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Motion of vortex lines in quantum mechanics
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Exact analytic solutions of the time-dependent Sdinger equation are produced that exhibit a variety of
vortex structures. The qualitative analysis of the motion of vortex lines is presented and various types of vortex
behavior are identified. Vortex creation and annihilation and vortex interactions are illustrated in the special
cases of the free motion, the motion in the harmonic potential, and in the constant magnetic field. Similar
analysis of the vortex motions is carried out also for a relativistic wave equation.
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[. INTRODUCTION play a crucial role in those phenomena. We believe that our
analysis captures the essential features of quantum vortex
Vortices have been a source of fascination since time imdynamics that are common to many different situations. In
memorial. Empedocles, Aristot[d], and Descartef2] tried ~ particular, our analysis also extends to the relativistic do-
to explain the formation of the Earth, its gravity, and the main.
dynamics of the whole solar system as due to primordial We have to admit that vortex lines associated with wave
cosmic vortices. Lord Ke|v|m3] envisaged atoms as vortex functions are rather elusive objects. They mlght be connected
rings. Modern science of hydrodynamic vortices began withvith physical reality in two ways. First, the vortex lines can
the fundamental work of Helmholtg4] on the theory of appear only at those places where the wave function is equal
vorticity. The present knowledge of vortex dynamics in fluid to zero; the vanishing of the probability density definitely has
mechanics is best summarized in a recent monograph bgbservable consequences. Second, the wave function of a
Saffman[5]. macroscopically populated state of many bosons acquires a
In our paper we shall be concerned with vortices not indireCt phySiC&' interpretation; vortex lines in this case may
ordinary fluids but in a peculiar fluid—the probability become directly observable as, for example, in HEG, 14].
fluid—that can be associated with the wave function of a
guantum system. Vortices of that type have been studied in Il. VORTEX LINES IN THE HYDRODYNAMIC
the past in connection with superfluidity, superconductivity, FORMULATION OF WAVE MECHANICS
and recently in connection with Bose-Einstein condensation
[6—9]. The main tool in the study of these phenomena is th(?
Ginzburg-LandayGross-PitaevsKiiequation. The nonlinear or

character of this equation greatly complicates the analysis i ; .
time evolution of the vortices, especially in three dimen-P!0YS the hydrodynamic variables to describe the flow of

sions. There are no exact analytic solutions of this equatioﬂanIET-mgcha_nIcal proba(ljalll;[]y forl a _S|n?I(=i'd\E)artlcle. The
with nontrivial vortex structure. One must resort either toProPapility densityp(r,t) and the velocity fieldv(r,t) are

approximations which can reveal only some features of th&onnected with the wave functiof(r,t) through the formu-
vortex motion(as, for example, in the early work of Fetter 'aS

In quantum theory vortex lines arise in the hydrodynamic
mulation of wave mechanics. This formulation originally
cﬁiue to Madelund15] (see also a review articlgl6]) em-

[10,11]) or to extensive numerical calculatiofsee, for ex- _ .
ample, Ref[12]). In the present paper we use the standard Y(r =R, HexdiS(r.u/a], @
time-dependent Schdinger equation to investigate the mo- (1) =|o(r,O)2=R(r 1), )

tion of vortex lines embedded in the probability fluid of a
guantum particle. The linearity of this equation enables us to

obtain a variety of exact, time-dependent analytic solutions 1 R (r)(—ihV—eA)y(r,t)]

. : e ) v(r,t)y=—
for the wave functions that describe the probability flow with (r.t) m |¢(r,t)|2
one, two, or more moving vortex lines. We are also able to
study the motion of vortex lines in the presence of external _i _
forces. Our analysis of many special cases makes it possible - m[VS(r,t) eA(r.b], )

to discover certain general phenomena such as the vortex
switchover and the vortex creation and annihilation. The im-wherem is the mass of the particle ar&(r,t) is the elec-
portant conclusion of our analysis is that quantum effectsromagnetic vector potential. The gradient tevi8 in Eq. (3)
does not contribute to vorticity. Thus, thrilk vorticity V
Xv(r,t) in the probability fluid is completely determined by
*Electronic address: birula@cft.edu.pl the magnetic field except at the points where the pl&ise
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FIG. 1. Creation of a vortex at a point. A vortex ring is created FIG. 2. Instantaneous creation and instantaneous annihilation of
at a point where the wave function vanishes. a vortex pair with opposite circulation along a line.

