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Photoionization indicators of optical mixing of different-parity degenerate Rydberg states
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We discuss a photoionization version of the photoexcitation model of Corless and Stroud@Phys. Rev. Lett.
79, 637 ~1997!#. In the photoexcitation model, anp hydrogenic state ofn@1 was excited from the ground 1s
state and the excited population was allowed to migrate to other angular momentum states within the onen
only due to strongly nonresonant electric-dipoleuDnu50, uD l u51 Rydberg-to-Rydberg couplings. When, as is
the essence of the photoexcitation model, the same onen-manifold approximation is made in the model of
high-n Rydberg-state photoionization, a number of interesting photoionization effects are obtained. Among
them, the most spectacular seems to be the emission of photoelectrons in the ‘‘forbidden’’ directions and the
suppression of ionization when compared to the Fermi golden rule predictions. However, we show on the basis
of an approximate analysis that these photoionization effects can be strongly diminished when additionaln
manifolds around the selected one are included in the model. Thus, we conclude that the onen-manifold
approximation overestimates results when applied to the problem of high-n Rydberg-state photoionization.

PACS number~s!: 32.80.Rm, 42.50.Hz
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I. INTRODUCTION

The Rydberg atom, real or a model, is a favorite syst
for the study of a variety of quantum transitions caused by
intense laser-photon flux. For example, Corless and Str
@1# have recently considered a model of excitation of annp
hydrogenic state ofn@1 from the ground 1s state, differing
substantially from other models. In this model the populat
from the directly excitednp state migrated to higher-angula
momentum states, all sharing the same principal quan
numbern, due to a sequence ofuD l u51 electric-dipole tran-
sitions. Each coupling between any pair of the degene
states differing inl by 1 was thus strongly nonresonant wi
the detuning equal to the frequency of the electromagn
field. For such a coupling to be non-negligible the detun
must have been compensated by the Rabi frequency fo
Rydberg-to-Rydberg coupling. If the electromagnetic field
linearly polarized along thez axis, this Rabi frequency fo
the coupling from then,l 21,m50 to n,l ,m50 states is
@2# Vn,l 21,0

n,l ,0 5(e«0 /\)zn,l 21,0
n,l ,0 53.33108 nl(n22 l 2)1/2(4l 2

21)21/2I 1/2, where I is the electromagnetic-field intensit
expressed in W/cm2. Thus, for l !n and, e.g.,n530, an
enormous dipole moment for the coupling results in the R
frequency approaching an optical frequency already at a r
tively low critical intensity of the order of 1010 W/cm2. The
appropriate calculations performed by Corless and Stroud@1#
gave evidence for indirect excitation from the 1s state of a
broad range of different-parity angular momentum states
of the samen. Obviously, the nonresonantuD l u51 Rydberg-
to-Rydberg couplings in question differ deeply in their n
ture from theuD l u52 Raman couplings considered earlier
other authors@3–10# in the familiar rotating-wave approxi
mation. One spectacular difference is that the latter ones
a given parity subset of Rydberg states only.

The aim of the present paper is to study a photoioniza
version of the original excitation model of Corless a
Stroud. Instead of the ground state, we let the initial popu
tion be in a high Rydberg statenl ~of n530, for example!
and add the ionization continuum to which the Rydbe
states are damped~Fig. 1!. In fact, we are interested in th
1050-2947/2000/61~2!/023413~9!/$15.00 61 0234
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effect of the nonresonantuD l u51 migration of the popula-
tion from the initial l state towards other boundl states on
the photoionization characteristics, namely, the photoe
tron angular distributions and the total ionization yiel
When solving analytically this photoionization model we n
glect, as in the original excitation model, all othern mani-
folds except one. In the case of photoionization, the selec
n manifold is determined by the initial preparation of th
atom. At first sight, this neglect seems to be justified wh
one compares quasiclassical dipole moments for theDn50
and DnÞ0 transitions. As shown@1#, the dipole moments
tend to diminish for increasingDn and, e.g., forDn51 the
dipole moment is smaller than that forDn50 by as much as
a factor of 5, provided thatl !n. However, we will show,
along an approximate analysis, that the interesting photo
ization effects, predicted by the exactly solvable model w
only one n manifold, can be drastically diminished by th
presence of the neighboringn manifolds. This raises the
question of validity of the onen-manifold approximation
which can be resolved, e.g., by experimental verification
some results of the present paper.

