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Manipulating two-spin coherences and qubit pairs
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A compact derivation is given for propagators of a wide class of time-dependent Hamiltonians that describe
coupled spin(*“qubit” ) pairs. As many as eight of the 16 operators in the system, each with its own time-
dependent coefficient, can be handled with no more difficulty than a single spin in a magnetic field. A single
first-order(in time), quadratically nonlinear differential equation for a classical function is the only nontrivial
ingredient in constructing the full quantum propagator for a wide variety of magnetic coherences and qubit
interactions.

PACS numbes): 03.67.Lx, 03.65.Db, 76.66-k

Nuclear magnetic resonan€@dMR) and other spin reso- interest by itself. To our knowledge, it does not seem to have
nance spectroscopies have long studied coherences betwdsen noted before that our construction below in E9j.
two or more quantum spins, both their establishment andecasts six two-spin operators as a pair of independent pseu-
their measurement with the aid of suitable magnetic fielddospins.
pulseq 1,2]. More recently, coupled spins as models for vari- Representing the operators for the two spinsslay and
ous logic gates have been of much interest for quantum comi7, along with their unit operators, wheteand 7 are Pauli
putation[3,4]. NMR itself provides one of the candidate sys- spinors and we have s#t=1, the 16 independent operators
tems as possible “hardware” for a realizable quantumof the pair are given in Table | in a standard notatjiéh
computer[5]. All these problems involve the study of the  Any operator describing magnetic couplings between the
Hamiltonian, often time dependent, for coupled spins. In-spins as well as the coupling of each spin to an external field
deed, such a study has an even broader context becausecain be cast as a linear combination of the 16 opera@prs
the well-known mapping of any two-level system into a with coefficients which may, in general, be functions of time:
quantum spirg, of four-level systems into two coupled spin
3, etc. Pairs of spirg, in particular, have modeled a wide
range of problems in physics, from combined spin and isos- H(U?Z ai(1)0; . (1)
pin [the groups W) and SU4)] in nuclei and particlef6] to =t
the states of ahelectron in the crystal field of CeBwhich
are associated with unusual magnetic ph&g&sWVe present
in this paper a general technique for handling such pairs
spins with time-dependent coupling.

Although the general formalism we uf&| applies to ar-
bitrary spinj, we will focus primarily onj=3, which has
specific simplifications. For a pair of spintwo qubits in the
terminology of quantum computatidr3,4]),there are in all aﬁpins, respectively, an®, as “longitudinal two-spin or-

X4 i i : 4 :
4X 4 linearly independent operators that close under mutu ler,” whereas in the second and third rovg is called “x

commutator brackets. As a result, any Hamiltonian of the o )
magnetization” or “in-phasex coherence” ofo, O; as the

system can be solved in terms of these 16 operators. How: . . o

ever, most of the NMR coherences and quantum logic gatesx coherence Ofr.m antiphase witl, (_atc. [1]. An alterna-
that are studied involve smaller subsets, typically sets of fouPVe to the grouping by rows of four is to regard the(4
or six of the 16 operatoiid,3]. These have been well studied elements as a scalar singld,, two vec_tor triplets
and documented. The main aim of this paper is to preser{to5'06'02} and{Og,010,03} of o and T SpIns, respec-
simple, compact, closed form solutions of time—dependenj_'(vely.' an_d a nonet t_ensor of rank 2. A “dipolar coupled
Hamiltonians involving as many as eight of the operators an amiltonian is described big]
thus eight arbitrary functions of time as coefficients. Further,
the complete solution of the time-dependent Sdhrger
equation, or the equivalent Liouville-Bloch equation for the _ )
density matrix, reduces to the solution of the same classica/N€r€@1, @z, andk may be functions of time. ,
Riccati (first order in time with quadratic nonlinearjtequa- Subsets of the operatof3; also provide different logic
tion that occurs in a single-spin problem as recently pregates in quantum computation. Thus, as examples, we have
sented 8], together with simple integrations and exponentia-

tions. A key result that underlies our solution may be of

16

Various groupings of the 1®,; have physical signifi-
Jfance. Thus, in the literature on NMR coherences, the first
row in Table | is a “diagonal” set of four, the second and
third rows describe “transverse, single-quantum coher-
ences,” respectively, ofr and 7 spins, and the last row gives
“zero- and double-quantum coherencd®]. Further subdi-
vision refers toO, and O3 as “polarizations” of o and

H=w102+ w203+ 2k04, (2)

NOT: 205,
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TABLE |. Operators and matrices for a pair of sp{s.

