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A nonequilibrium approach to the dynamics and statistics of the condensate of amNideah Bose gas
cooling via interaction with a thermal reservoir using the canonical ensemble is developed. We derive simple
analytical expressions for the canonical partition function and equilibrium distribution of the number of atoms
in the ground state of a trap under different approximations, and compare them with exact numerical results.
The N-particle constraint associated with the canonical ensemble is usually a burden. In the words of Kittel,
“in the investigation of the Bose-Einstei..laws it isvery inconvenient to impose the restriction that the
number of particles in the subsystem shall be held constant.” But in the present approach, based on the analogy
between a second-order phase transition and laser threshold behavidiptrécle constraint makes the
problem easier. We emphasize that the present work provides another example of a case in which equilibrium
(detailed balangesolutions to nonequilibrium equations of motion provide a useful supplementary approach to
conventional statistical mechanics. We also discuss some dynamical and mesoscopic aspects of Bose-Einstein
condensation. The conclusion is that the present analyticalapproximatgresults, based on a nonequilib-
rium approach, are in excellent agreement with exaet numericgl results. The present analysis has much in
common with the quantum theory of the laser.

PACS numbse(s): 03.75.Fi, 05.30.Jp

[. INTRODUCTION at which the gain in condensate particle num(aiere to cool-
ing) equals the losgdue to heating This yields the usual
Bose-Einstein condensati¢BEC) [1-3] is, and has long value of T, i.e., T.=%w(N/{(3))* for a weak harmonic
been, a fascinating subject in its own right, and has becom&ap. We also find the Ketterle—van Drutg¢h2] modified
even more interesting in light of successful experimentakritical temperature expressioB, | m{[expfw(l+m+n)/T,
demonstrations of BEC in dilut¢He [4] and ultracold —1]}"*=N when we go to stronger traps. It should be em-
atomic gase$5-8|. Furthermore the production of “coher- phasized that this approach extends the critical temperature
ent atomic beams,” the so-called atom lag@}, and its re-  concept to the mesoscopic systems, involving sayatoms,
lation to the conventional laser, is intriguing, as is the reladin a natural fashion.
tion between the BEC phase transition and the quantum (2a) Furthermore as Ziff, Uhlenbeck, and KE&] pointed
theory of the lasef10]. out that “ [When| the grand canonical properties for the
However, as noted by Uhlenbegk(c)], the physics of ideal Bose gas are derived, it turns out that some of them
BEC is subtle with many pitfalls and surprises. In the fol- differ from the corresponding canonical properties-even in
lowing numbered paragraphs we cite a few such difficultieghe bulk limit!” and later on they say: “The differences that
and indicate how the present work hand(es mishandles  we have just found between some bulk properties in the ca-

these problems. nonical and the grand canonical ensembles are particularly
(1a) Uhlenbeck criticized Einstein’s arguments concern-striking because they represent infinite systems for which it
ing the implied singularity in the equation of state T&t. is usually supposed that the ensembles are equivalein

Kahn and Uhlenbeck latdi(d)] pointed out that the “dis- this section we investigate the grand canonical ensemble and
cussion of the condensate requires that the bulk limit behow that it loses its validity for the ideal Bose gas in the
taken in which the number and volume are made infinitecondensed region.” Most recently Holthaus, Kalinowski,
with the densityN/V fixed.” But this leaves open the ques- and Kristen(HKK) note that[13] “There is, however, one
tion of how best to think about and defiffe for finite me- serious failure of the grand canonical ensemble. Grand ca-
soscopic systems. nonical statistics predicts that the mean-square fluctuation
(1b) In the present papdsee Sec. VI, and in our earlier  (An2)g. of the vth single-particle level’'s occupation equals
paper[11], which we refer to as CNB |, we show that it is {N,)qd(N,)gc+1). Applied to the ground state=0, this
useful to follow the lead of laser theory wherein the critical gives (An§>gc=<no>gc(<no>gc+ 1) even when the tempera-
threshold inversion is defined as that for which gain equalsure T approaches zero, so that &llparticles condense into
loss. That is, in recent work we showed that we can think othe ground state. But the implication of huge fluctuations,
and redefine the critical temperature as being the temperatu(ené)gczN(NJrl), is clearly unacceptable; when all par-
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10 ‘ ( 30 - (4b) We presented a simple expression #yrin CNB |,
N=100 N=1000 the present refined version of which is given by Eg. be-
TIRSE__cwwaH ) [Te0s8 e low. We also point to the paper of HKK in this context. This
81 —— CNBIt | N\ ——— oNBII important work was not known to us at the time of publica-

tion of CNB I. Detailed comparison between their work and
ours will be given in a later paper.

We next turn to a discussion of our main results and their
physical interpretation. As mentioned earlier, the condensa-
tion of bosonic atoms in a trap has obvious similarities to the
] threshold behavior of a laser. We recall that, in the quantum
theory of laser, the dynamics of laser light is conveniently
described by a master equation obtained by treating the
atomic (gain media and cavity dissipatiofloss as reser-
voirs which when “traced over” yield the coarse-grained
equation of motion for the reduced density matrix for laser
radiation. In this way we arrive at the equation of motion for

FIG. 1. Probability of havingy bosons in the ground state of a I . - . .
3D harmonic trap. The dashed line is the approximation presenteﬂqe probability of havingy photons in the cavity10]:

in CNB I. The solid line is the improved distribution of the present

20

paper, CNB Il. The dots are numerical results per WWGH. The bn: — ; (n+1)p,+ L nNpn_1
vertical axis isNp, , and the horizontal axis, /N for both graphs. 1+B(n+1)/A 1+Bn/A
—Cnp,+C(n+1)Pn+1, @

ticles occupy the ground state, the fluctuation has to die out.
This grand canonical fluctuation catastrophe has been di%\'/hereA is the linear gain,B is the nonlinear saturation

cussed by generations of physicists .” which comes from the fact that after emission the atoms

(Z.b) We take a different approach to the problem, always,ocome “apsorbers,” an€ is the cavity decay rate. Solving
working in the canonical ensembfé&4]. Our results are in Eq. (1) in the stead;} state we find

excellent agreement with exact numerical “experiments’” of
Wilkens and Weis$15] and Grossmann and Holthal5], (A/B)!(AYBC)"
whose results are referred to as WWGH. In Fig. 1, we Pn= T (ntAB)
present the comparison of the results of CNB | with the exact '
results for the probabilityp(no) of finding ny atoms in the  where the normalization can be written in terms of confluent
ground state. The present paper focuses on the ideal noniRypergeometric functions as
teracting Bose gas. However the problem of anomalous fluc-
tuations in the interacting gas is of current interest and is 1 A
discussed in CNB 11[18]. There we regain and extend the N7 =F 1'§+1'ﬁ:
recent results of Giorgini, Pitaevskii and Stringgt].

