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Relativistic contraction and related effects in noninertial frames
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Although there is no relative motion among different points on a rotating disk, each point belongs to a
different noninertial frame. This fact, not recognized in previous approaches to the Ehrenfest paradox and
related problems, is exploited to give a correct treatment of a rotating ring and a rotating disk. Tensile stresses
are recovered, but, contrary to the prediction of the standard approach, it is found that an observer on the rim
of the disk will see equal lengths of other differently moving objects as an inertial observer whose instanta-
neous position and velocity are equal to that of the observer on the rim. The rate of clocks at various positions,
as seen by various observers, is also discussed. Some results are generalized for observers arbitrarily moving
in flat or curved spacetime. The generally accepted formula for the space line element in a non-time-orthogonal
frame is found inappropriate in some cases. The use of Fermi coordinates leads to the result that for any
observer the velocity of light is isotropic and is equal toc, providing that it is measured by propagating a light
beam in a small neighborhood of the observer.

PACS number~s!: 03.30.1p, 04.20.Cv
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I. INTRODUCTION

If a body moves with a constant velocity, then, as is w
known, the body is relativistically contracted in the directi
of motion, whereas its length in the normal direction is u
changed. A naive generalization to a rotating disk leads
the conclusion that the circumference of the disk is c
tracted, whereas the radius of the disk is unchanged.
paradox is known as the Ehrenfest paradox. Obviously,
paradox is a consequence of the application of the cons
velocity result to a system with a nonconstant velocity.

The standard resolution~see Refs.@1,2# and references
therein! of the Ehrenfest paradox is as follows: One intr
duces the coordinates of the rotating frameS8

w85w2vt, r 85r , z85z, t85t, ~1!

where w, r, z, t are cylindrical coordinates of the inertia
frame S and v is the angular velocity. The metric inS8 is
given by

ds25~c22v2r 82!dt8222vr 82 dw8dt82dr822r 82 dw82

2dz82. ~2!

It is generally accepted that the space line element shoul
calculated by the formula@3#

dl825g i j8 dx8 idx8 j , i , j 51,2,3, ~3!

where

g i j8 5
g0i8 g0 j8

g008
2gi j8 . ~4!

This leads to the circumference of the disk
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A12v2r 82/c2
5

2pr 8

A12v2r 82/c2
[g~r 8!2pr 8.

~5!

The circumference of the same disk as seen fromS is L
52pr 52pr 8. If the disk is constrained to have the sam
radiusr as the same disk when it does not rotate, thenL is
not changed by the rotation, but the proper circumferenceL8
is larger than the proper circumference of the nonrotat
disk. This implies that there are tensile stresses in the ro
ing disk.

However, there is something wrong with this standa
resolution of the Ehrenfest paradox. Consider a slightly s
pler situation: a rotating ring in a rigid nonrotating circul
gutter with the radiusr 5r 8. The statement that Eq.~5! rep-
resents the proper circumference implies that theproper
frame of the rotating ring is given by Eq.~1!. This means
that an observer on the ring sees that the circumferenc
L85gL. The circumference of the gutter seen by him can
be different from the circumference of the ring seen by hi
so the observer on the ring sees that the circumference o
relatively moving gutter islarger than the proper circumfer
ence of the gutter, whereas we expect that he should see
it is smaller. This leads to another paradox. It cannot
resolved by saying that the observer on the ring accelera
because one can consider a limitr→`, v→0, rv[u
5constant, which implies that the accelerationa5rv2 be-
comes zero, whereas the paradox remains.

Before explaining how we resolve this paradox, we gi
some general notes on the physical meaning of various
ordinate frames in the theory of relativity. In practice, o
usually uses the coordinates that simplify the technicali
of the physical problem considered. For example, when
describes physical effects in a rigid body, it may be con
nient to use a comoving coordinate frame, i.e., a frame
which all particles of the rigid body have constant spat
coordinates. The coordinates ofS8 in Eq. ~1! may be inter-
preted in this way. However,the choice of the coordinate
©2000 The American Physical Society09-1
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HRVOJE NIKOLIĆ PHYSICAL REVIEW A 61 032109
frame is more than a matter of convenience. The main lesson
we have learned from Lorentz coordinate frames is the
that what an observer observes~time intervals, space inter
vals, components of a tensor, etc.! depends on how the ob
server moves. The main purpose of theoretical physics i
predict what will beobservedunder given circumstances
Therefore, unless stated otherwise, in this paperby a coor-
dinate frame we understand a coordinate frame that is
herent to an observer, not to a set of physical particles. Ou
criticism of some earlier treatments originates from such
interpretation of coordinate frames. To avoid a possible m
understanding, we note that coordinate frames do not ne
sarily need to be interpreted in this way, in which case
criticism does not apply.

