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Coupled-mode theory for Bose-Einstein condensates
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We apply the concepts of nonlinear guided-wave optics to a Bose-Einstein condensate~BEC! trapped in an
external potential. As an example, we consider a parabolic double-well potential and derive coupled-mode
equations for the complex amplitudes of the BEC macroscopic collective modes. Our equations describe
different regimes of the condensate dynamics, including the nonlinear Josephson effect for any separation
between the wells. We demonstrate macroscopic self-trapping for both repulsive and attractive interactions,
and confirm our results by direct numerical solution of the Gross-Pitaevskii-equation.

PACS number~s!: 03.75.Fi, 05.30.Jp
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A system of interacting bosons confined within an ext
nal potential at zero temperature can be described by a m
roscopic wave function having the meaning of an order
rameter and satisfying the Gross-Pitaevskii~GP! equation
@1#. The GP equation is a nonlinear equation that takes
account the effects of the particle interactions through
effective mean field, and it describes the condensate dyn
ics in a confined geometry. Similar models of the confin
dynamics of macroscopic systems appear in other fields;
in the case of an electron gas confined in a quantum wel
optical modes of a photonic microcavity@2#. In all such sys-
tems, confined single-particle states are restricted to disc
energies that form a set of eigenmodes.

The physical picture of eigenmodes remains valid in
nonlinear case@3#, and nonlinear collective modescorre-
spond to the ground and higher-order~excited! states of the
Bose-Einstein condensate~BEC! @4#. Moreover, it is possible
to observe at least the first excited~antisymmetric! collective
mode experimentally@5#, through the collapses and reviva
in the dynamics of strongly coupled two-component BE
@6#. The interest in the non-ground-state collective modes
BECs has grown dramatically with the study of vortex stat
very recently successfully created in the experiment@7#.

The modal structure of the condensate macrosco
~ground and excited! states allows us to draw a deep analo
between BEC in a trap and guided-wave optics, where
concept of nonlinear guided modes is widely used@8#. The
physical description of confined condensate dynamics
time is akin to that of stationary beam propagation alon
nonlinear optical waveguide, with the BEC chemical pote
tial playing the role of the beam propagation constant. A
well known from nonlinear optics, the guided waves beco
coupled in the presence of nonlinearity, and the mode c
pling can lead to the nonlinear phase shifting between
modes, power exchange, and self-trapping.

In this paper,we apply the concepts of nonlinear guide
wave optics to the analysis of mode coupling and intermo
population exchange in trapped BECs. As the most impres-
sive ~and also physically relevant! example of the applica
tions of our theory, we consider the BEC dynamics in
harmonic double-well potential, recently discussed in the
erature@9#. We study the coupling between the BEC groun
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state mode and the first excited~antisymmetric! mode in
such a potential, and derive the dynamical equations for
complex mode amplitudes,valid for any value of the well
separation. Our model comprises, in the limiting case
large separation, the theory of Josephson tunneling de
oped for weakly interacting condensates in two separate
monic traps@10#. In the limit of close separation, our theor
describes a nonlinear population exchange between the i
acting modes, similar to the effective Rabi oscillations
two-component BECs, studied both theoretically@6# and ex-
perimentally@11#.

We consider the macroscopic dynamics of BEC in
strongly anisotropic external potential,U5 1

2 mv2(Y21Z2

1lX2), created by a magnetic trap with a characteristic f
quencyv. In the case of the cigar-shaped trap,l!1, the
collective BEC dynamics can be described by a o
dimensional GP equation. Details of the derivation and n
malization can be found, e.g., in Refs.@12#. The GP equation
for the longitudinal profile of the normalized condensa
wave function takes the form

i
]c

]t
1

]2c

]x2
2U~x!c1sucu2c50. ~1!