(39 It is textbook wisdom that the canonical ensemble isFrom Eq.(2) we have the important result that partially co-
not user friendly, to quote Kittgl19]: “In the investigation  herent laser light has a sharp photon distributiaith a
of the Bose-Einstei...laws it is very inconvenient to im- width several times Poissonian for a typical He-Ne ladee
pose the restriction that the number of particles in the subto the presence dB in our equation. Thus we see that the
system shall be held constant.” saturation nonlinearity in the radiation matter interaction is

(3b) However, in the present approach thigoarticle con-  essential for laser coherence.
straint associated with the canonical ensemble makes the One naturally has to ask whether the corresponding non-
problem easier. The following quote from CNB | makes thelinearity in BEC is due solely to atom-atom scattering, or if
point: “The N particle constraint is included naturally in the there is a nonlinearity even in an ideal Bose gas. As in CNB
present formulatin... . We emphasize that the present |, we shall see that the latter is the case. More generally we
work provides another example in which steady sf@e-  pose the following question: Is there a similar nonequilib-
tailed balancgsolutions to nonequilibrium equations of mo- rium approach for BEC in a dilute atomic gas that helps us in
tion provide a supplementary approach to conventional stainderstanding the underlying physical mechanisms for the
tistical mechanicge.g., partition function calculatiopsThis  condensation, the critical behavior, and the associated non-
is of interest since, for example, the partition sums in thdinearities? The answer to this question, as discussed in CNB
canonical ensemble are complicated by the restrictioN to 1, is “yes” [11]. The extended and improved treatment is the
particles. Stated differently, the present approach lends itseffubject of this paper.
to different approximations, yielding, among other things, a Thus we consider the cooling of an ideal noninteracting
simple(approximatganalytic expression for the ground state N-atom Bose gas confined inside a trap. The gas interacts
density matrix forN trapped bosons.” with a thermal reservoir at temperatufe As pointed out

(4a) Herzog and Olshanif20] noted that there was no above, most studies relating to this problem have been con-
known simple analytical expression for the canonical parti-cerned with the evaluation of the partition function. Of
tion function. course, the statistics of the Bose atoms in the ground state of
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a trap can be inferred from these partition functions. In gen- m+1
eral, there is a dearth of analytic expressions for the canoni
cal partition function for the ideal Bose gas. However, thanks
to WWGH, exact numerical results can be and have beer m
obtained.

As discussed in CNB | and further explained in Sec. Il of :
the present paper, we obtain a simple master equation for th m—1
density matrix of the Bose gas as it cools toward the ground
state via heat exchange with a harmonic-oscillator reservoir;  _ _G  (m+1) pn+Gum1 m pmt—Lm 7 pmtLans1 (m+1) s
The master equation for the distribution function of the con- '
densed bosonpno takes the form FIG. 2. Detailed balance equation and the corresponding prob-

ability flow diagram.

L1 (m+1) Pt Gm(m+1)pm

Lmmpm Gm-1mpm—1

Pny= ~ &{Kng(No+1) Py = Kng-1MoPng-1 As presented in Fig. 3, here we extend CNB | and obtain
improved analytical results for the distribution function of
+ - + " .
Hn NoPn, = Hny+1(No+ 1) P+ 1} @ the condensed bosons, and hence the partition function. As
. o shown in Sec. IV, Eq(5) can be extended and improved in a
and is seen to be similar to E@) for the laser. HerecH, ~  natural way; see Fig. 3. We then find the following expres-
and«K are the heating and cooling coefficients with anal-sions for the condensate distributigry  and the partition

ogy to the cavity loss and saturated gain parameters in thiinction Zy:
laser master equation. These coefficients depend upon trap

parameters such as the shape of the trap, the total number of _ 1 (N=ne+H/mp—D! [ 7 N="o ©
bosons in the tragd), and the temperaturt. Png Zy (HIp=1L)'(N=ng)!'\ 1+ 7n '
Simple analytic expressions fdn‘no and Kn, Can be de-
rived under various approximations and for various trap B EN: N—no+H/n—1\/ 5 \N"o
shapes. In CNB |, simple closed form expressions were de- ZN_n = N—n 1+7 ' @
0 0

rived for these coefficients for a three-dimensiofs) har-

monic trap. These expressions yield good qualitative agregyhere {)=r!/s!(r—s)!. The parameteré{ and are given

ment with the exact results, and yield insight into, for for different trap potentials in Section V; in particular, for the
example, the meaning of the “critical temperature” for a harmonic trap,

mesoscopic system; see Sec. VII. In the weak trap limit Eq.

(4) is given in CNB | as —yt 1 g
7 (20 (efn—1)2° ®
% bnoz ~[(N+1)(ng+1)—(n+ 1)2]I0n0 This “approximate” result is in excellent agreement with the

exact numerical results for a wide range of parameters.
In Fig. 4—6, we present numerical comparison of the ex-
act results for the distribution of condensed atops, with

3 these approximate explicit formulas in the particular case of
N[nopno—(n0+ 1)pn0+1], (5) three-dimensional isotropic harmonic tréggee Sec. V Afor
various temperatures. The results indicate an excellent agree-
ment between the exact results and the results based on qua-
sithermal approximation. We also plot the mean valng)
Fig. 7) and the variance squareth? (Fig. 8). In all cases
the present approximate analytical results agree almost per-
fectly with the exact numerical ones.

The master equation approach of this paper also yields
analytic results for the partition function, critical tempera-

1 ture, and distribution function for the condensed bosons for

H:{n}zﬂ m' various shapes of the trap potential. Although we confine
ourselves to a noninteracting Bose gas, the master equation

B approach provides a potentially powerful tool for studying
Whereﬂ—l/T and{n} denote the_ guantum numbers appro-gec jn systems with interacting gases as well. This will be
priate for the chosen trap potential, e.g., for a harmonic trap her discussed elsewhere

e(in}) =fiw(n+1+m). In such a case, the steady-state SO- e paper is organized as follows. In Sec. Il we present
lution to Eq.(5) may be written as the “ideal gas plus reservoir” model, and outline the master
Nen equation approach to the description of the condensate in the
_ i HTTo canonical ensemble. We also present an explicit expression
Png Zy (N=ng)! - for the canonical partition function. In Sec. Ill we give the

+L(N+1)no— ng]pnofl

-
T
where T is the temperature of the heat bath andis the
transition temperature. The physical meaning of the terms i
Eq. (4) as flow of probability is given in Fig. 2.
Upon relaxing the restriction to a weak trap the “heating
rate” term (T/T)°N in Eq. (5) is replaced by
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System Coefficients Physics
Laser A : Liftear stimulated emis- AN~ W
sion gain '
Gn=A0+4&(m+1)]? Gain
B : Nonlinear saturation AN~ AAAAA
i
L,=C Loss
C : Loss “through” mirrors  ~VVW\ M ANA
BEC: Low temp limit (OCNB I) N atom cooling coefficient
due to spontaneous emission
CGm=>Kp=N+1-(ng+1) of phonons, adds atoms to 2" MM~
condensate. 1

N atom heating coefficient

due to phonon absorption

from bath at temperature T AN~ £
removes atoms from conden- )
sate.

Lo = Hpy = Yyle% — 171 =

~ N(T/T.)® weak trap

BEC: With cross excitations (CNB II) | N atom cooling coefficient

due to stimulated emission £ AAAA-
G = Kp, = of phonon as enhanced by VVVv- 2 AN~

[N+1-(no+D)][1+7) atoms. 0

N atom heating coefficient
Ly = Hpy=H+(N-no)n due to absorption of phonon.
Absorption rate is enhanced g
by (N — ng)n due to inter- AN~ 2
action with multiple phonons o
1 = “cross-excitation” parameter. (stimulated absorption) and

increased absorption due to

presence of atoms.

FIG. 3. Physical interpretation of various coefficients in the master equations.

steady-state solution to the master equation in the simplestase of an interacting gas which includes usual many-body
low-temperature approximation, and in Sec. IV in a moreeffects due to interatomic scattering will be discussed else-
complete and accurate quasithermal approximation. Main pawhere.

rameters of the different traps that determine statistics of the Thus we study the so-called canonical ensemble problem.

