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Effect of the exciton-exciton interaction on resonance fluorescence of excitons in a quantum well
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The effect of the exciton-exciton interaction on the resonance fluorescence of quantum-well excitons is
studied. At relative low exciton density, the resonance fluorescence exists only when the exciton-exciton
interaction is not negligible. The fluorescence spectrum changes from one peak to two peaks when the pump
light intensity is increased beyond a critical value. The fluorescence light is antibunching when the mean
exciton number in the quantum well is more than 0.5. The difference between exciton resonance fluorescence
and two-level atom resonance fluorescence is presented.

PACS numbegs): 42.50.Fx, 71.35-y

[. INTRODUCTION scopic chain. They first investigated the exciton superradi-
ance at low density where exciton-exciton interaction is neg-
It is well known that an excited two-level atom will spon- ligible [17]. Then, at higher exciton density, they took into
taneously radiate and fall to its ground state eventuallyaccount the interaction between Frenkel excitpt®]. The
When a two-level atom is driven by a resonant electromagemission of Frenkel excitons in a one-dimensional mesos-
netic field, it will radiate continuously and reach a steadycopic system interacting via the static dipole momdag)
state. In 1969, Mollow predicted that the fluorescence speawas also studied.
trum of a two-level atom driven by a strong coherent field Excitons confined in a thin layer of thickneks<\ have
consists of three peaks, when the corresponding Rabi frealso been studie®1]. In the case of the Frenkel exciton, the
quency is larger than the spontaneous emissiontat@his  radiative decay rate is on the orderlof- (\%/a?) y,, where
prediction had been verified by many experimefts-4]. ais the lattice constant ang, is the decay rate of an isolated
Since then, a great deal of research work has been done atom or molecule. Knoester has studied the dependence of
the resonance fluorescence of atoms or molediles 2. the superradiance rate on the layer thicknesg22]. He
In recent years, the optical properties of excitons havdound that the superradiance rate first increases lwjtand
become a subject of extensive investigation because of thien drops. Through damped oscillation, it eventually van-
potential technological impact of the excitonic devices onishes wherl —, which is consistent with the well-known
optoelectronics and photonics. Especially, people have studesult that the exciton and the emitted photon will mix to
ied the optical properties of excitons in confined structuregorm stable polaritons.
such as quantum well, quantum wire, or quantum dot. In this paper we will study the effect of exciton-exciton
The radiation of the exciton exhibits the superradiancenteraction on the resonance fluorescence of the Wannier ex-
character. The initial studies were mainly focused on theitons in the quantum well. In Sec. Il the general formulation
superradiance of Wannier excitons in semiconductor microis presented. The excitons are described by bosonic operators
crystallites, both theoreticalljl3] and experimentally14].  in the low-density limit[23]. When the exciton density in-
Then, the superradiance of Frenkel excitons was observed ireases, excitons no longer behave like ideal bosonic par-
J aggregates at low temperatifb,16. However, higher or ticles. One way to deal with this deviation is to introduce an
complete population inversion may make this system uneffective interaction between the hypothetical ideal bosons
stable[17]. In 1995, the superradiance of high-density Fren-{24,25. In this work we take this approach to derive the
kel excitons in arR-phycoerythrinR-PE) single crystal was master equation for the reduced density operators of the ex-
observed at room temperature for the first tifiaé8]. citons. Then, we convert the operator equation into a Fokker-
Tokihiro et al [17] have studied theoretically the super- Planck equation via the positiv representation. In Sec. Il
radiance behavior of the Frenkel exciton in a linear mesothe stochastic differential equations corresponding to the
Fokker-Planck equation are proposed. We then linearize the
stochastic differential equations near their steady-state solu-

