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Coupled-mode theory for Bose-Einstein condensates
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We apply the concepts of nonlinear guided-wave optics to a Bose-Einstein cond@is@jdrapped in an
external potential. As an example, we consider a parabolic double-well potential and derive coupled-mode
equations for the complex amplitudes of the BEC macroscopic collective modes. Our equations describe
different regimes of the condensate dynamics, including the nonlinear Josephson effect for any separation
between the wells. We demonstrate macroscopic self-trapping for both repulsive and attractive interactions,
and confirm our results by direct numerical solution of the Gross-Pitaevskii-equation.

PACS numbes): 03.75.Fi, 05.30.Jp

A system of interacting bosons confined within an exter-state mode and the first excitddntisymmetri¢ mode in
nal potential at zero temperature can be described by a masuch a potential, and derive the dynamical equations for the
roscopic wave function having the meaning of an order pacomplex mode amplitudesialid for any value of the well
rameter and satisfying the Gross-PitaevgkiP) equation Separation Our model comprises, in the limiting case of
[1]. The GP equation is a nonlinear equation that takes intdarge separation, the theory of Josephson tunneling devel-
account the effects of the particle interactions through arPPed for weakly interacting condensates in two separate har-
effective mean field, and it describes the condensate dynanfbonic trapg{10]. In the limit of close separation, our theory
ics in a confined geometry. Similar models of the confineddescribes a nonlinear population exchange between the inter-
dynamics of macroscopic systems appear in other fields; e@.’CUng modes, similar to the effective Rabi oscillations in
in the case of an electron gas confined in a quantum well, oiwo-component BECs, studied both theoretic48y and ex-
optical modes of a photonic microcavig]. In all such sys- Perimentally[11].
tems, confined single-particle states are restricted to discrete We consider the macroscopic dynamics of BEC in a
energies that form a set of eigenmodes. strongly anisotropic external potentidl] = mw?(Y?+Z?

The physical picture of eigenmodes remains valid in thet AX?), created by a magnetic trap with a characteristic fre-
nonlinear casd3], and nonlinear collective modesorre- duencyw. In the case of the cigar-shaped traps<1, the
spond to the ground and higher-ordexcited states of the collective BEC dynamics can be described by a one-
Bose-Einstein condensatBEC) [4]. Moreover, it is possible dimensional GP equation. Details of the derivation and nor-
to observe at least the first excitéhtisymmetri¢ collective ~ malization can be found, e.g., in Ref42]. The GP equation
mode experimentally5], through the collapses and revivals for the longitudinal profile of the normalized condensate
in the dynamics of strongly coupled two-component BECswave function takes the form
[6]. The interest in the non-ground-state collective modes of
BECs has grown dramatically with the study of vortex states, Y Py X
very recently successfully created in the experini@ht =+ 2 U(x) ¢+ alp|*y=0. (1)

The modal structure of the condensate macroscopic X
(ground and excitedstates allows us to draw a deep analogy ) o
between BEC in a trap and guided-wave optics, where th@ccprdmg to normallzatlon, the number of the condensate
concept of nonlinear guided modes is widely uggll The  Particles A is defined as\'=(hw/2Ug\MN, where Ug
physical description of confined condensate dynamics ir-47%*(a/m) characterizes two-particle interaction propor-
time is akin to that of stationary beam propagation along dional to thes-wave scattering length, and the functional
nonlinear optical waveguide, with the BEC chemical poten-N=J7.|#|?dx is the integral of motion for the normalized
tial playing the role of the beam propagation constant. As igionstationary GP equatiofi). The value ofo=—sgn@)
well known from nonlinear optics, the guided waves become= * 1 in front of the nonlinear term is defined by the sign of
coupled in the presence of nonlinearity, and the mode couthe scattering length of the two-body interaction, repulsive
pling can lead to the nonlinear phase shifting between théor a>0 and attractive fora<0. The potential U(x)
modes, power exchange, and self-trapping. =Kk(|x| —xg)? (below we takek=1) describes the double-

