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Multimode interference: Highly regular pattern formation in quantum wave-packet evolution
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Highly regular spatiotemporal or multidimensional patterns in the quantum mechanical probability or clas-
sical field intensity distributions can appear due to pair interference between individual eigenmodes of the
system, thus forming the so-called intermode traces. These patterns are strongly pronounced in any anharmonic
potential, provided that the traces are multidegenerate; they may occur in many areas of wave physics.

PACS number~s!: 03.65.Bz, 03.75.2b, 03.75.Dg, 41.20.Jb
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I. INTRODUCTION

The controlled preparation and measurement of w
packets has recently emerged as an extremely active fie
research. Examples include wave packets in atoms@1#, opti-
cal lattices@2#, ion traps@3#, molecules@4#, and semiconduc-
tor quantum wells@5#, to name a few. One of the majo
points of interest is the spatiotemporal evolution of wa
packets in such systems. Since most of the experiments
gage a broad-spectrum excitation of the eigenmodes of
system, large-scale interference becomes a leading fact
gives rise to well-ordered long-range regularities such
quantum revivals@6#, interference patterns in the atom
double-slit experiment@7~a!#, diffraction effects in atom op-
tics @7~b!# and so calledd ionization @8#. In this paper, we
show that these packets may also serve as a testing gr
for another class of interference effects that have rece
gained intense interest@7–15#: the formation of highly regu-
lar spatiotemporal or multidimensional patterns in the qu
tum mechanical probability,ucu2, or classical electromag
netic field intensity,uEu2.

The patterns have been discovered in the probability d
sity uc(x,t)u2 of a particle confined to an infinitely dee
square well, by performing numerical simulations of the ev
lution of a Gaussian wave packet@9#, an initially homoge-
neous wave function@10~a!# or well localized wave packet
@11#, a Bose-Einstein condensate@12#, and an angular wave
packet@13#. In all cases, the probability distribution is cha
acterized by a regular net ofcanals, minima of probability,
and ridges, maxima of probability, which run along straigh
lines in space-time~x,t!.

Similar patterns also arise in the near field of a diffracti
grating illuminated with light@10~a!# as well as in matter
waves in atom optics@7~b!#. Indeed, the paraxial approxima
tion allows for a space-time analogy between quantum
chanics and electrodynamics. The space-time probability
tribution uc(x,t)u2 is mapped onto the field intensit
uE(x,z)u2, wherez is the propagation direction. For multid
mensional problems,x is replaced by a radial vectorrW in the
transverse cross section. In the simplest case of the sq
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well ~or plane geometry of EM-diffraction grating! this phe-
nomenon reveals a new aspect of the so-called Talbot e
@14#, which traditionally concerns only patterns in planes
fixed time t or distancez, i.e., ‘‘slices’’ of the distribution,
instead of the patterns in the ‘‘full propagation’’ space~x,t!
or ~x,z!.

The common feature of these systems is a broad-spec
excitation: e.g., in the quantum case, the rich patterns ap
only when many states are populated. So far the theory
these patterns has relied on the specific choice of the in
conditions and on the square well~or diffraction grating
structure!, with no simple physical explanation suggested.
our recent work@15# we observed a similar ‘‘quantum car
pet’’ in both the square well and a smooth potential a
offered an idea of a universal explanation for this pheno
enon. The key mechanisms have been identified@15# as pair
multiinterference between the eigenmodes of the system
the degeneracy of this interference.

Pair interference between the eigenmodes of the sys
the underlying building blocks of carpet patterns, gives r
to the so called ‘‘intermode traces,’’ the lines of consta
phase of interference terms. The phenomenon is stron
pronounced for degenerate~or nearly degenerate! traces,
whereby many nonvanishing individual traces are super
posed to produce distinct patterns. Our theory describes
lytically the major features of the quantum carpet. It not on
explains the straight-line patterns observed in a square q
tum box ~or in the Talbot effect!, but also predicts that dis
tinct ‘‘curved’’ patterns can appear in anharmonic potentia
more pertinent to quantum mechanics. In this paper,
verify this by comparing the numerically generated patte
for these potentials with the results of our analytical calcu
tions.

