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Relativistic contraction and related effects in noninertial frames
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Although there is no relative motion among different points on a rotating disk, each point belongs to a
different noninertial frame. This fact, not recognized in previous approaches to the Ehrenfest paradox and
related problems, is exploited to give a correct treatment of a rotating ring and a rotating disk. Tensile stresses
are recovered, but, contrary to the prediction of the standard approach, it is found that an observer on the rim
of the disk will see equal lengths of other differently moving objects as an inertial observer whose instanta-
neous position and velocity are equal to that of the observer on the rim. The rate of clocks at various positions,
as seen by various observers, is also discussed. Some results are generalized for observers arbitrarily moving
in flat or curved spacetime. The generally accepted formula for the space line element in a non-time-orthogonal
frame is found inappropriate in some cases. The use of Fermi coordinates leads to the result that for any
observer the velocity of light is isotropic and is equattgroviding that it is measured by propagating a light
beam in a small neighborhood of the observer.

PACS numbd(s): 03.30:+p, 04.20.Cv

I. INTRODUCTION o r'de’ 2mr!
L= 2,22 s = Y(r)2ar.
If a body moves with a constant velocity, then, as is well 0 J1-0r'?/c® J1-w’r'%lc
known, the body is relativistically contracted in the direction ®)

of motion, whereas its length in the normal direction is un-

changed. A naive generalization to a rotating disk leads torhe circumference of the same disk as seen fi®rns L

the conclusion that the circumference of the disk is con=2#r=2#r'. If the disk is constrained to have the same

tracted, whereas the radius of the disk is unchanged. Thisadiusr as the same disk when it does not rotate, then

paradox is known as the Ehrenfest paradox. Obviously, theot changed by the rotation, but the proper circumferérice

paradox is a consequence of the application of the constanis larger than the proper circumference of the nonrotating

velocity result to a system with a nonconstant velocity. disk. This implies that there are tensile stresses in the rotat-
The standard resolutiofsee Refs[1,2] and references ing disk.

therein of the Ehrenfest paradox is as follows: One intro-  However, there is something wrong with this standard

duces the coordinates of the rotating fraBfe resolution of the Ehrenfest paradox. Consider a slightly sim-
pler situation: a rotating ring in a rigid nonrotating circular
'=¢p—wt, r'=r, z'=z, t'=t, (1) gutter with the radius =r’. The statement that E¢5) rep-

o ) ~ resents the proper circumference implies that fneper
where ¢, 1, z t are cylindrical coordinates of the inertial frame of the rotating ring is given by Eql). This means
frame S and o is the angular velocity. The metric i is  that an observer on the ring sees that the circumference is

given by L’= yL. The circumference of the gutter seen by him cannot
I N P o 2 o be different from the circumference of the ring seen by him,
ds?=(c?~ ’r'?)dt’?—20r ' ?de’dt’ —dr'?—r'?de so the observer on the ring sees that the circumference of the
—dz'2 ) relatively moving gutter idarger than the proper circumfer-

ence of the gutter, whereas we expect that he should see that
It is generally accepted that the space line element should gk iS Smaller. This leads to another paradox. It cannot be
calculated by the formulfg] resolved by saying that the obse_rvgr on the ring accelerates,
because one can consider a limit>©, ©w—0, ro=u
dl2= ,yi/jdxridxfj, i,j=1,2,3, (3y ~ =constant, which implies that the accel_erataftrw2 be-
comes zero, whereas the paradox remains.
where Before explaining how we resolve this paradox, we give
some general notes on the physical meaning of various co-
ror ordinate frames in the theory of relativity. In practice, one
Yi'j :go'_?ol_ i,j ] (4) usually uses the coordinates that simplify the technicalities
Joo of the physical problem considered. For example, when one
describes physical effects in a rigid body, it may be conve-
This leads to the circumference of the disk nient to use a comoving coordinate frame, i.e., a frame in
which all particles of the rigid body have constant spatial
coordinates. The coordinates §f in Eq. (1) may be inter-
*Electronic address: hrvoje@faust.irb.hr preted in this way. Howeveithe choice of the coordinate

1050-2947/2000/68)/03210%8)/$15.00 61032109-1 ©2000 The American Physical Society



