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Comment on “Exact wave function of a harmonic plus an inverse harmonic potential
with time-dependent mass and frequency”
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The connection between wave functions of harmonic plus inverse harmonic potential with time-dependent
mass and frequency and those of harmonic plus inverse harmonic potential with time-dependent frequency is
investigated. Thus the correct wave function of the harmonic plus inverse harmonic potential with time-
dependent mass and frequency is obtained.

PACS numbd(s): 03.65.Ca

A quantum time-dependent system described by the sinwhere Q%= w?— (y?/4+ ¥/2) is the modified frequency, by

gular oscillator Hamiltonian means of the new canonical variablgsgs. (6) and (7) of
Ref.[1]]
_et o, ., 1 Q= Mg, (32
H—E M(t)+a) (t)M(t)q +W (1)
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P=—p+ Ngq, 7=( n
is one of the rare examples admitting exact solutions of the ™
Schralinger equation and have been studied intensively
lately [1-9]. The distinguished role of the Hamiltonigh) is ~ The invariant operatoi(t) satisfyingdl/dt=[1,Hy] is ob-
explained by the fact that, in a sense, it belongs to a boundained[expressiorn(16) of Ref.[1]] (assumei=1):
ary between linear and nonlinear problems of classical and
guantum mechanics. For this reason, it was used in many Q? L2 p?
applications in different areas of physics. For example, it (Q.P.p)=5 F*‘(PP—PQ) +@ : (4)
served as an initial point in constructing interesting exactly
solvable models of interactiny-body system$2,3]. It was  \yherep is a ¢ number satisfying Eq(11) of Ref. [1]. Ac-
also used for modeling diatomic and polyatomic moleculegoging to Lewis-Riesenfeld theofiL0], the spectral prob-

[4]. It can have some relation to the problem of the relativeem for the invariant operatdr(Q,P,p) is easily solved in
motion of ions in electromagnetic trap8]. One of these ihe form

recent papers is the one by Umhal.[1]. In this paper they

have derived a Schdinger wave function for such a system P

[formula(34) of Ref.[1]]. | want to call attention to an error I(Q,—i &—,p) ¢n(Q,p)=(2n+a+1)¢,(Q,p), (5
in this paper which seems to be subtle and encountered in Q

some other works. Indeed, the Sotirmger wave function ) ) ) o ) )

(34) of Ref.[1] is not correct becaus®) it includes the term  the eigenfunctiong,(Q,p) being explicitly given, in terms

: <P ;
M (t)/M(t) only once. Its time derivative in the Schiliager of Laguerre polynomialé.,, by the expression
equation produces thd (t) term, but there is no othév (t)

F(n+1) 1/2 QZ (2a+1)/4
term which cancels the first one, afig) it is not an eigen- b0(Q,p)=(4)HH ——— ~_
i i i i i s F'(n+a+1 2
function of the invariant, Eq(19), in [1]. This Comment (ntat+1) P
addresses the source of an error in calculating the solution of Lp Q2
the Schrdinger equation in the paper by Uet al. [1]. It is Xexp[— -+ QZ) Lﬁ(—z), (6)
an interesting and important question that should be re- 2lp p p
solved. We assert that the error came about because in Ref. L )
[1] Um et al. relate incorrectly the wave function in terms of and those of the Schdinger equation
the new variables to the wave function in terms of the origi- 5 L ©.1)
nal variables. AP YRS _ L 9Pa(Qit
To clarify more, let us go back to some results of R&f. 2| 0Q? QT Q? n(QU=1—3— (@
The authors have shown that the Hamiltonidn can be
transformed tdH (1), are related by
Un(Q.) =€V (Q,p), 8
H (t):E F>2+Qz(t)QZ+i (2
N 2 Q?) where the phases,(t) can be found as

1050-2947/2000/62)/0261023)/$15.00 61026102-1 ©2000 The American Physical Society



COMMENTS PHYSICAL REVIEW A 61 026102

of the invariant which is associated with the Hamiltonian of
dn(t)=J dQ{ 7 (Q,p)(id—Hyn) dn(Q,p)} the singular oscillator with time-dependent mass and fre-
R quency.
1 In order to obtain the correct wave functions, we first note
=—(2n+a+1)—. 9  that
p
. . ~ (1/Q? x?
In Ref.[1], the authors introduced a time-dependent aux-  T(Q,P,x)=U l[ Z +(Px—MxQ)2+ 2)]
iliary transformationformula (17) of Ref.[1]] 2 Q
—11-1
p() = MI(DX(1), (10 VU IQPXY 13
and used a time-dependent canonical transform&8anand and
(3b) to relate the wave function in terms of the new variables _ I'(n+1) Y3 Q?\(2arbi
Q to the wave function in terms of the original variablgs én(Q,X) = U_l[(4|\/|)1/4 Finta+1) (;z)
This method leads them to obtain a wave funcfiq. (34)
in Ref. [1]] in terms of the original variableg with an in- c[Mx ) ) Q?
correct added factag M®©(99/4 To convince oneself, one ><exp{§<— et <x2>

has just to observe that, if one introduggg) =M (t)x(t) .,
and expresses Eqgl) and(6) in terms of the auxiliary func- =U""¢n(Q.x), (14)
tion x(t) which satisfies Eq(18) of Ref.[1], one obtains