According to normalization, the number of the condens
particles N is defined asN5(\v/2U0Al)N, where U0
54p\2(a/m) characterizes two-particle interaction propo
tional to thes-wave scattering lengtha, and the functional
N5*2`

` ucu2dx is the integral of motion for the normalize
nonstationary GP equation~1!. The value ofs52sgn(a)
561 in front of the nonlinear term is defined by the sign
the scattering length of the two-body interaction, repuls
for a.0 and attractive fora,0. The potential U(x)
5k(uxu2x0)2 ~below we takek51) describes the double
well structure of the trap in the longitudinal direction.

In the linear limit~i.e., for an ideal noninteracting gas! we
should considers50, and the exact stationary solutions
Eq. ~1! in the formc(x,t)5F j (x)eib j t are found in terms of
the parabolic elliptic functions@13# that define a set of con
fined stationary states existing at certain discrete values ob j
~linear eigenmodes!. For sÞ0, we can introduce, in a simi
©2000 The American Physical Society01-1
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lar way, a set ofnonlinear eigenmodes@3# described by rea
functions F j (x) that satisfy the following nonlinear equa
tion:

d2F j

dx2
1b jF j2U~x!F j1sF j

350. ~2!

While in the cases50 the eigenvalue for each modeb j is
unique for any given trap separationx0, in the nonlinear case
there exist families of localized solutionsF j characterized
by the dependence of the normNj5*dxF j

2(x) on b j , and
the eigenvalue now becomes a parameter of acontinuous
family @3#. Figure 1 shows two examples of the ground-st
modeF0(x) and first-order excited modeF1(x) of the BEC
with N05N1 but b0Þb1 for different values ofx0. The
dependenciesb0 andb1 on the trap separationx0 are quite
different for two signs ofs, as is seen in Fig. 2.

To develop a coupled-mode theory for BECs, we consi
the mode interaction in a double-well potential and assu
that the condensate wave function is described by a supe
sition of two modes of different symmetry, i.e., symmet
and antisymmetric,

c~x,t !5b0~ t !F0~x!e2 ib0t1b1~ t !F1~x!e2 ib1t, ~3!

where bj ( j 50,1) are the complex amplitudes, andF j (x)
may, in general, be any two solutions of Eq.~2!. Then, the
BEC dynamics can be deduced from the rate equations
the modal amplitudesbj . A similar approach has previousl
been employed in Ref.@10# to describe coherent tunnelin
between two largely separated harmonic traps, with the b
F j consisting of the ground-state modes of individual pot
tial wells. On the contrary, our basis eigenfunctions arethe
local nonlinear modes of the entire double-well trapthat can
be found exactly for any given trap separation. Our appro
is therefore similar to the analysis of the power transfer
tween the cores of a nonlinear optical coupler usually car
out in the terms of thesupermodes, i.e., the local modes of a
composite core@8#.

To derive the equations for the complex mode amplitu
bj (t), we use the standard procedure, substituting the an
~3! into the nonstationary GP equation~1!, and averaging

FIG. 1. Confining potential~bold! with the ground~solid! and
first excited~dashed! collective modes for~a! x050.6 and~b! x0

52.5 (s521, N05N155.0). Dotted lines, corresponding value
of the chemical potential:~a! b051.974, b153.162; and~b! b0

51.889, b151.925.
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over the spatial dimension after multiplying the GP equat
by either F0(x) or F1(x). This yields a system of two
coupled equations,

i
dB0

dt
5sC0uB0u2B01sC01~2uB1u2B01B0* B1

2e2 iVt!,

i
dB1

dt
5sC1uB1u2B11sC01~2uB0u2B11B1* B0

2eiVt!.

HereV52(b12b0)22s(C0N02C1N1), and the coupling
coefficients are defined asCj5g j j /Nj

2 ,C015g01/(N0N1),
where g i j 5*dxF i

2(x)F j
2(x), and Bj are the normalized

mode amplitudes,Bj (t)5ANjbj (t)exp(2isCjNjt). These
equations conserve the total normuB0u21uB1u25n0(t)
1n1(t)[n, wheren0 andn1 have the meaning of the time
dependent population numbers for the two macrosco
states, andn5N5N0ub0u21N1ub1u2. It is important to note
that the form of the rate equations does not depend on
normalization conditions for the basis functions. For e
ample, the condition*2`

` uF j u2dx5*2`
` ucu2dx51 simply

imposes the constraintuBj u5ubj u, so that n5N5ub0u2
1ub1u2.