04:ZUsz
1 0 0 10 1 0 0 0 1 0 0
0100 1 100 1 1 100 -1 0 0 110 -1 o0
==l 0 1 0 025377510 0 -1 0 %=3%7500 0 1 40 0 -1 0
000 00 0 -1 0 0 0 -1 0 0 0
072%(7)(7'Z 08=Ztry'rz
00 1 00 -1 0 0 0 1 0 0 0 -1 0
1 1/0 0 0 1 1 ilo o o -1 110 0o o0 -1 ilo o o0 1
%=3%311 0 0 o %=3%3|1 0 o o 41 0 o0 4|1 o 0
0100 01 0 0 0 -1 0 0 -1 0 0
010:§Ty 011:%0'27')( Olzzzazry
010 0 -1 0 01 0 0 -1 0 0
1 1/1 0 0 0 i1 0o o 111 0 o0 ilt 0o 0 o0
©=3%=3l0 0 0 1 2|0 0 0 -1 40 0 0 -1 40 0 0 1
001 0 0 0 1 00 -1 0 0 0 -1 0
1 1 1 1
013=ZO'XTX 014=Z(7y7'y 015=ZO'XTV Olezzayrx
00 0 1 0 00 -1 0 0 0 -1 00 0 -1
110 0 1 0 110 01 o iflo o 1 o0 iflo o -1 o0
40 1 0 0 40 10 0 40 -1 0 0 “4lo0 1 o0
100 0 -1 00 O© 1 0 0 0 10 0 0

Pound-OverhausefPO) XOR: 10O;+0,+i(0;—20;,), whereEy, w1, w,, k ky, andk, may be distinct functions
&PO) 201+ O2+1(O10 12 of time. Referencé3] has constructed propagators in closed

form for a slightly less general Hamiltonian with some coef-

Square root ofxorR: (c* +¢/2)0;+c(0O3+05—205), ficients equal and all constant in time while Sec. 4.5.3 of Ref.
_ [1] has considered solutions of El) for the problem of
c=(1-i)/v2, “cross polarization” in liquids.
We will now construct general solutions for an even
Spin coherence&xor: (1W2)[30,+05+i0,+i05 larger Hamiltor_1ian than in Eq4), embracing two additional
“cross terms” inx andy, namely the operatoi®,5 andO¢
+i0g+2i0,—2i0,—2i0g]. describing “heteronuclear two-spin coherences,”
3) H(t)=Egl + 3[ w10+ w7+ Ko, 7,4 Koy 7y
The NMR and quantum computation literatures have con- +kyory 7y Kyyoy Ty + Ky oy 7. (5

sidered the effects of such operator combinations on paired
spins and the solutions of the corresponding HamiltoniansRemarkably, our procedure calls for no more effort than that
All the coefficients in Eq(3) are constants and, except for involved in solving single-spin problems. Before turning to
the last item, the literature deals only with sets of four or sixthe derivation, we note a physical context for the last two
operators. Thus, more general than E2), which involves  heteronuclear-coherence terms in E%). Ref.[1] considers
only operators diagonal in the representation, is the so- two spins initially in thermal equilibrium that are subjected
called “scalar coupling Hamiltonian,” which replaces the to a pulse sandwich withv;=w,=cosmJt and Kyy=Kyx
last termo, 7, by the scalar produat- 7 [1,3]. Such Hamil-  =sin#Jt. Such an interaction converts the polarization en-
tonians, with all coefficients arbitrary, would be described bytirely to double-quantum coherences in tinhe (2J) 2.
Thus, whereas the terms in Ed) are involved in chemical
H(t)=EqO1+ 0105+ 0,03+ 2kOy+ 2kyO 13+ 2k O14 shifts and dipolar couplings in oriented solid and liquid crys-
tal phaseg1], the heteronuclear terms in E() are of in-
terest when an axially symmetric quadrupole interaction is
(4) also present.