*Electronic address: liuyx@itp.ac.cn tions. In Sec. IV, we calculate the spectrum of the emitted
"Electronic address: cqcao@mail.imech.ac.cn light with these linear equations. We find no Rabi splitting in
*Electronic address: h-cao@nwu.edu the emission spectrum in the low exciton density region.
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However, the interaction between excitons will induce the XP(a,a™ t), ®)
splitting of the emission spectrum to two peaks when the

pumping field intensity exceeds a critical value. Finally the\ynereqn corresponds th, anda* corresponds tb*. « and
quantum intensity fluctuation properties of the steady fluo-,+ 5re considered as independent complex variables. We

rescence is discussed. have also transformed into the rotating frame of the exciton

variables witha— ae ' anda™— a ',
Il. HAMILTONIAN AND FOKKER-PLANCK EQUATION

We assume the exciton density is not too high so that the  Ill. STOCHASTIC DIFFERENTIAL EQUATIONS
deviation of excitons from ideal bosons can be treated by AND ANALYSIS OF THE FLUCTUATION
introducing an effective interaction between the excitons
[24,25. Under the rotating-wave approximation, the Hamil-  The nonlinear Fokker-Planck equation can be solved ex-
tonian of the system in which the excitons are driven by aactly only in some special cases. It is difficult to obtain an

monochromatic coherent light is written as : analytical expression d?(a,a™,t) from the Fokker-Planck
R o o o o equation(3). Hence, we will make an approximation. We
H=#Qb"b+#AGb b bb+iA(EbTe - E*be ™) first use the Ito rules to convert this Fokker-Planck equation

into stochastic differential equations. Such conversion is al-
+1>, ko) a+ kbt Y, gacthiby, gral, (1) lowed because the Fokker-Planck equation in the posiive
K 3 representation always has a positive semidefinite diffusion
A matrix. The obtained stochastic differential equations dor
b*(b) are creatior(annihilation) operators for the excitons. anda* are
They are assumed to obey the bosonic commutation relation,
[b,67]1=1. a, (a,) are the creatiorfannihilation) operators a| a
for the photons in modg&, propagating perpendicular to the a
guantum-well plane under the condition that excitons have
no momentum parallel to the quantum-well pla@repre- —i2Ga? 0 V2 ¢
sents the interaction constant between the excitons, including + 0 i2Gat? &
the residual Coulomb interactiofit is proportional to the

amplitude of the driving fieldgy is the coupling constant \\here £(t) and ¢ (t) are the Gaussian fluctuation forces,

between the photons and the excitons. _ _ satisfying the following correlation functions:
The time evolution of the exciton system is described by

—ya+E—i2Ga?a™
—ya"+E*+i2Ga"?a

.4

this master equation of the reduced density operator. In the (E(D))Y=(£"(1))=0
Schralinger picture this master equation, which is based on '
the Born-Markoff approximation, is written as (EET ) =(£T(DEL))=0, (5)
&;)(t) 1 - ~ A SN A S A A B A ’ + +t! ’
— = iz [Ho.p]+1(2bpb* —pb*b-b"bp), (2 (EOEM))=(ET(DET (1)) =d(t—t").
where Next, we discard the fluctuation forces to obtain the
steady-state solution. In the case where the steady state is
H-=40b"b+4GH BB stable, the fluctuation forces will only cause fluctuations near
0 this solution.
+iﬁ(EB+e‘im— E*bel Y, We denote the steady values@fanda™ by ag andag ,

_ . _ respectively. From Eq@4), it is evident thate, and ag are
y is the spontaneous decay rate of the exciton. Since thgiven by

exciton is boson, its density operator can be represented by

the c-number function like the photon density operator. So E— yap—i2Gadag =0,
we may convert Eq(2) into a Fokker-Planck equation of the 6)
. 4 " .
F;gj:tmn P(a,a™,t) by use of the positive® presentation E*—ya§+i26a§2aozo.
IP(a,a* t) P It is not difficult to see thaty, anday are complex conju-
+: a_(m_ E+i2Ga?a’) gates of each other.
@ Now, we will proceed by making the small fluctuation
approximation. When the system reaches the “steady” state,
d (yat—E*—i2Ga*2a) a(t) can be divided into two parts:
da*

a(t)=ag+ da(t),

. )
(iGat?) at()=ag +da’ (1),

192 2
—Z—(iGa2)+
“a

Pat
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where bothda(t) and da™(t) are fluctuations with zero Only if all roots of Eq.(12) have the positive real parts;
mean values. Assuming the fluctuations are small, we obtaiand e, are steady solutions. Equati¢t?) is a second-order

the linearized equation fofa and 6o from Eq. (4), equation ofl". Its two roots are easily derived,
d [ da(t +i4Gagay i2Gaj ]
_( g) ):_ VA% oo I, ,=y+i2y3Gn. (13)
at\ Sa™ (1) —i2Ga v—i14Gaq ag ’