FIG. 1. The model of photoionization from ann0l i Rydberg
state (n0@1), including the uD l u51 Rydberg-to-Rydberg cou
plings betweenl series. This model is a modification of the mod
of photoexcitation of Corless and Stroud@1#. Here, j numbers dif-
ferent l series (l j5 j 21).
©2000 The American Physical Society13-1
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Section II is devoted to solving the photoionization mod
with one n manifold only. It gives basic equations for th
population dynamics of the relevant states and their solut
in the perturbative approximation for the bound-free tran
tions. Then, the general solution is applied to a special c
when the photoionization starts from annsRydberg state and
two photoionization indicators of theuD l u51,Dn50
Rydberg-to-Rydberg couplings are defined. Moreover,
results of detailed calculations forn530 are presented an
discussed. In Sec. III, we include the neighboringn mani-
folds assuming pulses shorter than the Kepler period of
initially populated Rydberg state. The generalization ma
allows us to formulate the final conclusion of the negat
effect of these additionaln manifolds on the results obtaine
within the onen-manifold approximation.

II. MODEL OF PHOTOIONIZATION
WITH ONE n MANIFOLD

A. The solution

In each l series of Fig. 1, we leave only one state (n0
5n). The chain ofl states attributed to a givenn@1 ~energy
En), with only onel state initially occupied~i!, is coupled to
the atomic continuum~energyE! by an optical pulse of fre-
quencyv, linearly polarized in thez direction. We apply the
long-wavelength approximation, i.e., choose the electric fi
as uniform within the atom,«(t)5 f (t) «0 cosvt, where«0 is
the amplitude andf (t) the pulse envelope. In our formula
tion, the pulse interacts with our model atom through
dipole HamiltonianV(t)52ez«(t)52V f(t)cosvt with V
5ez«0 . The wave functionC of the system is then governe
by the total HamiltonianH5H01V(t), whereH0 is the un-
perturbed Hamiltonian whose eigenfunctions and eigen
ues aref j and\v j , respectively. By the common expansio
C5S jCjf j exp(2ivjt), one obtains from the Schro¨dinger
equation (i\) dC/dt5HC a set of textbook equations@11#
for the expansion amplitudesCj . Any two expansion ampli-
tudes in this set are interrelated by the matrix elementVjk
5^f j /e«0z/fk& being nonzero for theuD l u51 couplings
within the samen manifold. This allows theuD l u51 transi-
tions along the chain of degenerate discretel states of our
model because nonzero expansion amplitudesCj imply non-
zero probability ~transition! amplitudes Sj5^f j /C&
5Cj exp(2ivjt).

However, an apparent paradox would have appeared i
had simply replaced the dipole interaction Hamiltoni
V(t)52ez«(t) by the minimal-coupling interaction Hamil
tonianV8(t)52(e/m)pzA(t) in the above matrix elements
Because the momentum operatorpz has vanishing matrix
elements between degenerate states@(pz) jk;v jkzjk#, such a
replacement would result, at first look, in no transitions alo
the chain of discretel states of our model. This conclusion
incorrect and originates in overlooking the need of transf
mation of wave functions when coming to the interacti
Hamiltonian in the minimal-coupling formV8(t). Clarifying
discussions of this point can be found in Refs.@11–15#, for
example. Briefly, the dipole interaction HamiltonianV(t)
and the minimal-coupling interaction HamiltonianV8(t) ap-
02341
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pear in two forms of the Schro¨dinger equation which are
related by the unitary gauge transformationT
5exp@iezA(t)/\#. By this transformation, the Schro¨dinger
equation considered by us, (i\) dC/dt5HC5@H0
1V(t)#C is converted into (i\)dC8/dt5H8C85@H0
1V8(t)#C8, whereC85TC. So, choosing the interactio
Hamiltonian in the minimal-coupling formV8(t) we have to
work with wave functions transformed by the operatorT, i.e.,
C85TC and f85Tf. With the use of the transforme
~primed! Schrödinger equation, the transition amplitude
Sj85^f j8/C8&5^f j /T†/C8&5SkTjk

† Ck8 exp(2ivkt), where
Tjk

† 5^f j /T†/fk&, and the expansion amplitudesCk8@C8
5S lCl8f l exp(2ivlt)# fulfill the same equations asCk but
with the changeV(t)→V8(t). Let us see that with overlook
ing the wave-function transformation,Tjk

† would be replaced
by the Kronecker symbold jk , resulting in an incorrect rela
tion between the transition amplitudesSj8 and the expansion
amplitudesCj8 and the paradox stated. Rigorously, for t
model with onen manifold and the continuum neglected in
for simplicity, Ck85Ck8(t)5Ck8(t0) with t0 standing for the
turn-on time of the atom-field interaction. In the inverte
form, the relation between the nonequivalent amplitudesSj8
and Ck8 readsCk85exp(ivkt)SlTklSl8 . After using the initial
condition, Sl85d l i at t5t0 , the last equation converts int
Ck8(t0)5exp(ivkt0)Tki(t0). As a result, the transition ampli
tude is Sj85SkTjk

