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Atomic Talbot interferometry as a sensitive tool for cavity quantum electrodynamics
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Atomic Talbot interferometry is shown to be potentially useful both for the experimental determination of
arbitrary electromagnetic cavity photon number distributions and for the demonstration of the quantum nature
of nearly classical light fields.

PACS number~s!: 03.75.Be, 39.20.1q, 42.50.Vk, 03.65.Bz
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I. INTRODUCTION

Technical advances in the field of cavity quantum elect
dynamics have led to the possibility of demonstrating so
of the most fundamental predictions of quantum theory
systems so simple that experiments formerly considere
be merely of the ‘‘gedanken’’ type have now become ac
ally feasible. In addition to providing textbook examples
some basic quantum-mechanical issues, the novel ex
mental methods have triggered a renewed interest in the
ceptual fundaments of our quantum description of natu
New questions related to quantum measurement theory
the borderline between the classical and the quantum w
have been raised. In this paper we address both these q
tions in terms of two different experimental propositions f
the study of the quantum properties of the electromagn
field inside an optical cavity.

Several authors have shown how atoms crossing the
ity under inspection may be used as efficient probes of
photon distribution inside it@1–9#. Some of the proposed
schemes make use of the fact that in the optical regime,
~statistics-dependent! diffraction of atoms off a nearly reso
nant light field is easily observable, contrary to the mic
wave regime, where such mechanical effects would be m
too small to be detectable. Still, the fact that the measu
diffraction pattern depends on the quantum properties of
scattering field does not imply that its statistics can be r
off simply and unambiguously. In Ref.@9#, for instance, it is
shown that the atomic near-field diffraction patterns p
duced behind a far-off detuned~quantized! standing light
wave may contain all, or absolutely no, information abo
the governing photon statistics, depending on the distanc
which they are observed. Although it is, in principle, simp
and straightforward to extract from the detected atomic s
tial distribution ~measured at some proper distance beh
the light field! all information needed for the determinatio
of the photon statistics, the practical implementation of su
a scheme is technically difficult due to the required hi
spatial detector resolution. If, on the contrary, the atoms
observed in the far field, resolution requirements become
severe, but the need to detect all diffraction orders in orde
reconstruct the light field statistics again makes such
scheme impractical. In addition, far-field approaches do
generally allow a simple deconvolution of the informatio

*Electronic address: bernd@if.ufrj.br
1050-2947/2000/61~2!/023601~9!/$15.00 61 0236
-
e
n
to
-
f
ri-
n-

e.
nd
ld
es-

ic

v-
e

he

-
ch
d
e
d

-

t
at

a-
d

h

re
ss
to
a
t

stored in the arising diffraction pattern.
A viable compromise may be achieved using the Tal

interferometrical setup, which is the subject of the pres
paper. In this scheme a second, but classical~laser!, standing
light wave is introduced as shown in Fig. 1. If the atom
flux diffracted into the zeroth~far-field diffraction! order is
measured while the intensity of the laser is varied, inform
tion on the quantum field is gained. Although the way th
information must be retrieved from the data is, from a the
retical point of view, less satisfactory than in a near-fie
approach, the relative simplicity of the method, from an e
perimental point of view, makes it a better candidate for
actual realization.

A particularly interesting aspect of our scheme is tha
can also be used to null-test the quantization of electrom
netic fields, even if substantially more than just a few ph
tons are involved. While unambiguous experimental dem
strations of light quantization exist in some few-phot
systems@10#, the quantum nature of a macroscopic field
difficult to prove due to the correspondence principle.
‘‘quantum lens’’ originally proposed to demonstrate phot
discreteness even in the classical limit@11# turned out not to
serve this purpose@12# because of a general tendency, in th
limit, of quantum features to get washed out. Our w
around this problem consists of considering a situation
which the correspondence principle predicts a vanish
measuring result. If an experiment reports anonzeroresult,
this would indicate that quantum mechanics is at play. In a
realistic experiment, however, different sources of aberra

FIG. 1. Basic scheme of the proposed atomic Talbot interfero
eter. The atoms are detected in the diffraction far-field.
©2000 The American Physical Society01-1
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can mimic a quantum signature of the analyzed light field
is thus necessary to identify these sources in order to
mate their influence and to visualize ways to get them un
control.