HRVOJE NIKOLIC PHYSICAL REVIEW A 61 032109

frame is more than a matter of convenientle main lesson It is fair to note that there are also some other “nonstand-
we have learned from Lorentz coordinate frames is the facard” approaches to the Ehrenfest paradege Refs[6,7],
that what an observer observ@ine intervals, space inter- and references thergirbut none of these approaches is simi-
vals, components of a tensor, @tdepends on how the ob- larto ours. In particular, the crucial fact that each point of the
server moves. The main purpose of theoretical physics is totating ring belongs to a different frame has not been taken
predict what will beobservedunder given circumstances. into account in any of these approaches. Forn@ahas
Therefore, unless stated otherwise, in this papea coor- ~ already been criticizedi7], but our criticism of Eq.(3) is
dinate frame we understand a coordinate frame that is in-quite different and more general.
herent to an observenot to a set of physical particles. Our ~ The paper is organized as follows: In Sec. Il we find the
criticism of some earlier treatments originates from such arforrect coordinate transformation that leads to the frame of
interpretation of coordinate frames. To avoid a possible misan observer moving in flat spacetime. In Sec. Ill we explain
understanding, we note that coordinate frames do not nece¥thy Eg.(3) is not always a correct definition of a space line
sarily need to be interpreted in this way, in which case oug€lement and show that in a frame that corresponds to an
criticism does not apply. observer in flat spacetime it is more appropriate to calculate
We resolve the paradox by recognizing that, according tdhe space line element byg;; . We also make some general
our interpretation, the frame defined by Eij) is the proper remarks on the physical meaning of general coordinate trans-
frameonly of the observer at=r'=0. This observer has no formations. In Sec. IV we study the relativistic contraction as
velocity relative toS, so the corresponding coordinate trans-seen by various observers and resolve the Ehrenfest paradox.
formation (1) does not depend on any velocity. As will be- In Sec. V we study the rate of clocks at various positions, as
come clear from the discussion of Sec. II, the frame definegeen by various observers. In Sec. VI we discuss the velocity
by Eq. (1) is actually the Fermi frame of an observer who of light as seen by various observers. In Sec. VII we discuss
rotates, but has no velocity with respect to the fraBn®b-  our results, resolve some additional physical problems, and
servers at different positions on the rotating disk have differgive some generalizations. Section VIII is devoted to con-
ent velocities, so one has to use a different coordinate trangluding remarks, where the relevance of our results to gen-
formation for each of them. In other wordsthough there is ~ eral relativity is emphasized.
no relative motion among different points on a rotating disk,
each point belongs to a different noninertial franiéhis is
not strange to those who are familiar with the theory of
Fermi coordinateg4,5], but it seems that many relativity

theorists are not. The generalized Lorentz transformations for a local Fermi

Note also that since we do not interpret the coordinates oframe of an observer that has arbitrary time-dependent ve-
S"in Eg. (1) as something inherent to the disk as a whole, |ocity and angular velocity in flat spacetime are found in Ref.
can be arbitrarily large in Eq2), although there is a coor- [8]. We present the final results, using slightly different no-
dinate singularity at’ =c/w. It resembles the Schwarzschild tation. LetS be an inertial frame and 168’ be the frame of
Singularity of a black hole, where the radial coordinate is nOfthe observer whose Ve|ocity and angu|ar Ve|ocity ldl(e,)
restricted to be |arger than the SChWarZSCh”d I’adiUS. HOWand wi(t’), respective'y, as seen by an observelSinThe
ever, to avoid a possible misunderstanding, note that the c@pordinate transformation between these two frames is given
ordinate singularity in Eq(2) does not correspond to an py
event horizon, because a rotating observer’'at0 can re-
ceive information front’'=c/w.

There is also another paradox connected with the standard ; PN v
approach to rotating frames. Let us consider how the nonro-X = ~ A ()X + JO y(t")u'(t") dt +u2(t’)
tating gutter appears to a rotating observer in the center. His o
proper frame is given by Eql). If Eq. (3) is the correct XUkt ) A (t)x u' (L), (6)
definition of the space line element, then he should see that
the circumference of the gutter is larger than the proper cir-
cumference of the gutter by a factg(r’). However,wr'/c
can be arbitrarily large, sg(r’) can be not only arbitrarily
large, but also even imaginary. On the other hand, we know
from everyday experience that the apparent veloeity of , . , s
stars, due to our rotation, can exceed the velocity of light, bufvherey(t’)=1/y1—u*(t’)/c” andA; (t') = —Aj(t’) is the
we see neither a contraction, nor an elongation of the staf@tation matrix evaluated at'=0. The rotation matrix sat-

