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Effect of the exciton-exciton interaction on resonance fluorescence of excitons in a quantum we
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The effect of the exciton-exciton interaction on the resonance fluorescence of quantum-well excitons is
studied. At relative low exciton density, the resonance fluorescence exists only when the exciton-exciton
interaction is not negligible. The fluorescence spectrum changes from one peak to two peaks when the pump
light intensity is increased beyond a critical value. The fluorescence light is antibunching when the mean
exciton number in the quantum well is more than 0.5. The difference between exciton resonance fluorescence
and two-level atom resonance fluorescence is presented.

PACS number~s!: 42.50.Fx, 71.35.2y
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I. INTRODUCTION

It is well known that an excited two-level atom will spon
taneously radiate and fall to its ground state eventua
When a two-level atom is driven by a resonant electrom
netic field, it will radiate continuously and reach a stea
state. In 1969, Mollow predicted that the fluorescence sp
trum of a two-level atom driven by a strong coherent fie
consists of three peaks, when the corresponding Rabi
quency is larger than the spontaneous emission rate@1#. This
prediction had been verified by many experiments@2–4#.
Since then, a great deal of research work has been don
the resonance fluorescence of atoms or molecules@5–12#.

In recent years, the optical properties of excitons ha
become a subject of extensive investigation because of
potential technological impact of the excitonic devices
optoelectronics and photonics. Especially, people have s
ied the optical properties of excitons in confined structu
such as quantum well, quantum wire, or quantum dot.

The radiation of the exciton exhibits the superradian
character. The initial studies were mainly focused on
superradiance of Wannier excitons in semiconductor mic
crystallites, both theoretically@13# and experimentally@14#.
Then, the superradiance of Frenkel excitons was observe
J aggregates at low temperature@15,16#. However, higher or
complete population inversion may make this system
stable@17#. In 1995, the superradiance of high-density Fre
kel excitons in anR-phycoerythrin(R-PE) single crystal was
observed at room temperature for the first time@18#.

Tokihiro et al. @17# have studied theoretically the supe
radiance behavior of the Frenkel exciton in a linear me
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scopic chain. They first investigated the exciton superra
ance at low density where exciton-exciton interaction is n
ligible @17#. Then, at higher exciton density, they took in
account the interaction between Frenkel excitons@19#. The
emission of Frenkel excitons in a one-dimensional mes
copic system interacting via the static dipole moments@20#
was also studied.

Excitons confined in a thin layer of thicknessL,l have
also been studied@21#. In the case of the Frenkel exciton, th
radiative decay rate is on the order ofG;(l2/a2)g0, where
a is the lattice constant andg0 is the decay rate of an isolate
atom or molecule. Knoester has studied the dependenc
the superradiance rate on the layer thicknessL @22#. He
found that the superradiance rate first increases withL, and
then drops. Through damped oscillation, it eventually va
ishes whenL→`, which is consistent with the well-known
result that the exciton and the emitted photon will mix
form stable polaritons.

In this paper we will study the effect of exciton-excito
interaction on the resonance fluorescence of the Wannier
citons in the quantum well. In Sec. II the general formulati
is presented. The excitons are described by bosonic oper
in the low-density limit@23#. When the exciton density in
creases, excitons no longer behave like ideal bosonic
ticles. One way to deal with this deviation is to introduce
effective interaction between the hypothetical ideal bos
@24,25#. In this work we take this approach to derive th
master equation for the reduced density operators of the
citons. Then, we convert the operator equation into a Fokk
Planck equation via the positiveP representation. In Sec. II
the stochastic differential equations corresponding to
Fokker-Planck equation are proposed. We then linearize
stochastic differential equations near their steady-state s
tions. In Sec. IV, we calculate the spectrum of the emit
light with these linear equations. We find no Rabi splitting
the emission spectrum in the low exciton density regio
©2000 The American Physical Society02-1
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However, the interaction between excitons will induce t
splitting of the emission spectrum to two peaks when
pumping field intensity exceeds a critical value. Finally t
quantum intensity fluctuation properties of the steady fl
rescence is discussed.

II. HAMILTONIAN AND FOKKER-PLANCK EQUATION

We assume the exciton density is not too high so that
deviation of excitons from ideal bosons can be treated
introducing an effective interaction between the excito
@24,25#. Under the rotating-wave approximation, the Ham
tonian of the system in which the excitons are driven b
monochromatic coherent light is written as :

Ĥ5\Vb̂1b̂1\Gb̂1b̂1b̂b̂1 i\~Eb̂1e2 iVt2E* b̂eiVt!

