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Multimode interference: Highly regular pattern formation in quantum wave-packet evolution
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Highly regular spatiotemporal or multidimensional patterns in the quantum mechanical probability or clas-
sical field intensity distributions can appear due to pair interference between individual eigenmodes of the
system, thus forming the so-called intermode traces. These patterns are strongly pronounced in any anharmonic
potential, provided that the traces are multidegenerate; they may occur in many areas of wave physics.

PACS numbgs): 03.65.Bz, 03.75-b, 03.75.Dg, 41.20.Jb

I. INTRODUCTION well (or plane geometry of EM-diffraction gratinghis phe-
nomenon reveals a new aspect of the so-called Talbot effect
The controlled preparation and measurement of wavél4], which traditionally concerns only patterns in planes at
packets has recently emerged as an extremely active field éikedtime t or distancez, i.e., “slices” of the distribution,
research. Examples include wave packets in afdmsopti-  instead of the patterns in the “full propagation” spa@et)
cal latticeg 2], ion traps[3], moleculeg4], and semiconduc- or (x,2.
tor quantum wells[5], to name a few. One of the major  The common feature of these systems is a broad-spectrum
points of interest is the spatiotemporal evolution of waveexcitation: e.g., in the quantum case, the rich patterns appear
packets in such systems. Since most of the experiments eenly when many states are populated. So far the theory of
gage a broad-spectrum excitation of the eigenmodes of thgese patterns has relied on the specific choice of the initial
system, large-scale interference becomes a leading factor. dbnditions and on the square wdbr diffraction grating
gives rise to well-ordered long-range regularities such astructure, with no simple physical explanation suggested. In
quantum revivals[6], interference patterns in the atomic our recent worl{15] we observed a similar “quantum car-
double-slit experimenit7(a)], diffraction effects in atom op- pet” in both the square well and a smooth potential and
tics [7(b)] and so calleds ionization[8]. In this paper, we offered an idea of a universal explanation for this phenom-
show that these packets may also serve as a testing grouagion. The key mechanisms have been identffi&d as pair
for another class of interference effects that have recentlynhultinterference between the eigenmodes of the system and
gained intense intereff—15]: the formation of highly regu- the degeneracy of this interference.
lar spatiotemporal or multidimensional patterns in the quan- Pair interference between the eigenmodes of the system,
tum mechanical probability,i|?, or classical electromag- the underlying building blocks of carpet patterns, gives rise
netic field intensity,&|2. to the so called “intermode traces,” the lines of constant
The patterns have been discovered in the probability dernphase of interference terms. The phenomenon is strongly
sity |#(x,t)|? of a particle confined to an infinitely deep pronounced for degenerat@r nearly degeneratetraces,
square well, by performing numerical simulations of the evo-whereby many nonvanishing individual traces are superim-
lution of a Gaussian wave packid], an initially homoge- posed to produce distinct patterns. Our theory describes ana-
neous wave functiohlO(a)] or well localized wave packets Iytically the major features of the quantum carpet. It not only
[11], a Bose-Einstein condensdtE?], and an angular wave explains the straight-line patterns observed in a square quan-
packet[13]. In all cases, the probability distribution is char- tum box (or in the Talbot effedt but also predicts that dis-
acterized by a regular net efnals minima of probability, tinct “curved” patterns can appear in anharmonic potentials,
andridges maxima of probability, which run along straight more pertinent to quantum mechanics. In this paper, we
lines in space-timéx,t). verify this by comparing the numerically generated patterns
Similar patterns also arise in the near field of a diffractionfor these potentials with the results of our analytical calcula-
grating illuminated with light{10(a)] as well as in matter tions.
waves in atom optick7(b)]. Indeed, the paraxial approxima- Most of our analytical results for the general case of an-
tion allows for a space-time analogy between quantum meharmonic potentials rely on the WKB approximation. There-
chanics and electrodynamics. The space-time probability digore, in order to study the onset of the intermode traces, we
tribution |¢(x,t)|> is mapped onto the field intensity discuss in detail the dependence of these patterns on the ini-
|&(x,2)|?, wherez is the propagation direction. For multidi- tial momentum of the wave packétr the amplitude of the
mensional problemss is replaced by a radial vectarin the  &kick producing this momentum For this purpose, we
transverse cross section. In the simplest case of the squashiow not only the numerically generated patterns for various
excitations beginning from zero and follow the intermode
trace formation, but also display the populations of all the
*Permanent address: Dipartimento di Matematica e Fisica andquantum levels engaged. In order to address more realistic
INFM, Universitadi Camerino, 62032 Camerin@®IC), Italy. and universal situations, we start from the most natural initial
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state of the system, that & ground stateand then add a Lm0 = (1/2) o mibn(X, 1) &5 (X,t) +C.C., (5)
momentum to it, instead of assumingdralatively artificia)
tight initial packet(as was assumed in most of wdik-15)), is an intermode term witkr,,,=a,an,= const being the den-