1. FRAME OF AN OBSERVER MOVING
IN FLAT SPACETIME

[v(t")—1]

t’ 1 )
t=fo 7(t')dt'+?V(I')[Uk(t')Ajk(t')X"], (7)

observed. isfies the differential equation
We resolve this paradox by examining the assumptions
under which formula(3) is obtained. We find that this for- dA;
mula should be used with great care and show that it is not —J- —Aikwkj , (8)

applicable in our case. The correct definition of the space dt

line element depends on how it is measured, and we find
that, in our case;/i’j should be replaced by gi’j in Eq. 3). wherewy=¢;qo', £103=1. The metric tensor it$’ is
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gij=—3&j, 0oj=— (@' xXx");, dxt=f#(t",x";u)dx”. (13
9
1o\ 2 © The transition to a noninertial frame introduces a time-
go=C?| 1+ —2) — (@' Xx")?, dependent velocityu—u(t'). The transformationg6),(7)
c may be obtained by integrating E¢L3) in the following
way:

where
XH= jt f‘fo(t’,O;u(t’))dt'Jrf f’fi(t’,x’;u(t’))dx’i,
0 c

w/i:’y(wi—ﬂi), a/i:,yZ (14)

a+ (- Du-au|,
u

(19 whereC is an arbitrary curve with constatt, starting from
Q' is the time-dependent Thomas precession frequency 0 and ending at—Aj'(t’)x’j. The subintegral function in the
second term of Eq(14) is a total derivative, so this term
Q.= 1 ki ik 11 does .not dep_enq on.the cur(Zeand can be easily integrated.
i_E(V Jeikj(u'al—u'a’), (1) The time derivative in the first term is taken witift’) kept
fixed, sof#, in this term is not a total derivative.

and a'=du'/dt is the time-dependent acceleration. The L&t us now apply the general formalism described in this

transformationg6),(7) are chosen such that the space originsS€ction to a uniformly rotating ring. We assume that the ring

of SandS' coincide fort=t’=0. If u is time independent IS Put in arigid nonrotating circular gutter with the radigs

and w=0, then Eqs(6),(7) reduce to the well-known ordi- Which provides that the radius of the rotating ring is the same
nary Lorentz boosts. kfi=0 ande is time independent, then @S the radius of the same ring when it does not rotate, and is

Egs. (6),(7) reduce to Eq(1). It is important to emphasize €dual toR, as seen by an observerdnThis allows us not to
thatu(t’) is the velocity of thespace originx’ =0 of S'. If ~ Worry about the complicated dynamical forces that tend to
S’ is a rotating frame, then other space pointsSbfhave a  change the radius of the ring as seen by the observ& in
different velocity. (Remember that rotation isot a motion and pay all our aftention to the kinematic effects resulting
along a circle, but rather a change of orientation of the axe§©om the transformations),(7). _ _

with respect to an inertial frameTherefore, in genera§’ is The ring can be considered as a series of independent
the proper framenly of the observer at’ =0. Note also that short rods, uniformly dlstrlbyted along the guttéy a short
9,'”: 7,., ONly atx’ =0, which is another confirmation that rod we understand a rod wnh a length much shorter Ran

S’ is the frame of the observer at=0 only. The metric(9) We assume that_ t_he gutter is placeq at 20 plane. We

is also consistent with a more general theory of Fermi coorPUt the space origin o at a fixed point on the gutter, such

dinates[4], which are coordinates of an observer arbitrarilythat they axis is tangential to the gutter and tlxea_X|s IS
moving in curved spacetime, and also have the property tha&erpendmular tq the gutter at=0. (_In the rest of this sec-
9., 7., at the space origin, i.e., at the position of the ob—gpn’ as well as in Secs. 1V and \x,=_ (x,y) and thez coor-
server. Note also that & and w’ vanish, then Eq(9) is a Inate s suppresse)d_\Ne study a single short rod |n|.t|ally
metric of an inertial frame and is equal tg,, everywhere, placed aix=0 and u.nlfor_mly moving glong th? gutter n the
50, in this caseS' can be considered as a frame of an ob-counterclockwise directior(This mimics a uniform motion
server atarbitrary constantx’ . of an electron in a synchrotronThe gutter causes a torque

It is interesting to note that the geometrical constructionthat provides that the rod is always directed tangentially to

of Fermi coordinates is well establishp4i5], but no analog the gutter. Thereforep =u/R, whereu= \/GZ is time inde-
of Egs.(6),(7) is known for curved spacetime. The transfor- Pendent. Now;y= 1,/V_ 1-®R%/c” is also time independent.
mations (6),(7) are obtained by summation of infinitesimal Since a clock inS" is atx’=0, the clock rate between a
Lorentz transformationéand rotations It is not so easy to c¢lockinSand a clock inS' is given byt=yt', as seen by an
find an analog of Lorentz transformations in curved space®bserver inS. We assume that, initially, the ax&s, y' are
time, because they correspond to the coordinate transform®arallel to the axes, y, respectively. Therefore the velocity
tion between Fermi frames of two different free-falling ob-
servers. We can, however, write the transformati@)g7)

in a more elegant form, which could be illuminating for a
generalization to curved spacetime. Let

