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Generalized coherent states and quantum-classical correspondence
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~Received 5 August 1999; revised manuscript received 24 September 1999; published 14 February 2000!

Gaussian Klauder coherent states are constructed for the harmonic oscillator, the planar rotor, and the
particle in a box. The standard harmonic oscillator coherent states are given by expansions in the eigenstates of
the Hamiltonian in terms of a complex parametera. When the complex modulus ofa is large, these states are
identical in behavior with a particular choice of Gaussian Klauder coherent state. When the angular momentum
of a planar rotor is large compared with Planck’s constant, the angle distribution associated with a Gaussian
Klauder coherent state for this case remains sharply localized for many rotations. Similarly, for the particle in
a box, it is possible to choose parameters in the Gaussian Klauder coherent state so that a localized particle
bounces back and forth at constant velocity between the walls of the box for many periods without significant
delocalization. Buried in this behavior is the Fourier series for a triangle wave. These examples show how
Gaussian Klauder coherent states are of utility in understanding quantum-classical correspondence.

PACS number~s!: 03.65.2w
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I. INTRODUCTION

In a recent paper@1#, Gaussian Klauder coherent stat
were constructed and applied to the Coulomb problem.
selecting parameters appropriately, these states can des
an electron in a Rydberg atom as if it were a localized ob
executing a Keplerian orbit around the nucleus for many
bital periods@1#. These states are constructed according
Gaussian generalization of a procedure introduced
Klauder@2# that was further developed for Rydberg atoms
Majumdar and Sharatchandra@3#. The Gaussian Klauder co
herent states are related to Gaussian wave packets, simi
those that were successfully used by Nauenberg@4# and by
Mallalieu and Stroud@5# in explaining certain experimenta
properties of Rydberg atoms. The Gaussian Klauder cohe
states also allow a resolution of the identity operator and
complete~actually overcomplete! like standard kinds of co-
herent states and unlike simple wave packets.

Gaussian Klauder coherent states are the result of a se
for generalized coherent states for the Rydberg atom p
lem @1#. Their existence for Rydberg atoms suggests t
they can be constructed for many other systems as wel
key property of the Klauder construction is a discrete sp
trum that is created by any bounded, finite quantum syst
Thus, we expect Gaussian Klauder coherent states to be
structible for such simple systems as the harmonic oscilla
the planar rotor, and the particle in a box. For the harmo
oscillator, there exist standard coherent states@6# that are the
prototype for all kinds of coherent states. How are they
lated to the Gaussian Klauder coherent states for the
monic oscillator? For the three-dimensional rotor, there e
generalized su~2! coherent states@7#. How are they related to
the Gaussian Klauder coherent states for the planar ro
Finally, there do not appear to be any coherent states in
literature for a one-dimensional particle in a box. Thus,
this elementary case, the Gaussian Klauder coherent s
are unique candidates for appropriate generalized cohe
states.

Coherent states have been shown to be very useful in
discussion of quantum-classical correspondence. They
1050-2947/2000/61~3!/032107~11!/$15.00 61 0321
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vide a general means of construction of Husimi-Wigner d
tributions @8–11#. By enlarging the class of acceptable c
herent states, we increase our ability to make Husimi-Wig
distributions. These distributions have a direct reinterpre
tion as classical Gaussian phase space distributions. T
normalization is intimately tied to the resolution of the ide
tity operator property of the coherent states.

Standard harmonic oscillator coherent states are lab
by a complex numbera. They are expandable in terms of th
eigenstates of the harmonic oscillator Hamiltonian with c
efficients that are essentially the square roots of Poisson
efficients. In the limit where the modulus ofa is large com-
pared to 1, the Poisson coefficients may be approximated
Gaussian coefficients. However, this limit forces the stand
deviation for the Gaussian approximation to be directly co
nected to the modulus ofa. The modulus ofa also deter-
mines the quantum number for which the Gaussian appr
mation is at a maximum. Our Gaussian Klauder coher
states have standard deviations that are independent o
value of the quantum number for which the Gaussian
maximum.

