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Manipulating spinor condensates with magnetic fields: Stochastization, metastability,
and dynamical spin localization
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We study the dynamical response of a spinor Bose condensate under the influence of external magnetic
fields. A rich set of phenomena are investigated such as stochastization in population evolution, metastability
in spin composition, and dynamical localization in spin space.
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I. INTRODUCTION

Multicomponent Bose-Einstein condensates have b
studied extensively for the past two years@1#. More recently
experiments on23Na condensates confined in an optical
pole trap@2,3# have stimulated great interests in the study
spinor Bose condensates—condensates with spin degre
freedom, represented by a vector order parameter. A va
of new phenomena have been predicted for these syst
such as spin textures, spin waves, superfluid flow, and ma
wave phase conjugation@4–6#. In previous papers, we hav
studied the ground-state spin structure and nonlinear s
mixing dynamics of such a system for the case of zero
plied magnetic field@7,8#. However, as has been suggest
@2,9#, the properties of the spinor condensate can be con
niently manipulated with weak magnetic fields, and no
behavior may arise. In the present work, we study the e
lution of the spinor condensate in the presence of exte
magnetic fields.

We describe our model in Sec. II. The main results
presented in Sec. III and Sec. IV, where the effects of lon
tudinal and transverse magnetic fields are studied, res
tively. Some concluding remarks are given in Sec. V.

II. PHYSICAL MODEL

We begin by introducing our physical model as presen
in Ref. @8#. We consider anf 51 spinor condensate trappe
in a cigar-shaped harmonic potential with tight confinem
in the transverse direction, i.e.,v'@vz , with v' , vz being
the transverse and longitudinal trap frequencies, respecti
~the trapping potential is assumed to be the same for all th
spin states!. The Hamiltonian of the system can be express
as @4,5#

H5E dr Ĉ†~r !~K̂1V̂!Ĉ~r !

1
1

2E dr1dr2 Ĉ†~r1!Ĉ†~r2!U~r1 ,r2!Ĉ~r2!Ĉ~r1!.

~1!

HereK̂, V̂ represent the kinetic energy and the external tr
ping potential, respectively,Ĉ5(Ĉ21 ,Ĉ0 ,Ĉ1)T, whereĈ j
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is the atomic field annihilation operator and is related to
wave functionc j via ^Ĉ j&5Njc j , with Nj being the par-
ticle number with spinj. The two-body nonlinear interaction
potential U(r1 ,r2)[d(r12r2)(F50

2 gFPF , where gF

[4p\2aF /m with aF being thes-wave scattering length in
the total spin F channel ~for 23Na, a2552aB , and a0
546aB @4#, whereaB is the Bohr radius!, PF is the projec-
tion operator that projects the pair 1 and 2 into spinF state.
For the trapping geometry considered here, we may appr
mate the wave function of spin statej ( j 50,61) as
c j (x,y,z,t)5f'(x,y)f j (z,t)e2 iv't, with f'(x,y) being
the ground state of the two-dimensional harmonic poten
mv'

2 (x21y2)/2. At zero temperature and zero magne
field, the equations of motion for the longitudinal wave fun
tion f j (z,t) may therefore be written as

i ḟ215Lzf211laNh~f0
2f1* 1uf21u2f211uf0u2f21

2uf1u2f21!,

i ḟ05Lzf01laNh~2f1f21f0* 1uf21u2f01uf1u2f0!,
~2!

i ḟ15Lzf11laNh~f0
2f21* 1uf1u2f11uf0u2f1

2uf21u2f1!,

whereN is the total particle number,la[(g22g0)/3, Lz5
2d2/dz21z2/41lsNh(uf21u21uf0u21uf1u2), ls[(2g2
1g0)/3, andh5* dxdyuf'u4/* dxdyuf'u25v' /(4pvz).
The above equations have been written in dimension
form and the units for length, energy, and time a
A\/(2mvz), \vz , and 1/vz , respectively. The first term
inside the bracket on the right-hand side of Eqs.~2! origi-
nates from the nonlinear spin-exchange interaction.

Assuming the initial particle number in spinj is Nj , we
study the dynamics of the system by taking the initial wa
function f j (z,0) to be the ground-state solutions of

Lz f j~z,0!5m f j~z,0!.

Apart from a normalization constant, the threef j (z,0) have
the same spatial profile and hence can be written
f j (z,0)5aj (0)f(z)5APj (0)eiu j (0)f(z), where Pj (0)
©2000 The American Physical Society02-1
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5Nj /N is the initial population in spinj, u j (0) the initial
phase of wave functionf j (z,0), andf(z) is assumed to be
real and normalized as* dzf2(z)51.