The paper is organized as follows. First, in Sec. II, t
concept of Talbot interferometry will be introduced, wi
special emphasis on its atom-optical realization. In Sec.
far-field diffraction off a quantized light grating will be stud
ied with and without a second, classical light field in plac
Section IV discusses how a quantum nondemolition~QND!
measurement could be performed with the described app
tus. Section V is devoted to the detection of a quantum
nature~without an actual measurement of the photon sta
tics! when a ‘‘macroscopic’’ field is being analyzed. Finall
in Sec. VI, we try to identify the most important sources
aberrations, estimate their importance, and propose way
eventually circumvent them.

II. TALBOT INTERFEROMETRY

Moiré fringes are an optical phenomenon that arises w
the shadows of two or more consecutive gratings superp
Quite generally, geometrical shadows are expected when
light wavelength is substantially smaller than the involv
grating constants. As these are reduced, diffraction eff
start to become increasingly apparent, and simple shad
will only be expected in the proximities immediately behin
a grating. However, in a first-order approximation beyo
geometrical optics, a notable exception shows up. In addi
to the expected proper shadows at short distancesz!D be-
hind the grating, whereD is the fundamentalTalbot length

D5
2lx

2

lz
~1!

and lx and lz denote the grating constant and the wav
length, respectively, additional ‘‘shadows’’~self-images! of
the grating emerge at integral and half-integral@13# multiples
of D. Since it was discovered in 1836@14#, this Talbot effect
has been extensively studied and applied. A concise in
duction and overview can be found in Refs.@15,16#. For our
present purposes it is enough to know that a pair of ident
gratings separated from each other by a distanceD ~or D/2)
can produce Moire´-like fringes even in a domain where di
fraction dominates. We note that at other intermediate
tances the diffraction patterns can become arbitrarily co
plex, and do not lend themselves to such a simple pictur
must also be emphasized that, sinceD depends on the wave
length, in order to observe Moire´ fringes in a diffraction-
dominated regime a well-monochromatized source is man
tory. For an isotopically pure atomic beam, this implies th
from now on we will assume that its velocity distribution h
been sufficiently compressed around some average valuevz .

That a pair of gratings separated byD ~or D/2! can be
used for interferometrical purposes was first pointed out
demonstrated by Lohmann and Silva@17#. A series of appli-
cations of these opticalTalbot interferometers~TIs! are dis-
cussed in@15#. If light waves are replaced by atomic d
Broglie waves and the grating period is correspondin
02360
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scaled down, one obtains theatomicTI introduced in@18,19#
and thoroughly analyzed in Ref.@20#. We will skip a further
discussion of this kind of TI because they all useamplitude
gratings, which will not be the subject of the present pap
On the contrary, and as we will briefly derive in the ne
section, a standing light wave which is strongly detun
from a given atomic transition acts as a pure phase gra
for atoms. Far-field diffraction from such a grating made
light was demonstrated in Refs.@21,22#. To date, and to our
knowledge, a corresponding study of the near field and
self-imaging phenomena has not been reported.

The Moiré and Talbot effects do not depend on the sp
cific nature of the gratings producing them. In order to vis
alize this, let us consider the two above-mentioned m
common gratings in current atom optics. The transmiss
function of a microfabricated grating with open fraction 1/
for instance, is the periodic repetition,T(x)5T(x1lx), of
the unit cell

T~x!5 H0 for 2lx/2<x,0
1 for 0<x,lx/2. ~2!

An identical second grating placed atz5D/2 will produce
Moiré fringes which depend on the relative displacement
the two diffraction structures. Since the Talbot shadow of
first grating is displaced by half a grating period at this d
tance, a second grating at this position will absorb all ato
if unshifted with respect to the entrance grating.

A phase grating, on the contrary, is inherently transpare
Under the circumstances specified in the next section
standing light wave~wavelengthl) in atom optics is de-
scribed by a transmission function of the form

T~x!5eiAsin2~2px/l!, ~3!

where the numerical constantA depends on the physical pa
rameters of the interaction. Using a terminology reminisc
of ultrasonically produced gratings, we callA the Raman-
Nath parameter@15#. Note that the grating periodlx5l/2.
Such a grating corrugates the incident plane wave by su
imposing to it a position-dependent phase. The process
be reversed by placing a second, identical grating at half
Talbot distance behind the first one, as schematized in Fig
Ideally, the decorrugation is perfect and a new plane w
exits the two-grating configuration. If this TI is hidden in
black box, it looks like nothing ever happened to the atom
beam.