In Sec. II the general features of Gaussian Klauder coh
ent states are reviewed. We show in Sec. III that the Ga
ian Klauder coherent state with a standard deviation cho
to match the value of the quantum number for which t
Gaussian is a maximum agrees with the Gaussian limit of
standard harmonic oscillator coherent state and, like it, ha
minimum uncertainty product. In Sec. IV, the properties o
Gaussian Klauder coherent state for a planar rotor are de
oped. In this case, it is shown that in the limit of large to
angular momentum, the time evolution of a Gauss
Klauder coherent state mimics the classical behavior o
classical planar rotor. The probability distribution for the r
tation angle of the rotor remains highly localized for ma
periods of rotation when the parameters are chosen appr
ately. This parallels the behavior of su~2! generalized coher-
ent states for the three-dimensional rotor@9#. In Sec. V, the
Gaussian Klauder coherent states are used to create
packets for the particle in a box. These wave packets ca
made to describe a localized probability distribution th
©2000 The American Physical Society07-1
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RONALD F. FOX AND MEE HYANG CHOI PHYSICAL REVIEW A61 032107
bounces back and forth between the walls of the box m
times. The analytic basis for the corresponding classical
havior is embedded in the quantum formula for the expe
tion value of the position operator with respect to the Gau
ian Klauder coherent state. In Sec. VI, the construction
Husimi-Wigner distributions is reviewed and interpreted
these cases.

These examples show that Gaussian Klauder cohe
states provide a general method for the construction of qu
tum wave packets that temporally display classical beha
for long times in appropriate parameter domains. They
complete and provide a resolution of the identity operator
spite of having been developed for a rather complica
problem, the Rydberg atom, they have utility for many s
tems including the relatively simple systems presented h

II. GAUSSIAN KLAUDER COHERENT STATES

Let the HamiltonianH have eigenstates and eigenvalu
satisfying

Hun&5Enun&5\venun& ~1!

so that theen’s are dimensionless for some energy scale\v,
and wherein for definiteness,e0,e1,e2,¯ @2#. Define the
Gaussian Klauder coherent state by@1#

uG,n0 ,f0&5 (
n50

` expF2
~n2n0!2

4s2 G
AN~n0!

eienf0un&, ~2!

where

N~n0!5 (
n50

`

expF2
~n2n0!2

2s2 G , ~3!

which guarantees normalization

^G,n0 ,f0uG,n0 ,f0&51. ~4!

Clearly, asn0→`, N(n0)→A2ps2, but for finite n0 and
because the summation is discrete,N(n0) is not expressible
in closed form. Using the limit identity@2#

lim
F→`

1

2F E
2F

F

df0ei ~en2en8!f05dnn8 , ~5!

and givingn0 a domain of minus infinity to infinity rathe
than just the positive values leads to the resolution of
identity operator@1#

E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0K~n0!uG,n0 ,f0&^G,n0f0u51

~6!

providedK(n0) is given by

K~n0!5
N~n0!

A2ps2
. ~7!
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Completeness follows from Eq.~5!. For any fixed value of
n0 , we may write

un&5AN~n0! expF ~n2n0!2

4s2 G
3 lim

F→`

1

2F E
2F

F

df0e2 ienf0uG,n0 ,f0& . ~8!

This is completeness for any fixed value ofn0 , and is over-
completeness ifn0 is varied. This overcompleteness is not
disadvantage but can be of great utility instead@12#, as is
shown in Sec. VI.

III. THE HARMONIC OSCILLATOR

The standard coherent states for the harmonic oscill
are denoted in Dirac notation by

ua&5expF2
uau2

2 G (
n50

`
an

An!
un& ~9!

where un& denotes an eigenstate of the harmonic oscilla
Hamiltonian. These states are normalized, i.e.,^aua&51 and
they provide a resolution of the identity operator:

1

p E d2aua&^au51. ~10!

It is obvious that the coefficients in Eq.~9! are essentially the
square roots of Poissonian coefficients. In the limit of lar
uau it is possible to show that

expF2
uau2

2 G an

An!
>

1

A4 2puau2
expF2

~n2uau2!2

4uau2 Geinf,

~11!

where we have useda5uaueif. This illustrates that the co
efficients become Gaussian for largeuau and that the standard
deviation is&uau ~the standard deviation for the square
modulus of these coefficients is justuau!. No matter what the
value ofa is, the uncertainty product for the oscillator coo
dinate,q, and for the oscillator momentum,p, is the mini-
mum possible value

DqDp5
\

2
. ~12!