BEC are presented in Sec. V. Condensate statistics in thg describes, in some sense, an intermediate situation as com-
thermodynamic limit is summarized in Sec. VI. Dynamics pared with the microcanonical ensemble and the grand-
and mesoscopic effects in BEC are discussed in Sec. VII. Iganonical ensemble. In the microcanonical ensemble, the gas
Sec. VIII, we dlsc_uss the prospgcts for further applications ofg completely isolated,E=const andN=const, so that
the master equation approach in the BEC problem. there is no exchange of energy or atoms with a reservoir. In
the grand-canonical ensemble, only the average energy per
Il. MASTER EQUATION FOR AN IDEAL BOSE GAS atom, i.e., the temperatufeand the average number of at-

We consider the usual model of a dilute gas of Bose at®MS(N) are fixed. In such a case there is an exchange of
oms when interatomic scattering is neglected. This ideaPOth energy and atoms with the reservoir.
Bose gas is confined inside a trap, so that the number of The ideal gas plus thermal reservoir model provides the
atoms,N, is fixed but the total energy, of the gas is not Simplest description of many qualitative and, in some cases,
fixed. Instead, the Bose atoms exchange energy with a reguantitative characteristics of the BEC. In particular, it ex-
ervoir which has a fixed temperatufe This “ideal gas plus plains many features of the condensate dynamics and fluc-
reservoir’ model allows us to demonstrate most clearly thetuations. In the present paper, we shall focus mainly on the
master equation approach to the analysis of dynamics arldtter problem. The predictions of the grand-canonical en-
statistics of BEC, and, in particular, the advantages and typisemble model are not relevant in this respect to the actual
cal mathematical tools of the method. Its extension for theBEC propertiegsee, e.g., the nice review in R¢8]).
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FIG. 4. The distributions of the number of atoms in the ground FIG. 5. The same as in Fig. 1 for a harmonic isotropic trap with
level of a trap,py,, for different approximationgdashed lines for N=200 atoms.
the low-temperature approximatidB0), solid lines for the quasi-
thermal approximatiort40), and dots for the numerical simulation
of the exact relation$44) and (46)] at different temperatures for a
harmonic isotropic trap wittN=1000. whose spectrum is dense and smooth enough. The interaction

between the gas and the reservoir is described by the inter-
) action picture Hamiltonian
A. “ldeal gas plus thermal reservoir” model

For many problems a concrete realization of the reservoir V=" g; ublaale @it He, (9)
system is not very important if its energy spectrum is dense T S
and flat enough. For the sake of simplicity, we assume that
the reservoir is an ensemble of simple harmonic oscillatorsxvhereb;r is the creation operator for the reservjparscillator,
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0 0 02 oa 0.6 0‘8 1 FIG. 7. The normalized average number of atoms in the ground
’ ) ' ) level of a trap,{(ny)/N, vs normalized temperatur€/ T, under
no /N 0 c

various approximationgdashed lines for the low temperature ap-
FIG. 6. The same as in Fig. 1 for a harmonic isotropic trap withProximation (30), solid lines for the quasithermal approximation
N=20 atoms. (40), and dots for the numerical simulation of the exact relations
(44) and (46)]. Harmonic isotropic trap with@ N=20, (b) N
and aﬂ anday (k#0) are the creation and annihilation op- =200, and(c) N=500.
erators for the atoms in tHah level. Heres v, is the energy
of thekth level of the trap, and; \ is the coupling strength. _ i
. Protal(t) = — %[V(t)aptotal(t)]- (10
B. Bose gas master equation
The motion of the total gas plus reservoir system is gov-
erned by the equation for the total density matrix in the in-Integrating the above equation and insertip@) into the
teraction representation, commutator and tracing the reservoir, we obtain the exact
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FIG. 8. The variance of the number of atoms in the ground leve
of a trap vs normalized temperatuféT., under various approxi-

mations[dashed lines for the low-temperature approximatid®),

solid lines for the quasithermal approximati@0), and dots for the
numerical simulation of the exact relatiori44) and (46)]. Har-

monic isotropic trap with@ N=20, (b) N=200, and(c) N=500

atoms.
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where Ty Stands for the trace over the reservoir degrees of
freedom. In Eq(11) we omit the term Tgd V, piora(t=0)1,
which is zero sinC@;u2(0)=p(0)® pres(0).

We assume that the reservoir is large and remains un-
changed during the interaction with the dynamical subsystem
(Bose gas As is discussed in Appendix A, the density op-
erator for the total systerfgas plus reservoircan then be
factored, i.e.pia(t’)~p(t') @ pres, Wherep,osis the equi-
librium density matrix of the reservoir. If the spectrum is
smooth, we are justified in making the Markov approxima-
tion. We then obtain the following equation for the reduced
density operator for the Bose subsystem:

. K
P==3 > (mat+Dlajaalap
i
—2alawpala + pajajalay]
K
T T
-— a.alaa
2% nalaka) ajagp

—2ajalpaal +paalaal]. (12)

In deriving Eq.(12), we replaced the summation over reser-
voir modes by an integration with the density of reservoir
modesD (w,), and neglected the frequency dependence of
the coefficientc=2mwDg?/#?; see Appendix A. Here

=1 @) = Tred (@) b(wy) =[exphog/T)—1]*
(13

is the average occupation number of the heat bath oscillator
at frequencyw, =v,—v,. Equation(12) is the equation of
motion for the Bose gas with a fixed number of atokhs

C. Condensate master equation

What we are most interested in is the probability distribu-
tion

Pny,= E pno,{nk}nO (14

{nk}no

of the number of condensed atomg, i.e., the number of
atoms in the ground level of the trap. Here we introduce the
probability of havingn, atoms in the ground level ana
r’:ltoms in thekth level,

pno,{nk}noz<n01{nk}nO|P|n0!{nk}n0>! (15

as a diagonal element of the density matrix in the canonical
ensemble whergy+ =~ ong=N and|n0,{nk}no) is an arbi-
trary state ofN atoms with occupation numbers of the trap’s
energy levelsn,, subject to the condition that there arg

equation of motion for the density matrix of the Bose atomsatoms in the ground state of the trap.

subsystem,

. 1t
p(t)=— ﬁfodt/ TredV(1).[V(t"),prora(t)]] (1)

In order to obtain an equation of motion for the conden-
sate probability distributiorpno, we need to perform the

summation over all possible occupatio{m;K}no of the ex-
cited levels in the trap. The resulting equation of motion for
Pn, IS

023609-7
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dp d
nOZ—K z 2 apno:_K{Kno(n0+1)pn0_Knofln0pn071
dt {Nitn, K>1>0

+H,n —H npt+1 , 20
X{(77kl+1)[(nl+1)nkpn0,{nk}n0 No Opn0 n0+1( 0 )pn0+l} ( )

where
MM DPag -1k
+ 7l MMt 1)Prg oy, Kno= 2 (7 + (M), (21)
k'>0
_(nl+l)nkpn0,{. T T T .}no]}
=2 7Nyt 1), (22
k’>0
-k X X [(r +1)(No+1)Nyr Py, kg _ o
{Nitn, k>0 We can obtain the steady state distribution of the number
1 1 of atoms condensed in the ground level of the trap from Eq.
~ (e DNo(Me + 1Py 10+ 5o (20). The mean value and the variance of the number of
condensed atoms can then be determined. It is clear from Eq.
+ 77k’n°(nk’+1)p”c»{nk}no (20) that there are two processes: cooling and heating. The
cooling process is represented by the first two terms with the
= (ot DN Prg 14y — 501411 (16 cooling coefficientk,, , and the heating by the third and

fourth terms with the heating coefficiebt, . The detailed
where 7, = 7(v/) and the sumX,, runs over all excited balance condition yields the following expression for the

levels. number distribution of the condensed atoms
To simplify Eq. (16) we assume that the atoms in the

excited levels with a given number of condensed atogs K,
are in an equilibrium state at the temperattire.e., Pn,= Po iljl H, - (23

h Next we note that

ex E Vi Nk
Té& D
pno,{nk}noz pno [{ 7 2 ,) ) (17) NoNitn,
expg — = L 1 .
{0k T &o = 7N < no,{nk}no ex;{ —zk fk”k/T) no,{nk}n0>,

where =, on,=N—n, and we assume that the sufy., SO that
runs over all energy states of the trap, including degenerate
states whose occupationg are treated as different stochas- Pno=N.fn =0y = 5— € ONT=—.
tic variables. Equatiorf17) implies that the sun®,- - in o= ing - Zyy Zy

