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Coulomb corrections to thee¿eÀ pair production in ultrarelativistic heavy-ion collisions

R. N. Lee and A. I. Milstein
Budker Institute of Nuclear Physics, 630090 Novosibirsk, Russia

~Received 21 September 1999; published 10 February 2000!

We manifest the origin of the wrong conclusion made by several groups of authors on the absence of
Coulomb corrections to the cross section of thee1e2 pair production in ultrarelativistic heavy-ion collisions.
The source of the mistake is connected with an incorrect passage to the limit in the expression for the cross
section. When this error is eliminated, the Coulomb corrections do not vanish, and agree with the results
obtained within the Weizsa¨cker-Williams approximation.

PACS number~s!: 12.20.Ds, 95.30.Cq
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RHIC and LHC projects initiated a set of recent public
tions on thee1e2 pair production in ultrarelativistic heavy
ion collisions. Using slightly different approaches, the a
thors of Refs.@1–3# calculated the cross section of th
process exactly in the parametersaZA,B (ZA,B being the
charge numbers of the nucleiA andB; a is the fine-structure
constant!. In these papers the nuclei were treated as sou
of the external field, and the amplitude was calculated a
fixed impact parameter of the nuclei. After that the cro
section was obtained by integration over the impact par
eter. As a result, the conclusion was made that the e
cross section coincides with that calculated in the lowe
order perturbation theory with respect toaZA,B ~Born cross
section!. On the other hand, in the Weizsa¨cker-Williams ap-
proximation with respect to one of the nuclei, the cross s
tion of the process is proportional to the well-known cro
section of thee1e2 pair production by a photon in a Cou
lomb field @4# and, therefore, contains the Coulomb corre
tions. This obvious circumstance was observed in Ref.@5#,
where the Coulomb corrections in the process under dis
sion were calculated. Though the existence of the Coulo
corrections is not in doubt, the source of the disagreem
between the results was not revealed so far. This questio
important from the theoretical point of view, since the a
proach developed in@1–3# is used now in QCD. In the
present paper we present the solution of this puzzle.

Let the ultrarelativistic nucleiA andB move in the posi-
tive and negative directions of thez axis, respectively. Then
the expression for the cross section of thee1e2 pair produc-
tion, obtained in Refs.@1–3#, reads

ds5
m2d3pd3q

~2p!6«p«q
E d2k

~2p!2
uFB~k!u2

3uFA~q'1p'2k!u2uM~k!u2,

~1!

M~k!5ū~p!
a~k2p'!1g0m

2p1q22~k2p'!22m21 i e
g2u~2q!

1ū~p!
2a~k2q'!1g0m

2p2q12~k2q'!22m21 i e
g1u~2q!.
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Here p and «p (q and «q) are the momentum and energ
of the electron~positron!, u(p) andu(2q) are positive- and
negative-energy Dirac spinors,a5g0g, g65g06gz, gm

are the Dirac matrices,p65«p6pz, q65«q6qz, m is the
electron mass,k is a two-dimensional vector lying in thexy
plane, and the functionF(D) is proportional to the electron
eikonal scattering amplitude in the potentialV(r ) of the cor-
responding nucleus:

F~D!5E d2r exp@2 i rD#$exp@2 ix~r!#21%,

~2!

x~r!5E
2`

`

dzV~z,r!.

For the potentialV(r )5Vc(r )52Za/r , the integral inx(r)
becomes divergent and requires a regularization. This re
larization can be made by using the potentialV(r )5
2Za exp(2r/a)/r. Performing the integration in Eq. 2, an
taking the limita→` at fixedDÞ0, one obtains~up to the
constant phase depending ona)

F~D!5F~D![ ipZa
G~12 iZa!

G~11 iZa! S 4

D2D 12 iZa

. ~3!

Actually, to obtain this result one can use any regularizat
of the phasex(r) for which x(r)→0 at r→`. Since
uF(D)u25(4pZa/D2)2}Z2, then the substitution of Eq.~3!
into Eq. ~1! would lead to the wrong conclusion@1–3# that
the exact cross section coincides with the Born result. Le
show that, in order to obtain the Coulomb corrections in E
~1!, it is necessary first to take the integral overk using the
functionsF(D) with the regularized phase and then remo
the regularization.

Consider the integral

G5E d2k

~2p!2
k2@ uF~k!u22uF0~k!u2#, ~4!

where F0(D)52 i *dr exp(2iDr)x(r) is the first term of
the expansion ofF(D) with respect to the potential. ForF
5F and, correspondingly,F05F 0[4ipZa/D2, the inte-
grand in Eq.~4! vanishes. Let us show that the integralG is
©2000 The American Physical Society03-1
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not equal to zero for the regularizedF and is independent o
the regularization method, ifV(r )→2Za/r at r→0 @when
x(r)→2Za ln(r)1const atr→0]. For the sake of simplic-
ity, we present the proof of this statement for a spherica
symmetric potentialV(r ). Taking the integral in Eq.~2! over
the angle ofr, and integrating by parts overr, we obtain the
following expression forF:

F~k!5
2p i

k E
0

`

dr rJ1~kr!x8~r!exp@2 ix~r!#, ~5!

whereJ1(x) is the Bessel function. The functionF0(k) can
be obtained from Eq.~5! by omitting the exponent in the
integrand. Substituting Eq.~5! into Eq. ~4!, and integrating
over the angle ofk, we find

G52pE
0

`

dq qE
0

`E
0

`

dr1 dr2 r1r2J1~kr1!J1~kr2!

