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Gaussian Klauder coherent states are constructed for the harmonic oscillator, the planar rotor, and the
particle in a box. The standard harmonic oscillator coherent states are given by expansions in the eigenstates of
the Hamiltonian in terms of a complex parameteMWhen the complex modulus efis large, these states are
identical in behavior with a particular choice of Gaussian Klauder coherent state. When the angular momentum
of a planar rotor is large compared with Planck’s constant, the angle distribution associated with a Gaussian
Klauder coherent state for this case remains sharply localized for many rotations. Similarly, for the particle in
a box, it is possible to choose parameters in the Gaussian Klauder coherent state so that a localized particle
bounces back and forth at constant velocity between the walls of the box for many periods without significant
delocalization. Buried in this behavior is the Fourier series for a triangle wave. These examples show how
Gaussian Klauder coherent states are of utility in understanding quantum-classical correspondence.

PACS numbd(s): 03.65—w

[. INTRODUCTION vide a general means of construction of Husimi-Wigner dis-
tributions[8—11]. By enlarging the class of acceptable co-
In a recent papefl], Gaussian Klauder coherent statesherent states, we increase our ability to make Husimi-Wigner
were constructed and applied to the Coulomb problem. Byistributions. These distributions have a direct reinterpreta-
selecting parameters appropriately, these states can descrifien as classical Gaussian phase space distributions. Their
an electron in a Rydberg atom as if it were a localized objechormalization is intimately tied to the resolution of the iden-
executing a Keplerian orbit around the nucleus for many oriity operator property of the coherent states.
bital periods[1]. These states are constructed according to a Standard harmonic oscillator coherent states are labeled
Gaussian generalization of a procedure introduced byy a complex numbed. They are expandable in terms of the
Klauder[2] that was further developed for Rydberg atoms byeigenstates of the harmonic oscillator Hamiltonian with co-
Majumdar and Sharatchandi@. The Gaussian Klauder co- efficients that are essentially the square roots of Poisson co-
herent states are related to Gaussian wave packets, similaredfficients. In the limit where the modulus efis large com-
those that were successfully used by Nauenlhéigand by  pared to 1, the Poisson coefficients may be approximated by
Mallalieu and Stroud5] in explaining certain experimental Gaussian coefficients. However, this limit forces the standard
properties of Rydberg atoms. The Gaussian Klauder coheredeviation for the Gaussian approximation to be directly con-
states also allow a resolution of the identity operator and areected to the modulus af. The modulus ofa also deter-
complete(actually overcomplefelike standard kinds of co- mines the quantum number for which the Gaussian approxi-
herent states and unlike simple wave packets. mation is at a maximum. Our Gaussian Klauder coherent
Gaussian Klauder coherent states are the result of a searstates have standard deviations that are independent of the
for generalized coherent states for the Rydberg atom probralue of the quantum number for which the Gaussian is
lem [1]. Their existence for Rydberg atoms suggests thamaximum.
they can be constructed for many other systems as well. A In Sec. Il the general features of Gaussian Klauder coher-
key property of the Klauder construction is a discrete specent states are reviewed. We show in Sec. Il that the Gauss-
trum that is created by any bounded, finite quantum systeman Klauder coherent state with a standard deviation chosen
Thus, we expect Gaussian Klauder coherent states to be coto- match the value of the quantum number for which the
structible for such simple systems as the harmonic oscillatoiGaussian is a maximum agrees with the Gaussian limit of the
the planar rotor, and the particle in a box. For the harmonistandard harmonic oscillator coherent state and, like it, has a
oscillator, there exist standard coherent stb¢shat are the  minimum uncertainty product. In Sec. 1V, the properties of a
prototype for all kinds of coherent states. How are they re-Gaussian Klauder coherent state for a planar rotor are devel-
lated to the Gaussian Klauder coherent states for the haoped. In this case, it is shown that in the limit of large total
monic oscillator? For the three-dimensional rotor, there exisangular momentum, the time evolution of a Gaussian
generalized 92) coherent statds]. How are they related to Klauder coherent state mimics the classical behavior of a
the Gaussian Klauder coherent states for the planar rotorélassical planar rotor. The probability distribution for the ro-
Finally, there do not appear to be any coherent states in th®ation angle of the rotor remains highly localized for many
literature for a one-dimensional particle in a box. Thus, inperiods of rotation when the parameters are chosen appropri-
this elementary case, the Gaussian Klauder coherent statately. This parallels the behavior of (&) generalized coher-
are unique candidates for appropriate generalized cohereant states for the three-dimensional roi®f. In Sec. V, the
states. Gaussian Klauder coherent states are used to create wave
Coherent states have been shown to be very useful in thegackets for the particle in a box. These wave packets can be
discussion of quantum-classical correspondence. They pranade to describe a localized probability distribution that