Eq. (16) is equal to zero, since . . .
a. (16 q In view of this we rewrite Eq(23) as

(77kl+1)pn0,{nk}n0: 77klpn0,{...,n|+l ..... nkfl,...}nov Mo Ki_y N Kj—l N H,
Mo MO, H; Al H; K
(18) =1 i j=ngt+1l j k=ng+1 k—1
N H.
(77kl+1)pn0,{...,n|71 ..... nk+1,...}nO: nklpno,{nk}no- =PnN Al -
=Ng i—1

Equation(18) is precisely the detailed balance condition. TheHence the partition functioZN is determined by the normal-
average number of atoms in an excited level, subject to thization conditionZ, _o pn =1, that is,
condition that there arey atoms in the ground state, is equal

to N N K. -1
Zy=—= 3 H—l) : (24)
PN ng=0i=ng+1 i
pno {nk}n
(N Yng= Z Ny ———. (199 The functionsH; and K; as given by Eqgs(21) and (22)
Michng Png involve, along withzn,, [Eq. (13)], the function(nk,>nO [Eq.

' ' ~_ (19]. In the following sections, we shall derive closed-form
Therefore, the equation of motion fpp,  can be rewritten in  expressions for these quantities under various approxima-
the symmetrical and transparent form tions. The master equatiq0) for the distribution function
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for the condensed atoms is one of our main results. It yields 1 HN""o
explicit expressions for the statistics of the condensed atoms Pny= 7 (N—ng)!’
and the canonical partition function. N o

Under the above assumption of a thermal equilibrium foryherez, = 1/py is the partition function. It follows from the

(30

noncondensed atoms, we have normalization conditior®, p, =1 that
2 nk,ex — é ank ZN:eHF(N+ 1,H)/NI, (31)
{fiin, T &0
(N g = = F{ z ”) (250  where
exp — = VN -
{0 hn, T &0 F(a,x)=f t*~le ldt
X
In the next two sections we present different approximations . )
that clarify general resul23). is an incomplete gamma function.

The distribution(30) can be presented as a probability

Il LOW-TEMPERATURE APPROXIMATION distribution for the total number of noncondensed atoms,

=N-—ng:
At low enough temperatures, the average occupations in n N
the reservoir are small ang, +1=1 in Eq.(21). This sug- P — __*© N! H_ (32)
gests the simplest approximation for the cooling coefficient n=PN-n I'(N+1H) n!~

K :2 (n.=N-n 26 This looks somg_thing like a I_Dois_son distribution; however,

no 4 \k/ng 0 due to the additional normalization facta¥!/I'(N+ 1,H)
#1, and a finite number of admissible values of

In addition, at very low temperatures the number of noncon=0,1,...N, it is not Poissonian. The mean value and the

densed atoms is also very small, we can therefore approxirariance can be calculated from the distributi®®@) for an

mate(nk/)noJrl by 1 in Eq.(22). Then the heating coeffi- arbitrary finite number of atoms in the Bose gas:

cient is a constant equal to the total average number of

thermal excitations in the reservoir at all energies corre-

sponding to the energy levels of the trap:

(ngy=N—H+HNTYZ NI, (33
An3=(n3)—(ng)?>=H(1—({ng)+ 1)HN/ZyN!). (34

Ho=H, H=2>

) nk:kE (e"T—1)"1 (27 As we shall see from the extended treatment in Sec. IV,
>0 >0

approximationg26) and (27) and therefore the result83)

Under these approximations, the condensate master equ%r-]d (34) are clearly valid at low temperatures, i.e., in the

tion (20) simplifies considerably, and contains only one non-Weak_ trap I'r.n't’T<81’ wheree, is an energy gap betwee_n
trivial parameter}. We obtain the first excited and the ground levels of a single-particle

spectrum in the trap. However, in the case of a harmonic

d trap, result$33) and(34) show qualitatively correct behavior
giPre= ~ k{(N—ng)(ng—+ 1)pn,—(N=ng+1)Ngpp -1 for all temperatures, including>e¢, andT~T, [11].
+H[NoPn,— (No+1)pp 11} (29 IV. QUASITHERMAL APPROXIMATION

FOR NONCONDENSATE OCCUPATIONS

It may be noted that Eq28) has the same form as the At arbitrary temperatures, a very reasonable approxima-

equation of motion for the photon distribution function in aﬁion for the average noncondensate occupation numbers in
laser operating not too far above threshold. The |den'uf|cat|o,[he cooling and heating coefficienf&gs. (21) and (22)], is

is complete if we define the gain, saturation, and loss param- . ;
eters in the laser master equation &N+ 1), «, and«H, suggested by Ed29) in a quasithermal form,

respectively. The mechanism for gain, saturation, and loss

are however different in the present case. (nk)noz(N—no) 77k/ > me=(N—np)/[eT—1TH,
A laser phase transition analogy exists via Eheepresen- K

tation [21,22. A formal similarity with the laser equation (35)

leads to a Ginzburg-Landau-type free enefty9,21,22 wheres, =# vy, 7 is given by Eq(13) andX by Eq.(27).

G(1)=a(T)l +b(T)I?, (29) Equation(35) sgtisfies the canonical ensemble c.ons.,tral'nt
=ng+ 2~ oNk independently of the resulting distribution
wherea(T)=—(N—"H)/N andb(T)=1/2N for largeN near ~ Pn,: This important property is based on the fact that a qua-
T.. sithermal distributior{35) provides the same relative average
The resulting steady-state distribution for the number ofoccupations in excited levels of the trap as in the thermal
condensed atoms is given by reservoir[Eqg. (13)].
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In this approximation, the cooling and heating coefficientsAn accurate knowledge of the canonical partition function is

(21) and(22) are essential for the calculation of the microcanonical conden-
sate fluctuations by the saddle-point method, as was demon-
ny=(N—ng)(1+7), (36)  strated recentl§16] by a numerical comparison with exact
microcanonical simulations. If we start with the grand-
Hp,=H+(N—ng) 7. (37)  canonical partition function and apply the saddle-point ap-

_ o proximation twice, first to obtain the canonical partition

Compared with the low temperature approximati@®® and  function from the grand canonical one and then to invert Eq.

(27), these coefficients acquire an additional contribution(42) via Eq. (43), the result would be incorrect foE

(N—np)  due to the cross-excitation parameter <N%w; wherefw, is the energy of the first excited state
(see Refs[16,23). In principle, the knowledge of the ca-

) Z 39) nonical partition function allows us to calculate thermody-

Midng = H & (esk/T—1)2’ namic and statistical equilibrium properties of the system in
the standard waysee, e.g., Ref§3,24]).