We resolve the paradox by recognizing that, according
our interpretation, the frame defined by Eq.~1! is the proper
frameonly of the observer atr 5r 850. This observer has no
velocity relative toS, so the corresponding coordinate tran
formation ~1! does not depend on any velocity. As will be
come clear from the discussion of Sec. II, the frame defi
by Eq. ~1! is actually the Fermi frame of an observer wh
rotates, but has no velocity with respect to the frameS. Ob-
servers at different positions on the rotating disk have diff
ent velocities, so one has to use a different coordinate tr
formation for each of them. In other words,although there is
no relative motion among different points on a rotating dis
each point belongs to a different noninertial frame.This is
not strange to those who are familiar with the theory
Fermi coordinates@4,5#, but it seems that many relativit
theorists are not.

Note also that since we do not interpret the coordinate
S8 in Eq. ~1! as something inherent to the disk as a whole,r 8
can be arbitrarily large in Eq.~2!, although there is a coor
dinate singularity atr 85c/v. It resembles the Schwarzschi
singularity of a black hole, where the radial coordinate is
restricted to be larger than the Schwarzschild radius. H
ever, to avoid a possible misunderstanding, note that the
ordinate singularity in Eq.~2! does not correspond to a
event horizon, because a rotating observer atr 850 can re-
ceive information fromr 8>c/v.

There is also another paradox connected with the stan
approach to rotating frames. Let us consider how the non
tating gutter appears to a rotating observer in the center.
proper frame is given by Eq.~1!. If Eq. ~3! is the correct
definition of the space line element, then he should see
the circumference of the gutter is larger than the proper
cumference of the gutter by a factorg(r 8). However,vr 8/c
can be arbitrarily large, sog(r 8) can be not only arbitrarily
large, but also even imaginary. On the other hand, we kn
from everyday experience that the apparent velocityvr 8 of
stars, due to our rotation, can exceed the velocity of light,
we see neither a contraction, nor an elongation of the s
observed.

We resolve this paradox by examining the assumpti
under which formula~3! is obtained. We find that this for
mula should be used with great care and show that it is
applicable in our case. The correct definition of the sp
line element depends on how it is measured, and we
that, in our case,g i j8 should be replaced by2gi j8 in Eq. ~3!.
03210
ct

to

-

n
-
s-
r

o

-

d

-
s-

,

f

of

t
-
o-

rd
o-
is

at
r-

w

t
rs

s

ot
e
d

It is fair to note that there are also some other ‘‘nonsta
ard’’ approaches to the Ehrenfest paradox~see Refs.@6,7#,
and references therein!, but none of these approaches is sim
lar to ours. In particular, the crucial fact that each point of t
rotating ring belongs to a different frame has not been ta
into account in any of these approaches. Formula~3! has
already been criticized@7#, but our criticism of Eq.~3! is
quite different and more general.

The paper is organized as follows: In Sec. II we find t
correct coordinate transformation that leads to the frame
an observer moving in flat spacetime. In Sec. III we expl
why Eq. ~3! is not always a correct definition of a space lin
element and show that in a frame that corresponds to
observer in flat spacetime it is more appropriate to calcu
the space line element by2gi j8 . We also make some gener
remarks on the physical meaning of general coordinate tra
formations. In Sec. IV we study the relativistic contraction
seen by various observers and resolve the Ehrenfest para
In Sec. V we study the rate of clocks at various positions,
seen by various observers. In Sec. VI we discuss the velo
of light as seen by various observers. In Sec. VII we disc
our results, resolve some additional physical problems,
give some generalizations. Section VIII is devoted to co
cluding remarks, where the relevance of our results to g
eral relativity is emphasized.

II. FRAME OF AN OBSERVER MOVING
IN FLAT SPACETIME

The generalized Lorentz transformations for a local Fe
frame of an observer that has arbitrary time-dependent
locity and angular velocity in flat spacetime are found in R
@8#. We present the final results, using slightly different n
tation. LetS be an inertial frame and letS8 be the frame of
the observer whose velocity and angular velocity areui(t8)
and v i(t8), respectively, as seen by an observer inS. The
coordinate transformation between these two frames is g
by

xi52Aj
i~ t8!x8 j1E

0

t8
g~ t8!ui~ t8! dt81

1

u2~ t8!
@g~ t8!21#

3@uk~ t8!Ajk~ t8!x8 j #ui~ t8!, ~6!

t5E
0

t8
g~ t8! dt81

1

c2
g~ t8!@uk~ t8!Ajk~ t8!x8 j #, ~7!

whereg(t8)51/A12u2(t8)/c2 andAji (t8)52Aj
i(t8) is the

rotation matrix evaluated atx850. The rotation matrix sat-
isfies the differential equation

dAi j

dt
52Ai

kvk j , ~8!

wherev ik5« iklv
l , «12351. The metric tensor inS8 is
9-2
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RELATIVISTIC CONTRACTION AND RELATED . . . PHYSICAL REVIEW A61 032109
gi j8 52d i j , g0 j8 52~v83x8! j ,
~9!

g008 5c2S 11
a8•x8

c2 D 2

2~v83x8!2,

where

v8 i5g~v i2V i !, a8 i5g2Fai1
1

u2
~g21!~u•a!ui G ,

~10!