X“=f“(t’,x’;u) (12) A”(t,):(

denote the ordinary Lorentz transformations, i.e., the trans-

formations between two inertial frames specified by the relaThe transformationg6),(7) become

tive velocity u, which can be considered as the relative ve- , : N o ,

locity between two inertial(free-falling observers at the X): cosywt’ —ysinywt )(X ) (COSV“’t _1)
y sinywt’  ycosywt’ |\y’ sinywt’

Eqg.(12) is a7

u(t’")= wR(—sinywt’,cosywt’) (15
is always in they' direction and the solution of E¢8) is

cosywt’  sinyowt’
. (16)

—sinywt’ cosywt’

instant when they have the same position. The differential of
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t=7t’+12wRy’. (18
Cc

In particular, att’ =0 these transformations become

yu

t= ? (19

y: yy 1 y/l
which coincide with the ordinary Lorentz boosttat=0 for
the velocity in they direction.

Ill. GENERAL COORDINATE TRANSFORMATIONS
AND THE SPACE LINE ELEMENT IN A
NON-TIME-ORTHOGONAL FRAME

A non-time-orthogonal frame is a frame in whidj; is

different from zero. It is generally accepted that the space

line element in such a frame is given by Eg). However, if

PHYSICAL REVIEW A 61 032109

to the proper length of the body, but merely to the length
seen by the observer. Formy0) is also correct for frames
that are both accelerated and rotating, defined by Gy$7).

To clarify the meaning of formuld3) completely, note
that in Ref.[9] this formula is derived in a completely dif-
ferent way, without referring to any particular method of
measurement. However, what is actually derived in R&f.
is the fact that the quantit{8) does not change under coor-
dinate transformations of the form

t"= fO(t/ ,X’l,X’Z,Xrg), X/ri — fi(x’l,x’z,x'g). (21)
We refer to such transformationsiagernal transformations
Obviously, Eq.(2) is not an internal transformation. Regular
internal transformations form a subgroup of the group of all
regular coordinate transformations. Note that the invariant
quantityds’=g wdXx“dx” can always be written as

we assume that this formula can be applied to calculate thghere
space distance as seen by a local observer, then, as we have

found in Sec. I, Eq(3) leads to an imaginary length of a
distant unaccelerated object as seen by a rotating observer.

order to resolve this puzzle, we examine the assumptions

under which formula3) is derived.
In Ref. [3], formula (3) is derived by assuming that the

space distance between two points is measured by measuri

the timeAt’ that light needs to travel from poir to point

B and then back to poir&. Itis also assumed that the time is
measured by a clock that does not change its posiion
The definition of the space distante=c At’/2 leads to Eq.
(3).

In order to perform the described measurement in a rota
ing frame, the clock must be positioned at podtHowever,
according to our interpretation of E¢l), this point can be
far away from the center of the rotation, so the require
velocity of pointA can exceed, as seen ir& Therefore, in
general, such a measurement cannot be performed.

ds?=dn?— y;dxdx, (22)
2
dx*
in d#:{%} , 23
00

sod#»? also does not change under internal transformations.
ﬁge quantityd #? is nothing else but a time line elemdi,
fined by a measuring procedure similar to the measuring
procedure used to define the space line elenf@nt
Let us illustrate the power of Eq§3), (21), and(23) on
the example that has already been discussed at some length
in Ref.[9]. The Galilei transformation’=t, X"=x—ut can

te_llso serve as a correct coordinate transformation needed to

describe the relativistic effects related to a frame moving
with a constant velocity. The metric in these coordinates is

JQiven by

ds?=c?(1—u?/c?)dt"2—2udx’dt"—dx"?, (24

In practice, we measure space distances between distafhere it has been assumed that the metri&S i given by
objects in a completely different way, namely, by measuringyg2 — 2 4t2— dx2. From Eq.(3) anddt=0 one can obtain

the angles under which we see the objeldfge assume that

we know the radial distance of these objects from us. The_
radial distance is not problematic in the theoretical sense

becauseay(, =0 in Eq. (2).] Our rotation does not influence

the relativistic contraction dl=dx=dl"/y, where y
11— u?/c2. Similarly, from Eq.(23) and dx"=0 one
tan obtaindt= yd%". The frameS” is physically equivalent

to the frameS’ which would be obtained fron® by the

this angle. Therefore, the apparent velocity of distant ObjeCtBrdinary Lorentz transformations, in the sense BfaandS’

can exceed the velocity of light owing to our rotation, but a

pure rotation(without velocity) will not lead to relativistic

contraction, nor to elongation. The effect is that, in a rotating

are connected by an internal coordinate transformation

X' =yx", t'=t"ly—yux'lc?. (25)

frame, it is more appropriate to calculate the space line ele-

ment as
di’2=—gfidx''dx', (20

despite the fact thay(; is different from zero. This formula

Note that the non-time-orthogonal metii24), unlike Egs.
(2) and(9), can be transformed to a time-orthogonal metric
by aninternal transformation. Note also that the met(&),
unlike Egs.(2) and(9), is not a metric of a Fermi frame.