In this paperwe apply the concepts of nonlinear guided- well structure of the trap in the longitudinal direction.
wave optics to the analysis of mode coupling and intermodal In the linear limit(i.e., for an ideal noninteracting gase
population exchange in trapped BEGSs the most impres-  should considerr=0, and the exact stationary solutions of
sive (and also physically relevanexample of the applica- Eq. (1) in the form zﬁ(x,t)=<1>j(x)e'ﬁ‘it are found in terms of
tions of our theory, we consider the BEC dynamics in athe parabolic elliptic function§13] that define a set of con-
harmonic double-well potential, recently discussed in the lit-fined stationary states existing at certain discrete valugs of
eraturg 9]. We study the coupling between the BEC ground-(linear eigenmodes For o+ 0, we can introduce, in a simi-
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FIG. 1. Confining potentia(bold) with the ground(solid) and
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over the spatial dimension after multiplying the GP equation
by either d,(x) or ®,(x). This yields a system of two
coupled equations,

Bo
—U'C0|Bo| Bo+0Co1(2|B1|?By+BEBie ),

—1 = 5C4|By|?B;+ 0Cy(2|B|?B, + B B2 ).

C Nl) and the coupling

first excited (dashed collective modes for@ x,=0.6 and(b) x,  CcO€fficients are defined a8;=y;, IN7,Cor= 01/ (NoNy),

=2.5 (¢=—1, Ny=N,=5.0). Dotted lines, corresponding values Where y;;=
of the chemical potentiala) By,=1.974, 8,=3.162; and(b) B, mode amplitudes,B; (t)

Jdxd? (x)<I> (x), and B; are the normalized
IN;b; (t)exp( ioCNjt). These

=1.889, 8, =1.925. equations conserve the total normBo|2+|Bl|2—n0(t)
+n4(t)=n, whereny andn; have the meaning of the time-
lar way, a set ohonlinear eigenmode$3] described by real  dependent population numbers for the two macroscopic
f_unctions ®;(x) that satisfy the following nonlinear equa- states, anah=N=Ny|by|2+ N;|b|2. It is important to note
tion: that the form of the rate equations does not depend on the
normalization conditions for the basis functions. For ex-

2
OR
j 3_
W+BJ®J_U(X)®]+O—®1_O (2)
+lby %
While in the caser=0 the eigenvalue for each mog is Separating

ample, the condition/”,|®;|?dx= ", |4|?dx=1 simply
|mposes the constralntB|—|b| so that n=N=|by|?

the amplitudes and phases Bg(t)

unique for any given trap separatigg, in the nonlinear case = Vhj(t)ex—ig;(t)], we obtain a system of coupled equa-
there exist families of localized solutionB; characterized tions for the population difference of the two states=n,
by the dependence of the nom)=fdxd? (x) onB;, and ~MNo and the relative phase shift=2(¢o— ¢1) — 2,

the eigenvalue now becomes a parameter @foatinuous
family [3]. Figure 1 shows two examples of the ground-state
mode®y(x) and first-order excited modé(x) of the BEC
with Ng=N; but By# B, for different values ofx,. The
dependencie@, and 8, on the trap separatiox, are quite
different for two signs ofr, as is seen in Fig. 2.

To develop a coupled-mode theory for BECs, we consider

dt

the mode interaction in a double-well potential and assumevhere
that the condensate wave function is described by a superp&ystem(4) can be rewritten in a canonical forndA/dt
sition of two modes of different symmetry, i.e., symmetric = — gH/90,d®/dt=dH/JA, with the Hamiltonian H
and antisymmetric, =0 (n?—A?)Cp1c080+0](Co+C,)12—2Cy,]A%—5A. A
_ _ mechanical analogy of this system may describe the motion
(X, 1) =bo(t)Do(x)e” Pl +by(t)Dy(x)e P, (3)  of a nonrigid pendulum with angular momentutnand a

where bj(j=0,1) are the complex amplitudes, adg(x)
may, in general, be any two solutions of Eg). Then, the
BEC dynamics can be deduced from the rate equations for
the modal amplitudeb; . A similar approach has previously
been employed in Ref.10] to describe coherent tunneling
between two largely separated harmonic traps, with the basis
®; consisting of the ground-state modes of individual poten-
tial wells. On the contrary, our basis eigenfunctions e
local nonlinear modes of the entire double-well triduat can

be found exactly for any given trap separation. Our approach
is therefore similar to the analysis of the power transfer be-
tween the cores of a nonlinear optical coupler usually carried
out in the terms of theupermodes.e., the local modes of a
composite corg8].

dA

H:Ucm(nz_

A?)sin®,

()
_:_5+O'(Co+Cl)A_20C01(2+COS®)A, (4)

0=2(B1—PBo) + o[ (N—=2Ng)Co—(n—2N1)C4].