Separating the amplitudes and phases asBj (t)
5Anj (t)exp@2ifj(t)#, we obtain a system of coupled equ
tions for the population difference of the two statesD5n1
2n0 and the relative phase shiftQ52(f02f1)2Vt,

dD

dt
5sC01~n22D2!sinQ,

dQ

dt
52d1s~C01C1!D22sC01~21cosQ!D, ~4!

where d52(b12b0)1s@(n22N0)C02(n22N1)C1#.
System ~4! can be rewritten in a canonical form,dD/dt
52]H/]Q,dQ/dt5]H/]D, with the Hamiltonian H
5s(n22D2)C01cosQ1s@(C01C1)/222C01#D

22dD. A
mechanical analogy of this system may describe the mo
of a nonrigid pendulum with angular momentumD and a

FIG. 2. Dependenciesb0(x0) ~lower curve! andb1(x0) ~upper
curve! for s50 ~dotted! and s561 ~solid, N05N155.0).
Dashed, results of the variational approach.
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generalized angular coordinateQ. On the other hand, Eqs
~4! closely resemble the dynamic equations for the guid
power and phase difference of two nonlinearly interact
orthogonally polarized optical modes in a birefringent fib
@8#. The exact solution of the system~4! can be obtained in
terms of elliptic Jacobi functions and will be presented el
where.

The dynamics described by Eqs.~4! depends crucially on
the values of the coupling coefficientsC0 , C1, and C01,
which are determined by integration over the eigenmode p
files, so that the results can bequite different for the two
signs ofs. Moreover, the condensate dynamics changes w
the separation of the potential wells, as governed by the
pendenciesC0(x0), C1(x0), andC01(x0), which differ dras-
tically for s561 ~see Fig. 3!. As expected from the linea
theory @13# and results fors521 @9#, the energy spectrum
becomes degenerate for large separation~see also Fig. 2!,
and the coupling between the collective modes beco
more coherent. Importantly, fors511, this happens at the
values of separation smaller than those fors521.

The routine of calculating the coupling coefficients n
merically can be bypassed by employingthe variational ap-
proach, using the trial functions in the form of a linear su
perposition of the ground states of isolated traps:F0,1

5A0,1$exp@(x2x0)
2/2a0,1

2 #6exp@(x1x0)
2/2a0,1

2 #%, and the La-
grangian of the stationary GP equation,

L52
1

2 S dF j

dx D 2

1
1

2
@b j2U~x!#F j

22
1

4
sF j

4 .

By inserting the trial functions into the corresponding var
tional integral, an explicit, although algebraically comp
cated, integrated Lagrangian is obtained. The variatio
equations with respect to the parametersA0,1 and a0,1 yield
relations that determine the characteristic eigenval
b0,1(x0) and the coefficientsC0 , C1, andC01. These rela-
tions can be further simplified in the limitx0@1, but must be
solved numerically for a general case. Comparisons betw
the variational predictions and the results obtained by s
ing Eq. ~2! numerically are shown in Fig. 2 forb0,1(x0) and
in Fig. 3 for C0 , C1, andC01. The agreement is seen to b
satisfactory.