singular. This may occur only at the points where the wavedoes not exist as a sensible dynamical limit.” In quantum
function vanishes. The vanishing of the complex wave funcimechanics the line vortices occur in exact solutions of the
tion, in turn, gives two conditions: the vanishing of two real Schralinger equation without any limiting procedure. The
functions. Each condition defines a two-dimensional surfacefact that the velocity becomes infinite as one approaches the
The intersection of these two surfaces defines a line. Thus, iline vortex is acceptable, because it is only the probability
addition to the given distribution of vorticity in the bulk of and not any real matter that flows with that velocity.
the probability fluid, that is uniquely determined by the mag-
netic field, we may also have isolated vortex lines embedded 1. ANATOMY OF A VORTEX LINE
in the fluid. Along these lines the vorticity has a two- )
dimensional Dirae>-function singularity in the plane perpen- ~ The commonly known examples of vortex lines are those
dicular to each vortex line. It is the dynamics of these iso-embedded in the wave functions that have a fixed valug
lated vortex lines that will be the subject of our study. In thisOf the zcomponent of angular momentui@.g., the spherical
context we shall identify vortex lines with line vortices. harmonic$. These vortex lines run from % to « along the

To ensure that the wave function is single valued, theZ axis and have the circulatiohm,/m. Usually they are
strength of every vortex as measured by the circulafion stationary, due to angular momentum conservation. In addi-

along any closed conto® encircling the vortex line tion to straight vortex lines, we can also easily produce sta-
tionary vortex rings by superposing wave functions with the

same energy but different angular momenta. The simplest
I'= idl-v(r,t) (4 example is the superpositigwith a 7/2 phase differendeof
the electroniciy,o and ¢, States in hydrogen. The vortex
must be quantized: rindg_.is formed inz=0 plane and has the radius of two Bohr
radii.
2t In our study we shall discuss a broader class of vortices
r= ?n, n=0,£1,£2,.... (5 that, in general, do not exhibit cylindrical symmetry even

when they form a straight line. Let us consider an arbitrary
As one approaches the vortex line the veloaify,t) must vortex line &(s) parametrized by the lengthalong the line.

tend to infinity in order to satisfy the quantization condition ” tyPical quantum vortex is associated with the line of first
(5). order zeros of the wave function. Higher order zeros will, in

The circulation is conserved during the time evolution9€neral, lead to vortices that carry more that one unit of
[17,18 (in full correspondence with the Helmholtz-Kelvin vorticity. Th_e local properties O.f such avortex at a p@(ﬁ)
law for ordinary nonviscous fluidg.9]). The creation of vor- &€ determined by the behavior of the wave function near
tex lines may proceed through two different scenarios: they!S PoInt

may either appear in the form of a closed vortex line that ~lr_ )
springs from a pointFig. 1) or they can be created in pairs YOy, 2)=[r = &s)]- VY(&(s), ©
of opposite circulatior{Fig. 2. where we have kept only the lowest terms in the Taylor

The hydrodynamic formulation can also be introduced ineypansion. Since quantum vortices have zero thickness, this
wave mechanics of a spinning particle governed by the Paulinroximation is always valid sufficiently close to the vortex
equation[18,20,2]. o line. At each point on the vortex line let us define a complex