1050-2947/2000/68)/03210711)/$15.00 61032107-1 ©2000 The American Physical Society



RONALD F. FOX AND MEE HYANG CHOI PHYSICAL REVIEW A61 032107

bounces back and forth between the walls of the box manfompleteness follows from Ed@5). For any fixed value of
times. The analytic basis for the corresponding classical ben,, we may write

havior is embedded in the quantum formula for the expecta- 2
tion value of the position operator with respect to the Gauss- —— - r‘o
ian Klauder coheF:)rent statg. In Sec. VI, tr?e construction of [m)=VN(no) exp{
Husimi-Wigner distributions is reviewed and interpreted for
these cases.

These examples show that Gaussian Klauder coherent
states provide a general method for the construction of quan-
tum wave packets that temporally display classical behavioThis is completeness for any fixed valuergf, and is over-
for long times in appropriate parameter domains. They argompleteness i, is varied. This overcompleteness is not a
complete and provide a resolution of the identity operator. Indisadvantage but can be of great utility instdad], as is
spite of having been developed for a rather complicateGhown in Sec. VI.
problem, the Rydberg atom, they have utility for many sys-
tems including the relatively simple systems presented here. lIl. THE HARMONIC OSCILLATOR

X lim == dd) e n%|G,ng, ). (8)

q>~>w

Il. GAUSSIAN KLAUDER COHERENT STATES The standard coherent states for the harmonic oscillator
are denoted in Dirac notation by
Let the HamiltonianH have eigenstates and eigenvalues

satisfying ||
|a>=eXF{—TE =|n) 9
H|n>:En|n>:ﬁwen|n> D 0
so that thee,’s are dimensionless for some energy sdale where |n) denotes an eigenstate of the harmonic oscillator
and wherein for definitenessy<e;<e,<--- [2]. Define the ~Hamiltonian. These states are normalized, {€|ax)=1 and
Gaussian Klauder coherent state[dy they provide a resolution of the identity operator:
h)2 1
n—n
. ex;{ ! n 20) ;j d?a|a){al=1. (10
g .
G.no. doh= 3, o), @ _— .
n=0 VN(np) It is obvious that the coefficients in E(Q) are essentially the
square roots of Poissonian coefficients. In the limit of large
where o] it is possible to show that
*° 2
n—n 2 _ 2\2
N(no):E eX[{—(Z—ZO) ) (3 ex;{_ﬁiﬂg 1 eX[{—(n |a|2) gine
o 2 [l Yzalal 4la] ’

11

which guarantees normalization
_ where we have used=|ale'®. This illustrates that the co-
(G.Nng, ¢o|G.no, o) = 1. @) efficients become Gaussian for larigéand that the standard

Clearly, asng—, N(no)— y27a?, but for finite n, and deviation isv2|a| (the standard deviation for the squared
because the summation is discrétn,) is not expressible Modulus of these coefficients is jyaf). No matter what the
in closed form. Using the limit identitj2] value of « is, the uncertainty product for the oscillator coor-

dinate,q, and for the oscillator momentunp, is the mini-

1 (o mum possible value

lim = d¢ glenenldo=¢5_ (5)
oo 2P b

h
AgAp=>. (12)
and givingng a domain of minus infinity to infinity rather
than just the positive values leads to the resolution of the e Gaussian Klauder coherent states for the harmonic
identity operatoi{1] oscillator are given by Ref1] (the e,’s are justn in this

o 1 (@ case
[ angim 5 | ddok 160, o) @ ool =1 Lo el
— n
(6) |n0 ¢0> \/(— 20 ex% 40_2 :|e 0|n>,
providedK (n) is given by (13