3x8~r1!x8~r2!$exp@2 ix~r1!1 ix~r2!#21%. ~6!

If one naively changes the order of integration overk and
r1,2, and takes the integral overk, using the relation

E
0

`

dk kJ1~kr1!J1~kr2!5
1

Ar1r2

d~r12r2!,

then, after the integration overr1, the result will be zero. To
demonstrate that the change of the integration order in
~6! is invalid, we restrict the upper limit of the integral ove
k by Q. After that one can change the order of integration
triple integral in Eq. 6. Integrating overk, we obtain

G52pE
0

`E
0

`

dr1 dr2

Qr1r2

r1
22r2

2 @r2J0~Qr2!J1~Qr1!

2r1J0~Qr1!J1~Qr2!#x8~r1!x8~r2!

3$exp@2 ix~r1!1 ix~r2!#21%. ~7!

Substitutingr1,2→r1,2/Q, and taking the limitQ→` with
the use of the asymptotics ofx, we find

G58p~Za!2E
0

`E
0

`dr1 dr2

r1
22r2

2 H S r2

r1
D 2iZa

21J
3@r2J0~r2!J1~r1!2r1J0~r1!J1~r2!#. ~8!

Making the change of variablesr1,25r exp(6t/4), and inte-
grating overr, we obtain the nonzero result for the quant
G:

G58p~Za!2E
0

`

dt
cos~Zat !21

exp~ t !21

528p~Za!2@Rec~11 iZa!1C#

528p~Za!2f ~Za!, ~9!
03210
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whereC is the Euler constant, andc(x)5d ln G(x)/dx. Thus,
we come to a remarkable conclusion: although the main c
tribution to the integral in Eq.~4! comes from the region o
small k, where uF(k)u differs from uF(k)u54pZa/k2 and
depends on the regularization parameters~the radius of
screening!, nevertheless the integralG itself is a universal
function of Za. Note that the integral in Eq.~4! appears in
the theory of multiple scattering~see Ref.@6#, where the
approximate formula for this integral was obtained!.

Now it is clear how to derive the Coulomb correction
starting from expression~1!. Let us calculate the Coulomb
corrections related to the nucleusB ~the contribution of the
higher-order perturbation theory with respect to the para
eterZBa). For this purpose, in Eq.~1! one should replace the
functionsuFBu2 and uFAu2 with uFBu22uFB

0 u2 and uF A
0 u2, re-

spectively, keeping the regularization in the functionsFB and
FB

0 . The main contribution to the integral is given by th
region of smallk. Therefore, we can neglectk in the argu-
ment ofF A

0 , and expand the matrix elementM at smallk:

M~k!'kL , L5ū~p!H a~g2 /p12g1 /q1!

~p21q2!

1
2g2~p' /p12q' /q1!

~p21q2!2 J u~2q!. ~10!

Using Eqs.~9! and~10!, and performing the summation ove
electron and positron polarizations, we obtain the followi
expression for the Coulomb corrections related to
nucleusB:

dsB
c 5

2GBd3p d3q

~2p!6«p«q

uF A
0~p'1q'!u2

@p1q1~p21q2!#2

3H p1q1~p'1q'!22
2~p'q1q21q'p1p2!2

~p21q2!2 J .

~11!

Here GB denotes the functionG in Eq. ~9! at Z5ZB . The
Coulomb corrections related to the nucleusA can be obtained
from Eq. ~11! by the substitutionZA↔ZB and the replace-
ment of indices2↔1.

It is necessary to note the following circumstance. Ac
ally, in the expansion overZAa andZBa of the differential
cross sectionds/dpdq in Eq. ~1!, only the lowest~Born!
term is correct. As for the higher-order terms in Eq.~1!
~Coulomb corrections!, they give the correct result only afte
the integration over the directions of the positron~electron!
momentum. This is due to the fact that the asymptotic fo
of the wave functions in Refs.@1–3# corresponds to the prob
lem of scattering, but not to the problem of pair productio
If one calculates the cross section integrated over the di
tion of q, then, due to the completeness relation, it is poss
to replace the set of functions containing in asymptotics
converging spherical wave with the set of functions conta
ing the diverging spherical wave. Thus Eq.~11! should be
integrated over the angles ofq or p. The same trick was
3-2
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made at the recalculation of the bremsstrahlung cross se
integrated over the photon momentum from the cross sec
of pair photoproduction integrated over the positron mom
tum @7#. This explains why the Coulomb corrections~11! are
given by the region of smallk, while at the calculation of the
Coulomb correction using the wave functions with the c
rect asymptotic behavior the main contribution would co
from the regionk;m. The same situation occurs at the ca
culation of bremsstrahlung and pair photoproduction cr
sections, where the Coulomb corrections come from diff
ent regions of momentum transfers.