which has to engage already many excited eigenstates eveity matrix element. We now break the dengiy down into
before the momentum is added. We emphasize that some @fne-independent termo(x) ==, u,, with all the diagonal
our important results are that even for these “smoothed-out'componentsy,,= onn| ¥n|?, Whereo,,, are the populations
initial packets in anharmonic oscillators, the intermode tracesf the respective quantum levels, and the “interference”
begin transpiring even at relatively low excitations, with justterm, which is the sum over all the nondiagonal components,

a few low lying quantum levels involved. Un=m; its average over long time vanishes. The latter, inter-
ference term with the sum of elementary intermode teiBnhs
[l. INTERMODE TRACES IN 1D POTENTIALS helps us to keep a “global” view of the spatiotemporal evo-
_ R _ - lution of |]2.

The wave functiony(r,t) of a quantum particle with Insofar as the quantum carpet engages many excited
massm, moving in a potentialu(r) is governed by the giates, we are dealing with a situation best handled by the
Schralinger equation, WKB method[16]. We therefore represent the eigenwave

i A . functions(3) as a superposition of “WKB" functions
ihdylat—[T+U(F)]y=0. (1)
- WKB . .
Here7 is Planck constant, antl= — (%%/2m,)V? is the op- A )(X,t)’“fn(X)exr{i'f kn(X)dx—iEnt/%|. (6)

erator of the kinetic energy.
We note that Maxwell equations of classical electrody-Here both the preexponential factby(x) and the momen-

namics can also be approximated by the same equation undgm

the assumption of small diffraction and fixed polarization. In

the resulting scalar equation, is replaced by the field am- fikn(X) = V2M E—U(X)] (7)

plitude &, U by the dielectric constant, V2 by the “trans-

verse” Laplacian, timé by the longitudinal coordinate of

propagation, and by the wavelengti; the limits#—0 and

A—0 correspond to classical mechanics and ray optics, r

spectively. This so-called paraxial approximation is valid for J

are assumed to vary slowly compared to [exid k,(X)dx].
The eigenenergie€, are evaluated using the Bohr-
eSommerfeld condition

Xy
k,dx=nr,
X

many problems related to the optics of well collimated fields,
e.g., in lasers and some microwave devices.
sid-lt;ro I'?(fr\(/ee(lnorﬁ tgi(;b—?i?:r?etr:];grr)(la]%c)lntri)rngrﬁ(sa ttrﬁ;:te ,SS V\:ibc_on‘_”herexu are the left and right turning points of a classical
€ only ) ‘o) p ' P trajectory, respectively. They are determined by the condi-
lems which involve either spatiotemporal patterns in quan-. - : W
, . . . . tion E,=U(x). For example, ifUo|x|" with w>—2, one
tum mechanics with one coordinate and a time variable, o,
. . . ) as[17]
spatial patterns in optics with one transverse and one longi-
tudinal variable. A similar phenomenon in higher dimensions E,ccn2w/(2+w), @)
will be considered by us elsewhere.
To study the time evolution of a particle moving in a 1D The rapidly oscillating functions in an elementary interfer-

binding potentiall (x), we write the full wave function as  ence termu,.,, are then exptiZ,,), where

©

P(x,t)= El antn(X.t), ) gnm(x,t):f [Ko(X) £ Kn(X)]dX*+ (Ep— Ep)t/f. (9)
A=
where Note that two pairs of signs,#,” in front of both momen-
tum and energy, aradependenbf each other, so that in Eq.
Pn(X,1) = Yn(X) X — Ept/fi) 3 (9 we havefour different phaseg,,(x,t). We now look at
the lines of constant phas&,(x,t) =const. They are space-
are energy eigenfunctions of energlgs, with their ampli-  time trajectories which define the traces. We find their ve-

tudes a,=const determined by the initial conditions, and locities as
U,(X) is the spatially dependent componentygf. To bring

out the spatiotemporal patterns of the probability density, ,,nm(x):<d_x) :(Aw)“m, (10)
| 4|2, we represent it is as the sum of “elementary” inter- dt nm (AK)nm
mode termsu,m,:
where
(X D12= D pam(X1), (4) (Aw)ym=(En—Em)/f,  (AK)nm=E[Kn(X) Ekn(X)].
n,m=1 (11
where With the help of Eq(9) we obtain forv,,
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v (X)z_'_wn_wm%_’_ (En—Em)v2me -go,s @ 0'4 L 03 ©
M T kntkm T E,—UX) = VEn—U(X) 2
(12) [l S e T R T S I T e S R

quantum number

|-

wherew,=E,/%. Note again that we have hefeur differ-
ent velocities.
The trajectory is then

time ¢

X
t= f v ldx, (13)

