
decoupling and being essentially equal.

We conclude with remarks on extension to a larger nu
ber of spins. Thus, with three spins,1

2 sW ( i ), i 51,2,3, out of
the full set of 64 operators involved, 20 provide a closed
under commutationI, sz

( i ) , s1
( i )s2

( j ) , sz
( i )sz

( j ) , s2
( i )s1

( j )sz
(k)

andsz
( i )sz

( j )sz
(k) . Such a Hamiltonian involving linear com

binations of these operators conserves the totalz projection
of spin, and its propagatorU(t) may be written as a produc
of 20 exponential factors.

I am grateful to Dr. David Siminovitch for pointing me t
relevant literature.
@1# See, for instance, R. R. Ernst, G. Bodenhausen, and A. W
aun, Principles of Nuclear Magnetic Resonance in One a
Two Dimensions~Clarendon, Oxford, 1987!.

@2# C. Cohen-Tannoudji, B. Du, and F. Laloe¨, Quantum Mechan-
ics ~Wiley, New York, 1977!, Vol. I, ComplementFIV , Vol.
II, ComplementBXI .

@3# See, for instance, D. G. Cory, M. D. Price, and T. F. Hav
Physica D120, 82 ~1998!; S. S. Somaroo, D. G. Cory, and T
F. Havel, Phys. Lett. A240, 1 ~1998!; D. Gottesman, Phys
Rev. A 57, 127 ~1998!.

@4# For pedagogical and historical reviews, see, for instance, C
Bennett, Phys. Today48 ~10!, 24 ~1995!; D. P. DiVincenzo,
Science270, 255 ~1995!; A. Barenco,et al., Phys. Rev. A52,
3457 ~1995!; V. Scarani, Am. J. Phys.66, 957 ~1998!; P. Be-
nioff, J. Stat. Phys.22, 563 ~1980!; Phys. Rev. Lett.48, 1581
~1982!; Phys. Rev. A54, 1106~1996!.

@5# N. A. Gershenfeld and I. L. Chuang, Science275, 350~1997!;
I. L. Chuang, N. A. Gershenfeld, M. Kubinec, and D. Leun
Proc. R. Soc. London, Ser. A454, 447 ~1998!. See, however,
W. S. Warren, Science277, 1688~1997! and the response b
N. A. Gershenfeld and I. L. Chuang,ibid. 277, 1689~1997!.

@6# See, for instance, F. E. Close,An Introduction to Quarks and
Partons~Academic, London, 1979!.
k-

,

.

@7# F. J. Ohkawa, J. Phys. Soc. Jpn.52, 3897~1983!.
@8# A. R. P. Rau, Phys. Rev. Lett.81, 4785~1998!.
@9# F. J. M. van de Ven and C. W. Hilbers, J. Magn. Reson.54,

512 ~1983!.
@10# A. R. P. Rau and K. Unnikrishnan, Phys. Lett. A222, 304

~1996!.
@11# J. Wei and E. Norman, J. Math. Phys.4, 575 ~1963!.
@12# G. Campolieti and B. C. Sanctuary, J. Chem. Phys.91, 2108

~1989!; J. Zhou, C. Ye, and B. C. Sanctuary,ibid. 101, 6424
~1994!.

@13# D. J. Siminovitch, J. Magn. Reson., Ser. A117, 235~1995!; D.
J. Siminovitch and S. Habot, J. Phys. A30, 2577~1997!.

@14# D. J. Siminovitch, Concepts Magn. Reson.9, 149 ~1997!; 9,
211 ~1997!.

@15# V. S. Popov, Zh. Eksp. Teor. Fiz35, 985 ~1959! @Sov. Phys.
JETP8, 687 ~1959!#.

@16# See, for instance, L. D. Landau and E. M. Lifshitz,The Clas-
sical Theory of Fields~Pergamon, Oxford, 1962!, Sec. 23.

@17# See, for instance, L. D. Landau and E. M. Lifshitz,Quantum
Mechanics (Nonrelativistic Theory), 3rd ed.~Pergamon, Ox-
ford, 1977! Secs. 36 and 37; A. R. P. Rau, Rep. Prog. Phys.53,
181 ~1990!.
1-5