The Gaussian Klauder coherent states for the harmo
oscillator are given by Ref.@1# ~the en’s are justn in this
case!

un0 ,f0&5
1

AN~n0!
(
n50

`

expF2
~n2n0!2

4s2 Geinf0un&,

~13!

in which n0 , f0 , ands arec-number parameters. The facto
N(n0) is fixed by the normalization requiremen
^n0 ,f0un0 ,f0&51, or equivalently,
7-2
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GENERALIZED COHERENT STATES AND QUANTUM- . . . PHYSICAL REVIEW A 61 032107
N~n0!5 (
n50

`

expF2
~n2n0!2

2s2 G . ~14!

For largen0 , N(n0) approachesA2ps2. Comparing Eqs.
~13! and~14! with Eq. ~11! shows that ifn0 is identified with
uau2, then the Gaussian Klauder states become the Gaus
limit of the standard coherent state provided the stand
deviation,s, is set equal touau. In generals is independent
of n0 for the Gaussian Klauder coherent states.

The Hamiltonian for the harmonic oscillator may be wr
ten as

H5\va†a, ~15!

in which a anda† are the annihilation and creation operato
respectively, and in which we have omitted the zero-po
energy since it only creates an overall phase factor. When
evolution operator,U5exp@2(iHt/\)#, acts on either type o
coherent state, its effect is very simple:a→ae2 iv and f0
→f02vt. Thus any calculation of expectationE values or
of uncertainty products for a particulara or f0 is good for
any timet by a simple change of parameters.

Denote the Gaussian factor in Eq.~13! by

G~n![expF2
~n2n0!2

4s2 G . ~16!

In order to consider the uncertainty product, four expectat
values are required. By using the creation and annihila
operators, it is possible to establish the following identitie

E~q!5
1

N~n0! (
n50

`

An11G~n!G~n11!2 cos~f0!A \

2mv
,

~17!

E~p!5
1

N~n0! (
n50

`

An11G~n!G~n11!2 sin~f0!A\mv

2
,

~18!

E~q2!5
1

N~n0! (
n50

`

@~2n11!G2~n!

1A~n11!~n12!G~n!G~n12!2 cos~2f0!#
\

2mv
,

~19!

E~p2!5
1

N~n0! (
n50

`

@~2n11!G2~n!2A~n11!~n12!

3G~n!G~n12!2 cos~2f0!#
\mv

2
. ~20!

Since the factorG(n) is largest forn5n0 , the sums may be
approximated by expanding all factors aroundn5n0 and re-
placing the sums by Gaussian integrals. This leads to
following approximations:
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An11>An011 expF n2n0

2~n011!
2

1

4 S n2n0

n011D 2G , ~21!

2n11>~2n011!expF2~n2n0!

2n011
22S n2n0

2n011D 2G , ~22!

A~n11!~n12!>S n01
3

2DexpF n2n0

2~n011!
2

1

4 S n2n0

n011D 2

1
n2n0

2~n012!
2

1

4 S n2n0

n012D 2G . ~23!

In addition there are two identities:

G~n11!5G~n!expF2
2~n2n0!11

4s2 G , ~24!

G~n12!5G~n!expF2
4~n2n0!14

4s2 G . ~25!

With these approximations and identities, it is found that
sufficiently largen0 the sums may be replaced by Gauss
integrals that yield

E~q!>2 cos~f0!A \

2mv
An011S 12

s2

4n0
2D

3expFs2

2 S 12
s2

2n0
2D

3S 1

4n0
2 1

1

4s42
1

2n0s22
1

2n0
3 1

1

2n0
2s2D 2

1

4s2G ,
~26!

E~p!>2 sin~f0!A\mv

2
An011S 12

s2

4n0
2D

3expFs2

2 S 12
s2

2n0
2D

3S 1

4n0
2 1

1

4s42
1

2n0s22
1

2n0
3 1

1

2n0
2s2D 2

1

4s2G ,
~27!

