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Coulomb corrections to thee*e™ pair production in ultrarelativistic heavy-ion collisions
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We manifest the origin of the wrong conclusion made by several groups of authors on the absence of
Coulomb corrections to the cross section of &le~ pair production in ultrarelativistic heavy-ion collisions.
The source of the mistake is connected with an incorrect passage to the limit in the expression for the cross
section. When this error is eliminated, the Coulomb corrections do not vanish, and agree with the results
obtained within the Weizgker-Williams approximation.

PACS numbes): 12.20.Ds, 95.30.Cq

RHIC and LHC projects initiated a set of recent publica-Herep ande, (q and 4) are the momentum and energy
tions on thee"e™ pair production in ultrarelativistic heavy- of the electron(positron, u(p) andu(—q) are positive- and
ion collisions. Using slightly different approaches, the au-negative-energy Dirac spinorsy= 1"y, vy.=1"*+?% y*
thors of Refs.[1-3] calculated the cross section of the are the Dirac matrice.=£,*p* g-=g4+0* mis the
process exactly in the parametes, g (Zop being the electron massk is a two-dimensional vector lying in they
charge numbers of the nucléiandB; « is the fine-structure plane, and the functioR(A) is proportional to the electron
constank In these papers the nuclei were treated as sourcasikonal scattering amplitude in the potenti&lr) of the cor-
of the external field, and the amplitude was calculated at aesponding nucleus:
fixed impact parameter of the nuclei. After that the cross
section was obtained by integration over the impact param- . .
eter. As a result, the gonclugsion was made thgt thep exact F(A):f d’p exil ~ipAlfexd ~ix(p)]-1},
cross section coincides with that calculated in the lowest- )
order perturbation theory with respectd@, g (Born cross
section. On the other hand, in the Weizdaer-Williams ap- *
proximation with respect to one of the nuclei, the cross sec- xX(p)= Jiwsz(z,p).
tion of the process is proportional to the well-known cross
section of thee"e™ pair production by a photon in a Cou- For the potentiaV/(r) =V.(r)=—Za/r, the integral iny(p)
lomb field [4] and, therefore, contains the Coulomb correc-becomes divergent and requires a regularization. This regu-
tions. This obvious circumstance was observed in Re&ff.  |arization can be made by using the potenth(r)=
where the Coulomb corrections in the process under discus- 7« exp(—r/a)/r. Performing the integration in Eq. 2, and
sion were calculated. Though the existence of the Coulomkgking the limita— o at fixed A#0, one obtaingup to the
corrections is not in doubt, the source of the disagreemergonstant phase depending ahn
between the results was not revealed so far. This question is
important from the theoretical point of view, since the ap- [(1-iZa)
proach developed ifi1—3] is used now in QCD. In the F(A)=7:(A)Ei772am
present paper we present the solution of this puzzle.

Let the ultrarelativistic nucleA and B move in the posi-
tive and negative directions of tteaxis, respectively. Then
the expression for the cross section of éie ™~ pair produc-
tion, obtained in Refd.1-3|, reads

4 1-iZa

Actually, to obtain this result one can use any regularization

of the phasex(p) for which x(p)—0 at p—o. Since

| F(A)|?=(4mZal A?)?=Z2, then the substitution of Eq3)

into Eq. (1) would lead to the wrong conclusidi—3] that

the exact cross section coincides with the Born result. Let us
m?d3pd3q d%k show that, in order to obtain the Coulomb corrections in Eq.

o= 5 5IFe(k)? (1), it is necessary first to take the integral okeusing the
(2m)°epeq” (2) functionsF (A) with the regularized phase and then remove

X|Fa(ay+p. —K)[FM(K)[?, thecrgr?:i?erirzﬁrfs?ﬁtegral

(1)
d2k 2 2 0 2

G=f 5 KR =[FP(O[7], 4

_ a(k—p,)+yom (2m)

M(K)=u(p) 5 y-u(=a)