Generally, the population in each spin componentPj (t)
5* dz uf j (z,t)u2 executes complex oscillatory behavior f
miliar in a nonlinear system. However, under certain con
tions, we have shown thatf j (z,t) does not evolve with time
except for an overall phase change. Hence,Pj (t)5Pj (0).
This happens when the population and phase of the con
sate satisfy either of the following two conditions:

~A! P05 1
2 @12~P212P1!2# andu50,

~B! P215P1 andu5p,

where u[2u02u212u1. In fact, under these two specia
conditions@we will call them conditions~A! and~B!, respec-
tively#, the system can be shown to be in one of the nonm
ing eigenstates of the total Hamiltonian@8# in such a way
that the contribution of the nonlinear spin-exchange inter
tion appears as a constant energy shift for all the spin c
ponents, and hence population transfer among different
states does not occur.

III. EFFECTS OF LONGITUDINAL FIELDS

In this work, we study the effects of external magne
fields using this same framework. First, let us consider o
a longitudinal fieldB5Bl ẑ. Such a field will lift the energy
degeneracy of the spin states through Zeeman effect.
field introduces an extra term into the Hamiltonian:

HB52mB (
j 521

1 E d3r Ĉ j
†~ jg fBl1 j 2gf

(2)Bl
2!Ĉ j ,

wheremB is the Bohr magneton, andgf , gf
(2) are the linear

and quadratic Zeeman coefficients, respectively. For23Na,
mBgf50.7 MHz/G andmBgf

(2)52390 Hz/G2.
Figure 1 shows the population of spin-0 state as a func

of time, evolving in the presence of a uniform longitudin
magnetic field, where initially all three spin states are equa
populated. For small field strength@Fig. 1~a!#, the dynamics
are not very different from the zero-field case@8#: Popula-
tions in individual spin states oscillate with frequencies t
are dependent on the condensate phase. For large
strength@Fig. 1~b!#, however, a strong damping is observ
in the population oscillation. Specifically, the spin-0 sta
becomes highly populated and the dynamics of the cond
sate are no longer sensitive to the phase. Such behavio
be intuitively understood in the following manner: In th
presence of a uniform longitudinal magnetic fieldBl , the
quadratic Zeeman shift causes the energy of the two sp
atoms to be lower than that for a pair of spin-1 and sp
(21) atoms by 23390 Hz3Bl

2/G2 ~note that this pair still
has net spin zero in thez direction!. This makes the spin-0
state energetically favorable. With a largeBl and substan-
tially populated spin-(61) states, the magnetic Hamiltonia
HB can contribute enough energy to the system so tha
population is transferred fromP61 to P0, more highly ex-
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cited spatial modes can be excited as the condensate evo
Interference among these higher modes can cause an e
tive damping of the population oscillation, a process that
been referred to as stochastization. An analogous phen
enon was found in the two-component condensate system
Sinatraet al. @10#, where the two components initially havin
the same density profile were set into motion by an abr
displacement of their respective trap centers. For small
placement, a periodic oscillatory motion was found; where
for large displacement, strong nonlinear mixing induced c
pling to higher excitation modes, thus leading to damping
the relative motion of the two components.

In Fig. 2, we illustrate the effect of an inhomogeneo
longitudinal field. Particularly, we have chosen a field li
early dependent onz: Bl5B01B1z. Figure 2 shows the
population of spin-0 component, starting from two differe
initial states: ~1! the case where the entire condensate
placed in the spin-0 state;~2! the case where the condensa
is in a 50-50 mixture of spin-1 and spin-(21) components

FIG. 1. Population of spin-0 component as a function of time,
the presence of a uniform longitudinal magnetic field~a! Bl50.1 G
and ~b! Bl50.2 G. Initially, n15n05n2151/3, N520000, u
5p/2. Other parameters used in the calculation are:vz52p340
Hz, h51.

FIG. 2. Spin-0 population in the presence of a magnetic b
field B05200 mG, and gradientB15200 mG/cm. The initial state
is ~1! n050.998, n15n2150.001; ~2! n050.001, n15n21

50.4995. Other parameters are the same as in Fig. 1.
2-2
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@11#. We assume that the inhomogeneous magnetic fiel
imposed after the initial state is prepared, such that for b
cases, we can assume that the condensate has the sam
sity profile att50. From Fig. 2, one can see that the pop
lation approaches an equilibrium, but the evolution to t
equilibrium is quite different for different initial states. Whe
one starts with a pure spin-0 state, the condensate remai
that state for a certain amount of time before spin mix
takes place, depletingP0. On the other hand, starting from
the 50-50 mixture of spin-1 and spin-(21) states, the popu
lation for the spin-0 states grows immediately. As explain
by Miesneret al. @3#, such behavior can be understood
being caused by an interplay between a quadratic Zee
effect ~which makes the spin-0 state energetically favorab!
and the effect of the magnetic field gradient@which makes
the spin-(61) state energetically favorable by separati
them into spin domains at the ends of the condensate#. Case
~1! shown in Fig. 2 demonstrates the metastability of
spinor condensate in its spin composition.