E~q2!>
\

2mv H ~2n011!S 12
s2

2n0
2DexpF s2

2n0
2 S 12

s2

n0
2

2
1

n0
D G12 cos~2f0!S n01

3

2D S 12
s2

2n0
2D

3expF s2

2n0
22

s2

2n0
32

1

2s22
1

n0

1
1

n0
22

s4

2n0
4 1

3s4

2n0
52

3s2

2n0
4G J , ~28!
7-3
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E~p2!>
\mv

2 H ~2n011!S 12
s2

2n0
2D

3expF s2

2n0
2 S 12

s2

n0
22

1

n0
D G

22 cos~2f0!S n01
3

2D S 12
s2

2n0
2D

3expF s2

2n0
22

s2

2n0
32

1

2s22
1

n0
1

1

n0
2

2
s4

2n0
4 1

3s4

2n0
52

3s2

2n0
4G J . ~29!

The harmonic oscillator coherent states have minimum
certainty products and their Gaussian approximations con
a standard deviation directly connected to the quantum n
ber where the Gaussian is a maximum. To compare this
havior with that of the Gaussian Klauder coherent states
s25n0 everywhere in Eqs.~26!–~29! in accord with the dis-
cussion following Eq.~14!. For largen0 , Eqs.~26! and~27!
give to leading order inn0

@E~q!#2>4n0 cos2~f0!
\

2mv
, ~30!

@E~p!#2>4n0 sin2~f0!
\mv

2
, ~31!

and Eqs.~28! and ~29! give to leading order

E~q2!>@2n01112n0 cos~2f0!#
\

2mv
, ~32!

E~p2!>@2n01122n0 cos~2f0!#
\

2mv
. ~33!

Together, Eqs.~30!–~33! yield an uncertainty product give
by

DqDp>
\

2
. ~34!

This agrees with the standard harmonic oscillator coher
states. In Fig. 1, a plot of the uncertainty product for Gau
ian Klauder coherent states for the harmonic oscillator
determined directly from Eq.~13! is shown as a function o
s for n0 equal to 1000. Fors values different from that
which gives the minimum uncertainty product, the unc
tainty product is explicitly time dependent and two curv
are shown representing the maximum and minimum bou
aries for the uncertainty product oscillations. As anticipat
the uncertainty product goes through a minimum that agr
with Eqs. ~12! and ~34! when s2 equalsn0 . Using Eqs.
~26!–~29!, Gaussian integral approximations to these res
may be computed and they are virtually indistinguisha
from those plotted in the figure.
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IV. THE PLANAR ROTOR

The planar rotor Hamiltonian is given by

H5
Lz

2

2I
, ~35!

whereLz is thez component of the angular momentum andI
is the moment of inertia. The Gaussian Klauder coher
states in this case are given by~the en’s are justn2 in this
case!

un0 ,f0&5
1

AN~n0!
(
n50

`

expF2
~n2n0!2

4s2 Gein2f0un&,

~36!

wheren0 , f0 and s are c numbers,N(n0) is fixed by the
normalization requirement, andun& denotes an eigenstate o
the rotor Hamiltonian

un&→
1

A2p
einf. ~37!

The energy eigenvalues can be written

En5n2
\2

2I
5\Vn5\n2V0 , ~38!

whereV05\/2I @this is thev in Eq. ~1!#. Once again, the
action of the evolution operator is a simple parameter cha

expF2
iHt

\ G un0 ,f0&5un0 ,f02V0t&. ~39!

FIG. 1. Setting Planck’s constant equal to the dimensionl
value 1, the uncertainty product for the positionq and the momen-
tum p of a harmonic oscillator is shown as a function ofs for the
Gaussian Klauder coherent-state wave packet given in Eq.~13!. The
upper, solid curve shows the maximum uncertainty product t
occurs wheneverf02vt5p/4 and the lower, dashed line show
the minimum uncertainty product that occurs wheneverf02vt
50. Approximate analytic results obtained from Eqs.~26!–~29! are
virtually indistinguishable. For the upper curve, a dotted curve j
below the solid curve can be seen in the right half of the figure,
for the lower line, the dots are indistinguishable from the dashe
7-4
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FIG. 2. The probability distribution for the Gaussian Klauder coherent-state wave packet for a planar rotor is plotted as a fun
angle,f, for s510 andn05105. Dimensionless variables have been chosen so that Planck’s constant is 1 andV0 is also 1. Thus, the
rotation period is simplyp/n0 @cf. Eq. ~41!#. The five graphs correspond to times~a! 0, ~b! T/5, ~c! 2T/5, ~d! 3T/5, and~e! 4T/5.
er
or

in
In Fig. 2, the time evolution of this Gaussian Klauder coh
ent state is shown in a plot of the probability distribution f
the anglef as a function of time withs510 andn05105.
The group velocity for this wave packet is given by@13#

d

dn

En

\
52n0V0 . ~40!
03210
-Thus, the period of rotation is

T5
p

n0V0
. ~41!