N in whichng, ¢q, ando arec-number parameters. The factor

K(ng)= (No) ) 7) N(ng) is fixed by the normalization requirement
2o’ (Ng,dolNg, o) =1, or equivalently,
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o0 2
(n—ng)? _ n-no 1/n—ng
N(no)= 2, exr{— 557 (14 nHI=Vnotlexn o v 4lnerr) |0 Y
For | N hes/27o?. ing Egs. 2(n—n n—ng \?
or largeny, I (ng) approache mo*®. Comparing Eqgs 2n+1=(2n,+ 1)ex ( o) o)l 22)
(13) and(14) with Eq. (11) shows that iing is identified with 2ng+1 2ny+1
|a|?, then the Gaussian Klauder states become the Gaussian
limit of the standard coherent state provided the standard 3 n-n, 1/n—ng\?
deviation, o, is set equal tde|. In generalo is independent (n+1)(n+2)%( N+ > eXF{Z(n 1) aln +1)
of n, for the Gaussian Klauder coherent states. 0 0
The Hamiltonian for the harmonic oscillator may be writ- n—ng 1/{n—ng\?
J’_ —_——
ten as 2(ng+2) 4\ng+2 23
— t
H=hoa'a, (19 In addition there are two identities:
in whicha anda' are the annihilation and creation operators,

. . . . ; 2(n—ng)+1
respectively, and in which we have omitted the zero-point G(n+1)=G(n)exg — —————|, (24)
energy since it only creates an overall phase factor. When the 4o
evolution operatorl) =exd —(iHt/A)], acts on either type of
coherent state, its effect is very simple— ae™'® and ¢, _ 4(n—ng)+4
— ¢o— wt. Thus any calculation of expectatighvalues or G(n+2)=G(n)exp - 402 ' (25

of uncertainty products for a particularor ¢, is good for
any timet by a simple change of parameters.
Denote the Gaussian factor in E4.3) by

With these approximations and identities, it is found that for
sufficiently largen, the sums may be replaced by Gaussian

integrals that yield

(n—no)?
G(H)EGX[{— Tzo .
&q)=

In order to consider the uncertainty product, four expectation
values are required. By using the creation and annihilation
operators, it is possible to establish the following identities:

(16)

L -
s(q):mnz Jn+1G(n)G(n+1)2 cog ¢) T
17

&p)= N(no)z Vn+1G(n)G(n+1)2 sin(¢g) fime £(p)=
(18)

S(qz)—N(n 2 [(2n+1)G%(n)

+VJ(n+1)(n+2)G(n)G(n+2)2 c0$2¢0)]ﬁ
(19

&(g?

&(p?)= 2 [(2n+1)G%4(n)—(n+1)(n+2)

N(n )=

imow
XG(n)G(n+2)2 cos2¢o)] ——

(20)
Since the facto6G(n) is largest fom=ng, the sums may be
approximated by expanding all factors aroumed n, and re-
placing the sums by Gaussian integrals. This leads to the
following approximations:
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2 4ng
exg 21— -
H2 | 20,2
« 1 N 1 1 1 1 1
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) fimw o2 3
5([3 ET (2n0+1) 1_W
0
y o2 1 o2 1
e — —_—————
*F 2n,2 N2 Ny
2 cog2¢ )( P )
—2co ol ne+=ll1—-=—
2 2n,°
" a? a2 1 1 . 1
P 2n2 2n 202 Ny ng? _
ot 30* 302