IV. EFFECTS OF TRANSVERSE FIELDS

Next, let us consider the effects of transverse magn
fields. Different from the longitudinal field, the transver
field appears as a coupling between different spin com
nents. Without loss of generality, we choose the direction
the field to be along thex axis and the field strengthBx is
assumed to be weak, then its contribution to the Hamilton
may be written as

HB52mBgfBx ^ĈuL̂xuĈ&. ~3!

Figure 3 shows an example of the evolution of the po
lation as functions of time in a weak uniform magnetic fie
with longitudinal and transverse field strengthBz and Bx ,
respectively. Initially, the system is spin polarized such t
only the spin-1 state is populated. In this example, the fiel
on from t50 –5 and off aftert55. The population oscillates
when this field is present and remains unchanged after
turned off. Furthermore, we find that the condensate dyn
ics is independent of the total number of the atoms, and
the wave functions retain their initial spatial profile, i.e
f j (z,t)5aj (t)f(z). A closer examination shows that at an
given time t, the system satisfies condition~A! and as such

FIG. 3. Population as a function of time, in the presence o
uniform magnetic field withBz50.3 mG andBx50.3 mG. Initially,
n151, n05n2150. The field is turned off att55/vz .
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remains in a nonmixing eigenstate in the absence of m
netic fields. This explains why after the field is turned o
the population in individual spin states ceases to evolve,
coming ‘‘frozen.’’

Such a behavior can be understood as follows. The p
ence of a weak magnetic fieldB introduces an extra term into
the HamiltonianHB5const3B•L̂ . Notice thatL̂2 is the total
Hamiltonian in the absence of magnetic fields~apart from a
constant part! @7,8#. Hence, if we start the condensate in
eigenstate ofL̂2 ~for example, the state with complete sp
polarization!, the system will remain in an eigenstate ofL̂2

as long as the field is uniform, sinceL̂2 commutes withHB .
To describe the evolution of the condensate under these
ditions, we seek an expression for the time evolution of
field amplitudesaj (t). We can derive the equations of mo
tion of aj (t) from the HamiltonianHB ~again, the contribu-
tion from the remaining part of the Hamiltonian is a consta
energy shift, and can be neglected in dynamics!

i ȧ215bza212bxa0 ,

i ȧ052bx~a11a21!, ~4!

i ȧ152bza12bxa0 ,

where bz5mBgfB0 and bx5mBgfBx /A2. As we have as-
sumed that the field is weak, the quadratic Zeeman effect
been neglected. With the initial conditiona1(0)51,
a21(0)5a0(0)50, Eqs.~4! can be solved as

a21~ t !52
bx

2

vb
2 ~12cosvbt !,

a0~ t !52
bzbx

vb
2 ~12cosvbt !1 i

bx

vb
sinvbt, ~5!

a1~ t !5
bx

2

vb
2

1
bz

21bx
2

vb
2

cosvbt1 i
bz

vb
sinvbt,

where vb5Abz
212bx

2. As a self-consistency check, usin
aj (t)5APj (t)e

iu j , it is easy to see that condition~A! is in-
deed satisfied withaj (t) given by Eqs.~5! @12#.

From Eq. ~5!, we see that ifbz@bx , then P21(t)
'P0(t)'0 and P1(t)'1, i.e., the population becomeslo-
calizedin the initially populated spin-1 state. Such a beha
ior is not unfamiliar in condensed matter systems. For
ample, in a system of tight-binding electrons moving in
lattice with nearest-neighbor transfer, if one of the latti
sites is initially occupied by the electron wave packet, spa
localization, known as Wannier-Stark localization, will occ
under the action of a dc electric field@13#. However, a more
interesting phenomenon found in that system is the effec
dynamical localization~DL! studied by Dunlap and Kenkre
@14# and experimentally realized clearly, only recently,
optical lattices@15#. When the electric field is modulated a
E(t)5E0cos(vt), spatial localization will occur when

a

2-3
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J0(eE0a/\v)50, wherea is the lattice constant andJ0(x)
is the zeroth-order ordinary Bessel function. It is interest
to investigate whether a similar effect can be found in
spinor condensate.

To study this possibility, we investigate the dynamics
the spinor condensate under a weak uniform magnetic fi
with a time-independent transverse componentBx ~which
plays a similar role to the intersite transfer that couples
neighboring states in the electron lattice system! and a time-
dependent longitudinal componentBzcos(vt) ~which is
analogous to a time-dependent electric field in the electr
lattice system!. Again, we assume that only the spin-1 sta
is initially populated. Figure 4~a! showsP1(t) for two situ-
ations: ~1! J0(bz /\v)50, and ~2! J0(bz /\v)Þ0, where
bz5mBgfBz . Figure 4~b! displays the averaged populatio
in the spin-1 state as a function ofbz /\v. These figures
clearly demonstrate the effect of DL under a similar con
tion as found in the condensed matter system—populatio
localized in the initially occupied state whenbz /\v is a root
of the Bessel functionJ0(x) provided thatBz@Bx .