To visualize the population dynamics, in Fig. 4 we p
the phase portraits$Q,D% of the dynamical system~4! for

FIG. 3. Coupling coefficients as functions of separation for~a!
s511 and ~b! s521. Dashed, results of the variational a
proach.
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the cases511 andN05N1. For convenience, the popula
tion differenceD is measured in the units ofn. For small
separations@Figs. 4~a!,~b!#, while the coupling coefficients
are sufficiently different, there are only two fixed states
the relative population:D56n, which corresponds to eithe
n050 or n150. In both these states, the phase is unbound
i.e., it is a linear function of time. The other phase trajec
ries in Figs. 4~a!,~b! represent the dynamical states with t
running phase, which is a delocalized phase. The mechani
analogy of this phenomenon is simple@10#: it corresponds to
a self-sustained steady closed-loop rotation of a nonr
pendulum around its support. In terms of the condensate
namics, these states describe the nonlinear Rabi-type os
tions between the ground and first excited macroscopic st
for small x0 and the Josephson-type tunneling between
two potential wells for a sufficiently large separation. R
markably, the population of either well is never complete
depleted.

The phase plane shown in Fig. 4 also reveals the existe
of macroscopic quantum self-trapped~MQST! states, pre-
dicted and described in@10# for weakly interactingBECs in
largely separated traps. The MQST states are characte
by a nonzero average population imbalance. As the sep
tion between the wells grows, a bifurcation of the fixe
points on the phase plane$D,Q% occurs, and the stable cen
ters corresponding to the MQST states with atrapped phase
appear@see Figs. 4~c!,~d!#. This occurs at a certainx0

cr , for
which the conditiond5n(6C012C02C1) is satisfied. For
s511 andn51, for example,x0

cr.1.48, which agrees very
well with the corresponding result of the variational a
proach, x0

cr.1.41. For larger separation, whenC0;C1

;C01, the positions of the centers are approximately giv
by D'(b02b1)/(2C01s) at Q56(2m)p, wherem is the
integer. With increasing separation, as (b02b1)→0, these
fixed centers move towards the lineD50, and the saddles
form between them, so that the MQST states, other t
those identical to the ground states of the individual we
cease to exist@see Fig. 4~d!#. The oscillations of the popula
tion imbalance around the stable fixed points with t

FIG. 4. ~a!–~d! Phase planeD(Q) for Eqs. ~4! at s511, N
5n51, andx050.0, 1.5, 1.7, and 3.0, respectively.
1-3



ue
io

ory
n-

ral

-

the
ing

e
ave
-
e

re-
tes.
on-
to

Cs.
ar-
ns

e of
ics
g
illa-
lf-

n

RAPID COMMUNICATIONS

ELENA A. OSTROVSKAYA et al. PHYSICAL REVIEW A 61 031601~R!
trapped phase have been identified in@10# as p states.
Clearly, the effect we observe here isqualitatively similar,
except for the average value of the trapped phase that, d
a different choice of the basis eigenfunctions and definit
of Q, is equal to6(2m)p.

FIG. 5. ~a! Phase trajectoriesD(Q) calculated from Eqs.~4! for
s521,x051.7 ~thin! compared with the direct numerical solutio
of Eq. ~1! ~thick!. ~b! ucu2 in the MQST state ‘‘1’’ in ~a! at the
normalized timest50 ~solid! and t5100 ~dashed!. ~c! ucu2 corre-
sponding to the point ‘‘2’’ in~a! at t50 ~solid! and corresponding
to the point ‘‘3’’ in ~a! at t520 ~dashed!. Double-well potential is
shown in~b! and ~c! by a dotted curve.
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To compare the predictions of our coupled-mode the
with the actual dynamics of the BEC in a double-well pote
tial modeled by the nonstationary GP equation~1!, we solve
Eq. ~1! numerically employing a split-step pseudospect
method. As an initial condition, for boths561, we take
c(x,0)5b0(0)F0(x)1b1(0)F1(x), with b0

2(0)1b1
2(0)