In Fig. 2, the time evolution of this wave packet is shown
five snapshots equally spaced in time byT/5. No detectable
7-5
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distortion in the probability profile is seen. In Fig. 3, th
observation is underscored by exhibiting the distribution
timesT, 5T, and 10T. Nevertheless, the probability distribu
tion will eventually spread and the magnitude of the pe
height will decrease. In Fig. 4~a!, the decay of the peak
height is shown fors510 andn05105 by the solid line and
the decay of the peak height fors510 andn05102 by the
dashed curve. In Fig. 4~b! the decay of the peak height

FIG. 3. The probability distribution for the Gaussian Klaud
coherent-state wave packet for a planar rotor is plotted as a func
of angle,f, for s510 andn05105. Dimensionless variables hav
been chosen so that Planck’s constant is 1 andV0 is also 1. The
distribution is shown for times~a! T, ~b! 5T, and ~c! 10T. No
spreading of the profile or lowering of the peak height is seen.
03210
t

k

shown for s520 andn05300 by the dashed line and th
decay of the peak height fors55 andn05300 by the solid
curve with boxes. Notice that by increasingn0 as in Fig.
4~a!, the rate of delocalization of thef distribution is de-
creased. Thef distribution can be made sharper, i.e., na
rower and with a higher peak height, by takings bigger.
This, however, increases the rate of delocalization unlessn0

is also made appropriately larger as well.
For largen0 , the sum overn in Eq. ~36! may be approxi-

mated by an integral. This produces a Gaussian function
(f-f0). This is identical with the Gaussian limit of the su~2!
generalized coherent states used for the periodically kic
top @9# when u5u85p/2 is imposed. Thus the Gaussia
Klauder coherent states are a special case of the su~2! gen-
eralized coherent states@7# in the Gaussian limit.

on

FIG. 4. ~a! The decay of the peak height for the Gaussi
Klauder coherent-state wave packet for a planar rotor is plotted
function of period. The solid line is fors510 andn05105. The
dashed curve with the boxes is fors510 andn05102. A largern0

means a slower decay rate.~b! The decay of the peak height for th
Gaussian Klauder coherent-state wave packet for a planar rot
plotted as a function of period. The dashed line is fors520 and
n05300. The solid curve with the boxes is fors55 and n0

5300. The biggers is, the sharper the peak is initially, but th
decay is also faster.
7-6
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FIG. 5. The probability distribution for the Gaussian Klauder coherent-state wave packet for a particle in a box is plotted as a
of position,x, for s510 andn05104. The box width,a, has been set equal top. The times for images are respectively,~a! 0, ~b! T/5, ~c!
2T/5, ~d! T/2, ~e! 3T/5, and~f! 4T/5. T is the period,p/n0 .
is

n
ite
V. THE PARTICLE IN A BOX

The particle in a one-dimensional box Hamiltonian
given by

H5
p2

2m
, ~42!

wherep is the momentum andm is the mass. Let the positio
variable bex and let the particle be confined between infin
03210
potential walls located atx50 and x5a. The Gaussian
Klauder coherent states in this case are given by~theen’s are
just n2 in this case!

un0 ,f0&5
1

AN~n0!
(
n50

`

expF2
~n2n0!2

4s2 Gein2f0un&,

~43!

wheren0 , f0, ands are c numbers,N(n0) is fixed by the
7-7
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RONALD F. FOX AND MEE HYANG CHOI PHYSICAL REVIEW A61 032107
normalization requirement andun& denotes an eigenstate o
the particle in a box Hamiltonian

un&→A2

a
sinS npx

a D . ~44!

The energy eigenvalues can be written

En5n2
\2p2

2ma2 5\n2v0 , ~45!

wherev05\p2/2ma2 @this is thev in Eq. ~1!#. Once again,
the action of the evolution operator is a simple parame
change

expF2
iHt

\ G un0 ,f0&5un0 ,f02v0t&. ~46!