Most of our analytical results for the general case of a
harmonic potentials rely on the WKB approximation. Ther
fore, in order to study the onset of the intermode traces,
discuss in detail the dependence of these patterns on the
tial momentum of the wave packet~or the amplitude of the
d-kick producing this momentum!. For this purpose, we
show not only the numerically generated patterns for vari
excitations beginning from zero and follow the intermo
trace formation, but also display the populations of all t
quantum levels engaged. In order to address more real
and universal situations, we start from the most natural ini
d
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state of the system, that isa ground stateand then add a
momentum to it, instead of assuming a~relatively artificial!
tight initial packet~as was assumed in most of work@7–15#!,
which has to engage already many excited eigenstates
before the momentum is added. We emphasize that som
our important results are that even for these ‘‘smoothed-o
initial packets in anharmonic oscillators, the intermode tra
begin transpiring even at relatively low excitations, with ju
a few low lying quantum levels involved.

II. INTERMODE TRACES IN 1D POTENTIALS

The wave functionc(rW,t) of a quantum particle with
massme moving in a potentialU(rW) is governed by the
Schrödinger equation,

i\]c/]t2@ T̂1U~rW !#c50. ~1!

Here\ is Planck constant, andT̂[2(\2/2me)¹
2 is the op-

erator of the kinetic energy.
We note that Maxwell equations of classical electrod

namics can also be approximated by the same equation u
the assumption of small diffraction and fixed polarization.
the resulting scalar equation,c is replaced by the field am
plitude E, U by the dielectric constante, ¹2 by the ‘‘trans-
verse’’ Laplacian, timet by the longitudinal coordinatez of
propagation, and\ by the wavelengthl; the limits\→0 and
l→0 correspond to classical mechanics and ray optics,
spectively. This so-called paraxial approximation is valid
many problems related to the optics of well collimated fiel
e.g., in lasers and some microwave devices.

To develop the basic theory of intermode traces, we c
sider here only one-dimensional~1D! problems, that is prob-
lems which involve either spatiotemporal patterns in qu
tum mechanics with one coordinate and a time variable
spatial patterns in optics with one transverse and one lo
tudinal variable. A similar phenomenon in higher dimensio
will be considered by us elsewhere.

To study the time evolution of a particle moving in a 1
binding potentialU(x), we write the full wave function as

c~x,t !5 (
n51

`

ancn~x,t !, ~2!

where

cn~x,t !5c̃n~x!exp~2Ent/\! ~3!

are energy eigenfunctions of energiesEn , with their ampli-
tudes an5const determined by the initial conditions, an
c̃n(x) is the spatially dependent component ofcn . To bring
out the spatiotemporal patterns of the probability dens
ucu2, we represent it is as the sum of ‘‘elementary’’ inte
mode terms,mnm :

uc~x,t !u25 (
n,m51

`

mnm~x,t !, ~4!

where
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mnm~x,t ![~1/2!snmcn~x,t !cm* ~x,t !1c.c., ~5!

is an intermode term withsnm[anam* 5const being the den
sity matrix element. We now break the density~4! down into
time-independent term,I 0(x)5(nmnn with all the diagonal
components,mnn5snnucnu2, wheresnn are the populations
of the respective quantum levels, and the ‘‘interferenc
term, which is the sum over all the nondiagonal compone
mnÞm ; its average over long time vanishes. The latter, int
ference term with the sum of elementary intermode terms~5!
helps us to keep a ‘‘global’’ view of the spatiotemporal ev
lution of ucu2.

Insofar as the quantum carpet engages many exc
states, we are dealing with a situation best handled by
WKB method @16#. We therefore represent the eigenwa
functions~3! as a superposition of ‘‘WKB’’ functions

cn
~WKB!~x,t !' f n~x!expF6 i E kn~x!dx2 iEnt/\ G . ~6!

Here both the preexponential factorf n(x) and the momen-
tum

\kn~x!5A2me@En2U~x!# ~7!

are assumed to vary slowly compared to exp@6i*kn(x)dx#.
The eigenenergiesEn are evaluated using the Boh

Sommerfeld condition

E
xl

xr
kn dx5np,

wherexl ,r are the left and right turning points of a classic
trajectory, respectively. They are determined by the con
tion En5U(x). For example, ifU}uxuw with w.22, one
has@17#

En}n2w/~21w!. ~8!

The rapidly oscillating functions in an elementary interfe
ence term,mnÞm , are then exp(6iznm), where

znm~x,t !5E @kn~x!6km~x!#dx6~En2Em!t/\. ~9!

Note that two pairs of signs, ‘‘6,’’ in front of both momen-
tum and energy, areindependentof each other, so that in Eq
~9! we havefour different phasesznm(x,t). We now look at
the lines of constant phase,znm(x,t)5const. They are space
time trajectories which define the traces. We find their v
locities as

nnm~x!5S dx

dt D
nm

5
~Dv!nm

~Dk!nm
, ~10!

where

~Dv!nm[~En2Em!/\, ~Dk!nm[6@kn~x!6km~x!#.
~11!

