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Photoionization indicators of optical mixing of different-parity degenerate Rydberg states
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We discuss a photoionization version of the photoexcitation model of Corless and Stoysd Rev. Lett.
79, 637(1997)]. In the photoexcitation model, @ hydrogenic state afi>1 was excited from the grounds1
state and the excited population was allowed to migrate to other angular momentum states withinrthe one
only due to strongly nonresonant electric-dipplen| =0, |Al| = 1 Rydberg-to-Rydberg couplings. When, as is
the essence of the photoexcitation model, the samenemanifold approximation is made in the model of
high-n Rydberg-state photoionization, a number of interesting photoionization effects are obtained. Among
them, the most spectacular seems to be the emission of photoelectrons in the “forbidden” directions and the
suppression of ionization when compared to the Fermi golden rule predictions. However, we show on the basis
of an approximate analysis that these photoionization effects can be strongly diminished when additional
manifolds around the selected one are included in the model. Thus, we conclude that thenaniold
approximation overestimates results when applied to the problem ofrhiRydberg-state photoionization.

PACS numbd(s): 32.80.Rm, 42.50.Hz

[. INTRODUCTION effect of the nonresonart\||=1 migration of the popula-
tion from the initiall state towards other bouridstates on

The Rydberg atom, real or a model, is a favorite systenthe photoionization characteristics, namely, the photoelec-
for the study of a variety of quantum transitions caused by atron angular distributions and the total ionization yield.
intense laser-photon flux. For example, Corless and Stroud#/hen solving analytically this photoionization model we ne-
[1] have recently considered a model of excitation ofnan  glect, as in the original excitation model, all othemani-
hydrogenic state ofi>1 from the ground & state, differing folds except one. In the case of photoionization, the selected
substantially from other models. In this model the populationrn manifold is determined by the initial preparation of the
from the directly excitechp state migrated to higher-angular- atom. At first sight, this neglect seems to be justified when
momentum states, all sharing the same principal quanturane compares quasiclassical dipole moments forAthe=0
numbern, due to a sequence pkl|=1 electric-dipole tran- and An#0 transitions. As showiil], the dipole moments
sitions. Each coupling between any pair of the degenerattend to diminish for increasingn and, e.g., foAn=1 the
states differing il by 1 was thus strongly nonresonant with dipole moment is smaller than that fan=0 by as much as
the detuning equal to the frequency of the electromagnetia factor of 5, provided that<n. However, we will show,
field. For such a coupling to be non-negligible the detuningalong an approximate analysis, that the interesting photoion-
must have been compensated by the Rabi frequency for theation effects, predicted by the exactly solvable model with
Rydberg-to-Rydberg coupling. If the electromagnetic field isonly onen manifold, can be drastically diminished by the
linearly polarized along the axis, this Rabi frequency for presence of the neighboring manifolds. This raises the
the coupling from then,I—1m=0 to n,I,m=0 states is question of validity of the one-manifold approximation
[2] QMO o= (eso/h)zpi®, =3.3x 10 nl(n?— 1?4412 which can be resolved, e.g., by experimental verification of
—1)"Y4Y2 where| is the electromagnetic-field intensity some results of the present paper.
expressed in W/cfa Thus, forl<n and, e.g.,n=30, an
enormous dipole moment for the coupling results in the Rabi
frequency approaching an optical frequency already at a rela- CONTINUUM
tively low critical intensity of the order of 18 W/cn?. The X tE
appropriate calculations performed by Corless and Stfbud
gave evidence for indirect excitation from the tate of a
broad range of different-parity angular momentum states, all
of the samen. Obviously, the nonresonapil|=1 Rydberg-
to-Rydberg couplings in question differ deeply in their na- =0
ture from thelAl|=2 Raman couplings considered earlier by
other authorg3-10] in the familiar rotating-wave approxi-
mation. One spectacular difference is that the latter ones mix
a given parity subset of Rydberg states only.

The aim of the present paper is to study a photoionization
version of the Original excitation model of Corless and FIG. 1. The model of photoionization from an'b|| Rydberg
Stroud. Instead of the ground state, we let the initial populastate (,>1), including the|Al|=1 Rydberg-to-Rydberg cou-
tion be in a high Rydberg statd (of n=30, for examplg  plings between series. This model is a modification of the model
and add the ionization continuum to which the Rydbergof photoexcitation of Corless and Stro{i]. Here,j numbers dif-
states are dampe@Fig. 1). In fact, we are interested in the ferentl series (j=j—1).