1\( kvkâk
1âk1\b̂1(

k
gkâk1\b̂(

k
gk* âk

1 , ~1!

b̂1(b̂) are creation~annihilation! operators for the excitons
They are assumed to obey the bosonic commutation rela

@ b̂,b̂1#51. âk
1(âk) are the creation~annihilation! operators

for the photons in modek, propagating perpendicular to th
quantum-well plane under the condition that excitons h
no momentum parallel to the quantum-well plane.G repre-
sents the interaction constant between the excitons, inclu
the residual Coulomb interaction.E is proportional to the
amplitude of the driving field.gk is the coupling constan
between the photons and the excitons.

The time evolution of the exciton system is described
this master equation of the reduced density operator. In
Schrödinger picture this master equation, which is based
the Born-Markoff approximation, is written as

]r̂~ t !

]t
5

1

i\
@Ĥ0 ,r̂ #1g~2b̂r̂b̂12 r̂b̂1b̂2b̂1b̂r̂ !, ~2!

where

Ĥ05\Vb̂1b̂1\Gb̂1b̂1b̂b̂

1 i\~Eb̂1e2 iVt2E* b̂eiVt!,

g is the spontaneous decay rate of the exciton. Since
exciton is boson, its density operator can be represented
the c-number function like the photon density operator.
we may convert Eq.~2! into a Fokker-Planck equation of th
function P(a,a1,t) by use of the positiveP presentation
@26#,

]P~a,a1,t !

]t
5H ]

]a
~ga2E1 i2Ga2a1!

1
]

]a1
~ga12E* 2 i2Ga12a!

2
]2

]2a
~ iGa2!1

]2

]2a1
~ iGa12!J
02380
e
e

-

e
y
s

a

n,

e

ng

y
e

n

he
y

3P~a,a1,t !, ~3!

wherea corresponds tob̂, anda1 corresponds tob̂1. a and
a1 are considered as independent complex variables.
have also transformed into the rotating frame of the exci
variables witha→ae2 iVt anda1→a1eiVt.

III. STOCHASTIC DIFFERENTIAL EQUATIONS
AND ANALYSIS OF THE FLUCTUATION

The nonlinear Fokker-Planck equation can be solved
actly only in some special cases. It is difficult to obtain
analytical expression ofP(a,a1,t) from the Fokker-Planck
equation~3!. Hence, we will make an approximation. W
first use the Ito rules to convert this Fokker-Planck equat
into stochastic differential equations. Such conversion is
lowed because the Fokker-Planck equation in the positivP
representation always has a positive semidefinite diffus
matrix. The obtained stochastic differential equations fora
anda1 are

]

]t S a

a1D 5S 2ga1E2 i2Ga2a1

2ga11E* 1 i2Ga12a D
1S 2 i2Ga2 0

0 i2Ga12D 1/2S j

j1D , ~4!

where j(t) and j1(t) are the Gaussian fluctuation force
satisfying the following correlation functions:

^j~ t !&5^j1~ t !&50,

^j~ t !j1~ t8!&5^j1~ t !j~ t8!&50, ~5!

^j~ t !j~ t8!&5^j1~ t !j1~ t8!&5d~ t2t8!.

Next, we discard the fluctuation forces to obtain t
steady-state solution. In the case where the steady sta
stable, the fluctuation forces will only cause fluctuations n
this solution.

We denote the steady values ofa anda1 by a0 anda0
1 ,

respectively. From Eq.~4!, it is evident thata0 anda0
1 are

given by

E2ga02 i2Ga0
2a0

150,
~6!

E* 2ga0
11 i2Ga0

12a050.

It is not difficult to see thata0 anda0
1 are complex conju-

gates of each other.
Now, we will proceed by making the small fluctuatio

approximation. When the system reaches the ‘‘steady’’ st
a(t) can be divided into two parts:

a~ t !5a01da~ t !,
~7!

a1~ t !5a0
11da1~ t !,
2-2
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where bothda(t) and da1(t) are fluctuations with zero
mean values. Assuming the fluctuations are small, we ob
the linearized equation forda andda1 from Eq. ~4!,

]

]t S da~ t !

da1~ t !
D 52S g1 i4Ga0a0

1 i2Ga0
2

2 i2Ga0
12 g2 i4Ga0

1a0
D

3S da~ t !

da1~ t !
D 1S 2 i2Ga0

2 0

0 i2Ga0
12D 1/2

3S j~ t !

j1~ t !
D . ~8!

Before solving this equation, let us calculate then[a0
1a0,

which is the so-called coherent part of the total exciton nu
ber. Sincea0 anda0

1 are complex conjugates of each oth
in the steady state,n is a positive real number. From Eq.~6!,
we get

n31
g2

4G2
n2

uEu2

4G2
50. ~9!