X

wherex; is the turning point for the lower enerdy, and
E,,. For every pair of quantum numbersand m we find
four traces, with all the possible combination of signs in Eq. 00 :
(12. The density matrix elementsy,,, determine the position x
“weight” of the (n,m) trace via|o,,, and its positioning
via the phasep,, defined by expnm =onm/|onnl-

L/ e | -’%

FIG. 1. A wave packet formed by a ground state wave function

WhenAw,Ak are large, the velocity,,, approaches the moving with different initial momenta in a square well creates
l ’ nm

. . . atterns in the probability distributioy|? in space-timgx,t). The
pha_se velocity, and describes strictly quantum_ featur_e_s of th%ark blobs correspond to the maxi(r)|nr:1Ia»112 the light areas to its
motlor}. In contrastl, vv_heﬂw,Ak ared_small,vnmlls r_emllnls- .__minima. The examples of intermode traces: solid white curves—
cent of a group velocity corresponding to a classica mOt'_OrI:IassicaI trajectories, solid black curves—"near-classical” traces,

of a particle. Indeed, an initially almost classical motion is ;4 proken curves—*“quantum” tracesee the text Upper dia-

described by a compact group of eigenmodes near some higypams show populationr,, vs the quantum state numbex, (@) p
quantum numbeN, with a numberAN of these modes sat- —1; (p) p=3: (c) p=5.

isfying the condition & AN<N. This excitation results in a
strongclustering of traces in two groupdhe one with ogy, this corresponds to an EM wave in a waveguide with
ideal metallic walls. In this case, the WKB results become
[(Aw)yml<oyn, and  (AK)nm<|kyl, (14 exact so that for a box of width. the ground-state frequency

. : . . ; : and wave number are
is essentially alassicaltrajectory, since in such a case

fim? T
(Aw) dw - ——
Boun_do_ s g k=L
n,m

wherev, is a group velocity. It coincides with the classical respectively. The elgenfrequenCIIes, eigenenergies, and eigen-
wave numbers then are respectively

velocity, since the intermode trace equation obtained from
Eq. (12 as w,=n’w;, E,=hw,, and k=nk;; n=123....

dx
¢ = V2[EN- U001/, (16 19
For the box problem, the expression for the trace velocity

describes classical motion of a particle with enefgyin a  (12) becomesxact and reads
potentialU(x).

One can see now that the other group of traces, with Vam=*tM-vg, M=mzn; (20
Vom<vg, and [k~ Knpl=|2kyl, (17) whereM is the normalized velocity, and
i A
reflects thequantumbehavior. Remarkably, the WKB ap- vD=c—C<c, 21)

proximation developed basically as a tool to describe quasi- 4L

classical motion, can also serve to describe highly quantum o .

objects like the “quantum” group of intermode traces. ThelS @ characteristic velocity of a box, and.=2=fi/cm,
full set of velocities,, (12), ranging from group velocity to = 2:4X10™'%cm is the Compton wavelength.

phase velocity at the extremes, provides a greatly useful tool SinceM in Eqg. (20) is an integer, a trace with a certaih

in the understanding of quantum system. is attributed toall the couples of modeas andm whose sum
or difference isM. If the number of the states involved is
IIl. SQUARE WELL POTENTIAL sufficiently large, this trace degeneracy creates multiple su-
WITH INEINITE WALLS perimposed traces. They in turn give rise to the distinct

straight canals in Fig. 1.
As an illustration, we consider first the simplest potential, In Fig. 1 we show some of the traces predicted by Eq.
the square well potential with infinite walls. In the EM anal- (20). Here we assume that the initial wave packet is the
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ground state wave function, i.a/; (X)<sin(mx/L). The sys-
tem is hit by as-pulse delivering a momentum, which we
normalize to the ground state momentym=rk,. We  F———
show the time evolution of|? from t=0 to T/2, with T quantum number
=2mx/w, being the revival time, after which the initial wave
packet reshapes itsdlf].