Despite all the formal similarities between the hydrOdy'vectorw(s) — the gradient of the wave function
namics of classical fluids and the hydrodynamic formulation

of quantum mechanics, there is a fundamental difference be- W(s)zv¢(r)|r:§(s)_ (7
tween the properties of line vortices in these two cases. In

classical hydrodynamics, as pointed out by Saffnidh  We shall show that this vector describes the basic properties
p. 36, “the line vortex is a useful kinematic concept, but it of the vortex. Let us note that since the derivative of the
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wave function along the vortex line with respect to the length WX W* I o
parameters is zero, the real and the imaginary parts of the u= x( w— —w*). (11
vector w(s) lie in the plane perpendicular to the tangent lwXx w2 at at
vectort(s)=d&(s)/ds,
Using the Schrdinger equation
d S
%zt(s)-w(s)zo. ® .2
i dup(r,t)= —%AﬂLV(r)}zp(r,t), (12
The general complex vectar has four real components, but
only two parameters contain the information about the voryye optain
tex, since the multiplication of the wave function by a com-
plex number does not change, of course, the velocity field. N
Indeed, the velocity fiela(x,y,z) calculated for the approxi- U= hwXw S (WA +W* A ) (13)
mate wave functior{6) 2mi |wx w* |2 '
h w w* Let us notice that the potential tervhdoes not appear in the
VXY D=5l W T vy r) formula for the velocityu since the wave function vanishes

on the vortex line. The motion of the vortex line at a given

fiorX(WXW) point is completely determined by the local properties of the
“omi ez 9 wave function: its gradient and its Laplacian at this point.
w-r] There is no direct relation between the velocityof the

vortex line and the velocity of the probability fluid.
is a homogeneous function af. Therefore,v does not

change wherw is multiplied by any complex number. For
simplicity, we have chosen the origin of the coordinate frame IV. GENERAL METHOD OF GENERATING VORTEX
at the point£(s). Only in the special case, when the real and LINES

imaginary part ofw are mutually orthogonal and of equal | et us choose the initial condition for the solution of the

length, the velocity lines follow circles in the plane orthogo- time-dependent Schdinger equation in the form
nal to the vortex line. In all other cases the vortex is

“squeezed”; the velocity lines follow ellipses. In the degen-

erate case, when the real part and the imaginary pavtare

parallel, the ellipse is squeezed into a line and the velocity o )

disappears. The vectev will, in general, vary as we move BY differentiating ¢, with respect to the components of the

along the vortex line. However, one may check by a direci/e€ctork any number of times we obtain new wave functions.

calculation that the circulatiofd) calculated for the velocity Each differentiation brings down a component of the posi-

field (9) does not depend om and is equal ta- 27#/m (the  tion vector and in this manner we may generate an arbitrary

sign depends on the orientation of the cont@)r Higher — complex polynomial that multiplies the initial wave function.

values of the circulation are obtained when the wave funcCarrying out the differentiations, adding the results with ap-

tion has zeros of the higher order but the typical case, oPropriate complex coefficients, and settikg 0 at the end,

course, is the first order zero. we arrive at the expression for the initial wave function of
The above analysis shows that the appearance of vortd€ form

lines in wave mechanics does not require that some special

conditions be met. On the contrary, a generic wave function [WR(r)+iW,(r)]¢o(r), (15

has vortex lines. The vanishing of the real and the imaginary

part of the wave function defines a line. The Taylor expanyyherew, andw, are real polynomials in the three variables

sion of the wave function around the point lying on this Imex’ y, andz

defines the complex vector that determines the local struc- e conditionsWx(r)=0 andW,(r)=0 define two two-

ture of the vortex. _ o dimensional surfaces in the three-dimensional space. When
The vectorw not only determines the velocity field but hege surfaces intersect, they define a line. This will be a
also plays a crucial role in determining the motion of they ey line if the circulation around it is different from zero,
vortex line itself. The velocityu=d(s,t)/dt of a point  \yhich is the generic case. This procedure leads to wave func-
&(s;t) lying on the vortex line can be obtained from the tions that have initially vortex lines of almost arbitrary shape
condition and topology embedded in them. In other words, the wave
function ¢, serves as the generating function for vortex
dy[&(s,t),t]/dt=u-w+ gyl gt=0. (100 lines. In practice we are facing technical limitations; for
higher order polynomials the analysis becomes very cumber-
The vectoru is defined only up to a vector parallel to the some. However, if the polynomidlz+iW, is constructed
vortex line and it can be determined by solving EtQ): as a product of some simple polynomials in the form