There is only one root of Eq.~9! to be a positive real num
ber:

n5A3 uEu2

8G2
1A uEu4

64G4
1S g2

12G2D 3

2A3
2

uEu2

8G2b
1A uEu4

64G4
1S g2

12G2D 3

. ~10!

Under weak fielduEu2!g3/(3A3G), n is approximately ex-
pressed byuEu2/g2, which is independent ofG and increases
with uEu2. Under strong fielduEu2@g3/(3A3G), n is ap-
proximately expressed by (uEu/2G)2/3, which is inversely
proportional toG2/3. This indicates a suppression of the c
herent exciton number by the exciton-exciton interaction

Now, we discuss the stability of the system. The stabi
means whena anda1 deviate froma0 anda0

1 , they will
return toa0 anda0

1 in case the fluctuation term is droppe
Equation~8! with the fluctuation terms deleted is written a

]

]t S da

da1D 52S g1 i4Gn i2Ga0
2

2 i2Ga0
12 g2 i4Gn

D S da

da1D , ~11!

a0 is expressed in terms ofnn by E/(g1 i2Gn). The eigen-
solutions of Eq. ~11! are of the form da(0)e2Gt and
da1(0)e2Gt. The eigenvalues ofG are determined by

Ug1 i4Gn2G i2Ga0
2

2 i2Ga0
12 g2 i4Gn2G

U50. ~12!
02380
in

-

Only if all roots of Eq.~12! have the positive real parts,a0

anda0
1 are steady solutions. Equation~12! is a second-order

equation ofG. Its two roots are easily derived,

G1,25g6 i2A3Gn. ~13!

These results show thata0 and a0
1 are indeed the stable

steady-state solutions. In the following two sections, we w
discuss the resonance fluorescence of the excitons and
fluctuation of the light intensity.

IV. RESONANCE FLUORESCENCE OF EXCITONS

The radiated field operator at positionz outside the quan-
tum well is related to the exciton operator by the retardat
relation @27,28#

ÊR
~1 !~z,t !5b~z!b̂S t2

z

cD , ~14!

where the index (1) of ÊR
(1) indicates the positive frequenc

part, z represents the coordinate perpendicular to
quantum-well plane, andb(z) is a parameter independent o
t. The frequency spectrum of the steady resonance fluo
cence is defined as the Fourier transformation of the tw
time correlation function̂ ÊR

(2)(z,t01t)Ê(1)(z,t0)& in the
limit t0→`,

I R~z,v!5
1

2p
lim

t0→`

3E
2`

1`

^ÊR
(2)~z,t01t!ÊR

(1)~z,t0!&e2 ivtdt. ~15!

Substituting Eq.~14! into Eq. ~15! yields

I R~v!5 lim
t0→`

b2

2pE2`

1`

^b̂1~ t01t!b̂~ t0!&e2 ivtdt. ~16!

The integral in Eq.~16! can be expressed in terms of th
positiveP representation :

lim
t0→`

E
2`

1`

^b1~ t01t!b~ t0!&e2 ivtdt

52pnd~v!1E
2`

1`

^da1~t!da~0!&e2 ivtdt. ~17!

The first term of Eq.~17! represents the elastic ‘‘scattering
spectrum, thus it should be omitted from the fluoresce
spectrum. To calculate*2`

1`^da1(t)da(0)&e2 ivtdt, Eq.~8!
is written as follows:

]

]t S da

da1D 52AS da

da1D 1D1/2S j

j1D , ~18!
2-3
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where

A5F g1 i4Gn i2Ga0
2

2 i2Ga0
12 g2 i4Gn

G ,

and

D5F2 i2Ga0
2 0

0 i2Ga0
12G .

The matrix of the spectrum function of the radiation-fie
fluctuation is defined as
nt
i-

f

lo

re

av
in
a
t,

xa
e

tw
n

02380
S~v![E
2`

` S ^da~t!da~0!& ^da~t!da1~0!&

^da1~t!da~0!& ^da1~t!da1~0!&
D

3e2 ivtdt. ~19!

S(v) will be given in terms ofD andA by @29#

S~v!5~A1 ivI !21D~AT2 ivI !21, ~20!

whereI is the identity matrix andT means transpose. We ge
accordingly
S~v!5
1

ulu2
F2 i2Ga0

2@~g2 i4Gn!21v214G2n2# 8G2n2g

8G2n2g i2Ga0
12@~g1 i4Gn!21v214G2n2#

G , ~21!
nds

he

m

whereulu25(g22v2112G2n2)214g2v2. The second term
of Eq. ~17! is given by the nondiagonal matrix eleme
S21(v) of Eq. ~19!. Thus after transforming back to the orig
nal frame, the fluorescence spectrum of the exciton is

I 0~v!5
b2

2p

8G2n2g

@g22~v2V!2112G2n2#214g2~v2V!2
.