To derive the equations for the complex mode amplitudes FIG. 2. Dependenciegy(X,) (lower curve and B1(x,) (upper
b;(t), we use the standard procedure, substituting the ansatzrve for =0 (dotted and o==1 (solid, No=N;=5.0).
(3) into the nonstationary GP equatidf), and averaging Dashed, results of the variational approach.
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FIG. 3. Coupling coefficients as functions of separation(8r 5 0 o {
o=+1 and (b) o=—1. Dashed, results of the variational ap-
proach. 08 o8
-1 -1
generalized angular coordinag. On the other hand, Egqs. ~* 7 gp T gn ?

(4) closely resemble the dynamic equations for the guided
power and phase difference of two nonlinearly interacting FIG. 4. (8)—(d) Phase plané\(®) for Egs.(4) ato=+1, N
orthogonally polarized optical modes in a birefringent fiber=n=1, andx,=0.0, 1.5, 1.7, and 3.0, respectively.
[8]. The exact solution of the systefd) can be obtained in
terms of elliptic Jacobi functions and will be presented elsethe caser=+1 andNy=N,. For convenience, the popula-
where. tion differenceA is measured in the units of. For small
The dynamics described by Edd) depends crucially on separationgFigs. 4a),(b)], while the coupling coefficients
the values of the coupling coefficien®,, C;, and Cy, are sufficiently different, there are only two fixed states of
which are determined by integration over the eigenmode prothe relative populationA = = n, which corresponds to either
files, so that the results can lopite different for the two ny=0 orn,;=0. In both these states, the phase is unbounded,
signs ofo. Moreover, the condensate dynamics changes witle., it is a linear function of time. The other phase trajecto-
the separation of the potential wells, as governed by the deies in Figs. 4a),(b) represent the dynamical states with the
pendencie€y(Xg), C1(Xg), andCpi(Xe), which differ dras-  running phasewhich is a delocalized phase. The mechanical
tically for o=+ 1 (see Fig. 3. As expected from the linear analogy of this phenomenon is simplE]: it corresponds to
theory[13] and results folr=—1 [9], the energy spectrum a self-sustained steady closed-loop rotation of a nonrigid
becomes degenerate for large separatege also Fig. 2 pendulum around its support. In terms of the condensate dy-
and the coupling between the collective modes becomesamics, these states describe the nonlinear Rabi-type oscilla-
more coherent. Importantly, far=+ 1, this happens at the tions between the ground and first excited macroscopic states
values of separation smaller than those dor — 1. for small x, and the Josephson-type tunneling between the
The routine of calculating the coupling coefficients nu-two potential wells for a sufficiently large separation. Re-
merically can be bypassed by employithg variational ap- markably, the population of either well is never completely
proach using the trial functions in the form of a linear su- depleted.

perposition of the ground states of isolated tragds; The phase plane shown in Fig. 4 also reveals the existence
=Ao,1{eXF[(X—Xo)2/2<’i(2),ﬂ“—“eXF[(X‘*'Xo)Z/Za(Z),ﬂ}, and the La- of macroscopic quantum self-trappéfIQST) states, pre-
grangian of the stationary GP equation, dicted and described if10] for weakly interactingBECs in