V i is the time-dependent Thomas precession frequency

V i5
1

2u2
~g21!« ik j~ukaj2ujak!, ~11!

and ai5dui /dt is the time-dependent acceleration. T
transformations~6!,~7! are chosen such that the space orig
of S andS8 coincide fort5t850. If u is time independen
andv50, then Eqs.~6!,~7! reduce to the well-known ordi
nary Lorentz boosts. Ifu50 andv is time independent, then
Eqs. ~6!,~7! reduce to Eq.~1!. It is important to emphasize
that u(t8) is the velocity of thespace originx850 of S8. If
S8 is a rotating frame, then other space points ofS8 have a
different velocity.~Remember that rotation isnot a motion
along a circle, but rather a change of orientation of the a
with respect to an inertial frame.! Therefore, in general,S8 is
the proper frameonly of the observer atx850. Note also that
gmn8 5hmn only at x850, which is another confirmation tha
S8 is the frame of the observer atx850 only. The metric~9!
is also consistent with a more general theory of Fermi co
dinates@4#, which are coordinates of an observer arbitrar
moving in curved spacetime, and also have the property
gmn5hmn at the space origin, i.e., at the position of the o
server. Note also that ifa8 andv8 vanish, then Eq.~9! is a
metric of an inertial frame and is equal tohmn everywhere,
so, in this case,S8 can be considered as a frame of an o
server atarbitrary constantx8.

It is interesting to note that the geometrical construct
of Fermi coordinates is well established@4,5#, but no analog
of Eqs.~6!,~7! is known for curved spacetime. The transfo
mations~6!,~7! are obtained by summation of infinitesim
Lorentz transformations~and rotations!. It is not so easy to
find an analog of Lorentz transformations in curved spa
time, because they correspond to the coordinate transfo
tion between Fermi frames of two different free-falling o
servers. We can, however, write the transformations~6!,~7!
in a more elegant form, which could be illuminating for
generalization to curved spacetime. Let

xm5 f m~ t8,x8;u! ~12!

denote the ordinary Lorentz transformations, i.e., the tra
formations between two inertial frames specified by the re
tive velocity u, which can be considered as the relative v
locity between two inertial~free-falling! observers at the
instant when they have the same position. The differentia
Eq. ~12! is
03210
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m ~ t8,x8;u!dxn. ~13!

The transition to a noninertial frame introduces a tim
dependent velocity:u→u(t8). The transformations~6!,~7!
may be obtained by integrating Eq.~13! in the following
way:

xm5E
0

t8
f ,0

m
„t8,0;u~ t8!…dt81E

C
f ,i

m
„t8,x8;u~ t8!…dx8 i ,

~14!

whereC is an arbitrary curve with constantt8, starting from
0 and ending at2Aj

i(t8)x8 j . The subintegral function in the
second term of Eq.~14! is a total derivative, so this term
does not depend on the curveC and can be easily integrated
The time derivative in the first term is taken withu(t8) kept
fixed, so f ,0

m in this term is not a total derivative.
Let us now apply the general formalism described in t

section to a uniformly rotating ring. We assume that the r
is put in a rigid nonrotating circular gutter with the radiusR,
which provides that the radius of the rotating ring is the sa
as the radius of the same ring when it does not rotate, an
equal toR, as seen by an observer inS. This allows us not to
worry about the complicated dynamical forces that tend
change the radius of the ring as seen by the observer iS,
and pay all our attention to the kinematic effects result
from the transformations~6!,~7!.

The ring can be considered as a series of indepen
short rods, uniformly distributed along the gutter.~By a short
rod we understand a rod with a length much shorter thanR.!
We assume that the gutter is placed at thez50 plane. We
put the space origin ofS at a fixed point on the gutter, suc
that they axis is tangential to the gutter and thex axis is
perpendicular to the gutter atx50. ~In the rest of this sec-
tion, as well as in Secs. IV and V,x[(x,y) and thez coor-
dinate is suppressed.! We study a single short rod initially
placed atx50 and uniformly moving along the gutter in th
counterclockwise direction.~This mimics a uniform motion
of an electron in a synchrotron.! The gutter causes a torqu
that provides that the rod is always directed tangentially
the gutter. Therefore,v5u/R, whereu5Au2 is time inde-
pendent. Now,g51/A12v2R2/c2 is also time independent
Since a clock inS8 is at x850, the clock rate between a
clock in Sand a clock inS8 is given byt5gt8, as seen by an
observer inS. We assume that, initially, the axesx8, y8 are
parallel to the axesx, y, respectively. Therefore the velocit

u~ t8!5vR~2singvt8,cosgvt8! ~15!

is always in they8 direction and the solution of Eq.~8! is

Ai j ~ t8!5S cosgvt8 singvt8

2singvt8 cosgvt8
D . ~16!