In the far field, a single grating may be looked at as
multiple beam splitter. From such a point of view, a pha
grating TI may be seen as a multiple beam interferometer
which the first grating acts as the splitter and the second
as the beam merger. No mirrors are necessary, since the
ous diffraction orders are not physically separated at
near-field position of the recombining grating, making th
entire picture somewhat artificial. A true multiple beam ato
interferometer based on light gratings will be presented e
where@23#.
1-2
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ATOMIC TALBOT INTERFEROMETRY AS A SENSITIVE . . . PHYSICAL REVIEW A 61 023601
III. ATOMIC DIFFRACTION
FROM STANDING LIGHT FIELDS

The diffraction of atoms by quantized and classical lig
fields has been thoroughly studied in previous papers@24#.
Our brief introductory presentation here is mainly intend
to define the physical situation and our particular notation
order to reduce the problem to a one-dimensional conse
tive one, a series of assumptions have to be made. First
intrinsically three-dimensional spontaneous-emission p
cesses must be eliminated. This can be achieved by detu
the cavity far enough from the atomic resonance freque
and by preparing the atoms in their ground state, in wh
they will then remain all the time. Second, the atomic velo
ity vz along the beam’s propagation axisz should be so large
that a classical treatment of this motional degree of freed
becomes possible. In essence, this amounts to a parame
tion of the coordinatez through the time variablet. If L
denotes the interaction length of the cavity@25#, this defines
an interaction timet int[L/vz . The only nontrivial dynamics
then takes place in the orthogonalx-y plane. If we addition-
ally assume that the system is uniform alongy, the ‘‘effec-
tive’’ one-dimensional Hamiltonian

Heff.
px

2

2M
1

\ug~x!u2

D
a†a ~4!

provides a good description of the atom-light interactio
Here M is the atomic mass,D the detuning, andg(x) the
position-dependent coupling withoneeigenmode of the cav
ity. Its quantum nature is described by the pair of ladd
operatorsa and a†, @a,a†#51. The precise field geometr
inside an optical cavity consisting of a pair of spherical m
rors can be rather complex@26#, but under suitable condi
tions we can approximate the field close to its center by

g~x!5g sinS 2p
x

l D ~5!

times a Gaussian-shaped turn on/off in thez direction @25#.
We will expand states in terms of the product basis,

(
n50

` E
2`

`

dx8un,x8,t&^n,x8,tu51, ~6!

^n,x8,tum,x9,t&5dnmd~x82x9!, ~7!

of eigenstates ofa†a and x. Throughout the paper, gree
indices will refer to the photon degree of freedom. If
entrance aperture functionf (x) is used to describe the shap
of the atomic de Broglie wavefront before entering the c
ity, which in that instant is assumed to be in an arbitrary st
(wnun&, the initial wave function will be written

^n,x,t52t intuc&5wn f ~x!. ~8!

We define a grating as an optical element which multipl
an incoming wave with a given periodic functionT. Then our
situation of interest, where the interaction~4! describes a
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phase grating for atoms, corresponds to the regime in wh
the semiclassical approximation@x,px#.0 can be applied.
One then obtains

^n,x,t50uc&5wnein(g2t int/D)sin2~2px/l!ei (\t int/2M )(d2/dx2) f ~x!
~9!

for the wave function at the exit of the quantized interacti
zone. If the entrance aperturef is smooth and broad enough
the second exponential, which describes the free evolutio
the wave function inside the interaction region, may be
glected. Then

^n,x,t50uc&.^n,x,t52t intuc&ein(g2t int /D)sin2~2px/l!

~10!

satisfies our above definition of a grating and the transm
sion function is of the form~3!, with A5nQ, where

Q[
g2t int

D
~11!

is the maximal phase shift per photon. We assume throu
out the paper that the value ofQ is known by the experimen
talist.

In the near field, a wide aperture is also a necessary
quirement for the appearance of Talbot self-images. Idea
a plane entrance wave normalized to unity (f 51) propagates
freely, after interacting with the grating, according to

^n,x,t.0uc&5A M

i2p\tE2`

`

dx8ei [ M (x2x8)2/2\t]T~x8!.