G0 ¢ 70w
The harmonic oscillator coherent states have minimum un- FIG. 1. Setting Planck’s constant equal to the dimensionless
certainty products and their Gaussian approximations contaivglue 1, the uncertainty product for the positipmnd the momen-

a standard deviation directly connected to the quantum nurfum p of a harmonic oscillator is shown as a functionefor the

ber where the Gaussian is a maximum. To compare this bé2aussian Klauder coherent-state wave packet given ilSy. The
havior with that of the Gaussian Klauder coherent states, séfPPer. solid curve shows the maximum uncertainty product that
crz=n0 everywhere in Eqs26)—(29) in accord with the dis- occurs whenever,— wt= /4 and the lower, dashed line shows

. . the minimum uncertainty product that occurs wheneygr- wt
Cl.’ISSIOH foIIc_)Wlng Eq(_14). For largen,, Eqs.(26) and(27) =0. Approximate analytic results obtained from E(6)—(29) are
give to leading order im,

virtually indistinguishable. For the upper curve, a dotted curve just
below the solid curve can be seen in the right half of the figure, but
(30) for the lower line, the dots are indistinguishable from the dashes.

+ ) 29 0 ‘ ' '
2ng  2ng? 2n04] (29 ) 36 30 40

[£(a)]*=4ng cog (o)

2me’
IV. THE PLANAR ROTOR
fimw . L
[E(p)]?=4n, Sir?( ¢g) 5 (31 The planar rotor Hamiltonian is given by
L2
and Eqgs.(28) and(29) give to leading order H= 2—|Z (35
£(q?)=[2ng+ 1+ 2Ny cOS2h0) ] i (32)  Wherel, is thez component of the angular momentum dnd
Mo is the moment of inertia. The Gaussian Klauder coherent
states in this case are given e e,’s are justn? in this
fi case
2\~ _ _
E(p?)=[2ng+1—2nycog24¢y)] T (33 i} )
. . . | _;2 _(n=no) inZgo)
Together, Eqs(30)—(33) yield an uncertainty product given No, $o) = JN(ng) i ex 252 |€ n,
by (36)
AdA zﬁ (34) whereng, ¢ and o arec numbers,N(ng) is fixed by the
aap=73- normalization requirement, arjd) denotes an eigenstate of

the rotor Hamiltonian
This agrees with the standard harmonic oscillator coherents
states. In Fig. 1, a plot of the uncertainty product for Gauss-
ian Klauder coherent states for the harmonic oscillator as
determined directly from Eq13) is shown as a function of
o for ny equal to 1000. Fowr values different from that The energy eigenvalues can be written
which gives the minimum uncertainty product, the uncer-
tainty product is explicitly time dependent and two curves
are shown representing the maximum and minimum bound-
aries for the uncertainty product oscillations. As anticipated,
the uncertainty product goes through a minimum that agreeghere Q,=%/2I [this is thew in Eq. (1)]. Once again, the
with Egs. (12) and (34) when o equalsn,. Using Egs. action of the evolution operator is a simple parameter change
(26)—(29), Gaussian integral approximations to these results )
may be computed and they are virtually indistinguishable ex;{—lH—t
from those plotted in the figure. h

1
|n>—> \/?e'”q’. (37)

o

2
E =n2ﬁ—=m =#n%Q) (39
n 2| n 0>

N0, d0)=1INg, Po— Qot). (39
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FIG. 2. The probability distribution for the Gaussian Klauder coherent-state wave packet for a planar rotor is plotted as a function of
angle, ¢, for =10 andn0=105. Dimensionless variables have been chosen so that Planck’s constant is(ly asélso 1. Thus, the
rotation period is simplyr/ng [cf. Eq. (41)]. The five graphs correspond to times 0, (b) T/5, (c) 2T/5, (d) 3T/5, and(e) 4T/5.