† Tki(t0)exp@2ivk(t2t0)#5exp@2ivj(t
2t0)# @T†T(t0)#ji , where we made use of the fact thatvk
5v j in the case of degeneracy. For example, to lowest or
in electromagnetic field,T511 iezA(t)/\, and then one ob-
tains Sj85exp@2ivj(t2t0)#(ie/\)zji*«(t8)dt8. Obviously, the
obtainedSj85^f j8/C8& is nonzero and, as required by gaug
invariant physical quantities@11–15#, identical with Sj
5^f j /C&, if the latter transition amplitude is calculated
the first-order perturbation theory. This removes the appa
paradox.

As our emphasis is on the properties of the electron in
continuum, we start with writing down the equation fo
CE(t), i.e., the transition amplitude~with accuracy to phase!
to such a state. With no rotating-wave approximation ma
this equation reads

dCE~ t !

dt
5

i

\
f ~ t !cos~vt !ei ~E2En!t/\(

j 51

n

VE jCj~ t !, ~1!

whereVE j5^Eue«0zu j & is the time independent part of th
bound-free matrix element for the atom-field interacti
Hamiltonian. On the other hand, the population amplitud
Cj (t) of Rydberg states fulfill the integrodifferential equ
tion

dCj~ t !

dt
5

i

\
f ~ t !cos~vt !F (

j 851

n

Vj j 8Cj 8~ t !

1E
0

`

dEVjECE~ t !e2 i ~E2En!t/\G , ~2!

with Vj j 85^ j /e«0z/ j 8& being the bound-bound analog o
3-2
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PHOTOIONIZATION INDICATORS OF OPTICAL . . . PHYSICAL REVIEW A 61 023413
VE j . Under the familiar assumption of weakE dependence
of VE j , we perform the energy integration in Eq.~2!, using
the formally time-integrated Eq.~1!. After this procedure,
Eq. ~2! becomes

dCj~ t !

dt
5 i f ~ t !cos~vt ! (

j 851

n

V j j 8Cj 8~ t !

2
p

\
@ f ~ t !cos~vt !#2 (

j 851

n

VjEVE j8Cj 8~ t !, ~3!

where V j j 85Vj j 8 /\ is the Rydberg-to-Rydberg Rabi fre
quency for states differing by 1 inl, and the second term
describes either the ionization damping of a given Rydb
state (j 85 j ) or the uD l u52 nonresonant Raman transition
between Rydberg states via the atomic continuum. The la
ones received much attention in the past@3–10# in the
rotating-wave approximation and, thus, are not of interes
us now. Throughout this paper we deal with such laser
quencies (v50.2 a.u.) and intensities for whichV j j 8 is the
leading coupling parameter. We, thus, simply drop the s
ond term in Eq.~3!. Then, the calculation ofCE(t) from Eq.
~1! corresponds to the purely perturbative treatment of
bound-free transitions.

We introduceAj j 85V j j 8 /V12, i.e., scale all Rydberg-to
Rydberg Rabi frequencies in terms of the Rabi freque
V125V, i.e., that for the first coupling in the chain. Equatio
~3!, with the second term dropped, is then of the matrix-fo
equation

dC

dt
5a~ t !AC, ~4!

where a(t)5 iV f (t)cosvt, C is the one column matrix o
the population amplitudesCj (t), andA is the matrix of the
scaled Rabi frequencies. The latter matrix has only two n
zero diagonals, the one above and the other below the m
diagonal. We prefer to solve Eq.~4! by the standard diago
nalization procedure@16# of A. If P is a matrix that diago-
nalizesA, i.e., such thatP21AP5AD , then we introduce a
new matrix G5P21C satisfying the matrix equation
dG/dt5a(t)ADG. The solution of the latter equation i
G(t)5L(t)G(t0)5L(t)P21C(t0), where t0 defines the
turn-on time of the optical pulse, andL(t) is a diagonal
matrix whose elements areL j 8 j5exp@ljS(t)#dj8j , with l j be-
ing a given eigenvalue ofA and S(t)5* t0

t dt8a(t8)

5 iV* t0
t dt8 f (t8)cosvt8. The diagonalizing matrixP, whose

j th column includes the eigenvector ofA corresponding to
the l j eigenvalue, is orthogonal (P215PT). This, along
with the back-transformation fromG to C, results in the fol-
lowing solution to Eq.~4!:

C~ t !5PL~ t !PTC~ t0! ~5!

or

Cj~ t !5 (
k,m51

n

PjkPmkCm~ t0!elkS~ t !. ~6!
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In the special case where only one state is initially popula
@Cm(t0)5dmi exp(ivmt0)#, the last equation reduces to

Cj~ t !5eiv i t0(
k51

n

PjkPikelkS~ t !. ~7!