~12!

It is not difficult to show that, in addition to the obviouslx
periodicity along the x axis, the wave function is
D-periodical along thez5vzt axis, whereD is obtained from
Eq. ~1! by settinglz equal to the de Broglie wavelengt
h/Mvz . For typical parameters~thermal atom velocities and
light grating constants of several 100 nm!, D is of the order
1023 to 1022 m.

It is natural to introduce rationalized coordinatesj,z,

x[lx

j

2p
, ~13!

z5vzt[D
z

2p
, ~14!

so that the rationalized wave function

cn~j,z![ K n,lx

j

2p
,
D

vz

z

2p Uc L ~15!

becomes doubly 2p-periodic. Since typical interaction
lengthsL satisfyL!D, for the sake of notational simplicity
we will consider the interaction to happen instantaneou
1-3
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B. ROHWEDDER AND M. FRANÇA SANTOS PHYSICAL REVIEW A61 023601
and introduce the convention that, at the light field positio
cn(j,z) refers to the moment immediatelyafter the inter-
action.

Using this notation, the identity

cn~j,p!5cn~j1p,0! ~16!

represents the mathematical expression of our previous c
ment that a shifted shadow of the grating is produced at
the Talbot distance. Equation~16! is a special case of a for
mula derived in Ref.@16#.

In the far field, a wide entrance aperture guarantees
tially well-separated diffraction maxima. Then the intens
uc j u2 of the j th diffraction order is obtained by evaluating th
Fourier decomposition of the transmission function, squar
the modulus of thej th Fourier component, and tracing ov
the photon degree of freedom, explicitly

uc j u25 (
n50

`

uwnu2Jj
2S nQ

2 D , ~17!

whereJj denotes a Bessel function.
In principle, in order to deduce the photon number dis

bution in the cavity, it would be necessary to measure
intensities of all atomic diffraction orders. In practice, th
would be extremely difficult to do. This need may be ove
come by adding a second, classical light field atz5p, i.e., in
a TI configuration with respect to the quantum field. As lo
as the semiclassical approximation that led from Eq.~9! to
Eq. ~10! may again be applied, the effective Hamiltonia
describing the interaction with the classical field reads

Heff5
\G2

D
sin2S j

2D , ~18!

whereG2 is proportional to the laser intensity. In analogy
the per-photon phase shiftQ produced by the quantized field
it is convenient to define the~maximal! phase shiftC pro-
duced by the classical field as

C[
G2t int

D
. ~19!

Using Eqs.~10! and~16!, the latter implying the approxi-
mation f .1 to be applicable, we obtain for the wave fun
tion after the second interaction

cn~j,p!5wneinQ sin2(j/2)eiC cos2(j/2). ~20!

In the particular case when the quantum field is in a Fo
stateuN&, a classical field tuned such thatC5NQ produces
a new plane wave at the exit of this atomic TI. A less triv
case arises when the quantum field is in a coherent state
an average ofN5^a†a& photons. Intuitively, for largeN one
again expects a plane atomic wave emerging from the T
the conditionC5QN is matched. This conjecture turns o
to be true, as will be explicitly shown in Sec. V. Deviation
which ~in the absence of other aberrational effects! would be
a signature of the quantum nature of the first light field,
best observed in the far field, where they produce measur
02360
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diffraction maxima away from the zeroth order. The far-fie
diffraction intensitiesuc j u2 for this TI are a straightforward
generalization of Eq.~17!,

uc j u25 (
n50

`

uwnu2Jj
2S nQ2C

2 D , ~21!

and correctly reduce to Eq.~17! asC→0. For the measure
ment of the photon number distribution in an arbitrary qua
tum light field, the presence of the classical light field do
not eliminate the in-principle problem that equations of t
form ~17! and ~21! cannot be analytically inverted so as
express the probabilitiesuwnu2 in terms of the measured dif
fraction intensitiesuc j u2. This seems to be a general draw
back of far-field approaches, as opposed to near-field m
ods @9#.

The advantage of introducing a classical ‘‘compensatin
field relies on the fact that the phase shiftC can be easily
changed by varying the intensity of the autoreflected la
beam. Instead of determining the complete atomic diffract
pattern, it is then only needed to measure the intensity of
undeflected~zeroth order! component whileC is scanned
over a reasonable interval. This represents an essentia
perimental simplification. The remaining theoretical pro
lem, the determination of the photon number statistics fr
the measured dependency ofuc0u2 uponC, will be the sub-
ject of the following section.