The transformations~6!,~7! become

S x

yD 5S cosgvt8 2g singvt8

singvt8 g cosgvt8
D S x8

y8
D 1RS cosgvt821

singvt8
D ,

~17!
9-3
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HRVOJE NIKOLIĆ PHYSICAL REVIEW A 61 032109
t5gt81
g

c2
vRy8. ~18!

In particular, att850 these transformations become

x5x8, y5gy8, t5
gu

c2
y8, ~19!

which coincide with the ordinary Lorentz boost att850 for
the velocity in they direction.

III. GENERAL COORDINATE TRANSFORMATIONS
AND THE SPACE LINE ELEMENT IN A

NON-TIME-ORTHOGONAL FRAME

A non-time-orthogonal frame is a frame in whichg0i8 is
different from zero. It is generally accepted that the sp
line element in such a frame is given by Eq.~3!. However, if
we assume that this formula can be applied to calculate
space distance as seen by a local observer, then, as we
found in Sec. I, Eq.~3! leads to an imaginary length of
distant unaccelerated object as seen by a rotating observ
order to resolve this puzzle, we examine the assumpt
under which formula~3! is derived.

In Ref. @3#, formula ~3! is derived by assuming that th
space distance between two points is measured by meas
the timeDt8 that light needs to travel from pointA to point
B and then back to pointA. It is also assumed that the time
measured by a clock that does not change its positionx8 i .
The definition of the space distancel 85c Dt8/2 leads to Eq.
~3!.

In order to perform the described measurement in a ro
ing frame, the clock must be positioned at pointA. However,
according to our interpretation of Eq.~1!, this point can be
far away from the center of the rotation, so the requir
velocity of pointA can exceedc, as seen inS. Therefore, in
general, such a measurement cannot be performed.

In practice, we measure space distances between di
objects in a completely different way, namely, by measur
the angles under which we see the objects.@We assume tha
we know the radial distance of these objects from us. T
radial distance is not problematic in the theoretical sen
becauseg0r8 50 in Eq. ~2!.# Our rotation does not influenc
this angle. Therefore, the apparent velocity of distant obje
can exceed the velocity of light owing to our rotation, bu
pure rotation~without velocity! will not lead to relativistic
contraction, nor to elongation. The effect is that, in a rotat
frame, it is more appropriate to calculate the space line
ment as

dl8252gi j8 dx8 idx8 j , ~20!

despite the fact thatg0i8 is different from zero. This formula
should be used to calculate the space distance between
arbitrary points which have the samet8 coordinate, no matte
how far these points are from the observer atx8 i50. Of
course, if these points are end points of a body, then
general, the distance calculated in this way will not be eq
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to the proper length of the body, but merely to the leng
seen by the observer. Formula~20! is also correct for frames
that are both accelerated and rotating, defined by Eqs.~6!,~7!.

To clarify the meaning of formula~3! completely, note
that in Ref.@9# this formula is derived in a completely dif
ferent way, without referring to any particular method
measurement. However, what is actually derived in Ref.@9#
is the fact that the quantity~3! does not change under coo
dinate transformations of the form

t95 f 0~ t8,x81,x82,x83!, x9 i5 f i~x81,x82,x83!. ~21!

We refer to such transformations asinternal transformations.
Obviously, Eq.~1! is not an internal transformation. Regula
internal transformations form a subgroup of the group of
regular coordinate transformations. Note that the invari
quantityds25gmndxmdxn can always be written as

ds25dh22g i j dxidxj , ~22!

where

dh25Fg0mdxm

Ag00
G 2

, ~23!

so dh2 also does not change under internal transformatio
The quantitydh2 is nothing else but a time line element@3#,
defined by a measuring procedure similar to the measu
procedure used to define the space line element~3!.

Let us illustrate the power of Eqs.~3!, ~21!, and ~23! on
the example that has already been discussed at some le
in Ref. @9#. The Galilei transformationt95t, x95x2ut can
also serve as a correct coordinate transformation neede
describe the relativistic effects related to a frame mov
with a constant velocityu. The metric in these coordinates
given by

ds25c2~12u2/c2!dt9222udx9dt92dx92, ~24!

where it has been assumed that the metric ofS is given by
ds25c2 dt22dx2. From Eq.~3! and dt50 one can obtain
the relativistic contraction dl5dx5dl9/g, where g
51/A12u2/c2. Similarly, from Eq. ~23! and dx950 one
can obtaindt5gdh9. The frameS9 is physically equivalent
to the frameS8 which would be obtained fromS by the
ordinary Lorentz transformations, in the sense thatS9 andS8
are connected by an internal coordinate transformation

x85gx9, t85t9/g2gux9/c2. ~25!