With the help of Eq.~9! we obtain fornnm
1-2
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MULTIMODE INTERFERENCE: HIGHLY REGULAR . . . PHYSICAL REVIEW A61 032101
nnm~x![6
vn2vm

kn6km
'6

~En2Em!A2me

AEn2U~x!6AEm2U~x!
,

~12!

wherevn[En /\. Note again that we have herefour differ-
ent velocities.

The trajectory is then

t5E
xI

x

nnm
21 dx, ~13!

wherex1 is the turning point for the lower energyEn and
Em . For every pair of quantum numbersn and m we find
four traces, with all the possible combination of signs in E
~12!. The density matrix elements,snm , determine the
‘‘weight’’ of the ~n,m! trace viausnmu, and its positioning
via the phasefnm , defined by exp(ifnm)5snm/usnmu.

WhenDv,Dk are large, the velocitynnm approaches the
phase velocity, and describes strictly quantum features of
motion. In contrast, whenDv,Dk are small,nnm is reminis-
cent of a group velocity corresponding to a classical mot
of a particle. Indeed, an initially almost classical motion
described by a compact group of eigenmodes near some
quantum numberN, with a numberDN of these modes sat
isfying the condition 1!DN!N. This excitation results in a
strongclustering of traces in two groups. The one with

u~Dv!n,mu!vN , and ~Dk!n,m!ukNu, ~14!

is essentially aclassicaltrajectory, since in such a case

~Dv!n,m

~Dk!n,m
'

dv

dk
[ngr , ~15!

wherengr is a group velocity. It coincides with the classic
velocity, since the intermode trace equation obtained fr
Eq. ~12! as

dx

dt
5A2@EN2U~x!#/me, ~16!

describes classical motion of a particle with energyEN in a
potentialU(x).

One can see now that the other group of traces, with

nnm!ngr , and ukn6kmu'u2kNu, ~17!

reflects thequantumbehavior. Remarkably, the WKB ap
proximation developed basically as a tool to describe qu
classical motion, can also serve to describe highly quan
objects like the ‘‘quantum’’ group of intermode traces. T
full set of velocitiesnnm ~12!, ranging from group velocity to
phase velocity at the extremes, provides a greatly useful
in the understanding of quantum system.

III. SQUARE WELL POTENTIAL
WITH INFINITE WALLS

As an illustration, we consider first the simplest potent
the square well potential with infinite walls. In the EM ana
03210
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ogy, this corresponds to an EM wave in a waveguide w
ideal metallic walls. In this case, the WKB results becom
exact, so that for a box of widthL the ground-state frequenc
and wave number are

v15
\p2

2meL
2 , and k15

p

L
, ~18!

respectively. The eigenfrequencies, eigenenergies, and e
wave numbers then are respectively

vn5n2v1 , En5\vn , and kn5nk1 ; n51,2,3, . . . .

~19!

For the box problem, the expression for the trace veloc
~12! becomesexact, and reads

nnm56M•nh , M5m6n; ~20!

whereM is the normalized velocity, and

nh5c
lC

4L
!c, ~21!

is a characteristic velocity of a box, andlC[2p\/cme
52.4310210cm is the Compton wavelength.

SinceM in Eq. ~20! is an integer, a trace with a certainM
is attributed toall the couples of modesn andm whose sum
or difference isM. If the number of the states involved i
sufficiently large, this trace degeneracy creates multiple
perimposed traces. They in turn give rise to the disti
straight canals in Fig. 1.

In Fig. 1 we show some of the traces predicted by E
~20!. Here we assume that the initial wave packet is

FIG. 1. A wave packet formed by a ground state wave funct
moving with different initial momentap̄ in a square well creates
patterns in the probability distributionucu2 in space-time~x,t!. The
dark blobs correspond to the maxima ofucu2, the light areas to its
minima. The examples of intermode traces: solid white curve
classical trajectories, solid black curves—‘‘near-classical’’ trac
and broken curves—‘‘quantum’’ traces~see the text!. Upper dia-
grams show populationsnn vs the quantum state number,n. ~a! p̄
51; ~b! p̄53; ~c! p̄55.
1-3
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KAPLAN, MARZOLI, LAMB, JR., AND SCHLEICH PHYSICAL REVIEW A 61 032101
ground state wave function, i.e.,c1(x)}sin(px/L). The sys-
tem is hit by ad-pulse delivering a momentump̄, which we
normalize to the ground state momentump15\k1 . We
show the time evolution ofucu2 from t50 to T/2, with T
[2p/v1 being the revival time, after which the initial wav
packet reshapes itself@6#.