We shall use Eq.~7! in the limit of a long pulse, i.e., the
pulse having its widtht much greater than the optical perio
T52p/v. In such a limit,S(t)5 iV* t0

t dt8 f (t8)cosvt8 can

be well approximated by the first term which occurs wh
performing integration by parts, namely, S(t)
. i (V/v) f (t)sinvt. This can be verified most easily fo
e.g., a sine-squared pulsef (t)5sin2(pt/t) with 0<t<t. A
few picosecond pulse of optical frequency, which we a
interested in, fulfills excellently this long-pulse approxim
tion. Under the long-pulse approximation, we apply t
Fourier-Bessel expansion to Eq.~7! and rewrite it as

Cj~ t !5eiv i t0 (
N52`

1`

(
k51

n

PjkPikJNS lk

V

v
f ~ t ! De2 iNvt,

~8!

whereJN(z) is the Bessel function of the first kind of orde
N. To have a measure of population that migrates during
pulse from the initial statei, to some other statej, we calcu-
late the time average of the population probability over
infinite time interval,

Pj5^uCj~ t !u2& t5 (
k,k851

n

PjkPikPjk8Pik8

3 (
N52`

1` K JNS ~lk2lk8!
V

v
f ~ t ! DeiNvtL

t

5 (
k,k851

n

PjkPikPjk8Pik8K J0S ~lk2lk8!
V

v
f ~ t ! D L

t

.

~9!

In the weak-field limit, defined byV/v→0, both the Besse
function and its time average amount to 1. Then, due to
orthogonality of P(SkPjkPik5d j i ), the right-hand side of
Eq. ~9! becomes equal to the Kronecker symbol,d j i , mean-
ing that no population leaves the initial state. Some mig
tion of the population out of the initiall state is thus expecte
in the opposite limit of strong fields whenV/v*1, in con-
formity with the prediction of Corless and Stroud@1#. This
conclusion will receive pictorial presentation later for puls
of different envelopesf (t).

In the next step, we substitute the long-pulse Eq.~8! for
the Rydberg-state population amplitudes into Eq.~1! for the
continuum-state population amplitude. By the use of
summation relation@17#

JN21~z!1JN11~z!5
2N

z
JN~z! ~10!

the latter amplitude is found as
3-3
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CE~ t !5
i

\
eiv i t0

v

V (
N52`

1`

(
j 51

n

(
k51

n

~N/lk!VE jPjkPik

3E
t0

t

JN„lk

V

v
f ~ t8!…ei ~E2En2N\v!t8/\dt8. ~11!

As a fully analytically solvable case, we then consider
square pulse, meaningf (t)51 and t050. In this case, the
resulting time integral,*0

t exp(iat8)dt8, is elementary. When
taking squared modulus and then integrating over the ph
electron energy, this time integral results inp\tdNN8 , in the
long-pulse limit (vt@1). The summation overN in the ion-
ization probability is then performed analytically combinin
Eq. ~10! with the relation@17#

(
N52`

1`

Jn6N~z!JN~z8!5Jn~z7z8!. ~12!

As a result, one obtains the following differential rate for t
photoelectron to be emitted into thedV solid angle:

1

t

dW

dV
5

p

\
d (

k,k851

n

(
j , j 851

n

Rk,k8~V/v!

3VE jPjkPik~VE j8Pj 8k8Pik8!* , ~13!

where d is the density of the continuum states around
energyE5En1\v, and

Rk,k8~V/v!5

J1S ~lk2lk8!
V

v D
~lk2lk8!

V

v

. ~14!

Rk,k8 is an intensity-dependent parameter, which tends to
in the weak-field limit ofV/v→0. Only in this limit, Eq.
~13! converts into the standard Fermi golden rule differen
rate for photoionization.