A few explanatory remarks are in order.~1! The dynami-
cal localization studied here occurs inspin spacefor the
spinor condensate case as opposed to position space fo
electron-lattice system considered by Dunlap and Ken
Furthermore, the spinor condensate has a finite numbe
states ~three states for anf 51 condensate!, while the
electron-lattice system contains an infinite chain. The
effect nevertheless persists. One can show that this e
will persist for times}1/bx , much longer than the typica
time scale of oscillations shown in Fig. 4. However, a fini
sized system will show a slow delocalization at long tim

FIG. 4. ~a! Population of spin-1 component as a function
time, in the presence of a uniform field withBx50.2 mG and
Bz(t)5Bzcos(vt), v55. Bz53.4 mG for curve~1! and Bz53.7
mG for curve ~2!. For curve ~1!, J0(bz /\v)50. ~b! Averaged
population of spin-1 component~averaged over a time period of 10!
as a function ofbz /\v. Bx50.2 mG,v55, andBz varies from 0
to 5.7 mG.
02360
g
e

f
ld

e

n-

-
is

the
e.
of

L
ct

-
s

even when the Bessel root condition is obeyed@see curve~1!
in Fig. 4~a!#. A similar effect has also been observed
finite-sized tight-binding chains by Raghavanet al. @16#. ~2!
The condition for localization depends on the specific tim
dependence of the magnetic fields. In general, one can s
that if the longitudinal field behavior isBz(t)5Bzcos(vt)
and the transverse field isBx(t)5Bxcos(2nvt), localization
occurs whenJ2n(bz /\v)50. On the other hand, ifBx(t)
5Bxsin@(2n11)vt#, we obtain localization when
J2n11(bz /\v)50. ~3! Curve~2! in Fig. 4~a! shows the sys-
tem experiencing delocalization in steps. This happens
cause at every half-cycle of the longitudinal field zero cro
ing, the spin states become quasidegenerate permitting r
tunneling of population induced by the transverse field.
simple Landau-Zener-type analysis@17# shows that the
amount of probability transfer~or spin delocalization! will
depend exponentially on the ratiobx

2/(vbz) and that this
transfer will be most pronounced when the energy levels
the spin states adiabatically cross. This also explains why
need to havebz@bx in order to observe the DL effect—i
this condition is not satisfied, at each zero crossing of
longitudinal field, substantial transfer to other spin states w
take place and the discrimination of the Bessel root condit
will be less effective.

V. CONCLUSIONS

In summary, we have studied in this paper the dynam
response of a spinor condensate under the influence of e
nal magnetic fields. By manipulating the applied fields, a r
set of phenomena can be studied, and dynamical contro
the collective spin states can be realized. We have sh
that a relatively strong longitudinal field may populate a su
stantial amount of higher excitation modes. The interfere
among these modes drives the condensate into an equ
rium, a signature of stochastization. Also we have shown
the approach to equilibrium depends on the initial prepa
tion of the system.

By applying a weak transverse field to a completely sp
polarized condensate, one can evolve the system into s
non-mixing states as described by conditions~A! and ~B!.
These states correspond to the eigenstates of the total Ha
tonian in the absence of magnetic fields. When the cond
sate is in such a state, the nonlinear atom-atom interac
does not affect the dynamics, and the condensate always
cupies the lowest spatial mode. Furthermore, the conden
responds linearly to the applied fields such that its evolut
can be described by a set of simple linear differential eq
tions @Eqs. ~4!#. With these interesting properties, a spin
condensate in such a state becomes very attractive for m
roscopic coherent quantum control, a subject we are n
studying using a fully quantum treatment.

Finally we have shown that dynamical localization in sp
space can be realized using time-dependent magnetic fi
Dynamical localization in position space was first propos
in condensed matter systems such as tight-binding elect
moving in a lattice subject to a time-dependent electric fie
but its experimental realization has been difficult. Our wo
shows that the spinor condensate provides an attractive
2-4
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tem to study such a phenomenon.
In this study, we assume the radial wave function to

the ground state of the transverse trapping potential. Suc
assumption is valid when\v' is larger than the nonlinea
interaction energy. For the parameters used in Figs. 1 an
these two quantities are comparable to each other. Howe
one can always increase the transverse trap frequenc
make the assumption valid~changingv' will modify the
value of parameterh). In future work, we plan to study the
A.
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full dynamics of the three-dimensional spinor condensa
including the possibility of radial evolution.
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