Pi(r) =exp(ik-r) do(r). (14)
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Wr(X,Y,2) +iW,(X,Y,2) =[Wg(X,Y,2) +iW/|(X,Y,2)] k to zero but keep it finite after the differentiation. This will
, o result in a free motion of the whole vortex line with the
X[Wr(X,y,2) HIW((X,Y,2)]- -+, velocity v=7k/m:
(16) [x(t)cosy+iy(t)siny]y(r,t), (19

then the initial wave function is easily analyzed: it has sev-,

eral vortex lines, each corresponding to one of the factors iwherex(t)zx—uxt andy(t)=y—v,t. Throughout this pa-
' . . X . erx(t), y(t), andz(t) will always denote a free classical
Eq. (16). Most of our discussion will be restricted to second?) (1), y(t) (1) y

. . .- motion with constant velocity. Equatidd9 means that the
;JegreJ:[e Eolynomlzlsbwhhlch already lead to a plethora of dlf'vortex line riding on the plane wave is moving uniformly,
er??] St apes aln " N ZfiVIOt’tS. i that bedded i without changing its shape, with the speed determined by the
ne ime evolution ot vortex lines that were embedde Inparticle momentum. This was to be expected as a conse-
the initial wave function is determined, of course, by the

Schrali on. The ad ¢ using th ._quence of the Gallilean invariance of the theory. The same
chralinger equation. The advantage of using the generatingq o mtion of a single vortex line was found in the nonlinear
function (14) is that once we find the time-dependent solu—S

. istving the initial giti chralinger equatiori10].
tion yx(r.t) satisfying the initial condition Our next example of a vortex is a ring of radiBslt can

be obtained, for example, by cutting a cylinder by a plane:
(1 1=0)= (1), 1 Pie, By GHTInG & eYIncer oy e p
Wg(X,Y,2)=x?+y2—R?,  W,(x,y,z)=az. (20
we may use it to generate all solutions thatai0 have the
form (15). Since the vectok does not appear in the Schro The ratio of the two-dimensional parameté&snda deter-
dinger equation, the differentiations with respect to its com-mines the degree of squeezing of the vortex, xtara/2R.
ponents do not interfere with the time evolutidn:deriva- ~ The motion of this vortex is described by the time-dependent
tives of the time-dependent wave function are also solutiongave function
of the Schrdinger equation. Carrying out the differentiations
with respect to the components kfon the time-dependent z(t)+2—ﬁt }lﬁ (rt)
function ¢, (r,t), we shall obtain the time evolution of vortex ma/ |
lines from the time dependence of the polynomials(r,t) (21
andW,(r,t) introduced in the formul&l5). . )
Obviously, wave functions are not restricted to those thal "€ quantum correctiotthe term Zit/ma) to the classical
have only a finite number of vortex lines described by avortex motion that appears here amounts only to a change of
polynomial prefactof15). For example, replacing the sum of th_e vortex velocity in the_d|r¢ct|on of the cyllnder axis. In
polynomials by the sum of trigonometric functions oda) this example, the vortex ring in the form of a circle has been

+icosg/b) leads to an infinite “forest” of vortex lines Produced by intersecting a cylinder and a plane. However,
pointing in thez direction. there are many other possibilities, even with the use of only

simple surfaces. It is easy to obtaintatO the same shape of
the vortex line choosing different wave functions. The mo-
V. VORTEX LINES FOR A FREELY MOVING PARTICLE tion of these vortices may change dramatically, when one
In this section we shall describe the time evolution ofP&Ir Of surfaces is replaced by a different one. The circular
vortex lines for a freely moving particle. The simplest soly- vortex formed by Intersgctmg a cylinder wnh a plane, as
tion of the corresponding time-dependent Sdimger equa- shown above, moves uniformly along the cylinder axis. On