Finally, we apply the partial-wave expansion@9# for the
function CE of the photoelectron emitted from thej th Ryd-
berg state under the action of light linearly polarized in thz
direction:

CE5 (
q51 j 61

bqREq~r !Yqmi
~q,w!Yqmi

* ~u,f!, ~15!

whereq, w are the spherical angles of the electron radiusu
andw the spherical angles describing the photoemission
rection, andbq5 i q@G(q111 i /y)/G(q112 i /y)#1/2 with y
5A2E and E being the photoelectron energy in a.u. Th
expansion leads to

(
j 51

n

VE jPjkPik5 (
q50

n

Tqk
i Yqmi

~u,f!, ~16!

where
02341
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Tqk
i 5bq* Pik@~12dq,0!~e«0z!n,q21,mi

E,q,mi Pqk

1~12dq,n21!~12dq,n!~e«0z!n,q11,mi

E,q,mi Pq12,k#,

~17!

with zn,l 8,m
E,l ,m being the standard matrix element of thez com-

ponent of the electron radius between the states shown.
result, the following final form of the differential photoion
ization rate is obtained:

1

t

dW

dV
5

p

\
d (

q,q850

n

Zqq8
i Yqmi

~u,f!Yq8mi
* ~u,f!, ~18!

where

Zqq8
i

5 (
k,k85 l

n

Rk,k8~V/v!Tqk
i Tq8k8

i* . ~19!

Obviously, this differential rate depends on one angle on
u, the angle of the photoelectron emission measured w
respect to the direction of linear polarization~z! of the optical
pulse. As follows from the symmetry with respect to the~x,y!
plane (u→p2u), Zqq8

i must vanish ifq andq8 are numbers
of different parity. We verified this requirement numerical
for different V/v ratios. By integrating over all photoemis
sion directions, Eq.~18! transforms into the following tota
photoionization rate:

W

t
5

p

\
d(

q50

n

Zqq
i . ~20!

Equation~18! for the differential phtoionization rate, Eq
~20! for the total ionization rate, and the previous Eq.~9! for
the time-averaged Rydberg-state population are the b
equations for the study of both theuD l u51 migration of the
population along the chain ofl states and the effect of thi
migration on the photoionization characteristics in the mo
with onen manifold only.

B. Application and results

For the application, let us assume that initially (t5t0) the
first state of the Rydberg chain is populated only (i 51, l 1
5m150). Then, Eqs.~18! and ~20! reduce to

1

t

dW

dV
52gns

Ep (
q,q850

n

Zqq8Yq0~u!Yq80
* ~u! ~21!

and

W

t
52gns

Ep(
q50

n

Zqq , ~22!

respectively, wheregns
Ep is the Fermi golden rule total rate o

ionization from the initialns Rydberg state to thep con-
tinuum, whereasZqq8 is obtained fromZqq8

1 by formally re-
3-4



,

g

n
io
th
-

i-

uce
er-
er-

PHOTOIONIZATION INDICATORS OF OPTICAL . . . PHYSICAL REVIEW A 61 023413
placing Tqk
1 →Tqk5Tqk

1 /(ee0z)n,0,0
E,1,0. In the standard model

only the first state in the Rydberg chain is left. ThenZqq8
5Z1151/2 and in this standard case the photoelectron an
lar distribution @Eq. ~21!# is reduced to the familiar
uY10(u)u2;cos2 u law, according to which no photoelectro
is ejected in the direction perpendicular to the polarizat
direction of the optical pulse. Thus, the breakdown of
prohibited emission in theu5p/2 direction would be a spec
tio
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tacular photoionization proof for the population from the in
tial ns state to migrate transiently to higher-l Rydberg states
( l 51,2, . . . ) of thesamen due to theuD l u51 nonresonant
transitions. As a measure of this breakdown, we introd
the intensity-dependent ratio of two photoemissions, one p
pendicular and the other parallel to the direction of the las
pulse polarization. Equation~21! gives for this ratio the ex-
pression:
r 5S dW

dV
D

'

Y S dW

dV
D

u

5

(
q,q85even

n

~21!~q1q8!/2A~2q11!~2q811!
~q21!!!

q!!

~q821!!!

~q8!!!
Zqq8

(
q,q850

n

A~2q11!~2q811!Zqq8

. ~23!
re-
a-

abi
e
the
d

.

d
nd:

-
e
cy
e

What one can expect isr .0 whenV/v*1. Moreover, in
the standard model of one-Rydberg state, the total ioniza
rate @Eq. ~22!# converts into the common Fermi golden ru
rate. Thus, a different photoionization measure for theuD l u
51 migration and breakdown of the standard model is
ratio

r5
W

WS52(
q50

n

Zqq , ~24!

whereWS5gns
Ept is the total ionization yield in the standar

model. Because the Bessel functionJ1(z), entering Zqq
through Rk,k8(V/v), tends to zero at large arguments, w
expect the ratior will drop below 1 whenV/v.1, pointing
to a strong-field suppression of ionization due to nonreson
uD l u51 migration to higher-l Rydberg states. As to theW
alone, it increases slowly with the increase in laser inten
I, namely, asI 1/4;(V/v)1/2. The highest intensity in ou
model is, however, limited by the conditionW!1 rooted in
the perturbative treatment of the bound-free transitions.