=Egl + [ w,0,+ w7, + Ko, 7,4+ Koy 7 + kyoy7y],
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Wave functions or density matrices can be obtained onceH(t)=Egl + [ w,0,+ w,7,+ ko,7,]
the evolution operator or propagator for the Hamiltonian is .
constructed8]. This propagatot(t) obeys the equation, +ilKioyri+K o 7 +tkio 7 +k o 7.],

®

iU(H)=H(HU(1),U(0)=I, ®  where

where an overdot denotes differentiation with respect td<+= 2 (Ke=kyFikyyFikyy ), ke =5 (ke KyxikyyFikyy).
time. For HermitiarH(t), that is, real coefficients in Eq&})
and(5), U(t) is unitary. We have recently explored a variety

of such problems involving single particles by writini(t) The central result of this paper hinges on the recognition

as a product of exponential factors, involving in the expo- ; . O )
nents each of the operators occurringH(t) and all subse- Ejhea#ntehdebe;lght operators in E¢8) divide into two triplets

guent operators that arise as a result of successive commuta-

tions between therf8,10]. For a single spirs-problem, there S,=Yo,+7), S
> . 2 z z/ +

are four such factors, the sfit, g} closing under commuta-

Once again, the coefficienks,, o, K, andk may be arbitrary
functions of time.

NI

O+Tx,

tion. For paired spins, since the 16 operators in Table | simi- s,=(o,~7), S.=lo.r-. ©)
larly afford a closed set, the most geneti(t) will involve zoive fzh T zEetE

16 factors, exp-iu;(t)O;]. Our procedure leads to coupled These obey the commutation relations

first-order, nonlinear differential equations for the classical

functions u;(t). We saw further the advantage of working [S,,S.]=%2S., [S,,S_]=4S,;

with the operator¢o . = o,*ioy}, rather than the Cartesian (103
set because it leads to simpler equations forghend also, [s;,5-]=*2s., [s;,s_]=4s,,

as a result of the relations? =0, simpler evaluations when
the exponentials itJ operate on some initial spin stag¢0). ~ and
Even though each exponential factor is not individually uni- 5 )
tary when one uses.. rather thanr, anda,, the finalU(t) Si=0=s. (10b)
remains unitary8]. ) )

We take this opportunity to note that some of these result§Urther each member of the triplg§, ,S..} commutes with
of [8] have existed in earlier literature, seemingly having€ach of the other triplefs,,s..} and the two remaining op-
been rediscovered several times. Instead of the Magnus effators in Eq(8), I ando,7,, commute with all six of them.
pansion that writes the solution of E(§) as a single expo- ThUS, upon rewritingw, 0+ w,7, in Eq. (8) as v, S,
nential, Wei and Normafil1] gave the alternative of a prod- + ®-Sz, With w.=w;* w5, the Hamiltonian splits into that
uct of exponentials, each involving one of the operadys ©Of two decoupled “pseudospinsS and s, obeying in Eq.
that form a closed Lie algebra. In a series of pagag, (10 the same commutations as those gbtamed between
Sanctuary and co-workers used this technique for th@nd 7 in Eq.(7a), and two “diagonal” objects] =0, and
Liouville-Bloch equation for a general spi writing the  o,7,=40,. This recognition ofS and$ as two independent
solution of Eq.(6) in terms of three exponential factors in- sets of “pseudospins” may be of more general interest to
volving successively,, J,, andJ,, the coefficients identi- NMR coherences than its use below to write the solution of
fied as Euler parameters. Referefi8gused instead,, J,, Eq. (8) with no more input than the solution for a single spin.
and J,. Siminovitch and Habo{13] had similar results, We use the term independent sets only to mean that the op-
along with the alternative of usingd,, J,, andJ_, which  erators of one commute with every member of the other set.
leads directly to a Riccati equation as the key one in solving Although the object$Sands do not behave in all respects
for the Euler parameters. Further, Siminovifdd] recast the like Pauli spinorgresults analogous to E7b) are not ob-
set of three nonlinear equations as four coupled linear oneined, and S{=S/=S=3(I+0,7,), s.=s,=s;=3(l
for the so-called Euler-Rodrigues parameters that have a long o,7,)], since their behavior under commutation remains
history in rigid-body kinematics. And, independently, anthe same and this is all we need for our constructive proce-
early papef15] had also recorded both the Cartesian and thelure for the propagatdd(t), the solution of Eq(6) for the