Note that the non-time-orthogonal metric~24!, unlike Eqs.
~2! and ~9!, can be transformed to a time-orthogonal met
by aninternal transformation. Note also that the metric~24!,
unlike Eqs.~2! and ~9!, is not a metric of a Fermi frame.

In Ref. @9#, internal transformations are interpreted
transformations that correspond to a redefinition of the co
dinates of the samephysical observer. However, there i
something unphysical about internal transformations; ift8 is
a measure of the physical time for the observer inS8, thent9
is not, because it corresponds to a ‘‘time’’ of the same o
9-4
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RELATIVISTIC CONTRACTION AND RELATED . . . PHYSICAL REVIEW A61 032109
server which depends on the space pointx8 i . Therefore, we
introduce a more restrictive class of coordinate transform
tions, which could be better suited to interpret them as tra
formations that correspond to a redefinition of the coor
nates of the same physical observer:

t95 f 0~ t8!, x9 i5 f i~x81,x82,x83!. ~26!

We refer to such transformations asrestricted internal trans-
formations. Regular restricted internal transformations for
a subgroup of the group of all regular internal transform
tions. The quantitiesg008 dt82 and Eq. ~20! do not change
under restricted internal transformations.

Now we have two definitions of the space line eleme
Eqs.~3! and~20!, and related to this, two types of restricte
coordinate transformations, internal and restricted inter
The space line element~3! reduces to Eq.~20! if g0i50.
However, as we have shown in this section, Eq.~20! is more
appropriate in some cases, even ifg0iÞ0. How can one
know in general what is the suitable definition of the spa
line element?

We can immediately formulate one rule which is certain
suitable: If the metric of a frame can be transformed to
time-orthogonal frame by an internal transformation, th
the space line element should be calculated by Eq.~3!.

According to the results of this section, we can also f
mulate another rule: If the metric of a frame in flat spaceti
can be obtained fromgmn5hmn by a transformation of the
form of Eqs.~6!,~7! followed by an arbitrary restricted inter
nal transformation, then the space line element should
calculated by Eq.~20!. Such coordinate transformations ca
be interpreted as the most general coordinate transforma
in flat spacetime that correspond to a physical observer
has a positive mass.

We still do not have a general rule. However, one can
satisfied to have a rule for Fermi frames only, or for Fer
frames modified by an arbitrary restricted internal transf
mation, because only such frames have a direct physica
terpretation. One can be tempted to guess that for all s
frames the space line element should be calculated by
~20!, but such a conjecture requires further investigation.

For the sake of completeness, let us make a few rem
on general coordinate transformations in curved spacet
The most general coordinate transformation that correspo
to a physical observer who has a positive mass is a trans
mation that leads to Fermi coordinates, followed by an a
trary restricted internal transformation. Other coordin
frames may be useful for some physical calculations,
example, because it is easier to solve some covariant e
tions of motion in these coordinates. However, if one is
terested in how the physical system appears to a phys
observer, one must transform the results to the coordin
specific for this observer.

To summarize this section, we conclude that the corr
definition of the space line element depends on how i
measured. Formula~3! is not incorrect, but its applicability is
limited and it should be used with great care. In our case
accelerated, rotating frames, it is more appropriate to ca
late the space line element with2gi j8 instead of withg i j8 .
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IV. RELATIVISTIC CONTRACTION

In Sec. II we have found the coordinate transformati
that describes the frame of a short rod uniformly movi
along the circular gutter. Let as assume for a while that
length of the rod is infinitesimally small and that the rod
rigid ~i.e., its proper lengthdL8 is equal to the proper length
of the same rod when it does not accelerate!. Let us deter-
mine the relativistic contraction of the rod, as seen by
observer inS. The observer inSsees both ends of the rod a
the same instant, sodt50. From symmetry it is obvious tha
the relativistic contraction cannot depend ont, so, in order to
simplify the calculations, we evaluate this att50. Since the
rod is atx85y850, Eq.~18! implies thatt850. Taking the
differential of Eqs.~17! and ~18! with respect to space an
time coordinates, and then puttingx85y85t85dt50, we
find that the observer inS sees the length

dL5dy5
dy8

g
5

dL8

g
, ~27!

which is the expected relativistic contraction.
Let us now turn our attention to the concept of the prop

length of a body. Traditionally, it is defined as a length of t
body as seen from the proper frame of the body. However
we have seen, in general, there is no such thing as a pr
frame of the body as a whole. Such a thing exists only fo
nonrotating, inertially moving body in flat spacetime. Th
concept of a proper length of a large body does not have
fundamental meaning, simply because a ‘‘large body’’ is n
actually one object, but a set of many interacting particl
However, the proper length of an infinitesimally small pa
of a body is well defined. Therefore, we can define t
proper length of a whole body as the sum of the pro
lengths of its infinitesimal parts. Applying this to Eq.~27!,
we see that the relativistic contraction of a short~but not
infinitesimal! rigid rod uniformly moving along the circula
gutter is given byL5L0 /g, as seen by the observer inS.
HereL0 is the proper length defined as above.