Now the condensate master equat{@f) contains two non- There is a general relation between the probability distri-
trivial parametersH and »: bution of the number of atoms in the ground statg, and
dp the canonical partition functiofil5]
No
di w{(1+ 7)[(N=ng)(ng+ 1)p”o Zano(T) _ Zanofl(T)
= (N=ng+1)Nopn 1]+ [H+ (N=ng) 7]noPn, N
—[H+(N=ng—1)7](Ng+1)py 4 1}- (399  Which is obviously satisfied by our explicit formu(&0).
0 Previously, the closed-form expression for the canonical
The steady-state solution of E@9) is given by partition function(42) was known only for one-dimensional
harmonic trap$25,26]:
1 (N=ng+HInp—21)! [ 5 \NMo |
Pny= !
Zy (HIp—1)I(N=ng)! |1+ 9 Z(T)= H P (45)
oy i e
1| N-ng+—-1 n \N7ho
= Z_N m ) (40) In the general case, there exists only a recursion relation that
N—ng is quite complicated and difficult for analydi$5,24,27,28
where the canonical partition functiddy= 1/py is 1 N
' . ZNT) =5 2, Za(TIR)Zy-(T). (46)
N—ng+H/n—1\[ 5 \N"MNo k=1
Zn= 2 ( N — (41)
ng=0 Ng 1+ n

However, Eq.(46) can be used for numerical calculation of

The master equatiof89) for Pny: and the analytic ap- ';\f:i fgsngfonnigte fluctuations via relatighd) for up to, say

proximate expressiongl0) and(41) for the condensate dis-  pjstribution (40) can also be presented as a probability

tribution functionp, and the partition functioy, respec-  gjstribution for the total number of noncondensed atoms,

tively, are among the main results of this paper. As we shall=N—n,:

see later, they provide a very accurate description of the

Bose gas for a very large range of parameters and for differ-

ent trap potentials. Ph=Pn-n=7—
The canonical partition functiodl) also allows us to N

calculate the microcanonical partition functiéi(E,N) by

means of the inversion of the definition

n

n+H/in—1
n

_n
1+79

(47)

Distribution (47) has the form of the well-known negative
binomial distribution[29],

[

2 “ETO(E:N). (42)

- n

q"(1-q)M, n=0,1,2,..,%, (48

n+M—1)

In particular, for the isotropic harmonic trap with an eigen-
frequencyw this can be accomplished by an application ofthat was so named due to a coincidence of the probabilities

the saddle-point approximation to the contour integral: P, with the terms in the negative-power binomial formula
Zn 1 Z (n+tM-1
Q(E;N)=— dx, x=e /T (43 —= n 49
( ! ) 2 X1+E/hw X X=¢€ ( ) (1_q)M nZO n a ( )
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It has a semantic origin similar to that of the well-known sults (51) and (54) agree with the low-temperature approxi-
binomial distribution P,=(Y)(1—q)"g™ ", which was mation result$33) and(34) for T<e;. In this case the vari-
named after a Newton’s binomial formufay+(1—q)] ance\/ﬁg is determined mainly by a square root of the
=3M (M (1-q)"gM". Distribution (47) is a negative bi- mean valugn), which is correctly approximated by E(R3)

nomial distribution only in the limiN>(1+ 7)H. as(n)=N—(ng)~H.
The average number of atoms condensed in the ground
state of the trap is V. MAIN PARAMETERS OF DIFFERENT TRAPS
N As we have seen, the condensate fluctuations are gov-
(ng)= 2 NoPn,- (50 erned mainly by two parameters: the number of thermal ex-
Mo=0 citations’{ and the cross-excitation parameter They are
It follows, on substituting fop,,. from Eg. (40), that determin_e(_j by a single-particle energy spectrum of the trap.
0 We explicitly present them below for different traps. We
(oY =N—H+(N+H/7)po. (51  discuss mainly the three-dimensional case. A generalization

to other dimensions is straightforward and is given in Sec.
The centered moments of thmth order,m>1, of the VC.
number-of-condensed-atom and number-of-noncondensed-
atom fluctuations are equal to each other for even orders, and A. Harmonic asymmetric trap

hav ite signs for rders: N . .
ave opposite signs for odd orders The potential in the harmonic trap has, in general, an

<(n0_ﬁo)m>:(_l)m<(n_ﬁ)m>_ (52) asymmetrical profile in space,

The squared variance can be represented as Vor(X,Y,2) = T(x2w§+y2w§+zzw§ (58)
1 1 2 1

N
An3=(n?)—(n)?= Z n(n—1)P,+(n)—(n)%, (53)  with eigenfrequenciesw,,wy,w}=w, ©,=w,=w,>0.
n=0 Herem is the mass of the atom. The single-particle energy

and calculated analytically. We obtain spectrum of the trap,

_ gx=nko=h(kwwy+kjo,+K,w0,), (59
Ang=(1+ n)H—po(yN+H)| N+ n+
o= (1+7) Pol7 ) 7 1+29 can be enumerated by three non-negative integers
—p3(IN+H)?, 6a  (keky kgt =K, kyy,=0. We have
where 1
= — 60
H &0 ehkelT_ 1" (60
1 (N+HIp—1! [ 5 \N
Po=5— — (59
Zy NI(HIp—1)! 1+ 9 1
7H=2 (61)

is the probability that there are no atoms in the condensate. k>0 (etke/T—1)2
For the “condensed phase” in the thermodynamic limit, ] .

the probabilityp, vanishes exponentially if the temperature The energy gap between the ground state and the first excited

is not very close to the critical temperature. In this case onlytate in the trap is equal ©, =% w,. . .

the first term in Eq(54) remains, resulting in If the sums can be replaced by the integraentinuum

approximation, i.e., if Aw,<T, the parameterd{ and H

are equal tdsee Appendix B

Ang=(1+n)H= 2 (n2+(ny). (56)
k>0
T3 3
This result was obtained earlier by standard statistical meth- H= 730 mum (@)= (T_c> N, (62)
ods (see Ref[3] and references thergin Ty
It is easy to see that resuitt7) reduces to the simple T8 T\3 22)- (3
approximation(32) in the formal limit »—0, H/7p— o, 777_[:—(5(2)_5(3)):(_) NM
3 T (3)
when W30y, c '
(63)
F(N_n0+H/7]) H ~No
T(N+HIp)  \7p) (57 where a standard critical temperature is introduced as
The limit applies to only very low temperature¥<e;. T -4 wywyw,N s {(3)=1.2@ g(z):Tf_z
However, due to Eqs(27) and (38), the parametefH/ 7 ¢ £(3) ' D 6’
tends to 1 asf—0, but never to infinity. Nevertheless, re- (64)
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Therefore, the cross-excitation parametgris a constant, 2.724,2
independent of the temperature and the number of atoms, g1= 5 (73
and is given by mL
(2)—£(3) is the energy gap between the ground state and the first ex-
n= W~0-37- (65  cited state in the box.
Let us again consider first the casg<T and use the
The ratio continuum approximation. In the box, contrary to the previ-
ous case of the harmonic trap, the sum can be replaced by the
ﬂ: (3) 1)3,\' 66 integral only for the parametét, Eq.(71), leading to
n {2)-3)\ T, o s ”
mn¥8 Jr (3) (T
goes to infinity in the thermodynamic limit proportionally to - 47203 75 5= T_c N, (74)
the number of atomsl.
In the opposite case of very low temperatures,,neore we introduced the critical temperature
T<hw,, we have
2mh?
hwy hiwy hw, T.= 213_ 1 N2/3 (75)
H~exr{ - ? +EXF< - ? +ex;{ - T/ (67) ¢ (5(3/2))2/3m L2 7T(§(3/2))2/3
2hw, 2hw, 2hw, The second parameter has a well-known formal infrared di-
nH%eXp( T ) %— T ) exp ~ ) vergencd 3,17,30 and should be calculated via the discrete
(69) sum (see Appendix B
. : 2 2
W|th an exponentially good accuracy. Now the cross- TH=S l _ S l N3 76
excitation parameter; depends exponentially on the tem- ey 72(£(312))73\ Te '
perature and, instead of the number O[B@. (65)], is expo-
nentially small. The ratio where the coefficient
hwy fiwy ﬁwz) 2
- + -—=+ - 1
" exp( T) ex”( T exp( T S=2 = (7
- p( Zﬁwx> p( 2ho, p( 2hw2> Kok
exg — +exp — +exp — o o
T T T is simply the numberS,=16.53, and aontribution only
from the first term in the Taylor expansion of the denomina-
: ekoT _ 4 . 12 o i
becomes approximately a constant. The particular case of 4R In EQ. (72), &7 —1=¢g,k*/T+-- -, is important. In
isotropic harmonic trap is described by the same E5@— the box the cross-excitation parameter is not a constant, but
(69) if we substitutew, = vy = w,= ® goes to infinity in the thermodynamic limit proportionally to
: NG
B. Box (“homogeneous gas’) s 112
In a cubic box with a sizd., the energy spectrum of a n=——m|=| N (78)
: i . 72(£(3/2)3\ Tc
moving atom is similar to the spectrum of a free motion:
2 2k2H,2 The ratio
g = ———, k={ky,ky,k;}. (70
mL? B H_mUEPT o 79
n S Te

The difference is that an admissible momentum is quantized
and is enumerated by three integerso<k;<+o, i

—x, y, andz We then have also goes to infinity in the thermodynamic limit.