ng>>1

Jj=1
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Section Il is devoted to solving the photoionization modelpear in two forms of the Schdinger equation which are
with one n manifold only. It gives basic equations for the related by the unitary gauge transformatiol
population dynamics of the relevant states and their solutions- exdiezAt)/#]. By this transformation, the Schiimger
in the perturbative approximation for the bound-free transi-equation considered by us, iA) dW/dt=HW¥=[H,
tions. Then, the general solution is applied to a special case V(t)]¥ is converted into i:)dWV'/dt=H'¥'=[H,
when the photoionization starts from asRydberg state and +V'(t)]¥’, where¥’'=TW¥. So, choosing the interaction
two photoionization indicators of thelAl|=1,An=0  Hamiltonian in the minimal-coupling fori¢’ (t) we have to
Rydberg-to-Rydberg couplings are defined. Moreover, thevork with wave functions transformed by the operalpr.e.,
results of detailed calculations for=30 are presented and ¥'=TW¥ and ¢'=T¢. With the use of the transformed
discussed. In Sec. lll, we include the neighborimgnani-  (primed Schralinger equation, the transition amplitude is
folds assuming pulses shorter than the Kepler period of thg' =(¢//¥')=(¢ /TT/\]f'>=2ijch(( exp(—imd), where
initially populated Rydberg state. The generalization made|-j’rk:<¢,j IT'¢,), and the expansion amplitudeS;[¥’

allows us to formu_lz_ite the fin_al conclusion of the negativezzlclr &, exp(—iwt)] fulfill the same equations a€, but
effect of these additional manifolds on the results obtained ik the changd/(t)— V' (t). Let us see that with overlook-

within the onen-manifold approximation. ing the wave-function transformatiof, would be replaced
by the Kronecker symbod;,, resulting in an incorrect rela-
tion between the transition amplitud8 and the expansion
amplitudesCJ-’ and the paradox stated. Rigorously, for the
model with onen manifold and the continuum neglected in it
A. The solution for simplicity, C,=C(t)=C(t,) with t, standing for the

In eachl series of Fig. 1, we leave only one state,( turn-on time of the atom-field interaction. In the inverted
=n). The chain of states attributed to a giver> 1 (energy form, the relation between the nonequivalent amplituﬁlbs
E,), with only onel state initially occupiedi), is coupled to ~ and Cy readsCy=exp(wd) TS . After using the initial
the atomic continuungenergyE) by an optical pulse of fre- condition, S/ =6, att=ty, the last equation converts into
quencyw, linearly polarized in the direction. We apply the C,(tg) =explwdy)Tii(ty). As a result, the transition ampli-
long-wavelength approximation, i.e., choose the electric fieldude s S :sz;fkai(to)exp[—iwk(t—to)]:exp[—iwj(t
as uniform within the atong (t) = f(t) ey coswt, wheregg is _to)][TTT(tO)]jir where we made use of the fact thaf,
the amplitude and(t) the pulse envelope. In our formula- = o, in the case of degeneracy. For example, to lowest order
tion, the pulse interacts with our model atom through thein electromagnetic fieldT=1+iezA(t)/%, and then one ob-
dipole HamiltonianV(t) = —ezs(t) = — Vf(t)coswt with V' tains S/ =exyf —iwj(t—to)](ie/%)z fe(t')dt’. Obviously, the
=ezso. The wave functionl of the system is then governed obtainedS/ =(¢/ /W) is nonzero and, as required by gauge-
by the total HamiltoniarH =Hq+ V(t), whereHo is the un- iqyariant physical quantitie§11-19, identical with S;
perturbed Hamiltonian whose eigenfunctions and e|ger_1val-:<¢j /W), if the latter transition amplitude is calculated in
ues arep; andfiw; , respectively. By the common expansion tne first-order perturbation theory. This removes the apparent
¥=3,C;¢; exp(—iwjt), one obtains from the Schimger paradox.
equation {#) dW¥/dt=HW¥ a set of textbook equatiofd1] As our emphasis is on the properties of the electron in the
for the expansion amplitudes; . Any two expansion ampli-  continuum, we start with writing down the equation for
tudes in this set are interrelated by the matrix elemépt (1), i.e., the transition amplitud@vith accuracy to phage

=(¢j/esoz/ ¢y) being nonzero for th¢Al|=1 couplings  to such a state. With no rotating-wave approximation made,
within the samen manifold. This allows théAl[=1 transi-  thjs equation reads

tions along the chain of degenerate discrettates of our

Il. MODEL OF PHOTOIONIZATION
WITH ONE n MANIFOLD

model because nonzero expansion amplitu@esnply non- dCg(t) i o "
zero probability (transition amplitudes S;=(¢;/¥) a %f(t)cos(wt)e“ n L_Zl VgiCi(t), (1)
=C; exp(—iwjt). =

However, an apparent paradox would have appeared if Wehere v/ = (E|esyz|j) is the time independent part of the
had simply replaced the dipole interaction Hamiltonianygng-free matrix element for the atom-field interaction
V(t)=—ezs(t) by the minimal-coupling interaction Hamil-  Hamiltonian. On the other hand, the population amplitudes

tonianV’ (t) = — (e/m)pA(t) in the above matrix elements. ¢ (t) of Rydberg states fulfill the integrodifferential equa-
Because the momentum operatey has vanishing matrix tjgn

elements between degenerate sta(es);.~ «j.z;], such a

replacement would result, at first ook, in no transitions along dgi(t) i n
the chain of discretéstates of our model. This conclusion is a %f(t)cos{wt) E Vi Cir ()
incorrect and originates in overlooking the need of transfor- j’=1

mation of wave functions when coming to the interaction .