. These results show that, and «; are indeed the stable
Sa(t) —i2Ga? 0o \¥ : 0 0 . _
( ) ( 0 ) steady-state solutions. In the following two sections, we will

X + . :
Sa (1) 0 i2Gag? discuss the resonance fluorescence of the excitons and the
- fluctuation of the light intensity.
X : 8
(f’(t)) ® IV. RESONANCE FLUORESCENCE OF EXCITONS

The radiated field operator at positiaroutside the quan-

Before solving this equation, let us calculate tive ag aq, ﬁggt;,(\)lﬁl[lzli rzeéated to the exciton operator by the retardation

which is the so-called coherent part of the total exciton num-
ber. Sincea, and @y are complex conjugates of each other
in the steady state is a positive real number. From E@®),

we get

EC(zt)=B(2)b t—E) (14)
R ’ c ’

2 2
N+ ——n— 1B _ _ (99  where the index{) of ES” indicates the positive frequency
4G?  4G? part, z represents the coordinate perpendicular to the

quantum-well plane, an@(z) is a parameter independent of
t. The frequency spectrum of the steady resonance fluores-
There is only one root of Eq9) to be a positive real num-  cence is defined as the Fourier transformation of the two-

ber: time correlation function(E§ (z,to+ 7)E(*)(z,t0)) in the

3/ |E|? |E|* 72 3 limit tg— oo,
8G? 64G* | 12G?

1
|R(Z,a)): Z lim

s/ |E? E[* 7\’ o
- - + + . (10) + o0 N N .
8G%b 64G* | 12G2 XJ, (EQ)(z,to+ NEL (2,t))e o7d 7. (15)

Substituting Eq(14) into Eq. (15) yields

Under weak field E|?<y%/(31/3G), n is approximately ex-

pressed byE|?/y?, which is independent b and increases

with |E|2. Under strong field E|>>%/(3\/3G), n is ap-

proximately expressed by|E|/2G)?°, which is inversely

proportional toG?2, This indicates a suppression of the co-

herent exciton number by the exciton-exciton interaction. The integral in Eq(16) can be expressed in terms of the
Now, we discuss the stability of the system. The stabilitypositive P representation :

means wherw and a® deviate froma, and oy , they will

return toa, and ey in case the fluctuation term is dropped. oo

Equation(8) with the fluctuation terms deleted is written as lim f (b (to+ 7)b(ty))e '*Tdr

tg—o°
Jd [ Sa
at Sat| B

ag is expressed in terms ofmby E/(y+i2Gn). The eigen-
solutions of Eq.(11) are of the form da(0)e ' and
Sa"(0)e . The eigenvalues df are determined by

—o. (12) %( :‘:) :_A( oa

2 i

lr(w)= lim f—ﬂ (b* (to+ Mb(ty))e ' dr. (16)

t0—>00

+i4G i2Gaj +oc '
2Gas® 3 id0 (5a ) (1D =2wn6(w)+f (6a’(1)0a(0))edr.  (17)
—i2Gag? y—i4Gn/\ da* o

The first term of Eq(17) represents the elastic “scattering”
spectrum, thus it should be omitted from the fluorescence
spectrum. To calculatg’ %( sa ™ (7) sa(0))e~'“dr, Eq.(8)

is written as follows:

y+i4Gn-T i2Gaj
—i2Gag? y—i4Gn-T

3
§+> ; (18)
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where Sw Efj’ ( (8a(1)6a(0))  (Sa(r)da’(0))

da*(1)8a(0)) (da"(r)da"(0
446G 12Ga? (6a™(1)6a(0)) (da”(7)da™(0))

= —iwT,
~i2Gag? y—i4Gn)’ xe dr. (19
and S(w) will be given in terms ofD andA by [29]
~-i2Gad 0 L . 20
D= . =(A+iwl) "D(A'—iwl) 7,
0 12Gai? S(w)=(A+iwl)""D( wl) (20)
The matrix of the spectrum function of the radiation-field wherel is the identity matrix and” means transpose. We get
fluctuation is defined as accordingly
|
1 [—i2Gad[(y—i4Gn)?+ w?+4G?n?] 8G2n?y
S(w)= — , 21
@) IN]2 8G2n?y i2Gag [ (y+i4Gn)2+ w?+4G2n?] @)
|
2_ 2 2 242\2 2 2 ~ ~
wheré\ |*= (y*— 0+ 12G*n?)?+ 4y*w?. The second term [b(t),b* (1)]=1, (25)

of Eqg. (17) is given by the nondiagonal matrix element

Sy1(w) of Eq.(19). Thus after transforming back to the origi- the Langevin equations in rotating frame , which corresponds
nal frame, the fluorescence spectrum of the exciton is to Eq. (24), are