~22!

The peak of theI 0(v) corresponds to the minimum value o
the denominator in Eq.~22!. Under weak pump field
(12G2n2<g2), the fluorescence spectrum consists of
single peak centered atv5V. Under strong pump field
(12G2n2.g2), the fluorescence spectrum has two peaks
cated at

v5V6A12G2n22g2. ~23!

The curvesI 0(v)2v are shown in Fig. 1. We note that the
are no Rabi splitting peaks inI 0(v) despite the fact that the
energy levels of the interacting photon-exciton system h
in Rabi splitting. The absence of Rabi splitting peaks
I 0(v) is due to the bosonic nature of excitons, rather th
our small fluctuation approximation. To illustrate this poin
we consider a simple caseG50; namely, the exciton-
exciton interaction can be neglected. In this case, the e
solution of field operators can be obtained. The syst
Hamiltonian now becomes

Ĥ05\Vb̂1b̂1\~Eb̂1e2 iVt2E* b̂eiVt!. ~24!

To compare with the usual resonance fluorescence of a
level atom, we will derive the first-order correlation functio
by the Langevin formulation. Sinceb̂ and b̂1 obey the
bosonic commutation relation
a

-

e

n

ct
m

o-

@ b̂~ t !,b̂1~ t !#51, ~25!

the Langevin equations in rotating frame , which correspo
to Eq. ~24!, are

d

dt
b̂1~ t !52gb̂1~ t !1 iE* 1F̂1~ t !, ~26!

and its Hermitian conjugate.F̂1(t) is the Langevin fluctua-
tion force.

The exact solution for̂b̂& is

^b̂1~ t01t!&5^b̂1~ t0!&e2gt2
iE*

g
~e2gt21!. ~27!

The first-order correlation function is then derived by t
quantum regression theorem:

^b̂1~ t01t!b̂~ t0!&5e2gt^b̂1~ t0!b̂~ t0!&

2
iE*

g
~e2gt21!^b̂~ t0!&. ~28!

It is straightforward to obtain the equation for^b̂1(t)b̂(t)&
from Eq. ~25!. In the case that the reservoir is the vacuu
(nT50), we get

lim
t0→`

^b̂1~ t0!b̂~ t0!&5
uEu2

g2 . ~29!

Thus, changing back to the original frame, we have

lim
t0→`

^b̂1~ t01t!b̂~ t0!&5
uEu2

g2
eiVt. ~30!

Substituting the above equation into Eq.~16! leads to
2-4
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I R~v!5b2
uEu2

g2
d~v2V!. ~31!

We see there is no resonance fluorescence spectrum
alone the Rabi splitting of the spectral peak.

The correspondingĤ0 for a two-level atom is similar to
Eq. ~24!, the only difference isb̂1 and b̂ being replaced by
the atomic level change operatorsŝ1 and ŝ2 . The differ-
ence betweenŝ1 ,ŝ2 and b̂1,b̂ lies in their commutation
relations. For two-level atoms,

@ŝ2~ t !,ŝ1~ t !#52ŝ3~ t !,
~32!

@ŝ3~ t !,ŝ6~ t !#562ŝ6~ t !

The above Fermionic commutation relations results
coupled equations forŝ1 , ŝ2 , andŝ3:

d

dt
^ŝ1~ t !&52 iE* ^ŝ3~ t !&2g^ŝ1~ t !&, ~33!
n
by
ab

02380
let

n

d

dt
^ŝ2~ t !&5 iE^ŝ3~ t !&2g^ŝ2~ t !&,

d

dt
^ŝ3~ t !&52i @E* ^ŝ2~ t !&2E^ŝ1~ t !&#22g^ŝ3~ t !&22g.

It is just these coupled linear equations that yield three eig
decay rates,

g15g, G2,35
3

2
g6

1

2
Ag2216uEu2. ~34!

When uEu2 becomes larger thang2/16, G2 and G3 develop
imaginary parts 6 ivR , respectively, with vR

5A4uEu22g2/4.
Corresponding to Eq.~27!, for two-level atoms we get the

solution of ^ŝ1(t)& in the caseuEu2.g2/16,
^ŝ1~ t01t!&5
iE* g

2uEu21g2 H 12
1

2
e2(3/2)gtF S 12

3ig

2vR
DeivRt1S 11

3ig

2vR
De2 ivRtG J

1H 1

2
e2gt1

1

4
e2(3/2)gtF S 12

ig

2vR
DeivRt1S 11

ig

2vR
De2 ivRtG J ^ŝ1~ t0!&

1
E*

E H 1

2
e2gt2

1

4
e2(3/2)gtF S 12

ig

2vR
DeivRt1S 11

ig

2vR
De2 ivRtG J ^ŝ2~ t0!&

2
E*

2vR
e2(3/2)gt~eivRt2e2 ivRt!^ŝ3~ t0!&. ~35!