IV. ATOMIC TI AS A QND MEASUREMENT TOOL

Once the dependency ofuc0u2 upon the parameterC has
been determined experimentally, Eq.~21! can be used to
deduce the photon-number distribution inside the cavity.
principle, this could be done by treating the occupation pr
abilities uwnu2 as fitting parameters to be chosen in such
way that the right-hand side of Eq.~21! matches the mea
sured intensity curve (j 50) as well as possible. Under sui
able conditions, however, such a clumsy approach turns
to be unnecessary. In fact, if we knewa priori thatwn50 for
n.n, then it would be sufficient to measureuc0u2 for (n
11) different valuesC0 , . . . ,Cn of the parameterC, for the
set of linear equations

F J0
2S 2C0

2 D J0
2S Q2C0

2 D . . . J0
2S nQ2C0

2 D
A A � A

J0
2S 2Cn

2 D J0
2S Q2Cn

2 D . . . J0
2S nQ2Cn

2 D G F
uw0u2

uw1u2

A

uwnu2
G

5F uc0~C0!u2

uc0~C1!u2

A

uc0~Cn!u2
G ~22!

can be solved by matrix inversion. For two practical reaso
a much larger number of measuring points will have to
determined, though. First, we do in general lack a previo
1-4
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ATOMIC TALBOT INTERFEROMETRY AS A SENSITIVE . . . PHYSICAL REVIEW A 61 023601
knowledge of the measured state, so that the minimum n
ber n of measuring points needed to apply the matrix inv
sion method must first be estimated from the gra
uc0(C)u2, which thus has to be known with sufficient acc
racy. Second, in order to minimize the impact of measu
ment errors on the matrix inversion process, it is importan
make a judicious choice of theC values to be used for thi
purpose. A quick glimpse at the graph ofJ0

2 in Fig. 2 readily
allows us to figure out a convenient strategy. Since the c
tral maximumJ0

2(0)51 is very pronounced, one expects th
by choosing

Cm[mQ, ~23!

the approximationuc0(Cm)u2'uwmu2 will be a good one as
long asQ/2 is larger than the central peak’s width. In o
simulations we use the value1 Q57. In Fig. 3~a!, the ex-
pected signaluc0(C)u2 is shown for a quantum field prepare
in a coherent state witĥa†a&56. Even without further cal-
culations, the Poissonian photon-number distribution can
immediately inferred from this graph by simple inspection.
second example is shown in Fig. 3~b!, which shows a corre-
sponding curve for an arbitrary superposition of Fock sta
(uw0u250.1, uw1u250.15, uw2u250.25, uw3u250.3, uw4u2
50.2). Also here the main peaks already allow a crude
timation of the photon-number distribution and, therefore,
the minimum numbern of measuring points required for th
matrix inversion. As we have verified numerically, by choo
ing the valuesCm according to strategy~23!, the inversion of
Eq. ~22! turns out to provide reliable values for the coef
cientsuwnu2 evenif up to 10% Gaussian noise is superpos
to every selected measuring point. We have also gradu
reduced the value ofQ and verified that the method ceases
apply for Q,2p, because individual maxima then start
overlap and become indiscernible from each other.

1The distance between two consecutive maxima in Fig. 2 cont
ally decreases for larger arguments and converges asymptotica
the value 2p.

FIG. 2. Plot of uJ0u2 ~whereJ denotes a Bessel function! as a
function of its argument.
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In principle, the presented QND scheme could be app
in a single run. Due to cavity losses, however, the availa
time for the measurement is limited, and it will depend
the intensity of the atomic source, if enough atoms pass
cavity before its field has substantially decayed. The st
gent requirements on atomic beam preparation~see Sec. VI!
and the need to scanC over a sufficient range during th
available measuring time additionally complicate the pro
lem. Because of these technical reasons, it will probably
necessary to repeat the experience several times, with i
tically prepared quantum states, in order to accumu
enough data points for the method to be applicable.