Now, as in Sec. II, assume that the rotating ring is a se
of independent short rods, uniformly distributed along t
gutter. Each rod is relativistically contracted, but the ring
not. This means that the distances between the neighbo
ends of the neighboring rods are larger than those for a n
rotating ring, so the proper length of the ring is also larg
than that of a nonrotating ring. This is concluded also in R
@2#. This situation mimics a more realistic ring made of ela
tic material, where atoms play the role of short rigid rod
Owing to the rotation the distances between neighboring
oms increase, so there are tensile stresses in the mat
However, it is important to emphasize that the rotation is
essential for understanding of the origin of these ten
forces, because a similar effect also occurs in a linear r
tivistic motion @10#.

The same relativistic contraction of short rods will b
seen by a rotating observer in the center, because his fram
given by the Galilei transformation~1! and the lengths are
calculated bygi j , as explained in Sec. III.
9-5



om
u

he
n

ot
am
lly
he
he

b
g

a
e

e

n

e
o

es

’’
r at
wo

on
osi-
ng,

on-
-

er,

of
erver
is,
ng
the

on
seen
s

by
in-
e

d
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Let us now study how the nonrotating gutter appears fr
the point of view of an observer on the rotating ring. Witho
losing on generality, we evaluate this att850. We calculate
the length of an infinitesimal part of the gutter lying near t
observer, sox5y50. Both ends are seen at the same insta
sodt850. Taking the differential of Eq.~17! with respect to
space coordinates, and then puttingt850, we find that the
observer inS8 sees the length

dL85dy85
dy

g
5

dL

g
, ~28!

which is the expected relativistic contraction.
It is important to emphasize that Eq.~28! is correct only

in the infinitesimal form. The observer on the ring will n
see other distant parts of the gutter contracted in the s
way; for him, the gutter and the ring do not look azimutha
symmetric. In the following we study how other parts of t
ring appear from the point of view of the observer on t
ring. We introduce polar coordinates~r, w!, defined by

y5r sinw, R1x5r cosw, ~29!

which are new space coordinates forS, with the origin in the
center of the circular gutter. The anglew is a good label of
the position of any part of the ring even inS8. ~To visualize
this, one can draw angular marks on the gutter. The num
of marks separating two points on the gutter or on the rin
a measure of the ‘‘angular distance’’ in any frame.! Let S9 be
the frame of another part of the ring. The position of that p
of the ring isx95y950. The relative position of the spac
origin of S9 with respect to that ofS8 is given by the con-
stant relative angleDw0, as seen by an observer inS. In
analogy with Eqs.~17!,~18!, we find thatS9 is determined by

S x

yD 5S cos~gvt91Dw0! 2g sin~gvt91Dw0!

sin~gvt91Dw0! g cos~gvt91Dw0!
D S x9

y9
D

1RS cos~gvt91Dw0!21

sin~gvt91Dw0!
D , ~30!

t5gt91
g

c2
vRy9. ~31!

The observer inS8 will see the other part of the ring at th
relative ‘‘angular distance’’Dw, which, owing to the relativ-
istic effects, differs fromDw0. Let the labelsA, B denote the
coordinates of the part of the ring that lie atS8 and S9,
respectively. Since the rotation is uniform, the relative ‘‘a
gular distance’’

Dw5wB~ tB9 !2wA~ tA8 !5Dw01gvtB92gvtA8 , ~32!

cannot depend ont8, so without losing on generality, w
evaluate this att850. Since the observer sees both parts
the ring at the same instant, we havetA85tB850. SincexB9
5yB950, from Eq.~30! we find

yB5R sin~gvtB91Dw0!, ~33!
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and from Eq.~31!

tB5gtB9 . ~34!

From tB850 and Eq.~19! it follows tB5vRyB /c2, which,
because of Eq.~34!, can be written asgtB95vRyB /c2. This,
together with Eq.~33!, leads to the equation that determin
tB9 :

gvtB95b2 sin~gvtB91Dw0!, ~35!

whereb2[v2R2/c2. From tA850 and Eq.~32! we see that
Dw5gvtB91Dw0, so Eq.~35! can be written as

Dw2Dw05b2 sinDw. ~36!

Equation~36! determines the relative ‘‘angular distance
Dw between two points on the ring as seen by the observe
one of the points, if the relative angle between these t
points, as seen by the observer inS, is Dw0. In other words,
Eq. ~36! determines how the ring appears to the observer
the ring. For an inertial observer whose instantaneous p
tion and velocity are equal to that of the observer on the ri
the same equation~36! is found in Ref.@1#, where the solu-
tion is graphically depicted. This means, contrary to the c
clusion of Ref.@1#, that the inertial and the noninertial ob
servers see the ring in the same way.