The population distribution,snn , is shown in the upper
diagrams of Fig. 1. When the excitation is relatively low,p̄
51, Fig. 1~a!, only two eigenstates are involved. The clas
cal trajectory~white solid line!, bouncing between the walls
does not fit any pattern yet even though it has the sa
velocity as some of them. There are only two traces, not w
fitting either: a ‘‘near-classical’’ trace~black solid line! cre-
ated by selectingkn2km in Eq. ~12! @or normalized velocity
M5n1m in Eq. ~20!# with (n,m)5(1,2), and a ‘‘quan-
tum’’ trace, white dashed line, corresponding tokn1km in
Eq. ~12! @or M5n2m in Eq. ~20!#.

For stronger excitation,p̄53, Fig. 1~b! there are severa
traces with the same velocities fitting the straight patte
which emerge now more clearly. The black solid line for
near-classical trace is twofold degenerate since pairs~2,3!
and~1,4! lead to the sameM5n1m55. The quantum trace
~broken line! is highly degenerate, being produced by pa
~1,2!, ~2,3!, ~3,4! and ~4,5! with M5un2mu51.

A more developed quantum carpet is seen in Fig. 1~c! for
p̄55. Beside the classical trajectory, white solid line, and
near-classical trace~black solid line! for M5n1m59 @with
the pairs~3,6! and~4,5!#, one can see two examples of qua
tum intermode traces: forun2mu51 ~dashed line!, gener-
ated by pairs ~3,4!, ~4,5!, ~5,6! and ~6,7!, and for
un2mu52 ~dash-dotted line! with pairs ~3,5!, ~4,6! and
~5,7!.

IV. AN ARBITRARY ANHARMONIC POTENTIAL

It is obvious that the phenomenon is not restricted to
square well; it should occur for other potentials. Distinct p
terns nearthe classical trajectoryare better pronounced fo
strongly anharmonic potentials with ‘‘hard walls,’’ the ex
treme example of which is a box, and less for ‘‘soft’’ pote
tials, e.g.,U}uxuw with w<2, including the harmonic poten
tial, w52. This is explained by a high trace degeneracy i
box, whereby many individual traces with thesamevelocity
bundle together to form the patterns; the soft potentials,
the other hand, create less degenerate traces. To illus
this, we note from the definition of the trace velocity~12!
that the peak velocity, i.e., the velocity atU(x)50, is

~nnm!pk'6~AEn6AEm!/A2me. ~22!

Hence, ifEn}n2, as in a box, then (nnm)pk}n6m, Eq. ~20!,
and there are many intermode trace pairs withn andm pro-
ducing the samenpk .

On the other hand, for the harmonic potential,w52, with
En}n for large n, the only quantum numbers resulting
exactdegeneracy of (nnm)pk , aren,m51,4,9,16, etc. How-
ever, by preparing the initial wave function out of the
states alone~to be addressed by us elsewhere!, one can pro-
duce a distinct quantum carpet.
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We look now into the set of velocitiesnnm(x), where both
n,marenear some fixed integerN@1, with

n5N1Dn, m5N1Dm, and uDn6Dmu!N.

Then, for the potentialU}uxuw, wherew is now an arbitrary
number, we have

nnm~x!'ngr~EN ,x!F11
~Dn1Dm!~w/2!

N~21w!

EN

DEN~x!

2
~Dn21Dm2!~w/4!

N2~21w!2

EN

DEN~x!

3S 21
w•U~x!

DEN~x! D1¯G , ~23!

whereDEN(x)5EN2U(x).
Without the term withDn21Dm2 in Eq. ~23!, all the

intermode traces with, e.g.,Dn1Dm50 would be degener-
ate. Comparing this term with the previous one in Eq.~23! at
uDn1Dmu51, we find the number of eigenmodesDNd
[uDn2Dmumax, forming a group of nearly-degenerate inte
mode traces around a fixed state numberN@1 as@15#

DNd;A N~21w!

21wU~x!/„EN2U~x!…
. ~24!

Near the pointU(x)50, the ratioDNd /AN increases asw
increases; for a box, we findw5`. This ratio also decrease
in the areaEN/2,U(x),EN ~which is very narrow for hard
potentials!, especially near turning points,U(x)→EN .