V. A NULL TEST OF LIGHT QUANTIZATION

The influence of light quantization on the motion of nea
resonant atoms becomes apparent in the strong-couplin
gime. It is for this reason that all proposed photon-statis
measurement schemes assume coupling constantsQ of the
order of;1. AsQ is made smaller, a quantum field behav

-
to

FIG. 3. Zeroth-order~undeflected! atomic flux uc0u2 as a func-
tion of the classical light intensity~Raman-Nath parameterC) of
the second sinusoidal phase grating. In~a! the quantal light field is
assumed to be in a coherent state with^a†a&56. In ~b! the follow-
ing photon number distribution has been assumed:uw0u250.1,
uw1u250.15, uw2u250.25, uw3u250.3, anduw4u250.2.
1-5
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B. ROHWEDDER AND M. FRANÇA SANTOS PHYSICAL REVIEW A61 023601
more and more like a classical one. For instance, the ato
far-field diffraction pattern produced by a standing wave
light becomes nearly indistinguishable from the classica
expected Kapitza-Dirac distribution. A sensitive experime
tal test of this statement could be performed with an ato
TI. As we already commented at the end of Sec. II, a p
fectly matched TI using classical light gratings leaves
incoming atomic beam intact. In order to see how this cl
sical limit arises, we have to leave the strong-coupling
gime, in which light quantization shows up rather evident
and assumeQ!1. The possibly most ‘‘classical’’ field is a
coherent state,

uwnu25
^a†a&n

n!
e2^a†a&, ~24!

with an average number^a†a& of photons. Then, if we use
common integral representation ofJl ,

Jl
2~x!5

1

2pE(2p)
dk

1

2pE(2p)
dk8eil (k2k8)e2 ix(sin k2sin k8),

~25!

the series in Eq.~21! can be summed up explicitly. Th
resulting expression,

uc l u25
1

2pE(2p)
dk

1

2pE(2p)
dk8eil (k2k8)

3e2^a†a&eiC(sin k2sin k8)/2exp@^a†a&e2 iQ(sin k2sin k8)/2#,

~26!

can be simplified, forQ!1 implies

e2 iQ(sin k2sin k8)/2.12 i
Q

2
~sink2sink8!. ~27!

The matching condition

C5Q^a†a& ~28!

further reduces the remaining integrals, finally giving

uc l u25U 1

2pE(2p)
dk eilkU2

5d l ,0 . ~29!

Physically speaking, the classical field exactly compens
the atomic wave-front corrugation produced by the quant
field in the weak-coupling regimeQ!1. This is precisely
the expected behavior in the semiclassical limit, as expres
by the correspondence principle.

By considering more terms in the expansion~27!, one is
able to predict what happens beyond the classical limit. T
lowest-order quantum correction is obtained by including
next higher Taylor coefficient in Eq.~27!. By doing so and
after inserting the matching condition~28!, one gets

uc l u25
1

2pE(2p)
dk

1

2pE(2p)
dk8eil (k2k8)e2CQ(sin k2sin k8)2/8.

~30!
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Although the integrals may be expressed in terms of mo
fied Bessel functionsI l , a more transparent result is obtaine
by assumingCQ/8!1, which then allows us to Taylor
expand the exponential to lowest order,

uc l u25
1

2pE(2p)
dk

1

2pE(2p)
dk8 eil (k2k8)

3F12
CQ

8
~sink2sink8!2G . ~31!

After evaluating the remaining integrals, one finds

uc l u25d l ,0@12CQ/8#1@d l ,11d l ,21#CQ/16, ~32!

i.e., the fact that light is quantized shows up in anomalo
diffraction in the first and minus first orders. Without th
restrictionCQ/8!1, also higher diffraction orders would b
populated. We note that Eq.~32! is consistent with respect to
flux conservation, since 12CQ/8123CQ/1651. If only
the deflected beam components are detected~e.g., by block-
ing the zeroth diffraction order!, a nonzero result would be
an indicator of light quantization.

If the matching condition~28! is not exactly fulfilled, the
same approximation that led to Eq.~32! produces

uc l u25Jl
2S C2Q^a†a&

2 D1
^a†a&Q2

8 FJl
2S C2Q^a†a&

2 D G9,
~33!

where the primes denote derivation with respect to the ar
ment. Equation~33! correctly reduces to the previous resu
~32! when the matching condition is satisfied. Foru(C
2Q^a†a&)/2u,1.08, the sign of@J0

2#9 is negative andJ0
2

decreases monotonically. This shows that the proper tun
of C, satisfying Eq.~28!, can be achieved bymaximizingthe
measured atomic fluxuc0(C)u2 into the zeroth diffraction
order.