By using the quantum regression theorem it turns out that

^ŝ1~ t01t!ŝ2~ t0!&5
iE* g

2uEu21g2 H 12
1

2
e2(3/2)gtF S 12

3ig

2vR
DeivRt1S 11

3ig

2vR
De2 ivRtG J ^ŝ2~ t0!&

1
1

2 H 1

2
e2gt1

1

4
e2(3/2)gtF S 12

ig

2vR
DeivRt1S 11

ig

2vR
De2 ivRtG J @11^ŝ3~ t0!&#

1
E*

2vR
e2(3/2)gt~eivRt2e2 ivRt!^ŝ2~ t0!&. ~36!
in-

p-
tal
Carrying out Fourier transformation of Eq.~36!, we will get
three peaks in the resonance fluorescence spectrum.

The above comparison of the resonance fluoresce
spectrum of excitons with that of a two-level atom driven
coherent light clearly illustrates that the absence of R
ce

i

splitting in the exciton resonance fluorescence spectrum
deed comes from the exciton’s bosonic character.

To check the self-consistency of our small fluctuation a
proximation, we calculate the incoherent part of the to
exciton number in the steady staten̄5^da1da&s . The result
2-5
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may be obtained from matrixC

C5S ^da2& ^dada* &

^da* da& ^da* 2&
D 5

1

2pE2`

1`

S~v!dv. ~37!

FIG. 1. The spectrum of resonance fluorescence. The valu
G2n2/g2 is ~a! 0.1, ~b! 0.2, ~c! 0.5, ~d! 1.0. The frequency is in the
unit of g. V, exciton frequency;b, the parameter in Eq.~14!.
02380
The above integration can be carried out by contour integ
tion easily, and the result is

C5S 2 iGa0
2~g2 i4Gn! 2G2n2

2G2n2 iGa0
12~g1 i4Gn!

D
3

1

g2112G2n2
. ~38!

Hence,

n̄5C215
2G2n2

g2112G2n2
. ~39!

We see that the small fluctuation approximation holds eit

n@
1

6
~40!

or

g2@2G2n. ~41!

V. QUANTUM FLUCTUATION OF THE RADIATION
INTENSITY

The directly measurable quantum fluctuation of intens
is given by

s5
^Ê(2)2Ê(1)2&2^Ê(2)Ê(1)&2

^Ê(2)Ê(1)&2
5

^b̂12b̂2&2^b̂1b̂&2

^b̂1b̂&2
.

~42!

It can be evaluated by the positiveP representation of the
exciton density operator as

s5
^a12a2&2^a1a&2

^a1a&2 . ~43!

Up to the second order ofuda/a0u, we get

s52
^da1da&

a0
1a0

1
^da2&

a0
2 1

^da12&
a0

12 1
^da1da&

~a0
1a0!2 . ~44!

Hence from Eq.~38!, we get

s52
2G2~2n21!

g2112G2n2 , ~45!

which shows the fluorescence is of the nonclassical chara
providedn. 1

2 . The minimum ofs given by Eq.~45! is at

of
2-6
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n5
1

2
A11

g2

3G2
.

We also see that whenG50, s becomes 0, which is con
sistent with the result of only coherent elastic ‘‘scattering

VI. SUMMARY

In this paper, we study the effect of exciton-exciton inte
action on the exciton resonance fluorescence. We dem
strate that without exciton-exciton interaction, the excit
has no resonance fluorescence due to its bosonic nature
exciton-exciton interaction switches on resonance fluo
cence, and the fluorescence spectrum is split into two pe
when the pumping field exceeds a critical value. Howev
there is still no Rabi splitting in the spectrum of resonan
Z

rl

n

y

et
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fluorescence. The quantum fluctuation of the fluoresce
light intensity is also studied. The fluorescence light exhib
nonclassical statistical property when the mean exciton n
ber is larger than 1/2.

Our approach is based on the master equation for the
sity operator of the excitons, and the small fluctuation a
proximation is used to linearize the stochastic differen
equations. A discussion on the self-consistency of this
proximation is also presented.
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