(o)== 8Gn’y %6*(0:—y6*<t>+iE*+ﬁ+<t>, (26)
O 2 42— (0—0)2+ 1262022+ 492 (0 — Q)2

(22) and its Hermitian conjugatds * (t) is the Langevin fluctua-

tion force.

The peak of they(w) corresponds to the minimum value of The exact solution fo(B) is

the denominator in Eq.(22). Under weak pump field

(12G%n?<+v?), the fluorescence spectrum consists of a i

single peak centered ab=(). Under strong pump field <6+(to+ T))z(ﬁ*(to»e*”— (e77"—1). (27
(12G2n?>~?), the fluorescence spectrum has two peaks lo- Y

cated at

The first-order correlation function is then derived by the
gquantum regression theorem:

w=0%12G’n’— 2. (23

The curved o(w) — w are shown in Fig. 1. We note that there .
are no Rabi splitting peaks i(w) despite the fact that the E (e 77— 1)(6(t ) 28)
energy levels of the interacting photon-exciton system have y o
in Rabi splitting. The absence of Rabi splitting peaks in

lo(w) is due to the bosonic nature of excitons, rather thant is straightforward to obtain the equation féb* (t)b(t))

our small fluctuation approximation. To illustrate this point, from Eq. (25). In the case that the reservoir is the vacuum
we consider a simple cas€=0; namely, the exciton- (n;=0), we get
exciton interaction can be neglected. In this case, the exact

solution of field operators can be obtained. The system

(b* (to+ 1)b(tg)) =€ 7(b* (to)b(t))

|E/?

Hamiltonian now becomes t"m (b*(to)b(to)) = R (29
Oﬂoc
Ho=%Qb*b+A(Eb"e '~ E*be' ). (24)  Thus, changing back to the original frame, we have
2
To compare with the usual resonance fluorescence of a two- L o _ E 0t
level atom, we will derive the first-order correlation function t(l)'Tw<b (to+ 7)b(to)) = y2 e (30
by the Langevin formulation. Sincé and b* obey the
bosonic commutation relation Substituting the above equation into Ed6) leads to
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2 d . . .
IR(w)=BZ|E—|5(w—Q). (31) gilo-()=1E(o3() — ¥(o (1),

2
Y
We see there is no resonance fluorescence spectrum, let

alone the Rabi splittirlg of the spectral peak. —(&3(t)>=2i[E*(c},(t)>— E<2r+(t)>]—2y<a'3(t)>—2y.
The correspondingd, for a two-level atom is similar to dt

Eq. (24), the only difference id* andb being replaced by

the atomic level change operatars ando_ . The differ-  |tis just these coupled linear equations that yield three eigen-

ence betweera}+ ,o_ andb*,b lies in their commutation ~decay rates,
relations. For two-level atoms,

> > - _ 3 1
Lo (O 1= 7 sl o n=y Toy 77 16E% (39
[o3(t),0(1)]=+20.(1)

The above Fermionic commutation relations results inWhen|E|? becomes larger than?/16, I', andI'; develop

coupled equations for., o_, andoa: imaginary parts =*iwg, respectively, with wg
: ’ — JAE=71a.
d . - - Corresponding to Eq27), for two-level atoms we get the
J— —— = _ ~
grlo )= —IBH(os(1) = ¥(o (1), B3 solution of (o (t)) in the casdE|>> y?/16,
- iE*y 1 iy . 3iy| .
o (to+7)=——7"=1— —e(3’2)77[(1— —)e""RT+(1+ —— e @R
< +(to )> 2|E|2+72 2 2wg 2wy
1 1 iy | . iy . -
e v Lo @2yr | 1 - L | alwrT —iwRT
+ e + 28 (1 sz)e +| 1+ sz)e ]<a+(to)>
E* (1 1 iy . iy . -
— e v Lo @2yt | 1 - L |@giwRrT —iwgT
tE13¢ 26 [(1 ZwR)e +| 1+ sz)e }(a_(to))
E* . . N
_ z_wRe— (3/2)77(e|wRT— e_IwRT)<O'3(t0)>. (35)
By using the quantum regression theorem it turns out that
- - iE*y ( 1 iy . 3iy| . -
o (tormno_(tg)=—— 1__e(3/2)77[(1__ eor 4+ | 1+ —2 e iorr| V(5 (t
< +( 0 ) ( O)> 2|E|2+y2 2 2(1)R ZwR < ( 0)>