Real-life effects of different origins spoil this simple pic
ture, of course, and even when perfectly matched, a TI w
produce some diffraction away from the propagation axisz.
We now proceed to study different sources of aberration

VI. LIMITATIONS OF THE METHOD

In our analysis, we will assume two classical idea
matched light fields of coupling constantC and see how
different sources of aberrations modify the expected far-fi
diffraction pattern.

Most problematic is the velocity dependence of the Tal
distance,

D~vz!5
vz

^vz&
D~^vz&!, ~34!

which gives rise to a chromatical aberration. Namely, if t
TI has been adjusted with respect to the average atom ve
ity ^vz&, it will no longer be adjusted for other speeds. O
natural distance units were defined according to
1-6
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z

2p
D~^vz&!5z. ~35!

If the relative velocity mismatch is denoted bye[z@1
2^vz&/vz#, for a given distancez between the gratings th
modified wave function,ce , is given by

ce~j,z!5e2 i e(]2/]j2)ce50~j,z!. ~36!

At the exit of the second light grating, thee-modified wave
function then reads

ce~j,p!5eiCsin2(j/2)e2 i e(]2/]j2)eiCcos2(j/2). ~37!

To lowest order ine, Eq. ~37! is evaluated to be

ce~j,p!5eiCH 11 i eF1

2 S C

2 D 2

1 i
C

2
cosj2S C

2 D 2

cos~2j!G J .

~38!

In this form, the Fourier decomposition of the wave frontce
can be directly read off. Inasmuch as the Fourier compon
correspond to the far-field diffraction amplitudes, we co
clude that for a realisticale of the order of 1%, the paramete
C should be of the order of unity, if diffraction into nonzer
orders is to be kept at the percent level. For this reason,
assumptionCQ/8!1 that eventually led to Eqs.~32! and
~33! in the preceding section isa posterioriwell justified in
the weak-coupling regime and under realistic experime
conditions.

The reason why valuesC@1 are inadequate for a pract
cal realization of the proposed null-measurement experim
becomes evident as soon as one plots the diffraction
field produced by gratings of the form~3! for various values
of C @16,27#. As soon asC.p/2, the diffraction patterns
become increasingly complex and depend more and m
sensibly on the distancez behind the grating. Even for a
monochromatic atomic beam, misadjustment of the dista
D/2 leads to spurious diffraction into nonzero orders. T
mathematics is the same as above, only now ‘‘e ’’ refers to
the positioning error of the second grating,c(j,p1e). For
Talbot distances in the 1022 m regime, a relative position
ing precision of 1% should not represent major techni
problems.

For the proposed QND measurement scheme, on the o
hand, larger off-beam deflections may be tolerated. StillC
values of the magnitude shown in Figs. 3~a! and 3~b! are
probably unrealistically large in view of the above results.
a real experiment, one would either be limited to small ph
ton numbers or the ideal choiceQ.7 will have to be aban-
doned. In fact, such a large coupling constant is a challe
in itself, even in view of the extreme values reported in
cent works@28#. SmallerQ values lead to larger errors whe
the simple inversion method of Sec. IV is applied. In th
case, numerical fitting to the measureduc0(C)u2 curve will
be necessary as a second step.

Also the angular alignment of the gratings must be k
under strict control. A thorough theoretical and expe
mental analysis of the required precision can be fou
02360
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in Ref. @22# for a single grating. The essential result
that the parameterC gets multiplied by a Gaussian facto
exp@2(2ptintv i)

2/2l2#, wherev i is the atomic velocity com-
ponent along the tilted grating axis. Ideally, the orthogona
of the atomic beam with respect to the grating axes should
so precise that the induced change inC is not larger than
other inherent variations ofC, such as produced by lase
intensity fluctuations and frequency drifts. Note, howev
that as long as this tilting angle is identical for the two lig
fields, the TI matching condition itself is not spoiled. Th
strictly parallel position may be actively controlled with a
additional optical interferometer@29# or by mounting the
quantum cavity and the retroreflection mirror on a comm
strucure with a low thermal expansion coefficient@30#. A
parallel light field alignment of the order of 1025 rad has
been reported in@31#.