In Ref. [9], internal transformations are interpreted as

should be used to calculate the space distance between twiansformations that correspond to a redefinition of the coor-

arbitrary points which have the sartiecoordinate, no matter
how far these points are from the observerxdt=0. Of

dinates of the samghysical observer. However, there is
something unphysical about internal transformations: is

course, if these points are end points of a body, then, im measure of the physical time for the observe®inthent”
general, the distance calculated in this way will not be equais not, because it corresponds to a “time” of the same ob-
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server which depends on the space paifit Therefore, we IV. RELATIVISTIC CONTRACTION
introduce a more restrictive class of coordinate transforma-

tions, which could be better suited to interpret them as trans; In Sec. Il we have found the coordinate transformation
! P that describes the frame of a short rod uniformly moving

fno;trg ?ﬁ;ﬂi;gﬁﬁg?iiﬁ%ﬁ (;tgsgr\rli?.efmltlon of the COOrOII'along the circular_gL_Jttgr._ Le_t as assume for a while that t_he
' length of the rod is infinitesimally small and that the rod is

rigid (i.e., its proper lengthlL’ is equal to the proper length
of the same rod when it does not acceleratet us deter-
mine the relativistic contraction of the rod, as seen by an
observer inS. The observer irg sees both ends of the rod at
the same instant, sbt=0. From symmetry it is obvious that
‘the relativistic contraction cannot dependtoso, in order to
simplify the calculations, we evaluate thistat0. Since the
e ) rod is atx’=y’'=0, Eq.(18) implies thatt’=0. Taking the

Now we have two definitions of the space line elementgigterential of Egs.(17) and (18) with respect to space and
Egs.(3) and(20), and related to this, two types of restricted o coordinates, and then putting=y'=t’=dt=0, we
coordinate transformations, internal and restricted internali,q that the observer i sees the length

The space line elemeriB) reduces to Eq(20) if gg=0.
However, as we have shown in this section, &) is more

t”:fo(t,), X"i:fi(X,l,Xlz,Xlg). (26)

We refer to such transformations i&stricted internal trans-
formations Regular restricted internal transformations form
a subgroup of the group of all regular internal transforma
tions. The quantitieg,dt’? and Eg.(20) do not change
under restricted internal transformations.

appropriate in some cases, evengj;#0. How can one dy’ dL’
know in general what is the suitable definition of the space dL=dy= 72 0 (27)
line element?

We can immediately formulate one rule which is certainly
suitable: If the metric of a frame can be transformed to awhich is the expected relativistic contraction.
time-orthogonal frame by an internal transformation, then Let us now turn our attention to the concept of the proper
the space line element should be calculated by(By. length of a body. Traditionally, it is defined as a length of the
According to the results of this section, we can also for-body as seen from the proper frame of the body. However, as
mulate another rule: If the metric of a frame in flat spacetimewe have seen, in general, there is no such thing as a proper
can be obtained frong,,,= 7, by a transformation of the frame of the body as a whole. Such a thing exists only for a
form of Egs.(6),(7) followed by an arbitrary restricted inter- nonrotating, inertially moving body in flat spacetime. The
nal transformation, then the space line element should beoncept of a proper length of a large body does not have any
calculated by Eq(20). Such coordinate transformations can fundamental meaning, simply because a “large body” is not
be interpreted as the most general coordinate transformatiom&tually one object, but a set of many interacting particles.
in flat spacetime that correspond to a physical observer whblowever, the proper length of an infinitesimally small part
has a positive mass. of a body is well defined. Therefore, we can define the
We still do not have a general rule. However, one can bgroper length of a whole body as the sum of the proper
satisfied to have a rule for Fermi frames only, or for Fermilengths of its infinitesimal parts. Applying this to E®7),
frames modified by an arbitrary restricted internal transforwe see that the relativistic contraction of a sh@stit not
mation, because only such frames have a direct physical innfinitesima) rigid rod uniformly moving along the circular
terpretation. One can be tempted to guess that for all sucfutter is given byL=L,/y, as seen by the observer &
frames the space line element should be calculated by Edferel, is the proper length defined as above.
(20), but such a conjecture requires further investigation. Now, as in Sec. Il, assume that the rotating ring is a series
For the sake of completeness, let us make a few remarksf independent short rods, uniformly distributed along the
on general coordinate transformations in curved spacetimeyutter. Each rod is relativistically contracted, but the ring is
The most general coordinate transformation that correspondsot. This means that the distances between the neighboring
to a physical observer who has a positive mass is a transfoends of the neighboring rods are larger than those for a non-
mation that leads to Fermi coordinates, followed by an arbitotating ring, so the proper length of the ring is also larger
trary restricted internal transformation. Other coordinatethan that of a nonrotating ring. This is concluded also in Ref.
frames may be useful for some physical calculations, fof2]. This situation mimics a more realistic ring made of elas-
example, because it is easier to solve some covariant equtie material, where atoms play the role of short rigid rods.
tions of motion in these coordinates. However, if one is in-Owing to the rotation the distances between neighboring at-
terested in how the physical system appears to a physicaims increase, so there are tensile stresses in the material.
observer, one must transform the results to the coordinatdgowever, it is important to emphasize that the rotation is not
specific for this observer. essential for understanding of the origin of these tensile
To summarize this section, we conclude that the correcforces, because a similar effect also occurs in a linear rela-
definition of the space line element depends on how it idivistic motion [10].
measured. Formulg) is not incorrect, but its applicability is The same relativistic contraction of short rods will be
limited and it should be used with great care. In our case ofeen by a rotating observer in the center, because his frame is
accelerated, rotating frames, it is more appropriate to calcugiven by the Galilei transformatiofil) and the lengths are
late the space line element Wit-hgi’j instead of Withyi’j . calculated byg;; , as explained in Sec. lII.
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Let us now study how the nonrotating gutter appears fromand from Eq.(31)
the point of view of an observer on the rotating ring. Without
losing on generality, we evaluate thistat=0. We calculate tg=ytg. (34
the length of an infinitesimal part of the gutter lying near the
observer, sx=y=0. Both ends are seen at the same instantFrom t;=0 and Eq.(19) it follows tz=wRyg/c? which,
sodt’=0. Taking the differential of Eq17) with respectto  because of Eq(34), can be written agth=wRyg/c?. This,