51/N051/N1. In Fig. 5~a!, the phase trajectoriesD(Q) ob-
tained by direct integration of Eq.~1!, are compared with
those calculated using Eqs.~4! for s521 and the trap sepa
ration corresponding to sufficiently dissimilar values ofb j
and Cj ~see Figs. 2 and 3!. It is clear that the approximate
equations of the coupled-mode theory correctly describe
dynamics of the condensate in the states with a runn
phase@see Fig. 5~c!#, as well as the position of the MQST
states, one of which is shown in Fig. 5~b!. Performing a
similar comparison for differents andx0, we can conclude
that the eigenfunctionsF j (x) represent a good basis for th
modal decomposition of the macroscopic condensate w
function c(x,t). The adiabatic evolution of the eigenfunc
tions with time, although leading to slight deviations of th
condensate states from the exact MQSTs@see Fig. 5~a!#, does
not introduce significant damping into the system, and the
fore does not lead to a dramatic switching between the sta

In conclusion, we have employed the concepts of the n
linear guided-wave optics and developed, for the first time
our knowledge, a consistent coupled-mode theory for BE
We have studied the BEC dynamics in a double-well h
monic trap, and verified the results by numerical simulatio
of the nonstationary GP equation. The strong advantag
our theory is its ability to describe the condensate dynam
for any well separation, including the Josephson tunnelin
effect at large separations, mode coupling and Rabi osc
tions in a single harmonic well, and the macroscopic se
trapped states in the crossover regime.
ipe,

hys.
-

.J.
ll,

A
t

@1# F. Dalfovo, S. Giorgini, L.P. Pitaevskii, and S. Stringari, Re
Mod. Phys.71, 463 ~1999!.

@2# J.P. Reithmaier, M. Ro¨hner, H. Zull, F. Scha¨fer, A. Forchel,
P.A. Knipp, and T.L. Reinecke, Phys. Rev. Lett.78, 378
~1997!; M. Bayer, T. Gutbrod, J.P. Reithmaier, A. Forche
T.L. Reinecke, P.A. Knipp, A.A. Dremin, and V.D. Kulak
ovskii, ibid. 81, 2582~1998!.

@3# See, e.g., Yu.S. Kivshar, T.J. Alexander, and S.K. Turits
e-print cond-mat/9907475.

@4# V.I. Yukalov, E.P. Yukalova, and V.S. Bagnato, Phys. Rev.
56, 4845~1997!.

@5# J. Williams, R. Walser, J. Cooper, E.A. Cornell, and M. Ho
land, e-print cond-mat/9904399.

@6# J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Hollan
Phys. Rev. A59, R31 ~1999!.

@7# M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C
Wieman, and E.A. Cornell, Phys. Rev. Lett.83, 2498~1999!.

@8# See, e.g., A. Vitarescu, Appl. Phys. Lett.49, 61 ~1986!; Y.
,

,

.

Silberberg and G.I. Stegeman,ibid. 50, 801 ~1987!.
@9# P. Capuzzi and E.S. Herna´ndez, Phys. Rev. A59, 1488~1999!;

e-print cond-mat/9902140; R.W. Spekkens and J.E. S
Phys. Rev. A59, 3868 ~1999!; N. Tsukada, M. Gotoda, Y.
Nomura, and T. Isu,ibid. 59, 3862~1999!.

@10# A. Smerzi, S. Fantoni, S. Giovanazzi, and S.R. Shenoy, P
Rev. Lett.79, 4950 ~1997!; S. Raghavan, A. Smerzi, S. Fan
toni, and S.R. Shenoy, Phys. Rev. A59, 620~1999!; I. Marino,
S. Raghavan, S. Fantoni, S.R. Shenoy, and A. Smerzi,ibid. 60,
487 ~1999!.

@11# M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, M
Holland, J. E Williams, C.E. Wieman, and E.A. Corne
e-print cond-mat/9906288.

@12# V.M. Perez-Garcia, H. Michinel, and H. Herrero, Phys. Rev.
57, 3837 ~1998!; Yu.S. Kivshar and T.J. Alexander, e-prin
cond-mat/9905048.

@13# E. Merzbacher,Quantum Mechanics~Wiley, New York,
1961!, pp. 65–78.
1-4