—P+q-—(k=py)"—m"+ie where FO(A)=—ifdp exp(-iAp) x(p) is the first term of
—a(k—q, )+ yom the expansion of(A) with respect to the potential. Fér
+ulp) a(k—q.)+ o v u(—q). =F and, correspondinglyF®=F°=4inZalA?, the inte-
—p_q.—(k—q,)2—m?+ie grand in Eq.(4) vanishes. Let us show that the integ@is
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not equal to zero for the regulariz&€dand is independent of whereC is the Euler constant, ané(x) =d In I'(X)/dx. Thus,
the regularization method, ¥(r)— —Za/r atr—0 [when  we come to a remarkable conclusion: although the main con-
x(p)—2Za In(p)+const atp— 0]. For the sake of simplic- tribution to the integral in Eq(4) comes from the region of
ity, we present the proof of this statement for a sphericallysmall k, where |F(k)| differs from |F(k)|=47Za/k? and
symmetric potential/(r). Taking the integral in Eq2) over  depends on the regularization parametéise radius of
the angle ofp, and integrating by parts over, we obtain the screening nevertheless the integr@ itself is a universal
following expression folF: function of Za. Note that the integral in Eq4) appears in
the theory of multiple scatteringsee Ref.[6], where the
2 [ , i approximate formula for this integral was obtained
F(k)= Tfo dp pdi(kp)x"(p)exd —ix(p)], (5 Now it is clear how to derive the Coulomb corrections
starting from expressiofl). Let us calculate the Coulomb
corrections related to the nucleBs(the contribution of the
higher-order perturbation theory with respect to the param-
eterZga). For this purpose, in Eq1) one should replace the
functions|Fg|? and |F|? with |[Fg|?—|F2|? and|F3|?, re-
spectively, keeping the regularization in the functiéisand
o w oo Fg. The main contribution to the integral is given by the
GZZWJ dq QJ f dp1dp; p1p2di(kps)di(kpa) region of smallk. Therefore, we can neglektin the argu-
° 070 ment of 73, and expand the matrix elemem at smallk:

whereJ;(x) is the Bessel function. The functidi’(k) can
be obtained from Eq(5) by omitting the exponent in the
integrand. Substituting Ed5) into Eq. (4), and integrating
over the angle ok, we find

Xx'(po)x (p2){exd —ix(p1) +ix(p2)]-1}. (6) oy o)
— Y-1P+— Y+ 10+
If one naively changes the order of integration okeand M(k)~kL, L=u(p){ (p_+q_)
p12, and takes the integral ovér using the relation

n 2y_(p /p+—ai/dy)

= 1
dk k3, (kp1)J1(Kp,) = ——— 8(p1— p-), (p-+q-)?
fo Ji(kpy)Ji(kpo) m (p1 Pz)

]U(—Q)- (10

Using Egs.(9) and(10), and performing the summation over
then, after the integration over, the result will be zero. To electron and positron polarizations, we obtain the following
demonstrate that the change of the integration order in Egexpression for the Coulomb corrections related to the
(6) is invalid, we restrict the upper limit of the integral over nucleusB:

k by Q. After that one can change the order of integration in

triple integral in Eqg. 6. Integrating oves, we obtain _ZGBdsp d3q |J’-"2(pl+ql)|2

(2m%epeq [PraL(P_+q)]2

C
Op

i Qp1p2

(p-+0q-)?

Xy p+q4(p+ QL)Z_
—p1J0(Qp1)J1(Qp2) Ix' (p1) X' (p2)

. . (11
xX{exd —ix(p1) +ix(p2)]—1}. (@)

Here Gy denotes the functio® in Eq. (9) at Z=Zg. The
Substitutingp; ,— p1 2/Q, and taking the limitQ—o with Coulomb corrections related to the nucléusan be obtained

the use of the asymptotics gf we find from Eq. (11) by the substitutiorZ,«Zg and the replace-
ment of indices— « +.
= (=dpydp, [ [ pa 2iZa It is necessary to note the following circumstance. Actu-
G:87T(Za)2JO jo Py [(a) —1] ally, in the expansion oveZ,a andZga of the differential
1 2

cross sectiordo/dpdq in Eq. (1), only the lowest(Born)
X sl J —5.] J _ 8 term is correct. As for the higher-order terms in Ed)
LP2dolp2)a(p1) = Pado(pr) ulp2)] ®) (Coulomb corrections they give the correct result only after
Making the change of variablgs ,=r exp(=t/4), and inte- the integration over the directions of the positr(tmiectrpr)
grating overr, we obtain the nonzero result for the quantity momentum. This is due to the fact that the asymptotic form

G: of the wave functions in Ref§1—-3] corresponds to the prob-
lem of scattering, but not to the problem of pair production.
= cogZat)—1 If one calculates the cross section integrated over the direc-
G= 87T(Za)2J dt—————— tion of g, then, due to the completeness relation, it is possible
0 expt)—1 to replace the set of functions containing in asymptotics the
—_ 2 ; converging spherical wave with the set of functions contain-
8m(Za)’[Rey(1+iZa)+C] ing the diverging spherical wave. Thus Ed.1) should be
=—-8m(Za)?*f(Za), 9 integrated over the angles of or p. The same trick was
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made at the recalculation of the bremsstrahlung cross section m2d3o o d2k.  d2k
: : paW.q 1 2
integrated over the photon momentum from the cross section dog= f f f 5 5
of pair photoproduction integrated over the positron momen- (2m)° (2m)= (2m)

tum[7]. This explains why the Coulomb correctiofisl) are

— *
given by the region of smak, while at the calculation of the x exr[l(kl kz) pIM(ky) M7 (k)

Coulomb correction using the wave functions with the cor- ><[fB(kl)}"é(kz)—]—'g(kl)}"g*(kz)]
rect asymptotic behavior the main contribution would come o o
from the regionk~m. The same situation occurs at the cal- XFa(d +p—k)Fa*(ar+pi—ka). (14

culation of bremsstrahlung and pair photoproduction cross
sections, where the Coulomb corrections come from differ-
ent regions of momentum transfers.