Equations~23! and ~24! for r andr, respectively, are the
photoionization indicators of the strong-field breakdown
the standard model with only one Rydberg state retain
namely, the initially populatedns state. An additional non-
photoionization indicator is, obviously, Eq.~9! for the time-
averaged population,pj , of different l states of the samen,
in which i 51 must be substituted now. To haver, r, andpj
in their explicit forms we need to know the eigenvalueslk
and the componentsPjk5Pj (lk) of the corresponding
eigenvectors of theA matrix from Eq. ~4!. In one case, a
least, bothlk and Pjk have simple analytical forms. This i
the case of equal-Rabi frequencies between consecutive
of Rydberg states in the chain. As results from the estima
of the Rabi frequencies in Sec. I, such an approximation
equal-Rabi frequencies should work well whenn@1 and, at
the same time,l !n. We taken530 to obtain illustrative
model results. Thus, for the approximation in question to
reliable we should restrict the intensity parameterV/v to
n

e

nt

ty

f
d,

irs
n
f

e

such values at which the population from the initial 30s state
migrates to, at most, a few nearest higher-l states. In some
cases, these model results will be compared with exact
sults, i.e., those obtained without the equal-Rabi approxim
tion. In the latter case, bothlk andPjk need to be found by
standard numerical procedures. In the analytical equal-R
case, theA matrix from Eq. ~4! has unit elements on th
diagonals above and below the main diagonal. Following
paper by Białynicka-Birula, Białynicki-Birula, Eberly, an
Shore @18#, the eigenvalues of such anA @det(A2lI)
5Dn(l)50, whereI is the unit matrix# can be found by the
Laplace expanding ofDn(l) with respect to the last column
This expansion creates the recurrence relationDn(l)5
2lDn21(l)2Dn22(l), with the conditionsD0(l)51 and
D21(l)5D22(l)50. The recurrence relation mentione
defines the Chebyshev polynomial of the second ki
Dn(l)5Un(2l/2)5(21)nUn(l/2) @17#. It is then found
from zeros ofUn(l/2) that

lk522 cosS kp

n11D , ~25!

Pjk5~21!n1 j 1k1 lA 2

n11
sinS jkp

n11D . ~26!

For the equal-Rabi case, i.e., with Eqs.~25! and~26! used,
we show in Fig. 2 the time-averaged populationspj of dif-
ferentl states (l 5 j 21) versus the intensity parameterV/v.
A variety of pulse envelopes is assumed„square→ f (t)51;
sin2→f(t)5sin2(pt/t1); Gaussian→ f (t)5exp@2(t/t2)

2#; sech
→f(t)5sech(t/t3)52/@exp(t/t3)1exp(2t/t3)#…, all pulses of
the same full width at half maximum~FWHM! t1/25t1/2
51.665t252.634t358 ps nearly equal twice the Kepler pe
riod of the initially populated 30s state. To avoid a resonanc
with any lower lying hydrogenic state we took the frequen
v50.2 a.u.~in this case, a virtual state lying in between th
n51 andn52 states is reached from the initial state!. The
corresponding optical periodT is such thatt1/2/T>104 en-
3-5
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suring the long-pulse approximation. In Fig. 2, only the d
have physical meaning but these dots were joined by a lin
guide the eye. This figure confirms the Corless and Str
@1# predictions from their excitation model that in the stron

FIG. 2. The time-averaged populationspj of different l j states,
calculated from Eq.~9!, versus the pulse-strength parameterV/v.
The conditions: equal Rydberg-to-Rydberg couplings@Eqs.~25! and
~26!#, the 30s initial state, the frequencyv50.2 a.u., and the pulse
duration ~FWHM! of 104 optical periods irrespective of the puls
envelope. The results of this and other figures were obtained ap
ing the onen-manifold approximation.
02341
s
to
d

-

field region of V/v.1 (I .0.2531010W/cm2), higher-l
states (l>1) of both opposite and the same parity as that
the initial Rydberg state will be populated transiently due
a sequence of nonresonantuD l u51 transitions. Also, Fig. 2
shows that a strong square pulse produces thel-state popu-
lation generally different from the population produced
smooth pulses. Some differences observed in the low-l popu-
lation for different strong smooth pulses are likely due
different areaP under the pulse envelopes of the sam
FWHM @P(sin2):P(Gaussian):P(sech)51:1.06:2.38#.