If the two points on the ring are very close to each oth
thenDw0 andDw are very small. By expanding Eq.~36! for
small angles we find the approximative solutionDw
5g2Dw0. The factorg2 is easy to understand; one factor
g appears because the part of the gutter close to the obs
on the ring looks shorter for that observer than it really
and the other factor ofg appears because the part of the ri
close to the observer on the ring is longer than that of
same ring when it does not rotate.

V. RATE OF CLOCKS

Assume that there are two clocks at different positions
the ring. Assume also that they show the same time, as
by an observer inS. Then, as shown in Sec. II, both clock
show the timet85t/g, as seen fromS.

These two clocks do not show the same time as seen
an observer on the ring. If the position of the observer co
cides with the position of one of the clocks, then the tim
shift of the other clock is given by Eq.~35!.

Let us calculate the time shift of the clock at the fixe
position (x,y), as seen by the observer inS8. From Eq.~17!
we expressy8 as a function ofx, y, andt8, and put this in Eq.
~18!. The result is

t5gt81
vR

c2
@y cosgvt82~x1R!singvt8#. ~37!

For comparison, if Eqs.~17! and ~18! are replaced by the
ordinary Lorentz boosts for a constant velocity in they di-
rection, then Eq.~37! should be replaced by
9-6
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t5
t8

g
1

u

c2
y. ~38!

To understand the physical meaning of Eq.~37!, we ex-
plore some special cases. Ifgvt852kp, then t5gt8
1vRy/c2. In this case, the rate of clocksDt/Dt85g is the
same as that for the observer inS. This can also be under
stood as a time-averaged rate, because the oscillatory f
tions in Eq.~37! vanish when they are averaged over tim
Therefore, the observer inS8 agrees with the observer inS
that the clock inS8 is slower, but only in a time-average
sense. At some instants the observer inS8 sees that the clock
in S is slower than his clock. For example, by puttingx50
and expanding Eq.~37! for small t8, we recover formula
~38!, with u5vR. If the clock in S is in the center, which
corresponds tox52R, y50, then Eq.~37! givest5gt8, so
in this case there is no oscillatory behavior.

VI. VELOCITY OF LIGHT

Let us also make some comments on the velocity of lig
The Sagnac effect is usually interpreted as a dependenc
the velocity of light on the direction of light propagation in
rotating frame~see, for example, Refs.@11,12# and refer-
ences therein!. However, such an interpretation is based
the interpretation of the frameS8 defined by Eq.~1! as a
proper frame of all observers on a rotating platform. Now
know that each observer belongs to a different local Fe
frame, and from Eq.~9! we see that in thevicinity of any
observer the metric is equal to the Minkowski metrichmn .
This implies that for any local observer the velocity of lig
is isotropic and is equal toc, providing that it is measured b
propagating a light beam in asmall neighborhood of the
observer, using Einstein synchronized clocks. This is a
true for an observer in curved spacetime, because his pr
frame is given by the appropriate Fermi coordinates, wh
also have a property thatgmn5hmn at the position of the
observer. The phrases ‘‘local’’ and ‘‘small’’ denote spati
dimensions inside which the metric tensor does not cha
significantly.

Of course, the velocity of light does not have to be eq
to c for an observer which is not at the same position as
light. However, this is not only a property of non-time
orthogonal frames. For example, if the acceleration of a u
formly accelerated observer and the propagation of light
both in thex8 direction, then from Eq.~9! one can find that
the accelerated observer sees the velocity of light
udx8/dt8u5cA11a8x8/c2, being equal toc only atx850. A
similar effect occurs for a radial motion of light in the vicin
ity of the Schwarzschild radius of a black hole, as seen b
static observer far away from the Schwarzschild radius.

Concerning the Sagnac effect, we do not claim that
standard prediction for the phase shift is incorrect. It can a
be derived by performing calculations in the nonrotati
frame S @11#, and such a derivation, based on the we
understood Minkowski spacetime, is perfectly correct. W
have nothing new to say about the phase shift, which app
when clockwise and counterclockwise propagated li
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beams finally meet. However, as seen by an observer on
rim of a rotating disk, the velocity of the light beam will b
a complicated function of timet8, or equivalently, of the
position (x8,y8) of the beam. The trajectory of the ligh
beam expressed inS coordinates takes a simple form

y5R sinvLt, x5R~211cosvLt !, ~39!

where vL56c/R. The plus and minus signs refer to th
counterclockwise and clockwise propagated beams, res
tively. Using Eqs.~17!, ~18!, and ~39!, one can eliminate
x,y,t and expressx8,y8 as functions oft8. The speed of light
as seen by the observer inS8 is

vL85AS dx8

dt8
D 2

1S dy8

dt8
D 2

. ~40!

Expanding Eqs.~17! and~39! for small t8 andt, respectively,
one can easily findy856ct81O(t82), x85O(t82), which
means that the observer sees the velocity of light equalc
when the light is at the same position as the observer, jus
expected.