where
- 1( Q? Y L
H(Q.P.x)= 5{_sz+ XN( P §Q> U<t>:ul<t>uz<t>=exr{§m N(PQ+QP)}
12 mx?
—IMkQ] + F) (1 X exr{ - % Y(t)Qz} (19
and is a time-dependent unitary transformation which yields the
F(n+1) |12 Q2 |(2a+iis desired transformations of the operatdss 'QU=Q/\M
7 —(4)Y/4 =q and U PU=M(P—yQ2)=p [like the time-
én(Q,X)=(4) 2
I'(n+a+1) MXx dependent canonical transformatiaids) and (3b) and Egs.
. (6) and (7) defined in Ref.[1]]. In Eq. (14) we used the
Xexp[zy(t)QZ] formula
In N
X 2 - _t 2 =
XGXP[% )Qz] ( Q ) 12 Uf(Q) ulexp( 7 7(0Q )f(Q) exp( 5 )
Now some observations can be made ><exp< — % y(t)(QeN \m)z) f(Qe"™M).  (16)

(i) The operator invariant(Q,P,x) is a particular invari-
ant of the new Hamiltoniard \(t) verifying the invariance We look for a time-dependent transformatidiit) such that
condition a1 /dt=([T,Hy]. ~ .

(i) The eigenfunctionsh,(Q,x) of T(Q,P,x) evolve ac- Pn(1)=U" (1) hn(1); (17)
cording to the time-dependent Sctioger equation(7) cor-
responding to the new Hamiltoniad(t), when they are
multiplied by the phasey,(t), Eq. (9), that is expressed in
terms of auxiliary functionx(t). But this is not the point.
The point is to derive the wave function solution of the
Schralinger equation corresponding to the original system
i.e., the singular oscillator with time-dependent mass and fre
guency. It is in fact the objective of Urat al. [1] in their
Brief Report as stated in their abstract, Introduction, and 1 p2
Conclusion. ( + 02(t)M (1) Q2+ —2 (18)

In light of the above remarks and as we have said at the 21M(1) M(1Q

beginning of this Comment, thil (t) terms cannot be can- Thus, the eigenvalue equati¢B) is mapped onto
celed in the Schidinger equation corresponding to the sin-

gular oscillator with time-dependent mass and frequency. In-
deed, the wave functions, (Q,x) are not the eigenfunctions

i.e., U(t) brings any solution of the equatid@,,=Hy#,

into a solution of the equatiom, ,=H ¢,,. Taking the time

derivative of the relatiorf17), one sees that the transformed

Hamiltonian H must satisfy the relationH=UH\U !
—iUgU™%; this transformed Hamiltonian corresponds to

the the singular oscillator Hamiltonian expressed in the new

varlablesP andQ:

¢n(Q.x)=(2n+a+1)¢y(Q.x), (19

'(Q’ Q! )
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which is cleary the eigenvalue equation corresponding to theately, this method leads the authors to conclude incorrectly
invariant of the singular oscillator Hamiltonian with time- that their wave function is an eigenfunction of the invariant
dependent mass and frequency. We can observe that the awf-Eq. (19) of Ref.[1], and thus it satisfies the Schilinger
iliary transformation(10) induces a time-dependent unitary equation with the original Hamiltoniafl). However, Eg.
transformation, because we start with the eigenvalue prob34) of Ref. [1] is incorrect because it includes an added
lem of the singular oscillator with time-dependent frequencyfactor el M® 03774 \we pelieve that this apparently natural

and we arrive at an eigenvalue problem of the singular osprocedure is ill founded. To transform back to the original
cillator with time-dependent mass and frequency. These tWQariablesq, we first note that sincé) performs the scale

systems are different even though they are unitarily equivaghangeQ=q./M, the states are related by1—13
lent.

It must be highlighted that the wave functiods (Q,X) (Q,t]=(q,tjlu"1(P(p,q,t),Q(p,q,t),t)
multiplied by the phase,(t), Eq.(9), which is expressed in
terms of auxiliary functionx(t), evolve according to the B [OMOD2VA] Q ¢
Schralinger equation with the Hamiltoniaf18). Therefore, BRYELN a= \/_M :
we have obtained, in terms of the new coordin@ethe
correct wave function of the singular oscillator with time- Hence the wave functions in the original variables and trans-
dependent mass and frequency which coincides with those @§rmed coordinates are related by
Refs.[7], [8]. Thus the problem is completely solved. The
alert reader can easily guess that the wave functions ex- 14 L o |~
pressed in terms of the original variablgsare those wave $n(@,x)=MTexp — 7 ¥(OM(1)q $n(AVM %),
functions obtained by Eq19) where the substitution & by (21)

g is made.

In order to investigate the connection between wave funcwhich is exactly the result given above and derived by an
tions in the original variableg and those of the new vari- another approach in Refgr], [8]. We have clarified how to
ablesQ, let us go back to the wave function given by Eq. relate the wave function expressed in its original coordinate
(12), which was obtained through substitution of the auxil-variables to that obtained in the new coordin@e
iary transformation Eq(10). In Ref.[1] the authors seek to In conclusion, the quantum mechanical problem may be
express the wave function of the original system, i.e., thesolved by making canonical transformations which are
singular oscillator with time-dependent mass and frequencyimplemented by unitary operatdf so that basis states and
by substitutingQ by VMg into Eq. (12); the result of the operators are transformed according  to(q,t|
substitution is purported to be E(B4) in Ref.[1]. Unfortu-  =(Q,t|U(t), g=U"(t)QU(t), andp=U"(t)PU(t).
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