111 1 iy . iy . -
Tl oyt T A= (312)y7] _ " |alwgT _ 7 |la-iwgT
+2 € +4e [(1 ZwR)e RT+| 1+ sz)e R} [1+(o5(to))]
E* . ) ~
4 _ef(3/2)y7(eleT_ e*lef)<0__(t0)>. (36)
2(1)R

Carrying out Fourier transformation of E(B6), we will get  splitting in the exciton resonance fluorescence spectrum in-
three peaks in the resonance fluorescence spectrum. deed comes from the exciton’s bosonic character.

The above comparison of the resonance fluorescence To check the self-consistency of our small fluctuation ap-
spectrum of excitons with that of a two-level atom driven by proximation, we calculate the incoherent part of the total
coherent light clearly illustrates that the absence of Rabéxciton number in the steady state(Sa ™ da). The result
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FIG. 1. The spectrum of resonance fluorescence. The value of
G2n?/y?is (a) 0.1, (b) 0.2, (c) 0.5, (d) 1.0. The frequency is in the

-5

0

[0 9)

5 10

unit of y. (, exciton frequencyp, the parameter in Eq14).

may be obtained from matri&

( (sa?)
B (Sa* Sa)

(Sada™)
(3a*?)

|

1

T 27

[

— oo

S(w)dw. (37)
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The above integration can be carried out by contour integra-
tion easily, and the result is

—iGad(y—i4Gn) 2G?n?
a 2G?%n? iGag(y+i4Gn)
X ! (39
y?+12G2n?’
Hence,
n=C 26%n° (39)
N=Cy=———.
2 y?+12G?n?

We see that the small fluctuation approximation holds either

>1 40
n>c (40)
or

y?>2G?n. (41)

V. QUANTUM FLUCTUATION OF THE RADIATION
INTENSITY

The directly measurable quantum fluctuation of intensity
is given by

(ECI2E(D2) (ECIEMN?2  (572p2)—(b*b)2
(ECECH2 - (b'B)?
(42

It can be evaluated by the positi\ representation of the
exciton density operator as

B <a+2a2>_<a+a>2

g—= <a+a>2 (43)

Up to the second order ¢ba/aq|, we get

(Sa™a) (8a?) (6a™?) (Sa”da)
o=2—r7% +— +2 —7- (44
@g ag @p @g (ag ap)
Hence from Eq(38), we get
_ 2G*(2n-1)

T 2 r12G2n? 49

which shows the fluorescence is of the nonclassical character
providedn>3. The minimum ofo given by Eq.(45) is at
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1 V2 fluorescence. The quantum fluctuation of the fluorescence
n=—-~/1+—. light intensity is also studied. The fluorescence light exhibits
2 3G?2 nonclassical statistical property when the mean exciton num-
o ber is larger than 1/2.
We also see that wheB=0, o becomes 0, which is con- &, annroach is based on the master equation for the den-

sistent with the result of only coherent elastic “scattering.” sity operator of the excitons, and the small fluctuation ap-
proximation is used to linearize the stochastic differential
equations. A discussion on the self-consistency of this ap-

VI. SUMMARY proximation is also presented.

In this paper, we study the effect of exciton-exciton inter-
action on the exciton resonance fluorescence. We demon-
strate that without exciton-exciton interaction, the exciton One of authorgY-X L.) wishes to express his gratitude to
has no resonance fluorescence due to its bosonic nature. TReofessor Chang-Pu Sun and Dr. Shi-Lin Zhu for their help
exciton-exciton interaction switches on resonance fluoresin this work. This work was supported by the National Natu-
cence, and the fluorescence spectrum is split into two peakal Science Foundation of China under Grant No. 19774004,
when the pumping field exceeds a critical value. Howeverand by the National Science Foundation under Grant No.
there is still no Rabi splitting in the spectrum of resonanceECS-9800068.
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