space coordinates, and then puttirig=0, we find that the  together with Eq(33), leads to the equation that determines
observer inS' sees the length tg:

du—dy - Y9t 28) yoth=B2sin yotl+ Ago), (35)

Y Y
where 8%= w?R?/c?. Fromt,=0 and Eq.(32) we see that

which is the expected relativistic contraction. A= yotly+ Ao, S0 Eq.(35) can be written as

It is important to emphasize that E®8) is correct only
in the infinitesimal form. The observer on the ring will not
see other distant parts of the gutter contracted in the same
way; for him, the gutter and the ring do not look azimuthally
symmetric. In the following we study how other parts of the
ring appear from the point of view of the observer on the
ring. We introduce polar coordinatés ¢), defined by

Ap—Apy=B?sinA¢. (36)

Equation(36) determines the relative “angular distance”
A ¢ between two points on the ring as seen by the observer at
one of the points, if the relative angle between these two
points, as seen by the observerSnis A ¢q. In other words,
y=rsing, R+X=rcose, (29) Eq. (36) determines how the ring appears to the observer on
the ring. For an inertial observer whose instantaneous posi-
which are new space coordinates &mwith the origin in the  tion and velocity are equal to that of the observer on the ring,
center of the circular gutter. The angleis a good label of the same equatio86) is found in Ref.[1], where the solu-
the position of any part of the ring even 8i. (To visualize tion is graphically depicted. This means, contrary to the con-
this, one can draw angular marks on the gutter. The numbesiusion of Ref.[1], that the inertial and the noninertial ob-
of marks separating two points on the gutter or on the ring isservers see the ring in the same way.
a measure of the “angular distance” in any frailest S” be If the two points on the ring are very close to each other,
the frame of another part of the ring. The position of that parthenA ¢, andA ¢ are very small. By expanding E¢36) for
of the ring isx”"=y"”=0. The relative position of the space small angles we find the approximative solutiahe
origin of S’ with respect to that o8’ is given by the con- = y?A¢,. The factory? is easy to understand; one factor of
stant relative anglé\ ¢y, as seen by an observer 8 In v appears because the part of the gutter close to the observer
analogy with Egs(17),(18), we find thatS” is determined by on the ring looks shorter for that observer than it really is,
and the other factor of appears because the part of the ring
X X" close to the observer on the ring is longer than that of the
v~ N same ring when it does not rotate.

cod yot"+Agpg) —ysin(yot”"+Agg)
sin(yot"+A@y)  ycod yot"+Agg)

+R

cog ywt"+Agq) — 1) 30 V. RATE OF CLOCKS

sin(yot”+A . "
ny ¢o) Assume that there are two clocks at different positions on

the ring. Assume also that they show the same time, as seen
t=yt"+ lszyf_ (31) by an observer ir& Then, as shown in Sec. II, both clocks
c show the timet’ =t/vy, as seen frons
These two clocks do not show the same time as seen by
The observer ir§" will see the other part of the ring at the an observer on the ring. If the position of the observer coin-
relative “angular distance’A¢, which, owing to the relativ-  cides with the position of one of the clocks, then the time
istic effects, differs fromA ¢,. Let the labelsA, B denote the  shift of the other clock is given by E¢35).

coordinates of the part of the ring that lie & and S, Let us calculate the time shift of the clock at the fixed
respectively. Since the rotation is uniform, the relative “an-position (x,y), as seen by the observer . From Eq.(17)
gular distance” we expresy’ as a function ok, y, andt’, and put this in Eq.