tion, that has at=0 the form (14), corresponds taby(r) the other hand,. the same vortex produced:@ by a sphere
-1, and a plane will contract to a point and disappear. The ap-

propriate wave function has the form

PC(r,H)=| x(1)2+y(t)>—R*+ia

() =expik-r)exp —ink?t/2m). (18

) 3ht
SO = x(t)2+y(t) 2+ z(t)>—R2+ia z(t)+—”
Such a plane-wave solution is not square-integrable but that ma
can easily be corrected by multiplyiri8) by a slowly vary- X i (1,1). (22)
ing envelope without affecting significantly the dynamics of
vortex lines. We shall return to this problem at the end of thisThe circle disappears, i.e., the vortex is annihilated, at the
section. time t,=maR3%. Extending our analysis to negative values
Let us begin with the simplest solution that initially has of t, we see that this vortex was created at the tige
one rectilinear vortex described by the wave function—maR3#4 (Fig. 1). A circular vortex obtained by intersect-
(xcosytiysiny)expik-r). The parametey measures the ing a paraboloid with a plane has again a different motion:
degree of squeezing of the velocity field. Differentiating theafter it is created, it keeps expanding and moving alongthe
wave function(18) with respect tok, andk, we obtain the axis to infinity. Other motions of a circular vortex line can
wave function with a vortex line. Since the parameteys  also be obtained by choosing a second quadratic surface,
ky, andk, in Eqg. (18) can be interpreted as the componentsinstead of a plane. In all these cases the motion of the vortex
of the particle momentunfyk=p, it is instructive not to set ring has two components. One is the free motion with the
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FIG. 3. Two vortex lines evolving in time from negative to
positive values of. At t=0 these vortex lines form a pair of non-
intersecting straight lines.

PHYSICAL REVIEW A61 032110

describe the motion of both vortex lines separately, whereas
the last term in the square bracket is responsible for their
interaction. Only wheng=0 the vortex lines remain un-
changed during the time evolution. This behavior is different
from what can be found in noncompressible flujd9]. The
quantum interaction between the vortex lines is the strongest
when the lines are antiparallél.e., the two vortices have
opposite circulationgp=/2). In this case the vortex lines
retain their direction but the distance between them decreases
and at timet,=ma?/% the vortex lines collide and annihi-
late. The same wave function describesat —ma?/#4 the
creation of two rectilinear vortices of opposite circulation.
These processes are shown in Fig. 2.

velocity v and the other is a quantum correction that may \/\(.e.shall now .replace the plgne wave solution of the
lead to the vortex annihilation. We would like to stress thatochrainger equation, corresponding i(r) = 12 b%/ a nor-
the creation and annihilation of vortex rings are of a purelymalizable Gaussian wave packgj(r) =exp(-r/21%). This
quantum origin. These phenomena are not found in the stugVill give us square |_ntegrable solutlons with vortex lines.
ies of motion of the vortex ring based on the semiclassicall "€ 9énerating function for such solutions has the form

approximationf10,11. -
The creation and annihilation of vortex rings at a point, G exp( —k<14/2)
Po(r,t)= - 5EX
(1+ikt/ml?)32

E2 iy
bbyEy

—(r—ikl?)?
212(1+iAt/ml?)

(28)

shown in Fig. 1, does not contradict the Helmholtz-Kelvin
theorem on the conservation of circulation. This theorem,
obviously, holds only inside the fluid but the vortex creation
and the vortex annihilation occur at the points where theye shall illustrate the influence of the shape of the Gaussian
fluid density vanishes. envelope on the motion of vortices in the simplest case of
The mutual interaction between vortex lines can be seegne rectilinear nonsqueezed vortex that is parallel tozthe

in the motion of two vortex lines. The initial wave function axis and passes through the poirg,0) att=0. The motion

containing two arbitrary rectilinear vortices has the productof such a line is composed of the free motion with the ve-

form

Bi(r)=[wy-(r=ry)J[wy-(r—ra)Jexpik-r). (23

The corresponding time-dependent wave function, obtained

by our method is

int
()= {Wl'[r(t)_rl]}{Wz‘[r(t)_rz]}‘FIﬁWl‘Wz)

Xi(r,t). (24)

Thus, the two vortices become, in general, entangled by th
guantum correction term: the wave function is not a produc
of factors describing two separate vortices. The coupling be-

locity v of the center of the Gaussian envelope and the mo-
tion induced by the shape of the envelope. The time-
dependent wave function in this case is

X(t) —Xo+i[y(t) —Xoht/ml?]
1+iAt/ml?