Let us calculate within the logarithmic accuracy the Co
lomb corrections to the cross sectionds/d«pd«q at «p,q
@m. At the integration over the transverse momenta
main contribution comes from the regionD5up'1q'u
!p' , q';m. The integral overD requires regularization a
D→0. It is obvious that the lower limit of integration overD
coincides with that in the Weizsa¨cker-Williams method. In
the rest frame of the nucleusB it has the formDmin5(«p

0

1«q
0)/g̃, where «p,q

0 are the energies of the electron a

positron, andg̃ is the Lorentz factor of the nucleusA in this
frame. In the laboratory frame, where the nucleiA and B
have the Lorentz factorsgA and gB , respectively, one ha
Dmin5(p11q1)/gA . Using this cutoff, we obtain

dsB
c 52

4

pm2
~ZAa!2~ZBa!2f ~ZBa!

d«pd«q

~«p1«q!2

3S 12
4«p«q

3~«p1«q!2D F ln
m2

D1min
2

1 ln
m2

D2min
2 G . ~12!

The sum of logarithms in this formula corresponds to
contributions of two kinematic regions:pz, qz.0 and
pz, qz,0. In the first caseD1min5(«p1«q)/gA , and the
corresponding term in Eq.~12! is valid atm!«p,q!mgA . In
the second caseD2min5m2/(«p1«q)gA , and the corre-
sponding term is valid atm!«p,q!mgB . Performing the
integration over«p,q in the regions indicated, one has

sB
c 52

28

9pm2
~ZAa!2~ZBa!2f ~ZBa!ln2~gAgB!. ~13!

Formulas ~12! and ~13! can be easily obtained in th
Weizsäcker-Williams approximation using the well-know
result for the exact inZa pair photoproduction cross sectio
in the field of a nucleus. They coincide with the result of R
@5# ~see also Ref.@8#!. It also follows from the Weizsa¨cker-
Williams method that the contribution of the terms, conta
ing the higher orders ofZA and ZB simultaneously, can be
neglected within our accuracy.

In Refs.@1–3# the amplitude ofe1e2 pair production was
obtained at a fixed impact parameter between the nuclei.
ing this amplitude, it is possible to represent the Coulo
corrections related to the nucleusB as the integral over the
impact parameter:
03210
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dsB
c 5

m2d3p d3q

~2p!6«p«q
E d2rE E d2k1

~2p!2

d2k2

~2p!2

3exp@ i ~k12k2!r#M~k1!M* ~k2!

3@FB~k1!FB* ~k2!2F B
0~k1!F B

0 * ~k2!#

3F A
0~q'1p'2k1!F A

0 * ~q'1p'2k2!. ~14!

Again, changing the order of integration would lead to
result of zero. Indeed, taking the integral overr first, we
obtain the factord(k12k2) in the integrand, and, therefore
the integral overk1 vanishes due to the relationuF Bu2

5uF B
0 u2. Let us demonstrate that, similar to the case of

calculation of integral~4!, the change of the integration orde
in Eq. ~14! is incorrect, and the result~11! also follows from
Eq. ~14!. For this purpose, we restrict the region of integr
tion overr by the conditionr,R. After that it is possible to
change the order of integration and take the integral over.
Then the main contribution to the integral overk1,2 comes
from the regionk1,2<1/R. Since we are going to take th
limit R→`, we can replaceM(k1,2) with k1,2L and neglect
k1,2 in F A

0(q'1p'2k1,2). Then, we have

dsB
c 5

m2d3pd3q

~2p!6«p«q

uF A
0~q'1p'!u2

uL u2

2
G̃B ,

~15!

G̃B58p~ZBa!2E
0

`E
0

`dk1dk2

k1
22k2

2 H S k1

k2
D 2iZBa

21J
3@k2RJ0~k2R!J1~k1R!2k1RJ0~k1R!J1~k2R!#.

Comparing the expression for the functionG̃B with Eq. ~8!,
we see thatG̃B5GB . After the summation over the electro
and positron polarizations, formulas~15! come into Eq.~11!.
Note that the expression~11! can be obtained directly from
Eq. ~14! by taking the integral overk1,2 in the regionk1,2
,k0!up'1q'u, and then integrating overr in the infinite
limits.

If the impact parameterr is restricted by the beam trans
verse sizeR0, then it follows from the above consideratio
that the effect of the finite size appears when we can
neglectk;1/R0 in the argument ofF A

0 in comparison with
uq'1p'u. This is equivalent to the conditionR0!1/Dmin
;gAgB /m.

Thus the method developed in Refs.@1–3# can be used for
a calculation of the Coulomb corrections to thee1e2 pair
production cross section integrated over the direction of
positron ~electron! momentum. Its careful application lead
to the correct result.

We are grateful to V.M. Katkov and V.M. Strakhovenk
for useful discussions.
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