Let us calculate within the logarithmic accuracy the Cou-
lomb corrections to the cross sectigw/deyde, at &, 4
>m. At the integration over the transverse momenta th
main contribution comes from the regioa=|p, +q, |
<p,,q,~m. The integral ove requires regularization at
A—0. It is obvious that the lower limit of integration ovAr
coincides with that in the Weizsker-Williams method. In
the rest frame of the nuclew it has the formA ;.= (e g

Again, changing the order of integration would lead to a
result of zero. Indeed, taking the integral oyerfirst, we
obtain the factord(k;—k5,) in the integrand, and, therefore,
éhe integral overk, vanishes due to the relatiof¥F|?
=|F3|?. Let us demonstrate that, similar to the case of the
calculation of integral4), the change of the integration order
n Eqg. (14) is incorrect, and the resulLl) also follows from
Eq. (14). For this purpose, we restrict the region of integra-
tion overp by the conditionp<R. After that it is possible to
change the order of integration and take the integral gver
+eg)/7, Wheregpq are the energies of the electron and thep the main contribution to the integral oviey, comes
positron, andy is the Lorentz factor of the nucleusin this  from the regionk,; ,<1/R. Since we are going to take the
frame. In the laboratory frame, where the nuckeiandB  |imit R—, we can replaceVi(k; 5 with kL and neglect
have the Lorentz factorg, and yg, respectively, one has Ky in Fq, +p, — ki ). Then, we have
Anin=(p++0d;:)/va- Using this cutoff, we obtain

pdq LI
4 de,de do=—F—|7%q, + —G ,
dof=— — (Zaa)X(Zga)*f(Zga)— 5 amayeg” AP G
mm (8p+sq)
4e e m? m? (19
x| 1- 22t —+In——|. (12
3(e +8q) A1m|n A2m|n

dk]_dkz 2|ZBa
GB 87T(ZBa)2f f 2 k -1
The sum of logarithms in this formula corresponds to the —k3 2

contributions of two kinematic regionsp? gq*>0 and _
p?, q*<0. In the first caseAmin=(ep+&4)/ya, and the X [kaR Jo(koR)J1(kaR) k1R Jp(ksR) J1(kzR)]-

corresponding term in Ecq12) is valid atm<g, <my,. In
the second caseé\,,,=m?/(e pt e 7a, and the corre-
sponding term is valid am<eg, ,<myg. Performing the
integration overe, 4 in the regions indicated, one has

Comparing the expression for the functiGy with Eq. (8),

we see thaGz=Gg. After the summation over the electron
and positron polarizations, formulés5) come into Eq(11).
Note that the expressiofil) can be obtained directly from
Eq. (14) by taking the integral ovek, , in the regionk, ,
)4(Zga)?*f(Zga)In*(yaye). (13)  <ky<|p, +q,|, and then integrating oves in the infinite
limits.
If the impact parametep is restricted by the beam trans-

Formulas (12) and (13) can be easily obtained in the verse sizeRy, then it follows from the above consideration
Weizsa@ker-Williams approximation using the well-known that the effect of the finite size appears when we cannot
result for the exact iZ @ pair photoproduction cross section neglectk~1/R, in the argument 01’7-‘9\ in comparison with
in the field of a nucleus. They coincide with the result of Ref.|q, +p,|. This is equivalent to the conditioRy<<1/A i,
[5] (see also Ref(8)). It also follows from the Weizsker-  ~ y,yg/m.
Williams method that the contribution of the terms, contain- Thus the method developed in Rdf$-3] can be used for
ing the higher orders of, and Zg simultaneously, can be a calculation of the Coulomb corrections to thée ™ pair
neglected within our accuracy. production cross section integrated over the direction of the

In Refs.[1-3] the amplitude o&™ e~ pair production was positron (electron momentum. Its careful application leads
obtained at a fixed impact parameter between the nuclei. Use the correct result.
ing this amplitude, it is possible to represent the Coulomb
corrections related to the nucleBsas the integral over the We are grateful to V.M. Katkov and V.M. Strakhovenko
impact parameter: for useful discussions.
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