In Fig. 2, the time evolution of this Gaussian Klauder coher-Thus, the period of rotation is
ent state is shown in a plot of the probability distribution for

the angle¢ as a function of time withr=10 andny,=10°. T— ™ (41)
The group velocity for this wave packet is given [d3] NoQly’
a E=2n Q (40) In Fig. 2, the time evolution of this wave packet is shown in
dan # 0270~ five snapshots equally spaced in time ™. No detectable
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FIG. 4. (@) The decay of the peak height for the Gaussian
Klauder coherent-state wave packet for a planar rotor is plotted as a
function of period. The solid line is fos=10 andny,=10°. The
dashed curve with the boxes is for=10 andn,=10?. A largern,
means a slower decay rate) The decay of the peak height for the
Gaussian Klauder coherent-state wave packet for a planar rotor is
plotted as a function of period. The dashed line is dor 20 and
no=300. The solid curve with the boxes is fer=5 and ng
=300. The biggero is, the sharper the peak is initially, but the
decay is also faster.

shown for =20 andny=300 by the dashed line and the

FIG. 3. The probability distribution for the Gaussian Klauder decay of the peak height far=5 andn,=300 by the solid
coherent-state wave packet for a planar rotor is plotted as a functiogurve with boxes. Notice that by increasimg as in Fig.
of angle, ¢, for o=10 andny=10°. Dimensionless variables have 4(a), the rate of delocalization of the distribution is de-

been chosen so that Planck’s constant is 1 @gds also 1. The
distribution is shown for timega) T, (b) 5T, and(c) 10T. No
spreading of the profile or lowering of the peak height is seen.

creased. Thep distribution can be made sharper, i.e., nar-
rower and with a higher peak height, by takiegbigger.
This, however, increases the rate of delocalization umgss

distortion in the probability profile is seen. In Fig. 3, this IS also made appropriately larger as well. _
observation is underscored by exhibiting the distribution at For largeny, the sum ovenin Eq. (36) may be approxi-
timesT, 5T, and 10. Nevertheless, the probability distribu- Mmated by an integral. This produces a Gaussian function of
tion will eventually spread and the magnitude of the peak ¢- o). This is identical with the Gaussian limit of the(&u

height will decrease. In Fig. (4), the decay of the peak
height is shown for=10 andny= 10° by the solid line and
the decay of the peak height for=10 andny,=10? by the
dashed curve. In Fig.(4) the decay of the peak height is

generalized coherent states used for the periodically kicked
top [9] when 6= 6"==/2 is imposed. Thus the Gaussian
Klauder coherent states are a special case of tf@® gen-
eralized coherent stat¢g] in the Gaussian limit.
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FIG. 5. The probability distribution for the Gaussian Klauder coherent-state wave packet for a particle in a box is plotted as a function
of position,x, for =10 andny=10*. The box width,a, has been set equal ta The times for images are respectivelg) 0, (b) T/5, (c)
2T/5, (d) T/2, (e) 3T/5, and(f) 4T/5. T is the period,m/ng.

V. THE PARTICLE IN A BOX potential walls located ak=0 and x=a. The Gaussian

The particle in a one-dimensional box Hamiltonian is Klaudzer coherent states in this case are giverthye,’s are
justn© in this casg

given by
2 1 ” (n—n )2 L2
H:%, (42) |n01¢)0>: \/mnzo eXF{A]_O_ZOem ¢0|n>|
(43

wherep is the momentum anah is the mass. Let the position
variable bex and let the particle be confined between infinitewhereng, ¢q, ando arec numbersN(ng) is fixed by the

032107-7



RONALD F. FOX AND MEE HYANG CHOI

PHYSICAL REVIEW A61 032107

16 16 T T
14 | 14 (a)
27 12
o 100 o 10
> o > s
6 6
4 4
2 2
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FIG. 6. The image in Fig.®) is shown with the horizontal axis 16 . . . ; ' .
expanded more than 300-fold. (b)
14
o . ) 12
normalization requirement and) denotes an eigenstate of
the particle in a box Hamiltonian o 10
N . P
)=\ sin —— - (44 6
The energy eigenvalues can be written 4
hlm? 2
E,=n’—==%n%w,, (45) ,
" 2ma 09 05 i 15 2 25 3
. . . X
wherewy=# m?/2ma? [this is thew in Eq. (1)]. Once again,
the action of the evolution operator is a simple parameter 16 : , . . ; .
change
J 14 (c)
iHt 12
exng — - INo, $o)=1INg, o~ wot). (46)
10
o
Figures %a)—5(f) show the motion of a Gaussian Klauder __5_' 8
coherent state probability distribution far=10 and ng 6
=10*. These images were computed for the special ease
= . The period to go from one wall to the other and back 4
again isT=m/ng in this case. The image®)—(f) are for 2
times 0,T/5, 2T/5, T/2, 3T/5, and 4T'/5, respectively. When
the distribution is adjacent to the walls, its image is a solid % 0's i 5 5 2’5 3
dark mass that appears to have twice the area of the distri X