Let us discuss now a potential which represents an in
mediate case between the square box and harmonic pote
Figure 2 depicts the quantum carpets for the anharmo
potential

U5Ax4, ~25!

in which the initial wave packet is again a ground-state wa
function hit by ad-pulse delivering momentump̄ @18#. Here

FIG. 2. Same as in Fig. 1 for a potentialU(x)}x4.
1-4
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MULTIMODE INTERFERENCE: HIGHLY REGULAR . . . PHYSICAL REVIEW A61 032101
we have introduced the systemme5\5A51, that is we
have scaledx, t, andp by the factors

xs[~\2/meA!1/6, ts[~me
2/\A!1/3, and ps[mexs /ts ,

~26!

respectively.
Figure 2~a! depicts a case of low excitation,p̄51, with

only two states excited. Here, the classical trajectory~white
solid line! does not produce a good fit yet while canals
approximately to classical traces~black solid line!, and
ridges—to quantum traces~white dashed line! with (m,n)
5(1,2) in both cases.

We now turn to the case of higher excitation,p̄53, Fig.
2~b!, with an almost classical distribution of state popu
tions,snn . Here the carpet is well pronounced. The classi
trajectory fits snugly into maxima ofucu2. Moreover, now
the near-classical trace~black solid line! with pair (m,n)
5(2,3), fits very well the canal patterns. The quantum tra
~dashed line! for the same pair also fits the respective p
terns.

Finally, whenp̄55, Fig. 2~c!, one sees a pronounced cla
sical motion for the first couple of cycles which then tur
into a richly developed carpet well described by intermo
traces. The dark solid lines are near-classical traces prod
by the pair (n,m)5(5,6), while broken lines denote a fe
examples of quantum traces: the dash-dotted one is cre
by the same pair, whereas the dashed one by~5,7!.

V. IMPLICATIONS AND RELATIONS TO OTHER FIELDS

To excite many atomic eigenstates using agroundstate as
an initial wave packet, instead of Rydberg states, one ne
to shake up the system by a strongd-like EM pulse shorter
than a cycle of any eigenfrequency; potential avenues to g
erate these pulses are multicascade stimulated Raman
tering @18~a!#, molecule modulation@18~b!#, subfemtosecond
field solitons@18~c!,18~d!# and very high harmonic genera
tion @18~e!#. However, in solid-state quantum wells@5# sub-
picosecond half-cycle pulses can achieve the goal, whil
atom optics of ion traps@3#, with the motional frequency
being in radiodomain, even anano-second laser pulse ca
serve as ad kick.

Insofar as the EM wave equation in paraxial approxim
tion is isomorphous to the Schro¨dinger equation, the inter
mode traces can readily be found in optics and electro
namics, with waveguides, resonators and spatially- or tim
periodical structures providing a natural playground for E
et

.
,
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mode interference. For example, the modes of a sufficie
wide, L@l, wave guide with ideally conducting walls~as
well as the field scattered by a diffraction grating in the T
bot effect! have the same patterns as those of the square w
Eq. ~20!. The modes of a regular fiber waveguide produ
patterns similar to those of the box of finite width, whi
modes of a fiber waveguide with smoothly varying refracti
index make patterns similar to those of a quantum well w
the respective potential.

The intermode trace phenomenon can be extended
other areas of wave physics. Its existence does not depen
exact form or order of the wave equations; the linear
though is required to produce eigenmodes. One can re
well known wave phenomena such as the so called Kiku
lines in x-ray diffraction in crystals@19#, Chladhi patterns in
acoustics, and the formation of straight patches of calm s
face in rough seas, to intermode traces. In more gen
terms, even nonlinear wave equations, such as, e.g., no
ear Schro¨dinger, Kordeweg–De Vries, and sine-Gordon, c
support multisoliton solutions, with the individual solito
trajectories reminiscent of intermode traces. The strai
multisolitons traces are, e.g., found@18~d!# in the modified
Kordeweg–De Vries equation approximating the propa
tion of EM bubbles@18~c!,18~d!#. Highly organized two-
dimensional nonlinear-optical patterns are formed both in
near- and far-field areas by the grid of spatial dark solito
@20#, in a resonator filled with a Kerr-like nonlinear materi
@21#, and by ‘‘scars’’ in a quantum billiard@22#. Similarly to
intermode traces, these wave phenomena might be viewe
multiwave effects resulting in well-organized ‘‘carpet’’ mac
rostructures in systems with a broad-spectrum excitation

In conclusion, we found characteristic highly-regular p
terns in the quantum probability of multistate excitation
anharmonic potentials. They can readily be generalized
classical multimode EM field intensity distribution. W
showed that these patterns can be explained and quan
tively analyzed in terms of the notion of intermode trac
and their properties.
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