" , " , (18). The result is
Ap=pg(tg) —@altp) =Agot+ yotzg— yot,, (32

cannot depend on’, so without losing on generality, we _ ., @R / ; ,
s T ’ t=yt'+—[ycosywt’' — (x+R)sinywt']. 3
evaluate this at’=0. Since the observer sees both parts of Y c? Ly ye ( Jsinyot’] 37
the ring at the same instant, we hatje=t5=0. Sincexg

=yg=0, from Eq.(30) we find For comparison, if Eqs(17) and (18) are replaced by the
) , ordinary Lorentz boosts for a constant velocity in theli-
ye=Rsin(yotg+Ae), (33 rection, then Eq(37) should be replaced by
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U beams finally meet. However, as seen by an observer on the
t=—+—y. (38)  rim of a rotating disk, the velocity of the light beam will be
Y ¢ a complicated function of time’, or equivalently, of the
position ’',y’) of the beam. The trajectory of the light
To understand the physical meaning of Eg7), we ex- beam expressed i coordinates takes a simple form
plore some special cases. Hwt'=2km, then t=yt’
+ wRy/c?. In this case, the rate of clockst/At’ =y is the y=Rsinw t, Xx=R(—-1+coswt), (39
same as that for the observer 81 This can also be under- . )
stood as a time-averaged rate, because the oscillatory fun@here @, ==c/R. The plus and minus signs refer to the
tions in Eq.(37) vanish when they are averaged over time.c_ounterclqckmse and clockwise propagated bear_ns_, respec-
Therefore, the observer i’ agrees with the observer & tively. Using Egs.(17), (18), and (39), one can eliminate
that the clock inS' is slower, but only in a time-averaged %Y.t and expresg’,y" as functions ot’. The speed of light
sense. At some instants the observeBirsees that the clock S Seen by the observer 81 is
in Sis slower than his clock. For example, by puttixg 0 5 5
and expanding Eq(37) for small t’, we recover formula ol = \/(dx’) +(ﬂ)
L_ .

(38), with u=wR. If the clock inSis in the center, which W dt’ (40)
corresponds ta= —R, y=0, then Eq(37) givest=yt’, so
in this case there is no oscillatory behavior. Expanding Eqs(17) and(39) for smallt’ andt, respectively,
one can easily fing'=+ct'+0(t'?), x’=0(t'?), which
VI. VELOCITY OF LIGHT means that the observer sees the velocity of light equal to

