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Construction of quantum states with bound entanglement
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We introduce a family of bound-entangled quantum states 8 3dimensions. Their density matrix
depends on seven independent parameters and has four different nonvanishing eigenvalues.

PACS numbgs): 03.67.Hk, 03.65.Bz, 89.78.c

Entangled quantum states have been used since the vemhere the coefficienN=1/=;(V;,V;) normalizesp to unit
early days of quantum mechanics for computing the properirace. The four eigenvalueli(V;,V;), are in general differ-
ties of atomic and molecular systeifiid. However, itis only  ent. Explicitly, we take
in recent years that the existence of a hierarchy of entangled

density matrices has become apparent, and it is not yet fully [V1)=|m,05;0,n,0;0,0,0,
understood.
There are classical correlations, but there is no quantum |V,)=10,a,0;b,0¢;0,0,0),
entanglement irseparabledensity matrices that can be writ-
ten as convex sums, |V3> — | n* ,0,0:0— m* ’o;t,0,0>,
pmﬂ,m:; Wic(Pk)mn® (PK) v » oY) |V,)=|0b*,0;,—a*,0,0;0d,0), )

where the density matriceg§)mn and (py) ,, refer to two ~ where the components 0¥;) are listed in the order 00, 10,
subsystems, possibly with different dimensions, and the co20; 01, ... . It iseasily seen that the ninth row and column
efficientswy are positive and sum up to unity. If Eql) of p vanish. The remaining:88 matrix is like a chessboard,
holds, it readily follows that the partial transpose,, ,,  With the odd-odd components dependingrom,s,t, and the
= pn,..me IS @nother separable density matrix and in particu-even-even components anb, c,d (still, some of these com-
lar has no negative eigenvalue. This property gives a verponents are zergs
simple necessancondition for separability2]. It also is a In principle, all eight parameters on the right-hand side of
sufficientcondition for systems of dimensionsx2 and 2  Egs.(3) can be complexspecial values of these parameters
% 3, but not for higher dimensior{8]. The first counterex- Yield results equivalent to those obtained by using UPBs
amples for dimensions 24 and 3x3 contained one free However, we still have the freedom of choosing the overall
parametef4]. Such states are called “bound-entangld®]  phase of eachV;) (this obviously does not changg. Fur-
because it is impossible to distill from them pure singlets bythermore, we can define new phases for the basis vectors
means of local operations and classical communication. |e;) and|e}) used to describe the two subsystems. This cor-
Recently, a new class of bound-entangled states was preesponds to rewriting in a different basis without changing
duced by means of unextendible product ba&#2B’s) [6].  its chessboard structure, nor the absolute values of the com-
In these states, the density matrixdepends on six param- ponents of V). This freedom can be used to make many of
eters and is of rank 4 with equal eigenvalues 0.25. If all thehese components real, but not all of them, because the two
matrix elements are real, there are only four free parameterspmbinationscn/bs andb*t/n*d are not affected by these
ando=p. In the complex casar andp have similar struc- changes of phase. This can be seen as follows: the param-
tures, but they correspond to different UPBs. eters in cm/bs appear in|V;)=|m,0s;...) and |V,)
Here, we present a more general construction of bound=| ...;b,0c;...). The ratiosm/s and b/c are affected
entangled states in >33 dimensions, depending on sevenonly by changes of the relative phase|ef) and|e;), and
parametergonly five if p is real ando=p), with four dif- cm/bs is not affected at all. Likewise, the parameters in
ferent nonvanishing eigenvalues. We hope that this explicib*t/n*d appear in |V3)=|n*,0,0;...:t,0,0) and |V,)
construction will be useful for elucidating properties of =|0,b*,0; ...;0d,0). The ratiosn*/t and b*/d are af-
bound-entangled states, in particular for provingdisprov-  fected, both in the same way, only by changes of the relative
ing) the conjecture that they satisfy all the Bell inequalities,phase ofle]) and|e}). There are no other invariants of this
and therefore are compatible with a local hidden-variableype, and we can assume, without loss of generality, shat
description7,8]. Other open problems are mentioned in Ref.andt are complex, while the six other parameters are real.
[9]. We now prove that in the generic cagandom param-
We write p in terms of four unnormalized eigenvectors, eterg p is inseparable: as shown [4], a statep is insepa-
4 rable if the range op contains no product state. This is the
p= NZ IVJ-)(VjI, ) case for oump, unless the parameters are chosen in a specific
j=1 way. Indeed, assume that there is a product state such that
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Another, more general way of constructing bound en-
p.a.r)®lxy.2)=2 AlV)). (4)  tangled states is to assume thafs not the same ag, but
still is spanned by two pairs of eigenvectors with a structure
Since the ninth components of all th;) vanish, we have Similar to those in Eqs(3), with new parameters that will be
rz=0. Assume that=0 (the same proof is valid for=0,  calleda’,b’, ... . This assumption is obviously compatible
mutatis mutandis Then the seventh and eighth componentswith (but not required by the chessboard structure of,
vanish, so thatA;=A,=0. We then have fx)(ry) which is the partial transpose pf It is then easily seen that
—(A;m)(A,c) while (py)(rx)=(A,b)(A;s), whencemc the v_arioug parameters in the gigenvec_:tor&dhay differ
—Dbs, which does not hold in general for randomly chosen©nlY in their phases from those in the eigenvectorp dive
parameters. therefore write them aa’ =a€'“, and so on. This gives eight
Finally, we have to verify thatr is a positive matrix, so addit_ional arbitrary phases, _besides thoses_cttnd t. Th(_e
that the entanglement is bound. Namely, all the diagonai€duirement thav- be the partial transpose pfimposes six
subdeterminants af have to be positive or zero. This gives conditions on these phasgpart from those on the absolute
a large number of inequalities. Here, we shall restrict ouralues. These are fewer conditions than phases at our dis-

selves to the study of two simple cases. posal, so that_the parameteyandt can now remain com-
The simplest one is to assurre= p. Owing to the chess- plex. Only their absolute values are restricted by
bogrd structure oﬁ, this Igads to three non.trivi'al conditions, Is|=ac/n and |t|=ad/m. (6)
which can be written, with the parametrization |()1I‘j) in
Egs.(3), We thus have seven independent free parameters for this
case.
p13=p31 OF Ms*=m"s, A natural question is whether this construction can be
generalized to higher-dimensional spaces, with a larger num-
p26=p3s OF ac* =sn*, ber of pairs of eigenvectorf/;), suitably structured. We
have no definite answer: in such a generalization, the number
pag=ps7 O ad=mt (®  of conditions grows much faster than the number of free

parameters, and we think it unlikely that such a generaliza-

With our choice of phases, these conditions mean that ~= = '
tion is possible, but we have no formal proof.

=ac/n andt=ad/m are real. We thus have six free param-
eters in the vectoré,vj>. These parameters can still be  D.B. acknowledges support from Deutsche Forschungsge-
scaled by an arbitrary factdqthat will be compensated by meinschaft under SFB 407. A.P. was supported by the
N), so that there are five independent parameters in ouGerard Swope Fund and the Fund for Encouragement
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