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Construction of quantum states with bound entanglement

Dagmar Bruß1 and Asher Peres2

1Institut für Theoretische Physik, Universita¨t Hannover, D-30167 Hannover, Germany
2Department of Physics, Technion—Israel Institute of Technology, 32000 Haifa, Israel

~Received 12 November 1999; published 4 February 2000!

We introduce a family of bound-entangled quantum states in 333 dimensions. Their density matrixr
depends on seven independent parameters and has four different nonvanishing eigenvalues.

PACS number~s!: 03.67.Hk, 03.65.Bz, 89.70.1c
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Entangled quantum states have been used since the
early days of quantum mechanics for computing the prop
ties of atomic and molecular systems@1#. However, it is only
in recent years that the existence of a hierarchy of entan
density matrices has become apparent, and it is not yet f
understood.

There are classical correlations, but there is no quan
entanglement inseparabledensity matrices that can be wri
ten as convex sums,

rmm,nn5(
K

wK~rK8 !mn^ ~rK9 !mn , ~1!

where the density matrices (rK8 )mn and (rK9 )mn refer to two
subsystems, possibly with different dimensions, and the
efficients wK are positive and sum up to unity. If Eq.~1!
holds, it readily follows that the partial transposesmm,nn

5rnm,mn is another separable density matrix and in parti
lar has no negative eigenvalue. This property gives a v
simple necessarycondition for separability@2#. It also is a
sufficientcondition for systems of dimensions 232 and 2
33, but not for higher dimensions@3#. The first counterex-
amples for dimensions 234 and 333 contained one free
parameter@4#. Such states are called ‘‘bound-entangled’’@5#
because it is impossible to distill from them pure singlets
means of local operations and classical communication.

Recently, a new class of bound-entangled states was
duced by means of unextendible product bases~UPB’s! @6#.
In these states, the density matrixr depends on six param
eters and is of rank 4 with equal eigenvalues 0.25. If all
matrix elements are real, there are only four free parame
ands[r. In the complex case,s andr have similar struc-
tures, but they correspond to different UPBs.

Here, we present a more general construction of bou
entangled states in 333 dimensions, depending on seve
parameters~only five if r is real ands5r), with four dif-
ferent nonvanishing eigenvalues. We hope that this exp
construction will be useful for elucidating properties
bound-entangled states, in particular for proving~or disprov-
ing! the conjecture that they satisfy all the Bell inequalitie
and therefore are compatible with a local hidden-varia
description@7,8#. Other open problems are mentioned in R
@9#.

We write r in terms of four unnormalized eigenvectors

r5N(
j 51

4

uVj&^Vj u, ~2!
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where the coefficientN51/( j^Vj ,Vj& normalizesr to unit
trace. The four eigenvalues,N^Vj ,Vj&, are in general differ-
ent. Explicitly, we take

uV1&5um,0,s;0,n,0;0,0,0&,

uV2&5u0,a,0;b,0,c;0,0,0&,

uV3&5un* ,0,0;0,2m* ,0;t,0,0&,

uV4&5u0,b* ,0;2a* ,0,0;0,d,0&, ~3!

where the components ofuVj& are listed in the order 00, 10
20; 01, . . . . It iseasily seen that the ninth row and colum
of r vanish. The remaining 838 matrix is like a chessboard
with the odd-odd components depending onm,n,s,t, and the
even-even components ona,b,c,d ~still, some of these com-
ponents are zeros!.

In principle, all eight parameters on the right-hand side
Eqs.~3! can be complex~special values of these paramete
yield results equivalent to those obtained by using UPB!.
However, we still have the freedom of choosing the over
phase of eachuVj& ~this obviously does not changer). Fur-
thermore, we can define new phases for the basis vec
uek8& anduel9& used to describe the two subsystems. This c
responds to rewritingr in a different basis without changin
its chessboard structure, nor the absolute values of the c
ponents ofuVj&. This freedom can be used to make many
these components real, but not all of them, because the
combinationscm/bs andb* t/n* d are not affected by thes
changes of phase. This can be seen as follows: the pa
eters in cm/bs appear in uV1&5um,0,s; . . . & and uV2&
5u . . . ;b,0,c; . . . &. The ratiosm/s and b/c are affected
only by changes of the relative phase ofue18& and ue38&, and
cm/bs is not affected at all. Likewise, the parameters
b* t/n* d appear in uV3&5un* ,0,0; . . . ;t,0,0& and uV4&
5u0,b* ,0; . . . ;0,d,0&. The ratios n* /t and b* /d are af-
fected, both in the same way, only by changes of the rela
phase ofue19& and ue39&. There are no other invariants of th
type, and we can assume, without loss of generality, ths
and t are complex, while the six other parameters are rea

We now prove that in the generic case~random param-
eters! r is inseparable: as shown in@4#, a stater is insepa-
rable if the range ofr contains no product state. This is th
case for ourr, unless the parameters are chosen in a spe
way. Indeed, assume that there is a product state such t
©2000 The American Physical Society01-1
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up,q,r & ^ ux,y,z&5( Aj uVj&. ~4!

Since the ninth components of all theuVj& vanish, we have
rz50. Assume thatz50 ~the same proof is valid forr 50,
mutatis mutandis!. Then the seventh and eighth compone
vanish, so that A35A450. We then have (px)(ry)
5(A1m)(A2c) while (py)(rx)5(A2b)(A1s), whencemc
5bs, which does not hold in general for randomly chos
parameters.

Finally, we have to verify thats is a positive matrix, so
that the entanglement is bound. Namely, all the diago
subdeterminants ofs have to be positive or zero. This give
a large number of inequalities. Here, we shall restrict o
selves to the study of two simple cases.

The simplest one is to assumes5r. Owing to the chess-
board structure ofr, this leads to three nontrivial condition
which can be written, with the parametrization ofuVj& in
Eqs.~3!,

r135r31 or ms* 5m* s,

r265r35 or ac* 5sn* ,

r485r57 or ad5mt. ~5!

With our choice of phases, these conditions mean thas
5ac/n and t5ad/m are real. We thus have six free param
eters in the vectorsuVj&. These parameters can still b
scaled by an arbitrary factor~that will be compensated b
N), so that there are five independent parameters in
construction.
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Another, more general way of constructing bound e
tangled states is to assume thats is not the same asr, but
still is spanned by two pairs of eigenvectors with a struct
similar to those in Eqs.~3!, with new parameters that will be
calleda8,b8, . . . . This assumption is obviously compatib
with ~but not required by! the chessboard structure ofs,
which is the partial transpose ofr. It is then easily seen tha
the various parameters in the eigenvectors ofs may differ
only in their phases from those in the eigenvectors ofr. We
therefore write them asa85aeia, and so on. This gives eigh
additional arbitrary phases, besides those ofs and t. The
requirement thats be the partial transpose ofr imposes six
conditions on these phases~apart from those on the absolu
values!. These are fewer conditions than phases at our
posal, so that the parameterss and t can now remain com-
plex. Only their absolute values are restricted by

usu5ac/n and utu5ad/m. ~6!

We thus have seven independent free parameters for
case.

A natural question is whether this construction can
generalized to higher-dimensional spaces, with a larger n
ber of pairs of eigenvectorsuVj&, suitably structured. We
have no definite answer: in such a generalization, the num
of conditions grows much faster than the number of fr
parameters, and we think it unlikely that such a generali
tion is possible, but we have no formal proof.
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