{J,,J.} set of equations for solving E¢6). Hamiltonian in Eq.(8) follows immediately from our earlier
Recasting Eq(5) in terms ofo .. andr.., which obey the result for single sping8] to give
relations

U(t)=exd —iQq(t) Jexd — i Q1) o7,]
[o7,0-]=*20., [0,,0_]=40,, (7a) xexp —ziv. (1S, Jexd —ziv_()S_]
Xexl — ziva(t)S,lexd — zip+(1)s,]
xexd —zip—(t)s_Jexd —zips(t)s,], (1)

and a similar set for, we have where the classical functions in the exponents obey

0,0.=*0.=—0.0,, o0-0:=2(l*0c,), (7b
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Qo=Eq(t), Q,=k(t) (123 volve nontrivial couplings obr and 7 spins can be solved as
’ z ’ easily as the case of uncoupled spins through our recasting in
. . _ terms ofSands.
fr = pik-(O o (p, =k (1), Rearranging the entries in Table | as a direct product of

: .. ) . (12D the operators of the two spins
po—ip_ps=K (1), uz=2ik_(Hu,r=o_(1),

) ) . Oy Oy o,
v = VK (D +Hiw, (v, =K (1), S
(129
by =K (1), vs—2iK_(D)v, =, (1) Or Os Os O Tx OxTx OyTx O
Oy O35 O35 Oy 2 4 4 4
In our procedurd8], in evaluatingilU from Eq.(11), opera- O O1s Oy Oppf Ty OxTy OyTy 0,7y
tors have to be moved to the left through exponentials of 0. 0. O 2 2 4 4
noncommuting operatoxsvith the aid of an operator identity S
for e*Be#) so as to cast the expression in the form of the Tz OxTz OyTz; 0377,
right-hand side of Eq(6). Because | and-,7, commute with 2 4 4 4
all the other six operators and becauBand s behave as (14)

independent mutually commuting sets, the maximum any op-
erator has to be moved is through two exponentials, just as i€ alternative sets of eight mentioned above correspond to
the treatment of a single spin [8]. choosing the four corner elements together with one of the
The full quantum solution in Eq11) for Egs.(6) and(8)  quartets{Os,0¢,07,0g} (remaining entries in first and last
is thereby obtained as soon as the classical equations in EWs), {Og,010,011,015} (remaining entries in first
(12) are solved, together with the boundary conditions thagnd last columns {Os,04,09,0,0}, and a similar
all these functions vanish &t 0. The only nontrivial equa- {O7,0g,011,012}, and {O13,014,015,01¢} (four “inte-
tions are the first of Eqg12b) and(120), which are of Ric-  rior” elements. An interesting and instructive analogy can
cati form for u, and v, , respectively. Once they are ob- be drawn to similar alternative choices in othex4 con-
tained, all the rest of the equations yield to simple first-ordetteéxts such as the electromagnetic field’s terfsgy,
integrations in time.
As previously observefB], the Riccati equations may be 0 iEx IEy, IE,
transformed instead into linear second-order differential —iE, 0 B, -B
equations through . ;
—-iE, -B, O By

p (1) == (k) y(1)], (139 -iE, B, -B, 0
to obtain with E and B the electric and magnetic field46], and the

. . ) ) O(4) symmetry operators of the hydrogen atom
y+(o_—k_ /k)y+(kyk)y=0, y(0)=1, ¥(0)=0,

(13b 0 —A¢ —A) —A,
and similarly forv_ (t). These may be more convenient for Ac 0 L, —Ly
handling, particularly for certain time dependences of the A, —L, © L, |’

coefficientsw, K, andk. In particular, for constant coeffi-
cients, Eq.(13b) is trivially solved.