Figures 5~a!–5~f! show the motion of a Gaussian Klaud
coherent state probability distribution fors510 and n0
5104. These images were computed for the special casa
5p. The period to go from one wall to the other and ba
again isT5p/n0 in this case. The images~a!–~f! are for
times 0,T/5, 2T/5, T/2, 3T/5, and 4T/5, respectively. When
the distribution is adjacent to the walls, its image is a so
dark mass that appears to have twice the area of the d
butions away from the walls which are simple Gauss
curves. This is a result of very rapid interference oscillatio
in the probability distribution. In Fig. 6, the horizonal sca
has been expanded over 300-fold so that these oscillat
can be seen. In Fig. 7~a!–7~c! the probability distribution is
shown for times T, 5T, and 10T to exhibit the nearly perfec
preservation of the probability profile for ten periods. In F
8~a!, the maximum wave-packet magnitude is plotted a
function of period. The spikes correspond to encounters w
the walls, as was discussed above. Fors55 andn05104,
there is no observable decay in the amplitude of the m
mum magnitude, whereas fors55 andn05100 there is a
manifest decay~dashed profile!. This exhibits the fact tha

FIG. 6. The image in Fig. 5~a! is shown with the horizontal axis
expanded more than 300-fold.
03210
r
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the classical limit corresponds to largen0 values. In Fig.
8~b!, n05300 for both profiles. The solid profile is fors
520 whereas the dashed profile is fors55. This shows that
a larger value ofs creates a larger initial magnitude but
quicker decay. A largern0 must be chosen in order to com
pensate for this.

These results may be understood analytically. The exp
tation value for the position operator,x, is

FIG. 7. The probability distribution whose time evolution
shown in Figs.5~a!–5~f! is shown for times~a! T, ~b! 5T, and ~c!
10T.
7-8
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GENERALIZED COHERENT STATES AND QUANTUM- . . . PHYSICAL REVIEW A 61 032107
^n8uxun&

5H a/2 if n85n
0 if n81n is even andn8Þn

a

p2S 2
2

~n82n!21
2

~n81n!2D if n81n is odd.

~47!

Let v05\p2/2ma2. Together with Eqs.~43! and ~47!, this
yields

^n0 ,f0uxun0 ,f0&

5
a

2
2 (

n851

`

(
n51

`
1

N~n0!

3expF2
(n2n0)21(n82n0)2

4s2 G
3exp[i (n22n82)(f02v0t)]

a

p2

3S 2

n82n22
2

~n81n!2D . ~48!

The double sum is restricted ton81n is odd. We now con-
template the limit of largen0 , and replacen8 by n1 j where
j is any positive or negative odd integer. This converts
~48! into

^n0 ,f0uxun0 ,f0&5
a

2
2

1

N~n0! (
j odd

(
n51

`

3expF2
~n2n0!2

2s2 2
2 j ~n2n0!1 j 2

4s2 G
3exp@2 i ~2 jn1 j 2!~f02v0t !#

3
a

p2 S 2

j 22
2

~2n1 j !2D . ~49!

For sufficiently largen0 , the second term in the final brack
can be neglected compared with the first since the Gaus
distribution inn is centered aroundn0 , and then sum may
be approximated by a Gaussian integral. This yields

^n0 ,f0uxun0 ,f0&

5
a

2
2

2a

p2 (
j odd

1

j 2 expF2
j 2

4s2G
3exp@2 i ~2 jn01 j 2!~f02v0t !#

3expF j 2

8s2 1 i j 2~f02v0t !2s2 j 2~f02v0t !2G . ~50!

In the j sum above,j can be positive or negative. If w
restrict j to just positive values, Eq.~50! may be rewritten as
03210
.

an
^n0 ,f0uxun0 ,f0&5

a

2
2

4a

p2 (
j odd

1

j 2

3expF2
j 2

8s222s2 j 2~f02v0t !2G
3cos@2 jn0~f02v0t !#. ~51!

Let u52n0(f02v0t) and rewrite Eq.~51! as

^n0 ,f0uxun0 ,f0&5
a

2
2

4a

p2(
j odd

1

j 2 expF2
j 2

8s22
s2 j 2u2

2n0
2 G

3cos@ j u#. ~52!