In the opposite case of very low temperatures e, we
have a situation similar to that in the harmonic trap. The

H=, % (71  Pparameters
KZ0 ealk IT_ 1'
€1
1 H~6 ex;{—T)<1, (80)
H=2, —Q==— 72
Y k;() (es¥T_1)2 (72) ,
€1
Where nH~6 ex;{ — T) <1, (81
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€1 T 2 ao.
nmeX[{ - ?)<1 (82) 77HI<T—> N20’/d 2(’7.d d 257d U'>d/2,
¢ r{=+1 g( —)
are exponentially small. The ratio T T
(90)
I =6 (83  Where
K d 21d
is now a constant. ( I1 ﬁwj)
=1
a5 d= 2 2
C. Power-law trap k>0 ek

~We now consider the general case af-dimensional trap  The traps with a dimension lower than the critical valde,
with an arbitrary power-law single-particle energy spectrum$a, can be analyzed on the basis of E(5) and (86) as
[15,16,31 well. We omit this analysis here since there is no phase tran-
d sition in this case.
8k=ﬁz wk?, k={kj; j=12....d}, (84) The cross-excitation parameter hgs different depen-
i=1 dence on the number of atoms for high>20, or low, d

. . ) _ <20, dimensions:
wherek;=0 is a non-negative integer and>0 is an index

of the energy spectrum. We assume<®;<w,<--- d d
<wy, SO that the energy gap between the ground state and fdo-1)=¢ o
the first excited state in the trap 4§ =% w,. We then have 7= d , d>20>0, (92)
&
1 g
H=2, ——, 85
K0 efx/T—1 @ 2-dic
N N2e/d-1 8.4 d<2o
n T. { 1 20, 257d .

1
H= —_—.
7 go (esk/T_1)2

H
(86) P
(92)
In the case=1<T, as in the box, the sum can be replaced ) )
by the integral only for the parametét [Eq. (85)] if d Therefore the traps with small index of the energy spectrum,
>0 0<o<d/2, are similar to the harmonic trdec. VA. The
’ traps with larger index of the energy spectrun®d/2, are

d\_, dio similar to the box with “homogeneous” Bose gas. For the
H=A{ (; T U:(T_ N, d>o, (87)  latter traps, the cross-excitation paramegegoes to infinity
¢ in the thermodynamic limit proportionally th>/4~1. The
where the critical temperature is ratio H/» goes to infinity in the thermodynamic limit only
for 0<o<d. In the opposite case;>d, it goes to zero. We
d obtain
N old r ;‘F 1 g
Tc:[Af(d/U) A (Hc )l”' 9 H [T\ 5(;)
hw: — = — |
o e - (Tc) N (d 1) g(d), d>20>0, (93
The second parameter can be calculated by means of this 7 7
continuum approximation only if &o<d/2, H T\ 2(do-1) 1 20
[ NZ(l*(r/d) r=+1
_ATd/O'( d 1 d ) Y TC (0
mH= Al P d\ 1207
x| ¢ ;> a,y, d<2o. (94)
T\ dlo Z(;—l)—é(;> _ o
:(_) N 0<o<d/2. (89 It is remarkable that BEC occurs only for those spatial di-
c d ' mensionsd> ¢, for which H/7—% at N—. (We do not
4 o consider here the case of the critical dimensibao, e.g.,

one-dimensional harmonic trap, where a quasi-condensation
If >d/2, it has a formal infrared divergence and should beoccurs at a temperatufie.~7% w;N/In N.) For spatial dimen-
calculated via a discrete sum, sions lower than the critical valud<o, BEC does not oc-
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FIG. 9. The third centered momexitn,—no)3), vs normalized FIG. 10. The fourth centered momexn,—no)"), vs normal

temperatureT/T,, under various approximationisiashed lines for 12ed temperatur@/T,, under various approximatiofidashed lines
the low-temperature approximati¢80), solid lines for the quasith- 1" the low-temperature approximati¢80), solid lines for the qua-
ermal approximatiori40), and dots for the numerical simulation of sithermal apprOX|mat|0(140), and dots for the_ ”Pme“c?" S|mula_t|on
the exact relationg44) and (46)]. Harmonic isotropic trap witita) of the exact relation§44) and (46)]. Harmonic isotropic trap with
N=20, (b) N=200, and(c) N="500 atoms. (8 N=20, (b) N=200, and(c) N=500 atoms.

cur (see, e.g., Ref[15]). Interestingly, even for the latter

case there still exists a well-defined single peak in the prob- H~ E e hojIT (95)
ability distribution Pn, at low enough temperatures. With the =1
help of the explicit formulas in Sec. IV, we can describe this
effect as well. d

In the opposite case of very low temperature<e, the H~ 2 e 2hoyIT (96)
parameters =1
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Ne_sllT 9 T dlo
7 ©7 (T—> N, d>20>0
An2~C ‘ e <T<T,,
are exponentially small. The ratio 0 T\? e ¢
—| N2o/d d<2co
Te
y 8 (101
—~ > e hemelT_g (99)
7 =1 old

d
Anéw(n)wzl exp{ S

[H?:le]lld

{2

W . T<eq, (102

becomes a constant.

Formulas (84)—(98) for the power-law trap contain all
corresponding formulas for the three-dimensional harmonic
trap (d=3 ando=1; Sec. VA and box =3 ando=2;
Sec. VB as the particular cases. where C is a constant. From Eq101), we see that in the

In Figs. 4—6, we present numerical comparison of thehigh dimensional traps,d>20, e.g., in the three-
exact results for the distribution of number of atoms in thedimensional harmonic trap, fluctuations display the proper
ground level of a trappn, . with our approximate explicit thermodynamic behaviorAnéocN. However, fluctuations
formulas from Sec. IIC in the particular case of three-become anomalously large5,17,30, An3=N2?/>N, in
dimensional isotropic harmonic trdpee Sec. V Afor vari-  the low-dimensional trapsy<d<2¢. In the quantum re-
ous temperatures. The results indicate an excellent agreemegitme, when the temperature is less than the energy gap be-
between the exact results and the results based on quasithéreen the ground and first excited levels in the trap, it fol-
mal approximation. We also plot the mean va{ug) (Fig. lows from Eq. (102 that condensate fluctuations become
7) and the variance squareédh? (Fig. 8 as well as the third ~exponentially small. For all temperatures, when BEC exists
(Fig. 9 and fourth(Fig. 10 centered moments under various (d> o), the root-mean-square fluctuations normalized to the
approximations. In all cases our approximate results agre@ean number of condensed atoms vanish in the thermody-