The population distributiong,,,, is shown in the upper
diagrams of Fig. 1. When the excitation is relatively |gov,
=1, Fig. 1(a), only two eigenstates are involved. The classi-
cal trajectory(white solid ling, bouncing between the walls,
does not fit any pattern yet even though it has the same
velocity as some of them. There are only two traces, not well
fitting either: a “near-classical” tracéblack solid ling cre-
ated by selecting,—k,, in Eq. (12) [or normalized velocity

population
(=
[

| ) msl ® 4 ©
0 3 0 0

2 4 6 810 2 4 6 8 10

M=n+m in Eq. (20)] with (n,m)=(1,2), and a “quan- o oy
tum” trace, white dashed line, correspondingket Kk, in
Eqg. (12) [or M=n—m in Eqg. (20)]. FIG. 2. Same as in Fig. 1 for a potentla{x) s x*.

For stronger excitationp=3, Fig. 1(b) there are several
traces with the same velocities fitting the straight patterns We look now into the set of velocities,(x), where both
which emerge now more clearly. The black solid line for an,mare near some fixed integeN> 1, with
near-classical trace is twofold degenerate since p2id

and(1,4) lead to the sam& =n+m=5. The quantum trace n=N+An, m=N+Am, and |An+Am|<N.
(broken ling is highly degenerate, being produced by pairs
(1,2), (2,3, (3,4 and (4,5 with M=|n—m|=1. Then, for the potential =<|x|", wherew is now an arbitrary

A more developed quantum carpet is seen in Fig) for ~ number, we have
P=>5. Beside the classical trajectory, white solid line, and a
near-classical trac@lack solid ling for M =n+m=9 [with
the pairs(3,6) and(4,5], one can see two examples of quan-
tum intermode traces: fgn—m|=1 (dashed ling gener-
ated by pairs (3,4, (4,9, (5,60 and (6,7, and for

(An+Am)(w/2) Ey
N(2+w) AEN(X)

(An2+Am?)(wW/d) Ey

1+

Vam(X)~ Vgr( En,X)

In—m|=2 (dash-dotted ling with pairs (3,5, (4,6) and N*(2+w)*  AEn(X)
(5.7. w-U(X)
X 2+ m)“—"'}, (23)

IV. AN ARBITRARY ANHARMONIC POTENTIAL

It is obvious that the phenomenon is not restricted to thavhere AEy(x)=Ey—U(x).
square well; it should occur for other potentials. Distinct pat- Without the term withAn?+Am? in Eq. (23), all the
terns neathe classical trajectonare better pronounced for intermode traces with, e.gAn+Am=0 would be degener-
strongly anharmonic potentials with “hard walls,” the ex- ate. Comparing this term with the previous one in &) at
treme example of which is a box, and less for “soft” poten- |An+Am|=1, we find the number of eigenmodesNy
tials, e.g.,Ux|x|" with w=2, including the harmonic poten- =|An—Am|,, forming a group of nearly-degenerate inter-
tial, w=2. This is explained by a high trace degeneracy in anode traces around a fixed state numiier1 as[15]
box, whereby many individual traces with teamevelocity
bundle together to form the patterns; the soft potentials, on Y \/ N(2+w)

.

the other hand, create less degenerate traces. To illustrate 2+wU(X)/(Eny—U (X)) (24)

this, we note from the definition of the trace velociti?2)

that the peak velocity, i.e., the velocity @i(x) =0, is Near the pointU(x)=0, the ratioANy4 /N increases asv
increases; for a box, we find=occ. This ratio also decreases

(Pam)pk= * (VEp = VEm)/V2me. (22 in the areaE\/2<U(x)<Ey (Which is very narrow for hard

potential$, especially near turning points}(x) —Ey .

Hence, ifE,cn?, as in a box, thenif,,) wxn+m, Eq.(20), Let us discuss now a potential which represents an inter-

and there are many intermode trace pairs witindm pro-  mediate case between the square box and harmonic potential.

ducing the same. Figure 2 depicts the quantum carpets for the anharmonic

On the other hand, for the harmonic potentiak 2, with potential
E,xn for large n, the only quantum numbers resulting in
exactdegeneracy of i, ), aren,m=1,4,9,16, etc. How- U=Ax4 (25
ever, by preparing the initial wave function out of these
states alonéto be addressed by us elsewhe@ne can pro- in which the initial wave packet is again a ground-state wave
duce a distinct quantum carpet. function hit by a&pulse delivering momentump [18]. Here
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we have introduced the system,=#=A=1, that is we
have scale«, t, andp by the factors
Xs= (12/mA) S,

te=(mAA)Y3  and p=mex/ts,

(26)

respectively.
Figure 2a) depicts a case of low excitatiop,=1, with
only two states excited. Here, the classical trajectarkite

solid line) does not produce a good fit yet while canals fit

approximately to classical tracedlack solid ling, and
ridges—to quantum tracesvhite dashed linewith (m,n)
=(1,2) in both cases.