From the theory of Fourier series@14# we recognize in this
expression the Fourier series for the so-called triangle w

FIG. 8. ~a! The decay of the maximum magnitude for a Gau
ian Klauder coherent-state probability as a function of perioda
5p. The solid profile is fors55 andn05104, whereas the dashe
profile is for s55 andn05100. ~b! The decay of the maximum
magnitude for a Gaussian Klauder coherent-state probability a
function of period fora5p. The solid profile is fors520 and
n05300, whereas the dashed profile is fors55 andn05300.
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(
j odd

`
cos~ jx !

j 2 5
p2

8
1H px/4 2p<x<0

2px/4 0<x<p
. ~53!

An extraordinarily good fit to the triangle wave is produc
by the first three or four terms in this infinite series. Whenn0
is very large,s is modest,j is modest, andu is not too many
multiples of 2p, the second term in the exponential in E
~52! can be ignored, and ifs is not too small the resulting
series produces an expectation value for position exhibitin
back and forth motion between the walls at 0 anda with
constant velocity. Ifs is too small, say of order unity or less
then only thej 51 term can contribute and a poor represe
tation of the classical motion is achieved by this quant
description. Ifn0 is too small, then the second term in th
exponential in Eq.~52! becomes important quickly and aga
a poor representation of the classical motion results. H
ever, fors andn0 of the order we have used in Figs. 5~a!–
5~f! and 8~a!, the results are very good, i.e., the quantu
description mimics the classical behavior very well for ma
periods.

VI. HUSIMI-WIGNER DISTRIBUTIONS

Gaussian Klauder coherent states are wave packets. S
we have shown that these wave packets can be made so
they are sharp Gaussian distributions that remain sharp f
long time. Moreover, the expected value of the position
erator evolves in time just like the corresponding class
object’s position would evolve in time. This is a kind o
quantum-classical correspondence. This kind of corresp
dence emphasizes the classical trajectory and relates thi
jectory to an expectation value computed from the quan
wave packet. A deeper correspondence exists based
Husimi-Wigner distributions in which there is a correspo
dence between quantum distributions and classical
sembles in classical phase space@9–11#.

Let uC& denote an arbitrary state of a bounded, fin
quantum system. The system may be coupled to an exte
perturbation so that the Hamiltonian has the formH0
1H(t) where H0 is the system Hamiltonian. This is th
situation for the periodically kicked pendulum@8# and the
periodically kicked top@9#. Let uG,n0 ,f0& denote a Gauss
ian Klauder coherent state based on the HamiltonianH0 .
The Husimi-Wigner distribution is constructed by formin
the expression
,
r,

03210
a

-

-

far
hat
r a
-
l

n-
ra-
m
on
-
n-

al

DHW~n0 ,f0 ,s!5K~n0!u^G,n0 ,f0uC&u2, ~54!

whereK(n0) is given in Eq.~7!. It is evident that this distri-
bution is non-negative. The ordinary Wigner distribution
not necessarily non-negative and the Husimi-Wigner dis
bution always is since it amounts to a smoothing of t
Wigner distribution done in such a way as to eliminate t
possible negative values of the Wigner distribution. T
resolution of the identity operator given in Eq.~6! leads to
the normalization condition

E
2`

`

dn0 lim
F→`

1

2F E
2F

F

df0DHW~n0 ,f0 ,s!51. ~55!

SinceDHW is non-negative, this last expression can equa
well be interpreted as the normalization condition for a d
tribution in classical phase space. At the initial time,DHW
can be given the dual interpretation as both the initial qu
tum distribution and the initial classical distribution. By fo
lowing the quantum evolution ofDHW on the one hand and
the classical evolution ofDHW on the other, quantum
classical correspondence may be investigated. In our pr
ous work on the periodically kicked pendulum and top@8,9#,
we showed that for some length of time these two interp
tations of the distribution evolved in time with their first fe
moments agreeing quantitatively with high precision. In fa
since these system are chaotic, the variances initially g
exponentially and the rate of growth was twice the class
local Lyapunov exponent for both interpretations. In this w
it was shown that the classical local Lyapunov exponent
quantum signature of classical chaos.

The quantum-classical correspondence established
Husimi-Wigner distributions contains more information th
the connection between the expectation values of posi
operators and classical trajectories. Variance information
paramount importance in quantum mechanics, is also
tained. Gaussian Klauder coherent states increase our a
to construct these valuable distributions.
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