when the light is at the same position as the observer, just as
Let us also make some comments on the velocity of lightexpected.
The Sagnac effect is usually interpreted as a dependence of
the velocity of light on the direction of light propagation in a
rotating frame(see, for example, Ref$11,12 and refer- VIl DISCUSSION
ences therein However, such an interpretation is based on From the experience acquired by careful calculations in
the interpretation of the fram&' defined by Eq.(1) as a the preceding sections, we can generalize some of the results
proper frame of all observers on a rotating platform. Now wewithout much effort, using qualitative and intuitive argu-
know that each observer belongs to a different local Fermiments.
frame, and from Eq(9) we see that in theicinity of any If an observation inSis performed at the instart then
observer the metric is equal to the Minkowski metrig, . the solution of Eq(8) can always be chosen such that tite
This implies that for any local observer the velocity of light axesx’' are parallel to the corresponding axesTherefore,
is isotropic and is equal tq providing that it is measured by for a small range of values af, the transformationés),(7)
propagating a light beam in amall neighborhood of the can be approximated by the ordinary Lorentz bofste Eqg.
observer, using Einstein synchronized clocks. This is als§19)]. From this fact we conclude that if a moving rigid body
true for an observer in curved spacetime, because his propér short enough, then its relativistic contraction in the direc-
frame is given by the appropriate Fermi coordinates, whichion of the instantaneous velocity, as seen fri§nis simply
also have a property thag,,=7,, at the position of the given byL(t)=L"/y(t), i.e., it depends only on the instan-
observer. The phrases “local” and “small” denote spatial taneous velocity, not on its acceleration and rotat{t8hort
dimensions inside which the metric tensor does not changenough” means thall’<02/aH’ , whereaﬁ is the component
significantly. of the proper acceleration parallel to the direction of the ve-
Of course, the velocity of light does not have to be equalocity [13].)
to ¢ for an observer which is not at the same position as the By a similar argument we may conclude that an arbitrarily
light. However, this is not only a property of non-time- accelerated and rotating observer sees equal lengths of other
orthogonal frames. For example, if the acceleration of a unidifferently moving objects as an inertial observer whose in-
formly accelerated observer and the propagation of light argtantaneous position and velocity are equal to that of the
both in thex' direction, then from Eq(9) one can find that arbitrarily accelerated and rotating observer.
the accelerated observer sees the velocity of light as So far we have studied a rotating ring. A rotating disk is a
|dx’/dt’|:c\/1+a’x’/cz, being equal t@ only atx’=0. A more complicated object, with some additional dynamical
similar effect occurs for a radial motion of light in the vicin- effects related to elastic and inertial forces. However, a disk
ity of the Schwarzschild radius of a black hole, as seen by @an be modeled as a series of concentric rings, each of them
static observer far away from the Schwarzschild radius.  being constrained to have a fixed radius. In this case, the
Concerning the Sagnac effect, we do not claim that thenalysis of a rotating disk becomes essentially the same as
standard prediction for the phase shift is incorrect. It can als¢hat of a rotating ring.
be derived by performing calculations in the nonrotating Let us also give some additional arguments why our reso-
frame S [11], and such a derivation, based on the well-lution of the Ehrenfest paradox is correct. Our method, based
understood Minkowski spacetime, is perfectly correct. Weon coordinate transformatiori6),(7), is really a generaliza-
have nothing new to say about the phase shift, which appeat®n of the well-known derivation of the Lorentz contraction
when clockwise and counterclockwise propagated lighfor constant velocities. In our approach the origin of the rela-
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tivistic contraction lies in the non-Galilean transformation, moving objects as an inertial observer whose instantaneous
not in the nontrivial metric, whereas in the standard approacposition and velocity are equal to that of the observer on the
the transformation is Galilean and the contraction is due t@im, providing that the observations of different events are
the nontrivial metric(2). Note finally that our approach al- simultaneous. This also generalizes to observers arbitrarily
lows a generalization to a more complicated motion, whereamoving in flat spacetime.
the standard approach does not. The paper deals mainly with flat spacetime, with particu-
Finally, let us make some comments on the observabilityar attention paid to circular motion. However, it gives sev-
of the relativistic contraction. In principle, it could be ob- eral results which are of very general relevance, not only for
served by photographing a rod with a very short expositionarbitrary motion in flat spacetime, but also for general rela-
such that both ends are observed at the same instant. Sinteity and curved spacetime.
the velocity of the incoming informatiotvelocity of light) is First, it has been demonstrated that the generally accepted
finite, both ends of the rod should be positioned at the samfrmula (3) is not always correct. The correct definition of
distance from the observer. Therefore, the ideal setup fothe space line element depends on how it is measured, so Eq.
such a measurement is a rod in a uniform circular motion ang3) should be used with great care. In some cases, the “na-
a camera in the center, providing that we can achieve a shorte” formula (20) is more appropriate. One such case is a
enough exposition. It is assumed that in this experiment thenetric of a frame in flat spacetime that can be obtained from
only object that moves circularly is a rdgvith two end$;  g,,=#,, by a transformation of the form of Eq$6),(7),
there is neither a rotating disk, nor a rotating ring. followed by an arbitrary restricted internal transformation.
An indirect, but easier-to-perform experimental verifica- Further investigation is needed in order to generalize this
tion of the relativistic contraction could perhaps be obtainedesult.
by measuring the velocity of a rotating ring in a rigid circular ~ Second, the paper demonstrates the importance of the use
gutter, needed to achieve the break of the ring, and compaof Fermi coordinates. One of the consequences of their use is
ing it with the elongation needed to achieve the break of thehe result that for any local observer the velocity of light is
ring caused by ordinary stretching. isotropic and is equal to, providing that it is measured by
Of course, in both types of experiments the problem is tgpropagating a light beam in a small neighborhood of the
achieve a relativistic velocity of macroscopic objects, soobserver. This fact should be used for a correct treatment of
these can be considered merely as gedanken experimentsthe Sagnac effect if one wants to explore the general relativ-
istic corrections. Fermi coordinates should also be used in
VIIl. CONCLUSION order to understand the physical effects related to a rotating
i . black hole, to give a correct treatment of the Hawking radia-
In this paper a new resolution of the Ehrenfest paradoxXion, as well as for any other physical effect, whenever it is

has been provided by taking into consideration the fact thaf,iended to describe how the world appears to a particular
although there is no relative motion among different pointsypseryer.

on a rotating disk, each point belongs to a different noniner-

tial local Fermi frame. If a rotating ringor a disk is con-
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