P(r,b). (29)

The last term in the numerator represents the quantum cor-
rection to the free vortex motion and it vanishes in the limit,
when the width of the Gaussian enveldpends to infinity.
he speed of this additional motion depends on the smallest
éistance of the vortex line from the center of the Gaussian
ut does not depend on the motion of its center.

tween the two vortices is due to the interaction between the

vortices and it vanishes only whew - w,=0. The time evo-

lution exhibiting the phenomenon of a switchover of the two
vortex lines is shown in Fig. 3. To simplify the calculations
we assumed that both vortices are nonsqueezed. The coorg]lé

nate system is chosen in such a way that=a0 the vortex

VI. VORTEX LINES FOR A PARTICLE IN A UNIFORM
MAGNETIC FIELD

. In order to determine the motion of vortex lines in a mag-
tic field we need the counterpart of the generating function
(189) in the presence of the field. We shall use the Sehro

lines lie in thez=*a planes with the angle between them dinger equation in the symmetric gauge

equal to 2p. With this choice, the time-dependent wave

function can be written in the form

P(r, 1) =[W,W,— (2iat/m)sirfe]i(r,t), (25

where the two polynomialsV; andW,,
W, (r,t)=x(t)cose+y(t)sing+i[z(t)+a], (26)
W, (r,t)=x(t)cosp—y(t)sing+i[z(t)—a], (27

, A2 iheB
|(?t¢//(r,t): —mA—T(Xﬁy_yﬁx)
2p2
2 2
g (Y2 (), 30

where thez axis is taken along the magnetic field. The solu-
tion of this equation, that at the time=0 has the form
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FIG. 4. Precession of a rectilinear vortex in a magnetic field
FIG. 5. Evolution of a vortex ring in a harmonic trap.

exp(k-r)exd —eBx?+y?)/4h] (a plane wave multiplied by

the ground state Gaussian in tkg plane, is z,/xl(r,t)zexp(—3iwt/2)ex;{ - %ﬂ)
. 2
oM (r,t) =exd — eB(x2+y2)/4h Jexi] —i w.t/2] Xex%ieiwt<k.r_ 2’“‘ sint)||. (34
Mw

xexgfi(e e —1)(kKZ+kJ)/(2eB)]
As an example we shall choose the vortex line that=a®

(e ot . . . .
xexdi(e e+ 1)(xkctyky)/2] has the form of a circular ring of radiu® passing through

XeXF[(e—iwct_1)(Xky_ykx)/2] the center. The wave function describing the time evolution
of such a vortex is obtained by evaluating the appropriate
Xexp{izkz—iﬁkfl(Ze B)], (31 derivatives of Eq(34). Settingk= 0 after the differentiation,
we obtain
where w.=eB/m is the cyclotron frequency. Since the dif- I h ot )
ferentiation with respect to the componentkdirings down e T X Hy - —) + ——e '""'R(2x—iz)

Mw Mw

linear terms in the space variables, a single vortex along a
straight line will preserve its form. All that can happen is the X w{zo(r,t). (35
motion of this straight line. For example, a line vortex that at

t=0 lies in they=a plane at an angle to the field direction ~ The time evolution of this vortex line is shown in Fig. 5.
will move in time according to the following parametric rep-

resentation: VIII. VORTEX LINES IN RELATIVISTIC WAVE
MECHANICS
%) 2a+xsin(wct)(1+sing) (32 The description of vortex lines and their motion presented
y(X)=

in this paper is not restricted to nonrelativistic wave mechan-
ics based on the Schitimger equation. It can be extended to
a relativistic theory based on the Klein-Gordon equation. Let