In Fig. 2, a number of differentl states is seen to b
populated for the highestV/v ratio (V/v510, I 52.5
31011W/cm2). Thus, the conditionl !n530 of the validity
of the approximation of equal-Rabi frequencies is expec
to be violated in this case. ForV/v510, we compare in Fig.
3 the time-averagedl-state populationpj obtained with~solid
line! and without ~dashed line! the equal-Rabi approxima
tion, assuming square pulse in one case~a! and smooth sech
pulse in the other case~b!. As expected, some quantitativ
differences do occur between the approximate~solid line!
and exact~dashed line! curves if l is high, but the genera
tendency remains the same. We confirmed that these di
ences tend to disappear quickly with decreasing the inten
parameterV/v and become practically negligible atV/v,3.

Through ther and r indicators@Eqs. ~23! and ~24!#, we
have an insight into the effect of theuD l u51 Rydberg-to-
Rydberg migration on photoionization. In Fig. 4~a!, we
presentr versus the intensity parameterV/v, calculated
with ~solid line! and without ~dashed line! the equal-Rabi
approximation. The increase inr with increasing theV/v
parameter points to the breakdown of the cos2 u law of the
standard model for the photoelectron distribution. At t
strongest field considered (V/v510), the photoelectrons
emitted in the direction perpendicular to that of the lig
polarization ~i.e., the direction forbidden by the standa
model! amount to nearly one tenth of the photoelectro
emitted in the preferred direction of the light polarizatio
Figure 4~b! shows the bulge of the photoelectron angu
distribution in the perpendicular direction when coming fro
the weak field (V/v51/10) to the strong field (V/v
510/1). The light-polarization direction, with respect
which the photoemission angleu is measured, is marked b
the vertical arrow. As in Fig. 4~a!, the solid ~dashed! line
corresponds to the calculations performed with~without! the
equal-Rabi approximation.

In Fig. 5~a!, we present the other photoionization indic
tor of the uD l u51 Rydberg-to Rydberg couplings, namelyr
in its dependence on the intensity parameterV/v. The same
is shown in Fig. 5~b! but with a different horizontal scale
Again, the solid~dashed! line corresponds to the results ob
tained with ~without! the equal-Rabi approximation. Th
suppression of the total photoionization due to theuD l u51
Rydberg-to-Rydberg couplings starts evidently when the
tensity parameterV/v approaches 1. AtV/v510, the sup-
pression is by as much as the factor of 5.85. In Fig. 5~c! this
suppression is shown along a different line, i.e., we comp
the total ionization rateW/t obtained from Eq.~22! ~i.e.,
with the inclusion of theuD l u51 Rydberg-to-Rydberg cou

ly-
3-6
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plings! with the rateWS/t5g30s
Ep of the standard model. Le

us notice that now there is (V/v)2 instead ofV/v on the
horizontal axis. Figure 5~c! shows clearly the departure from
the standard linear dependence of the photoionization rat
laser intensity. As follows from Fig. 5~c!, a picosecond pulse
of the maximum intensity considered@(V/v)25100→I
52.531011W/cm2# gives the ionization probabilityW!1,
as required by our perturbative treatment of the bound-
transitions.

In Fig. 6, we give an explanation of the results of Figs
and 5 in terms of the dependence of theZqq8 parameters@Eq.
~19! and the note after Eq.~22!# on the field strength. We
concentrate on the diagonal parametersZqq only, which are
the weights at which the squared spherical harmon
uYqou2, enter the photoelectron angular distribution@Eq.
~21!#. According to Eq.~22!, these diagonal parameters a
the only ones determining the total ionization rate. Figur

FIG. 3. The strong-field (V/v510) time-averaged population
pj of different l j states, calculated with~solid line! and without
~dashed line! the approximation of equal Rydberg-to-Rydberg co
plings, for square pulse~a! and sech pulse~b!.
02341
on

e

s,

6

shows that, in weak fields, onlyZ1151/2 is essential and
determines completely the standarduY10(u)u2;cos2 u photo-
electron distribution and the standard Fermi golden rule to
ionization rate. However, with increasing field strength,Z11
begins to decrease monotonically and the relative contr
tions of Z22(Y20), Z00(Y0,0), and Z33(Y30) become non-
negligible. TheZ22, Z00, and Z33 contributions are what
predominantly modify, in strong fields, the results of t
standard model of photoionization with no Rydberg-t
Rydberg couplings. The effect ofZqq with higherq is minor
due to a rapid decrease of the bound-free matrix elem
zn,l 61,0

E,l ,0 with increasing angular momentum quantum numb
l.