Returning to Table I, our principal result is that interac- - -
tions involving various sets of eight of these operators can b&hereL is the orbital angular momentum aAdthe Laplace-
solved through appropriate choices $fands that act like ~Runge-Lenz vectof17]. In both these examples, as well as
decoupled spins. Hamiltonians in which the original spins i the Euler-Rodrigues parameters[&4], the 4x 4 matrix is
and 7 are uncoupled, each individually interacting with an antisymmetric, the only nonzero elements belgand B
arbitrary external magnetic field can, of course, be immedifie|ds [16], or the orbital angular momenturh and the

ately solved. The set involved in this case s Laplace-Runge-Lenz vectoA [17]. The decomposition

104 04;05’06’02;09.’019’03}’ corresponding to diago-  gea a6 o triplets+nonet corresponds to the basic vectors
nal plusx andy magnetizations separately afand r spins. - > d ALY both tripl duci h |
When o and r are coupled according to the Hamiltonian in (E:B) and (L), both triplets reducing to the same polar

Eq. (5), the set involved is{0;;0,;03,04,013;014, vector (E or A) apart from a minus slgn, :imd the antisym-
045,046}, that is, the first and last rows in Table I, compris- metric nonet becoming an axial vectd or L). Alternative

ing both diagonal and double-quantum coherences. The lasivisions into sets of eight as discussed for Ety}) corre-
item in Eq.(3) corresponds to yet another set, comprising thespond to the choice appropriate to an electromagnetic wave
first and second rows of the table, diagonal plus singleeor that involved in the parabolic separation of the hydrogen
qguantum coherences of Thus, all these instances that in- Hamiltonian[17].

A, L, —L, O

y
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The operator combinations in the quantum ga®sin- This leads to a pair of coupled nonlinear equations,
volve different subsets o®; than in Egs.(5) or (8). Here
again, our solution of Eq5) in the form of Eq.(11) applies. Mmooy ,ui K, +iowqp, +ikv, —2K, pu v, — vik+ =k_,
First, since the only input we need is the commutators in Eq. (17)

(7), our procedure is not tied to any specific representation. y, — Vik++iw1v++ik,u+—2K+,u+ V+—MiK+:K— )
This feature can be exploited to relabel they, andz in the
Pauli Spinors as most convenient, choosmg WhICh ever ongn obvious counterpart of the first equations in E(ng)
to be diagonal that makes the Hamiltonian easiest to handlgind (12¢). Once solved fo., andv, , the other four clas-
In the most general case, again involving eight operators bujcal functions can be obtained in turn through simple inte-
somewhat different from Eq5), all such gates are special grations (2, and (), are again trivially integrals oE, and
cases of w,, respectively
— 1
H(t) =Eol + 2[ w10,+ wy7,+ Ko, 7, + Ko+ kyoy, jra—2iK s — 2K v =@y, o —ip jus—iv_va=K.
+Kyzox kyza'yTz] (18
va—2ik,  uy —2iK, v, =k, v_—iv_puz—iu_vz=K,.
=Eol +3[w,0,+ wyr,+Ko,7,+ K o,
Ko +K oyt Koo 7], (15) Most quantum gates as in EQR) are s_impler subsets of_ this
general case, involving fewer coefficients, some of which are
with Eg, @1, oy, k ki=3(ketik,) and K.=3(K,, further time independent. In these cases, particularly when
+iky,) arbitrary functions of time. K. /k. is constant, Eqs(17) further simplify with » and v
In writing the solution forU (t), the order of the noncom- decoupling and being essentially equal.
muting exponential factors may also be chosen for conve- We conclude with remarks on extension to a larger num-

nience, the simplest equations for the classical functions iRer of spins. Thus, with three spinsg, i=1,2,3, out of
the exponents resulting when ah, terms are kept to the the full set of 64 operators involved, 20 provide a closed set
right of o~ , under commutatiort, o), ¢Qo®, e06l), Wl
_ . ando’o’¢{¥ . Such a Hamiltonian involving linear com-
U(t)=exp —iQo(t) Jext — 31Q,(1) 7] binations of these operators conserves the tfalojection
xexg — v, (o, 7,]exd —biu, (Vo] of spin, and its propagatdy(t) may be written as a product

of 20 exponential factors.

xXexgd —3iv_(t)o_r]exd —3iu_(t)o_
H-2lv-(Yo-rlexd —ziu-(o] | am grateful to Dr. David Siminovitch for pointing me to
xexd — 3ivg(t)o,r]exd —3ius(t)o,]. (16)  relevant literature.
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