VII. DISCUSSION

From the experience acquired by careful calculations
the preceding sections, we can generalize some of the re
without much effort, using qualitative and intuitive argu
ments.

If an observation inS is performed at the instantt, then
the solution of Eq.~8! can always be chosen such that att the
axesx8 i are parallel to the corresponding axesxi . Therefore,
for a small range of values oft8, the transformations~6!,~7!
can be approximated by the ordinary Lorentz boosts@see Eq.
~19!#. From this fact we conclude that if a moving rigid bod
is short enough, then its relativistic contraction in the dire
tion of the instantaneous velocity, as seen fromS, is simply
given byL(t)5L8/g(t), i.e., it depends only on the instan
taneous velocity, not on its acceleration and rotation.~‘‘Short
enough’’ means thatL8!c2/ai8 , whereai8 is the component
of the proper acceleration parallel to the direction of the
locity @13#.!

By a similar argument we may conclude that an arbitrar
accelerated and rotating observer sees equal lengths of
differently moving objects as an inertial observer whose
stantaneous position and velocity are equal to that of
arbitrarily accelerated and rotating observer.

So far we have studied a rotating ring. A rotating disk is
more complicated object, with some additional dynami
effects related to elastic and inertial forces. However, a d
can be modeled as a series of concentric rings, each of t
being constrained to have a fixed radius. In this case,
analysis of a rotating disk becomes essentially the sam
that of a rotating ring.

Let us also give some additional arguments why our re
lution of the Ehrenfest paradox is correct. Our method, ba
on coordinate transformations~6!,~7!, is really a generaliza-
tion of the well-known derivation of the Lorentz contractio
for constant velocities. In our approach the origin of the re
9-7
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tivistic contraction lies in the non-Galilean transformatio
not in the nontrivial metric, whereas in the standard appro
the transformation is Galilean and the contraction is due
the nontrivial metric~2!. Note finally that our approach al
lows a generalization to a more complicated motion, wher
the standard approach does not.

Finally, let us make some comments on the observab
of the relativistic contraction. In principle, it could be ob
served by photographing a rod with a very short expositi
such that both ends are observed at the same instant. S
the velocity of the incoming information~velocity of light! is
finite, both ends of the rod should be positioned at the sa
distance from the observer. Therefore, the ideal setup
such a measurement is a rod in a uniform circular motion
a camera in the center, providing that we can achieve a s
enough exposition. It is assumed that in this experiment
only object that moves circularly is a rod~with two ends!;
there is neither a rotating disk, nor a rotating ring.

An indirect, but easier-to-perform experimental verific
tion of the relativistic contraction could perhaps be obtain
by measuring the velocity of a rotating ring in a rigid circul
gutter, needed to achieve the break of the ring, and com
ing it with the elongation needed to achieve the break of
ring caused by ordinary stretching.

Of course, in both types of experiments the problem is
achieve a relativistic velocity of macroscopic objects,
these can be considered merely as gedanken experimen

VIII. CONCLUSION

In this paper a new resolution of the Ehrenfest parad
has been provided by taking into consideration the fact
although there is no relative motion among different poi
on a rotating disk, each point belongs to a different nonin
tial local Fermi frame. If a rotating ring~or a disk! is con-
strained to have a fixed radius from the point of view of
inertial observer, it has been found that there are ten
stresses in the disk, in agreement with the prediction of
standard approach. However, contrary to the prediction
the standard approach, it has been found that an observ
the rim of the disk will see equal lengths of other differen
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moving objects as an inertial observer whose instantane
position and velocity are equal to that of the observer on
rim, providing that the observations of different events a
simultaneous. This also generalizes to observers arbitra
moving in flat spacetime.

The paper deals mainly with flat spacetime, with partic
lar attention paid to circular motion. However, it gives se
eral results which are of very general relevance, not only
arbitrary motion in flat spacetime, but also for general re
tivity and curved spacetime.

First, it has been demonstrated that the generally acce
formula ~3! is not always correct. The correct definition o
the space line element depends on how it is measured, so
~3! should be used with great care. In some cases, the ‘
ive’’ formula ~20! is more appropriate. One such case is
metric of a frame in flat spacetime that can be obtained fr
gmn5hmn by a transformation of the form of Eqs.~6!,~7!,
followed by an arbitrary restricted internal transformatio
Further investigation is needed in order to generalize
result.

Second, the paper demonstrates the importance of the
of Fermi coordinates. One of the consequences of their us
the result that for any local observer the velocity of light
isotropic and is equal toc, providing that it is measured by
propagating a light beam in a small neighborhood of
observer. This fact should be used for a correct treatmen
the Sagnac effect if one wants to explore the general rela
istic corrections. Fermi coordinates should also be used
order to understand the physical effects related to a rota
black hole, to give a correct treatment of the Hawking rad
tion, as well as for any other physical effect, whenever it
intended to describe how the world appears to a partic
observer.
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