1-sing+(1+sing)coq wct)’

2xtangp+asin(wgt)(sece+tane) us consider a relativistic wave functiaghof a free particle in
Z(x)=— T-sing+ (1+sing)codad) (33 the form of a plane wave
o (r,t)=explik-r)exp( —iwyt), (36

In Fig. 4 we show the motion of this line during one period _ ) _
of the cyclotron motion. where w,=c\k?+(md#)?2. This solution, in full analogy
with the nonrelativistic case, may serve as a generating func-

tion for solutions with all kinds of vortex lines. For example,

VII. VORTEX LINES FOR A PARTICLE IN A TRAP by taking first derivatives we generate a solution with one

L ~_ rectilinear vortex
The study of vortex dynamics in a trap has a special sig-

nificance because it may, perhaps, throw some lightthe [x(t)cosy+iy(t)sinyx]py(r,t). (37
first, linear approximationon the behavior of the atoms that

form the Bose-Einstein condensate. For simplicity, we shalllhe only difference between this solution and the nonrelativ-
consider a trap in the form of a spherically symmetric har-istic one(19) is due to a different relation between the ve-
monic oscillator with the frequency and choose agy(r)  locity and the wave vector. In the relativistic case itvis

in the formula (14) the ground state wave function =V,w,=7%k/\/(fk/c)2+m?, instead of justik/m. Other-
exp(—mwr?/24). The time-dependent wave function that wise, the result is the same: the vortex line moves with the
serves as a generator of vortex lines in this case is constant velocityw. The motion of two vortex lines can also
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be determined in the same way as in the nonrelativistic caseectilinear vortex can be attached to a plane wave solution of
In the limit, whenk— 0 the relativistic case reduces to the the Dirac equation, but only when the direction of the vortex
nonrelativistic case, Eq25). line is correlated with the particle momentum.

With the help of the generating function we may also Of particular interest are the vortex lines associated with
determine the motion of a vortex ring in the relativistic photon wave functions. Simple states of that category are the
theory. The wave function that determines the motion of thevell known multipolar states: the eigenstates of the angular
vortex ring in the relativistic casfthe counterpart of the momentum. The corresponding photon wave functions have
nonrelativistic wave functiori21)] is rectilinear vortices running from-o to o, as in nonrelativ-

istic wave mechanics. More elaborate vortex lines for photon

c B ) S wave functions are also possible but their study falls outside
(r)=|x(O)"+y()"—R the scope of the present paper.

24[1— c2(K2+ K2)/ 2] IX. CONCLUSIONS
_ XY
(t) a ’—(hk/c)2+m2 t) Pu(r.0). In our study of the motion of vortex lines in wave me-
chanics we have shown that this motion is determined by
(38 four elements: the shape of the vortex line, the shape of the
The speed of the vortex depends on the arbitrary pararaeterwave function, the interaction between d|ff_erent vortex Imgs,
and the external forces acting on the particle. Complete iso-

and may exceed the speed of light wharis sufficiently lation of these effects is not possible but one can gain some
small. This phenomenon, however, does not contradict the P g

theory of relativity. It is quite similar to the so called super- insight by appropniate limiting procedures. We found that

luminal propagation in optici22,23, when the maximum of guantum corrections to the vortex motion are responsible for
the signpal ?ra?/els with I’?he ve’Ioci’ty greater thanin the the mutual interaction between vortex lines and also for the

presentcase s henode o th probabily density that a1 EALET e SHIEIon e bl 1 ek
travel at an arbitrarily high speed.

The presence of vortex lines is not restricted to relativisticthe _much more compllcated case of the m_utually interacting
articles, when the linear Schiinger equation must be re-

wave functions with only one component. They can also b laced by th i
found in wave functions with several complex componentsp aced by the noniinear one.

desc_rlbmg spinning particles. However, the freedom _of at- ACKNOWLEDGMENT

taching almost arbitrary vortex lines to any wave function is
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