-

FIG. 4. The ratior @Eq. ~23!# of the photoemissions in two
orthogonal directions, one perpendicular and the other along
light polarization direction, versus the pulse-strength param
V/v ~a!; the weak-field (V/v50.1) and the strong-field (V/v
510) photoelectron angular distributions pointing to the bulge
the photoemission in theu5p/2 direction~b!. The solid~dashed!
line corresponds to the calculations with~without! the approxima-
tion of equal Rydberg-to-Rydberg couplings. The case is of the l
square pulse ofv50.2 a.u.
3-7
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FIG. 5. The ratior @Eq. ~24!# of two total ionization rates, one
calculated with the inclusion of theuD l u51 Rydberg-to-Rydberg
couplings~the present model! and the other calculated without thes
couplings~the standard model!, versus the pulse-strength parame
V/v ~a!, ~b!; the present ionization rateW/t @Eq. ~22!# and the
standard ionization rateg30s

Ep versus the (V/v)2 parameter propor-
tional to laser intensity~c!. Solid ~dashed! line corresponds to the
calculations with~without! the approximation of equal Rydberg-to
Rydberg couplings. The case is of the long square pulse ov
50.2 a.u.
02341
III. EFFECT OF ADDITIONAL n MANIFOLDS
AND CONCLUSION

The photoionization results presented and discus
above, particularly those concerning the electron ejection
the ‘‘forbidden’’ directions and the ionization suppressio
look very exciting. However, we cannot forget that they we
obtained within the simplified model which included on
one n manifold. Fortunately, there is one case, at least,
which the general model from Fig. 1, with a number of a
ditional n manifolds neighboring to the initially occupiedn0
manifold, can also be solved analytically but in an appro
mate, rather than exact, way. The case concerns the pu
shorter than the Kepler period of the initially prepared Ry
berg state (n0), but still much longer than the optical perio
for the long-pulse approximation to be valid. In this case
neighboringn manifolds are not resolved by the pulse a
can be considered as degenerate with then0 manifold. Under
this condition, Eq.~3!, with the bound-free term dropped

r

FIG. 6. The diagonal parametersZqq @Eq. ~19! and the note after
Eq. ~22!# versus the field-strength parameterV/v. The case is of
the long square pulse ofv50.2 a.u. Solid~dashed! line corresponds
to the calculations with~without! the approximation of equa
Rydberg-to-Rydberg couplings.
3-8
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remains valid for the neighboringn manifolds as well, pro-
vided that we replaceCj→Cn j , Cj 8→Cn8 j 8 , V j j 8→Vn j ,n8 j 8 and sum not only overj 8 but also overn8. Then,
by the use of the quasiclassical dipole matrix elements
tween high Rydberg states@1,19#, one finds the approximat
relation Vn j ,n8 j 85 f (Dn)V j j 8 , valid for Dn5n82nÞ0,
where f (Dn)5(2/3Dn)JDn8 (Dn), and JDn8 (Dn) stands for
the derivative of the Bessel function. For its validity, th
relation needsDn!n0 and j 5 l 11!n0 . Applying this rela-
tion, we sum the modified Eq.~3! over n in the next step.
Such a procedure results in an equation forBj5SnCn j which
has exactly the same structure as the original Eq.~3! with the
replacementV j j 8→jV j j 8 , where j512SDnf (Dn). As a
result, the solution forBj is found to take the form of Eq.~7!.
Moreover, due to a weakn dependence of bound-free matr
elements from high Rydberg states@19#, one sees that the
right-hand side of the modified Eq.~1! for the photoioniza-
tion amplitude is expressed byBj . All this means that the
solutions for the photoionization characteristics, found
Sec. II by applying the onen-manifold approximation, re-
main unchanged when including the neighboringn manifolds
and assuming the pulse shorter than the initial-state Ke
-

p.

s

02341
e-

er

period. The only thing we have to do is to rescaleV→jV in
Eq. ~14! and Figs. 4–6. Sincej,1 and can be damped to
very small value when including a lot of differentn mani-
folds, the conclusion is that, at a given intensity, the neig
boring n manifolds diminish drastically the photoionizatio
effects obtained within the simpler model with onen mani-
fold only. Due to our highly approximate approach, wh
obtaining the damping parameterj, we are not able to an
swer the question whether complete cancellation of these
fects is possible. To answer this question, either numer
solution to the model of Fig. 1 or the experimental verific
tion of the exact results of the onen manifold photoioniza-
tion model is required. Along these lines, the applicability
the onen-manifold approximation of Corless and Stroud@1#
to the problems of high-n Rydberg-state photoionization i
expected to be established.
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