butions away from the walls which are simple Gaussian

curves. This is a result of very rapid interference oscillations FIG. 7. The probability distribution whose time evolution is
in the probability distribution. In Fig. 6, the horizonal scale shown in Figs.Ea)-5(f) is shown for timega@ T, (b) 5T, and(c)
has been expanded over 300-fold so that these oscillatioddT-

can be seen. In Fig.(@—7(c) the probability distribution is

shown for times T, 3, and 10 to exhibit the nearly perfect the classical limit corresponds to largg values. In Fig.
preservation of the probability profile for ten periods. In Fig. 8(b), no=300 for both profiles. The solid profile is far
8(a), the maximum wave-packet magnitude is plotted as a= 20 whereas the dashed profile is te+5. This shows that
function of period. The spikes correspond to encounters witla larger value ofo creates a larger initial magnitude but a
the walls, as was discussed above. Bet5 andng,=10", quicker decay. A largen, must be chosen in order to com-
there is no observable decay in the amplitude of the maxipensate for this.

mum magnitude, whereas fer=5 andny=100 there is a These results may be understood analytically. The expec-
manifest decaydashed profile This exhibits the fact that tation value for the position operato, is
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(n’|x[n) ()
o 141
al/2 if n’=n = (a)
0 if n"+n is even andn’#n C 12
R 2 if n’ is odd g’ 10
— _(n’—n)2+(n’+n)2 if n"+n is odd. =
4 8
(47) o
Let wo=%m?/2ma’. Together with Eqs(43) and (47), this % 6
yields g 4
Ng, PolX|Ng, . i
(ool o) X 2
a < 1 0 ,
= > 6 8 70
2 §=:1 n=1 N(nop) ‘ Periods
n—ng)2+(n’ —ng)?
cex - (M0~ o . |
4o ©
2 (b)
i (n2_ 2 a c 50r
xexpli(n=n'?) (o= wot)] 2 S
g 40
2 2
><(n’—n2 (n'+n)? (“48) o 30
The double sum is restricted td +n is odd. We now con- X
template the limit of larg®, and replace’ by n+j where 8 20
j is any positive or negative odd integer. This converts Eq. &
(48) into . g
X
5 i (EG 0 SR A A A o i s
Ng, PolX|Ng, 0 ., 6 8 0
< 0 ¢0| | 0 ¢0> ~ ﬁerlods

2 N(nO)J odd

FIG. 8. (a) The decay of the maximum magnitude for a Gauss-
ian Klauder coherent-state probability as a function of pewod
= 1. The solid profile is forr=5 andn,=10*, whereas the dashed
o - profile is for =5 andny=100. (b) The decay of the maximum
Xex —i(2jn+]%)(po—wot)] magnitude for a Gaussian Klauder coherent-state probability as a
function of period fora=. The solid profile is fore=20 and
=300, whereas the dashed profile is o5 andny=300.

F{ (n—ng)?  2j(n—ng) +j?
XeX - 2 - 2
20 4o

2 2
iZ @n+))?)

a
X —
7_[_2

(49

a
For sufficiently largeng, the second term in the final bracket <n0,¢o|x|no,¢o>= — E

can be neglected compared with the first since the Gaussian o4 ]?
distribution inn is centered aroundy, and then sum may 2
be approximated by a Gaussian integral. This yields Xex;{ - W—Zazjz(qﬁo— wgt)?
(No, ol X[No, bo) X c0g2jng( po— wpt)]. (51
a 2a 1 j2 .
=_— — Let #=2n — wot) and rewrite Eq(51) as
DN exp[ i o o= wot) a(5D)
o . a daq 1 ji2  o0?j%e?
X exd —i(2jng+j?)(po— wet =2 _ 2
{—1(2ino+2)(do— wot)] (o, bl )= 5 ?%drfex‘{ e
P2
J . .
xex;{%z+IJ2(¢o—wot)—02]2(¢o—wot)2 . (50) x cogj 6]. (52