Another important problem is posed by the finite entran
aperture of the TI. The number of grating periods the ato
should ‘‘see’’ must be chosen large enough for two reaso
First, the fidelity of a Talbot image depends on the leng
over which the grating is illuminated. Second, the width
the diffracted beamlets should be much smaller than the
eral distance between them. The ratio between these qu
ties is approximately given byd/(l/2). If the diffraction
orders cannot be clearly separated in the far field, both
QND measurement scheme and the light quantization n
test method break down. The fidelity problem is the mo
severe one, since a crude estimate of the necessary mini
number of comprised grating periods givesd/(l/2)'20
@15#. A recent numerical and experimental study confirm
this @32#. For such a large value, the far-field diffraction o
ders would be already well separated. Since the geometr
a high-quality factor optical cavity possibly restricts th
number of usable light intensity periods, it could be expe
mentally convenient to place the classical fieldbefore the
quantum field. From the symmetry of Eq.~21! underC↔nQ
it is clear that such an inversion does not alter the measu
diffraction intensities. Atomic wave fronts with the require
lateral extent and coherence can be created by approp
slit collimation. For instance, a widthd55 mm is used in the
Innsbruck three-grating argon interferometer@31#. This ap-
proximately corresponds to 20 grating periods, if sodium
used instead of argon. At the expense of atomic flux, e
broader beams may be produced. Note, however, that
mandatory fulfillment of the far-field conditionz@d2/ldB
may lead to prohibitive interferometer lengths.

A further point we want to make is the influence
spontaneous-emission processes. In the context of atom
fraction by light, these have been studied in detail, both
perimentally and theoretically@33–35#. An easy way to sup-
press them is by using large enough detunings@31#. We want
to stress that atomic Talbot interferometry may also pro
useful to study the limit between the diffractive and the d
fusive scattering regime. If two classical light fields pr
duced by the same source form an atomic TI, which has b
matched in the diffractive limit, a gradual reduction of th
detuning will lead to atomic deflections away from the bea
propagation axisz, and this effect will be solely due to spon
taneous diffusion. This is another example in which a TI m
1-7
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help to filter out the information one is specifically interest
in. In this sense, what would be an aberration for a quan
measurement could become an interesting signal when a
ferent phenomenon is being studied.

As another example of this general observation, let
consider the situation in which the atomic ground state
split into a nondegenerate multiplet of sublevels. If the at
is in an arbitrary superposition of these states, this wo
imply that each component is differently detuned from t
upper~excited! level. Since the Raman-Nath parameterC of
the atom-grating interaction is inversely proportional to t
detuning from a given transition, the TI can only be match
for one of the ground-state sublevels. Experimentally th
problem can be circumvented using optical pumping te
niques, thus leading to a true two-level system. Alternative
a TI could be used tomeasurethe populations of the variou
atomic ground-state sublevels. Mathematically, the situa
is analogous to Eq.~21!, with the role of the infinite numbe
of uwnu2 coefficients replaced by the finite number of su
level population probabilities. A recent example in whi
such a measurement could be useful is given in Ref.@36#.

In conclusion, it should be technically feasible~although
experimentally challenging! to build a phase-grating atomi
TI which deflects not more than a few percent of the inco
ing atomic intensity away from the propagation axis. Suc
device would satisfy the requirements imposed by our p
posed cavity quantum electrodynamical experiments.
elimination of any kind of aberrations is especially importa
u
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when the device is used as a null instrument, and it de
mines its final sensitivity. With off-beam deflections reduc
to the percent level, quantum signatures 12uc0u25QC/8 of
the same order of magnitude should be detectable. A real
choice of parameters, for instanceC55 andQ51/60, would
allow us to demonstrate the quantum nature of a light field
about 300 photons.

VII. SUMMARY

The potential usefulness of atomic Talbot interferome
cal methods for the purpose of cavity quantum electro
namical measurements is studied. An alternative Q
scheme for the determination of the photon-number distri
tion of an arbitrary light state is discussed. Its range of
plicability is shown to critically depend on the magnitudeC
of the Raman-Nath factor, for which the TI can be match
with the required precision.

Also, a light-quantization detector based on measura
departures from a zero result expected in the classical lim
proposed. We show that its construction should be feas
using state-of-the-art techniques.
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