X|T

1
—_
g

almost perfectly with the exact results. namic limit:
JAn3/<ng>—0 at N—oe, (103
Another remarkable property of the distribution function
V1. CONDENSATE STATISTICS obtained in Sec. IV is that it yields the proper mean value
IN THE THERMODYNAMIC LIMIT and variance of the number of atoms in the ground level of

_ S o the trap even for temperatures higher than the critical tem-
The thermodynamic, or bulk3], limit implies an infi-  perature. In particular, it can be shown that its asymptotics

nitely large number of atomd\—co, in an infinitely large  for high temperatures[>T,, results in a standard thermo-
trap under the condition of a fixed critical temperature, i.e.dynamic relation

Noywyow,=const in the harmonic trag, >N =const in the

box, andNII{_,w;=const in an arbitraryd-dimensional Ang~(ng), T>T,, (109
power-law trap with an energy spectrum indexThen BEC

takes place at the critical temperatufe (for d>o) as a that was known.from the gnalysis of the grand-canonical
phase transition, and for some lower temperatures the fact&nSemble[3]. This fact indicates that the present master
Do is negligible. As a result, we have the following mean equation approach to the statistics of the cooling Bose gas is

value and the variance for the number of condensed atomg/@luable in the study of mesoscopic effects as well, both at
T<T.andT>T.. Note that a recently developed so-called

Maxwell's Demon ensemble approach to the statistics of
1 BEC [14-1§ is valid only for temperatures well below the
(999  onset of BECT<T,, and is completely wrong fof>T,.

Ng)=N—H=N-— ,
< 0> <0 esk/T_l

L + E ! VIl. MESOSCOPICAL AND DYNAMICAL EFFECTS

50 eok/T—1 50 (ek/T—1)2" IN BEC
(100

And=(1+p)H=

In recent experiments on BEC in ultracold gaggk the
number of condensed atoms in the trap is finite, i.e., mesos-
which agree with the results obtained for the ideal Bose gasopic rather than macroscopi,~10°—1CF. Therefore it is
for different traps in the canonical ensemble by other authorinteresting to analyze mesoscopic effects associated with the
[3,15,16,30—3# In particular, we find the following scaling BEC statistics.
of the fluctuations of the number of condensed atoms: The mean number of atoms in the ground state of the trap
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with a finite number of atoms is always finite, even at high d(n) -1 _ _ _
temperatures. However, it becomes macroscopically large T =K2 ML+ PN +(nETLY) — (it
only at temperatures lower than some critical temperature, =0

T., that can be defined via the standard relation —<n{)+2)]+(— ) (H+ nN)<ni0+1
> n(T=H(T)=N. (109 — (=) nlng™))- (109
k>0

This equation has an elementary physical meaning, that is, it Similar moment equations in the low-temperature ap-
determines the temperature at which the total average nunfroximation(28) follow from Eq. (108) with »=0:

ber of thermal excitations at all energy levels of the trap
becomes equal to the total number of atoms in the trap. Re-
sults (40), (51), and(54) shown in Fig. 4—8, explicitly dem-
onstrate a smooth transition from a mesoscopic redfmite
number of atoms in the trapy<«), to the thermodynamic : . :

limit (N=2) when the threshold of the BEC becomes very —(no"%)+(=1)'""Hlng™ )} (109
sharp so that we have a phase transition to the Bose-Einstein

condensed state at the critical temperature given by Edrhe dynamical equation for the first moment, as follows
(109). This can be viewed as a specific demonstration of thgom Eq. (108), has the following form:

commonly accepted resolution to the Uhlenbeck dilemma in

his famous criticism of the pioneering Einstein papers on

d | -1 . |
<dnto> :K;o (D{N(ng) +(N—1)(ng"*

BEC [1]. d{ny) )
Although for the systems containing a finite number of gt~ KA+ N+ (N=1=7=H)(ng)—(ng)}.
atoms there is not a sharp critical point, it is useful to define (110

a critical characteristic value of a temperature in such a case
as well. It should coincide with the standard definitid05 .
in the thermodynamic limit. Different definitions far, were Near the critical temperatuFE%TC, the mean number of the
proposed and discussed [i85,12,36—42 We follow a hint condensed atoms is sma4h02><N, and it is reasonable to
from laser physics. There we know that fluctuations domi-"€glect the second momeft;) compared td\(no) and the
nate near threshold. However, we define a threshold inveiSPontaneous coolingspontaneous emission in lasetsrm
sion as that for which gaifin photon number for the lasing AN(1+ %) compared toxN(no). In this way, neglecting
mode equals loss. Let us use a similar dynamical approac|t|!uctuat|ons, we arrive at a S|m_ple equation for the competi-
for BEC on the basis of the master equation; see also RefiOn between cooling and heating processes:
[43].

We note that, for a laser operating near the threshold d(no)

whereB/A<1, the equation of motion for the probabilipy, eTE k(N—=H—n){no). (111
of havingn photons in the cavityEq. (1)] reduces t¢44,45
dpa = —[A(n+1)—B(n+1)2]p,+[An—Bn?]p,_; In analogy with the laser threshold we can define the cr[tical
dt temperaturél =T, as a point where cooling equals heating,
—Cnp+ C(N+1)posy, (106 i.e., d(ng)/dt=0. This definition of the critical temperature
whereA, B, andC are the linear gain, nonlinear saturation, H(Te)+ 7(Te) =N, (112

and linear loss coefficients, respectively. Equaiib®6) im-

plies the following rate of the change for the average photon
number is valid even for mesoscopic systems, and states that at

=T, the rate of the removal of atoms from the ground state
is equal to the rate of the addition, in the approximation
neglecting fluctuations. In the thermodynamic limit it corre-
sponds to the standard definitipkq. (64) for a harmonic
On neglecting the spontaneous emission térand noting  trap, and Eq(75) for a box trap. For a mesoscopic system,
that the saturation terr((n+1)?) is small compared to e.g., of N=10° atoms in a trap, the critical temperature as
(A—C){(n) near threshold, we define the thresh@dtical) given by Eqg. (112 is about 10% shifted from the
inversion to occur when the linear gain rate equals the lineathermodynamic-limit value, Eq$64), (75), (88). Other defi-
loss rate, i.e.A=C. nitions for T, also describe the effect of an effectiVg-shift
Similar to laser physics, the condensate master equatidr85,12,36—42and agree qualitatively with our definition.
(20) implies a coupled hierarchy of moment equations which  Note that precisely the same definition of the critical tem-
are useful in the analysis of time evolution. In the quasitherperature follows from a statistical mechanical point of view,
mal approximation(39), we find which in some sense is alternative to the dynamical one. We

%<n>=(A—C)(n)—B((n+1)2>+A. (107
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may define the critical temperature as the temperature an the present “ideal gas plus thermal reservoir” model. The
which the mean number of condensed atoms in the steadpresent model is rather close to the dildtée gas in porous
state solution to the master equation vanishes when negleajel experiment§4] in which phonons in the gel play the role
ing fluctuations and spontaneous cooling. We make the reaf the external thermal reservoir. Nevertheless, the noncon-
placement(n3)~(ny)? in Eq. (110 and obtain the steady- densed atoms always play a part of some internal reservoir
state solution to this nonlinear equatiamg)=N—"H— 7. and the condensate master equation probably contains terms
Now we see thatn,) vanishes at the same critical tempera-similar to those in Eq(20) for any cooling mechanism.

ture (112. The problem of dynamics and fluctuations of BEC for the
interacting gas is much more involved. The master equation
approach provides a very powerful tool for the solution of
this problem as well. Of course, to take into account higher-

It is interesting to note that the first results for the averagerder effects of interaction between atoms, we have to go
and variance of occupation numbers in the ideal Bose gas igeyond the second-order master equation, i.e., to iterate Eg.
the canonical ensemble were obtained about 50 years ago 1) more times and to proceed with the higher-order master
the standard statistical method82,33 (see also Refs. equation similarly to that we discussed above. It is possible
[30,34 and review[3]). Only later, in the 1960s, was the tO show[46] that the master equation approach allows us to
laser physics and its byproduct, the master equa’[ion a;jake into account all hlgher order effects in a way generaliz—
proach, developetsee, e.g., Ref§10,45). In this paper we ing @ well-known nonequilibrium Keldysh diagram tech-
have shown that the latter approach provides very simple andique[47—49. As a result, the second-order master equation
effective tools to calculate statistical properties of the ideapnalysis presented above can be justified rigorously, and
Bose gas cooling by the thermal reservoir. In particular, ou,higher-order effects in condensate fluctuations at equilibrium
results(51) and (54) reduce to the mentioned old results in @s well as nonequilibrium stages of cooling of both ideal and
the “condensed regionN— N >N.\/T/e, in the thermody-  interacting Bose gases can be calculated. These aspects of
namic limit. the problem will be discussed elsewhere.