We now turn to the case of higher excitatigs 3, Fig.

2(b), with an almost classical distribution of state popula-
tions, o,,. Here the carpet is well pronounced. The classica

trajectory fits snugly into maxima dfy|?. Moreover, now
the near-classical tracgblack solid ling with pair (m,n)

=(2,3), fits very well the canal patterns. The quantum trac
(dashed ling for the same pair also fits the respective pat-

terns.

Finally, whenp=5, Fig. Ac), one sees a pronounced clas-
sical maotion for the first couple of cycles which then turns
into a richly developed carpet well described by intermod
traces. The dark solid lines are near-classical traces produc
by the pair f,m)=(5,6), while broken lines denote a few
examples of quantum traces: the dash-dotted one is creatf

by the same pair, whereas the dashed oné5bs).

V. IMPLICATIONS AND RELATIONS TO OTHER FIELDS

To excite many atomic eigenstates usingraundstate as

PHYSICAL REVIEW A61 032101

mode interference. For example, the modes of a sufficiently
wide, L>\, wave guide with ideally conducting wallgs

well as the field scattered by a diffraction grating in the Tal-
bot effeci have the same patterns as those of the square well,
Eqg. (20). The modes of a regular fiber waveguide produce
patterns similar to those of the box of finite width, while
modes of a fiber waveguide with smoothly varying refractive
index make patterns similar to those of a quantum well with
the respective potential.

The intermode trace phenomenon can be extended to
other areas of wave physics. Its existence does not depend on
exact form or order of the wave equations; the linearity
though is required to produce eigenmodes. One can relate
well known wave phenomena such as the so called Kikuchi
fines in x-ray diffraction in crystal§19], Chladhi patterns in
acoustics, and the formation of straight patches of calm sur-
face in rough seas, to intermode traces. In more general
terms, even nonlinear wave equations, such as, e.g., nonlin-

®ar Schrdinger, Kordeweg—De Vries, and sine-Gordon, can

support multisoliton solutions, with the individual soliton
trajectories reminiscent of intermode traces. The straight
multisolitons traces are, e.g., foupti8(d)] in the modified
Kordeweg—De Vries equation approximating the propaga-

e%‘?rg of EM bubbles[18(c),18d)]. Highly organized two-

ensional nonlinear-optical patterns are formed both in the
near- and far-field areas by the grid of spatial dark solitons
], in a resonator filled with a Kerr-like nonlinear material
[21], and by “scars” in a quantum billiarf22]. Similarly to
intermode traces, these wave phenomena might be viewed as
multiwave effects resulting in well-organized “carpet” mac-
rostructures in systems with a broad-spectrum excitation.
In conclusion, we found characteristic highly-regular pat-

an initial wave packet, instead of Rydberg states, one needs , c ) J el e
to shake up the system by a strosgike EM pulse shorter terns in th.e quantum probability of mu.Itlstate excitation in
than a cycle of any eigenfrequency: potential avenues to gef@?harmonic potentials. They can readily be generalized to
erate these pulses are multicascade stimulated Raman sci@ssical multimode EM field intensity distribution. We
tering[18(a)], molecule modulatiofil8(b)], subfemtosecond S owed that the_se patterns can be_ expla_lned and quantita-
field solitons[18(c),18d)] and very high harmonic genera- tively ar_lalyzed in terms of the notion of intermode traces
tion [18(e)]. However, in solid-state quantum we[ls] sub- ~ and their properties.
picosecond half-cycle pulses can achieve the goal, while in
atqm c_)ptics .of ion _trap$3], with the motional frequency ACKNOWLEDGMENTS
being in radiodomain, even manosecond laser pulse can
serve as & kick. We thank M. Berry, B. Ya. Zeldovich, M. Fontenelle, P.
Insofar as the EM wave equation in paraxial approxima-Stifter, K.A.H. van Leeuwen, N. Imoto, and A. Zeilinger for
tion is isomorphous to the Schiimger equation, the inter- discussions. Two of uéA.E.K. and W.E.L) thank the Hum-
mode traces can readily be found in optics and electrodyboldt Foundation for its support. The work by A.E.K. and
namics, with waveguides, resonators and spatially- or timeW.P.S. was also supported by AFOSR and DFG, respec-
periodical structures providing a natural playground for EMtively.
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