largely separated traps. The MQST states are characterized
1/dd; 2 , 1, by a nonzero average population imbalance. As the separa-
L==5|gx| T2~ UX]Pj—70Py. tion between the wells grows, a bifurcation of the fixed
points on the phase plagd,®} occurs, and the stable cen-
By inserting the trial functions into the corresponding varia-t€rs corresponding to the MQST states wittrapped phase
tional integral, an explicit, although algebraically compli- appearsee Figs. &),(d)]. This occurs at a certairg', for
cated, integrated Lagrangian is obtained. The variationaivhich the conditions=n(6Cy;—Co—C;) is satisfied. For
equations with respect to the paramet@gs anda,, yield — o=+1 andn=1, for examplexg'=1.48, which agrees very
relations that determine the characteristic eigenvaluewell with the corresponding result of the variational ap-
Bo.i(Xo) and the coefficient€,, C;, andCy;. These rela- proach, Xg'=1.41. For larger separation, whe@y,~C,
tions can be further simplified in the limiy>1, but mustbe ~C,, the positions of the centers are approximately given
solved numerically for a general case. Comparisons betwedny A~ (B8o—81)/(2Cq10) at ® = £(2m), wherem is the
the variational predictions and the results obtained by solvinteger. With increasing separation, 88, 81)—0, these
ing Eqg.(2) numerically are shown in Fig. 2 fg8, ;(Xo) and  fixed centers move towards the lide=0, and the saddles
in Fig. 3 forCy, C4, andCy;. The agreement is seen to be form between them, so that the MQST states, other than
satisfactory. those identical to the ground states of the individual wells,
To visualize the population dynamics, in Fig. 4 we plot cease to exidtsee Fig. 4d)]. The oscillations of the popula-
the phase portrait§®,A} of the dynamical systen¥) for  tion imbalance around the stable fixed points with the

031601-3



RAPID COMMUNICATIONS

ELENA A. OSTROVSKAYA et al. PHYSICAL REVIEW A 61 031601R)

To compare the predictions of our coupled-mode theory
with the actual dynamics of the BEC in a double-well poten-
tial modeled by the nonstationary GP equati@j we solve
Eqg. (1) numerically employing a split-step pseudospectral
method. As an initial condition, for botr=*1, we take
$(x,0)=bo(0)P(X) +by(0)®1(x), with b5(0)+bF(0)
=1/Ny=1/N;. In Fig. 5a), the phase trajectories(®) ob-
tained by direct integration of Eql), are compared with
those calculated using Eggl) for o= —1 and the trap sepa-
ration corresponding to sufficiently dissimilar values gf
and G (see Figs. 2 and)3lt is clear that the approximate
1 —— 1 —— equations of the coupled-mode theory correctly describe the
08 O ) | 08 Lo © dynamics of the condensate in the states with a running
= ol ' ol phase[see Fig. §c)], as well as the position of the MQST
=06 A 0.6 A states, one of which is shown in Fig(bh. Performing a

S o similar comparison for differentr and x,, we can conclude

N g4

> 04 that the eigenfunction®;(x) represent a good basis for the
0.2 0.2 modal decomposition of the macroscopic condensate wave

0 . ; 0 ¥ ; function (x,t). The adiabatic evolution of the eigenfunc-

-5 0 5 -5 0 5 tions with time, although leading to slight deviations of the

X X condensate states from the exact MQEex Fig. 5a)], does

. . not introduce significant damping into the system, and there-
U:F_ICi.’XSO.:(ei); ?tﬁlsr?) Zsﬁgfrg?\fv?% f: écg:?éif :LOnT eE gj.zgoflzrﬂ on fore does not lead to a dramatic switching between the states.
of Eq. (1) (thick). (b) |42 in the MQST state “1” in (a) at the !N conclusion, we have employed the concepts of the non-
normalized timeg =0 (solid) andt= 100 (dashedl (c) |#| corre- linear guided-wave optics and developed, for the first time to
sponding to the point “2” in(a) att=0 (solid) and corresponding Y’ knowledge_, a consistent couple_d-mode theory for BECs.
to the point “3” in (a) att=20 (dashegl Double-well potential is We _have studied th? BEC dynamics in a d_OUbIe,'We“ ,har'
shown in(b) and(c) by a dotted curve. monic trap, and verified the results by numerical simulations

of the nonstationary GP equation. The strong advantage of

trapped phase have been identified [(t0] as = states. our theory is its ability to describe the condensate dynamics
Clearly, the effect we observe heredsalitatively similay  for any well separationincluding the Josephson tunneling
except for the average value of the trapped phase that, due &ffect at large separations, mode coupling and Rabi oscilla-
a different choice of the basis eigenfunctions and definitiortions in a single harmonic well, and the macroscopic self-
of @, is equal to*(2m) . trapped states in the crossover regime.
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