In the j sum above,j can be positive or negative. If we From the theory of Fourier seri¢44] we recognize in this
restrictj to just positive values, Eq50) may be rewritten as expression the Fourier series for the so-called triangle wave
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cogjx) w2 |™X4 —m=<x<0 Drw(No, bo,0) =K(No)[(G,Ng, ol ¥)|?, (54)
- (53

(e j° 8 | —mxl4 Osx=m
whereK(ng) is given in Eq.(7). It is evident that this distri-
dbution is non-negative. The ordinary Wigner distribution is
not necessarily non-negative and the Husimi-Wigner distri-
bution always is since it amounts to a smoothing of the
Wigner distribution done in such a way as to eliminate the
possible negative values of the Wigner distribution. The
esolution of the identity operator given in E@) leads to

e normalization condition

An extraordinarily good fit to the triangle wave is produce
by the first three or four terms in this infinite series. Wimgn
is very large,o is modestj is modest, and is not too many
multiples of 2r, the second term in the exponential in Eqg.
(52) can be ignored, and i is not too small the resulting
series produces an expectation value for position exhibiting
back and forth motion between the walls at O andvith
constant velocity. lir is too small, say of order unity or less,
then only thej=1 term can contribute and a poor represen- o 1 (o
tation of the classical motion is achieved by this quantum f dng lim Ef
description. Ifny is too small, then the second term in the P—ee
exponential in Eq(52) becomes important quickly and again

a poor representation of the classical motion results. How-s_ Do tive. this last . I
ever, foro andn, of the order we have used in Figgab- INCeDpy IS NON-negative, this fast expression can equally

5(f) and 8a), the results are very good, i.e., the quantumwe” be interpreted as the normalization condition for a dis-

description mimics the classical behavior very well for many!ribution in classical phase space. At the initial tini&,y,
periods. can be given the dual interpretation as both the initial quan-

tum distribution and the initial classical distribution. By fol-

lowing the quantum evolution dd,,, on the one hand and

the classical evolution oD, on the other, quantum-

classical correspondence may be investigated. In our previ-
Gaussian Klauder coherent states are wave packets. So feys work on the periodically kicked pendulum and [8¢9],

we have shown that these wave packets can be made so thé@ showed that for some length of time these two interpre-

they are sharp Gaussian distributions that remain sharp for tations of the distribution evolved in time with their first few

long time. Moreover, the expected value of the position opmoments agreeing quantitatively with high precision. In fact,

erator evolves in time just like the corresponding classicabince these system are chaotic, the variances initially grew

object’s position would evolve in time. This is a kind of exponentially and the rate of growth was twice the classical

quantum-classical correspondence. This kind of corresporiocal Lyapunov exponent for both interpretations. In this way

dence emphasizes the classical trajectory and relates this tidwas shown that the classical local Lyapunov exponent is a

jectory to an expectation value computed from the quantun§luantum signature of classical chaos.

wave packet. A deeper correspondence exists based on The quantum-classical correspondence established by

Husimi-Wigner distributions in which there is a correspon-Husimi-Wigner distributions contains more information than

dence between quantum distributions and classical erthe connection between the expectation values of position

sembles in classical phase spége11]. operators and classical trajectories. Variance information, of
Let |¥) denote an arbitrary state of a bounded, finiteparamount importance in quantum mechanics, is also ob-

quantum system. The system may be coupled to an externtgined. Gaussian Klauder coherent states increase our ability

perturbation so that the Hamiltonian has the foid  to construct these valuable distributions.

+H(t) whereH, is the system Hamiltonian. This is the

situation for the periodically kicked penduluf@] and the

periodically kicked top9]. Let |G,ng, ¢o) denote a unss— ACKNOWLEDGMENT
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