However, the master equation approach gives even more. We mention here only an important result of an analytical
It yields simple analytical expressions for the distributioncalculation of all higher cumulantgnoments [18]. In most
function of the number of condensed atofis). (40)] and ~ casesexcept for the ideal gas in the harmonic trap and simi-
for the canonical partition functiotd1). In terms of cumu- lar high-dimensional traps wher>26), both for the ideal
lants, or semi-invariant$29] for the stochastic variablex, ~ BOSe gas and for the interacting Bose gas, the third and
or n=N—n,, we can show[18] that the quasithermal ap- hlgher cumu_lants of the number-of_-condensed-atom fI_uctua-
proximation(35), with results(51) and (54), gives correctly ~ tions normal|zed3to the corres;z)%gdmg power of the variance,
both the first and second cumulants. The analysis of th€-9- {(No—(No))*){(No—(ng))*)™* do not vanish in the
higher-order cumulants is more complicated, and includes ifl€rmodynamic limit. Thus fluctuations in BEC are not
principle a comparison with more accurate calculations ofS@ussian contrary to what is usually assumed. They are, in
the conditioned average number of noncondensed gams fact, anomalously large and constitute an important open
(19)] as well as higher-order corrections to the second ordeProblem in the physics of many-body systems.
master equatior{12). It is therefore clear that the master
equation approach is capable of giving the correct answer for
all higher-order cumulants and, therefore, moments of the
condensate fluctuations. In the present paper, we demon- ACKNOWLEDGMENTS
strated that even without these complications our approxi-
mate result40) reproduces the higher moments, calculated We thank Kishore Kapale for numerical simulations and
numerically via the exact recursion relatiot6), remarkably ~ for preparing the figures. We also thank G. Baym, S. A.
well for all temperatureI<T, andT~T, (see Figs. 8—10 Chin, R. Glauber, M. Girardeau, M. Holthaus, C. R. Hu, K.

As we demonstrated in Secs. Il and V, the simple formu-Huang, R. Hulet, W. Ketterle, D. Kleppner, W. E. Lamb, P.
las yielded by the master equation approach allow us té-€€, P. Meystre, J. Phillips, V. Pokrovsky, M. Wilkens, and
study mesoscopic effects in BEC for a relatively small num-C. N. Yang for helpful discussions. One of (M.S.Z)
ber of atoms that is typical for recent experimeffis More- ~ would like to thank W. Schleich for his hospitality at Uni-
over, it is interesting in the study of the dynamics of BEC versitd Ulm, where part of this work was carried out. This
(Sec. VII). This technique for studying statistics and dynam-work was supported by the Office of Naval Research, The
ics of BEC shows surprisingly good results even within theNational Science Foundation and the Welch Foundation.
simplest approximations. Thus the analogy with phase tran-
sitions and quantum fluctuations in lasdsee, e.g., Refs.
[10,11,21,2D clarifies some problems in BEC. The present
paper is largely devoted to the equilibrium properties of the
number-of-condensed-atom statistics which are relatively in-
sensitive to the details of the model. The origin of dynamical
and coherent properties of the evaporatively cooling gas with It follows, on substituting the expression forfrom Eq.
an interatomic interaction is conceptually different from that(9) into Eq. (11), that

VIIl. CONCLUSIONS

APPENDIX A: DERIVATION
OF THE MASTER EQUATION (12)
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+ bjpresblfl'alalp(t/)ak,ar'ei(wj—mkr|/)(t—t’)e—i(mk|—mkr|r)t)+ H.c.

) , (A1)

where we assumed that the reservoir has almost no change with the interaction with the system so that we can write
Protal(t’) = pre®@ p(t’ ) with pes being independent of time. We also uségb; ) es= (b bT Yes= 0. In thermal equilibrium at

temperaturer, (beJ Yes=[1+ 7(w))]16; j and(b*b Dres= M(w;) 8 jr , where (w;) is the average phonon number of the

reservoir at the frequenay; and is given by Eq(13). On replacing the summation over j by an integration and carrying out
the integration, we have

(t)——wg—D > (plwp)eCa e Ntaalaal p(t)
h? kiK1

+ (@) +1]e o aka af, p(t) ~ [ p(wer) +1]

x el (en= e alp(t)ayal, — plwg)e” (i eiMaalp(t)aea,, +H.c), (A2)
where it was assumed that the mode density for the reseBv(ir,,/) varies very slowly with frequency and can be
considered as a constabt The terms containing the fact@'(“ki~ k1) with w, # w,:» will average out in the double

summations. We therefore retain only those terms wiit+ w,,, in the above equation after taking out one summation. If we
definexk=27Dg?/#?, we obtain Eq(12).

APPENDIX B: DERIVATION OF EXPRESSIONS FOR »H
FOR DIFFERENT TRAPS

(a) For the harmonic potential,

1

"H:kgo (ehkolT_1)2° (BD)

For £,<T, the sum can be replaced by an integral, and we obtain
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fmdk J“f” dk,
nH= 0 2] 2wkt )T

foc dk,
X
0 (efia)xkx IT__ e—h(wyky+ wzkz)/T)Z

T & k+l(= =
_ — (k+2)h(@yky + 0 k,)/T
fiwy =0 k+2Jo deJO dkye Y
L ” 1 1 62
hlwgwyw, k=0 \ (k+2)2  (k+2)3)
We thus have
T3
nH=—S——((2)={(3)), (B3)
h ooy,
where
[ i ! (B4)
i)= -,
(i) & (kt2)
(b) For the box potential,
=> ! B5
G Y .
where
2m2h?
S1= 7 (B6)

is the energy gap between the ground state and the first ex-
cited state in the box. In the casg<T we cannot make the
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TZ T 2
H= =|—| S, B7
7 kz#:o gak* (81) ‘ (7
where
1
S,= >, —=16.53. (B8)
k20 k*

(c) In the power law tragEq. (84)] we have two cases:
0<o<d/2 ando>d/2. For 0<o<d/2, the expression for
nH is derived as in(a above and is given by Eq89),
whereas, fole>d/2, we retain only the leading term in the
summation as irfb) above and obtain E¢90), derived as in
(b) above.

In particular we note that

f f f(KT+ - +k)dky - - - dkg
0 0

[ (1)r

F —

_ g ” (dlo) -1
fo f(t)t dt.

(d) (B9)
l_‘ —
g
Also we have, forf(t)=1/(e'—1),
s t(d/o’)—l d d
J, el ) (510

and, forf(t)=1/(e'—1)3,

OGt(d/(r)—l d
[ aer| ]
0 (el—1)? o

243
fg--1 —gg}. (B11)

continuum approximation. However, we retain only the lead-

ing term in the summation, i.e.,

These equations readily yield Eq8.7) and(89).
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