Hamiltonian in the minimal-coupling forr’ (t). Clarifying +J' dEV,ECE(t)ei(EEnn/ﬁ], )
discussions of this point can be found in Rdfsl-15, for 0 !

example. Briefly, the dipole interaction Hamiltoniarn(t)

and the minimal-coupling interaction Hamiltoni&fi(t) ap-  with Vj;,=(j/eeqz/j’) being the bound-bound analog of

023413-2



PHOTOIONIZATION INDICATORS OF OPTICA . .. PHYSICAL REVIEW A 61023413

Vg;j. Under the familiar assumption of we&kdependence In the special case where only one sta’Fe is initially populated
of Vg, we perform the energy integration in E@), using [Crm(to) = Omi €xplwnly)], the last equation reduces to
the formally time-integrated EqJ). After this procedure,

n

Eq.(2) b o
g. (2) becomes ci(t)=¢ ,tokzl PPy S, )
dci(t) _. :
dt —If(t)COS{wt)'Z}l Qi Cyr (1) We shall use Eq(7) in the limit of a long pulse, i.e., the
I pulse having its widthr much greater than the optical period

" T=2n/w. In such a Iimit,S(t)=iQﬁodt’f(t’)COSwt’ can
[ (t)cogwt)] 121 VieVey Cp (D), ) be well approximated by the first term which occurs when
performing integration by parts, namely, S(t)
where ;,=Vj;, /# is the Rydberg-to-Rydberg Rabi fre- =i(Q/w)f(t)sinwt. This can be verified most easily for,
quency for states differing by 1 ih and the second term e.g., a sine-squared pul$ét) =sir(wt/7) with O<t<r. A
describes either the ionization damping of a given Rydberdew picosecond pulse of optical frequency, which we are
state ('=]j) or the|Al|=2 nonresonant Raman transitions interested in, fulfills excellently this long-pulse approxima-
between Rydberg states via the atomic continuum. The latteion. Under the long-pulse approximation, we apply the
ones received much attention in the pa8t1Q] in the  Fourier-Bessel expansion to E) and rewrite it as
rotating-wave approximation and, thus, are not of interest to

us now. Throughout this paper we deal with such laser fre- ot o2 Q Nt
quencies p=0.2a.u.) and intensities for whicf; is the Cj(t)=e '°N=2w k§=:1 PikPixdn| M- f(1) [e ,
leading coupling parameter. We, thus, simply drop the sec- @)

ond term in Eq(3). Then, the calculation ofg(t) from Eq.

(1) corresponds to the purely perturbative treatment of theyhereJy(z) is the Bessel function of the first kind of order

bound-free transitions. N. To have a measure of population that migrates during the
We introduceA;;, =, /Q,, i.e., scale all Rydberg-to- pulse from the initial staté to some other statie we calcu-

Rydberg Rabi frequencies in terms of the Rabi frequencyate the time average of the population probability over an

01,=10, i.e., that for the first coupling in the chain. Equation jnfinite time interval,

(3), with the second term dropped, is then of the matrix-form

equation n

:<|Cj(t)|2>t:kk§,: . PikPikPijk Pik’

C j—
S =albAC, @

+ o
Q _

. _ . X <JN((>\k—)\k,)—f(t))e'N“’t>

where a(t)=iQf(t)coswt, C is the one column matrix of N=—o w

the population amplitude€§;(t), andA is the matrix of the 0

scaled Rabi frequencies. The latter matrix has only two non-

°‘ ¢ = 2 P, kP.kP,k,P.kf<Jo(<>\k xkf>—f<t>)>

t

t

zero diagonals, the one above and the other below the main
diagonal. We prefer to solve E¢4) by the standard diago-
nalization procedur¢l6] of A. If P is a matrix that diago- ©)

. . 71 — .

223591’2 t;ii"esicg‘ffgpsaﬁs'?yin’*f’ 'trt]ze”m";fri')'(""gdﬂgteioi In the weak-field limit, defined bf2/w—0, both the Bessel

dG/dt=a(t)ApG. The solution gf the latter equgtion is function aqd its time average amount to 1. Then, d_ue to the

G(t)= A(1)G(ty) = A(t)P~1C(to), where t, defines the orthogonality of P(XP;Pix=d;;), the right-hand side of

turn-on time of the optical pulse, andi(t) is a diagonal Eq. (9) becomes eq_ual o the Kron_egk_er symb, mean-

matrix whose elements are,; —ex\,S(t)]3,; , with X, be- ing that no population leaves the initial state. Some migra-
| 1] A d S tJ J’f dt'at tion of the population out of the initidistate is thus expected

ing a given eigenvalue ofA and S(t) to a( ) in the opposite limit of strong fields whefd/ w=1, in con-

=iQf; dt'f(t')coswt’. The diagonalizing matn)P whose  formity with the prediction of Corless and Stro{itl]. This

jth column includes the eigenvector &fcorresponding to conclusion will receive pictorial presentation later for pulses

the \; eigenvalue, is orthogonalP( *=PT). This, along of different envelopes(t).

k,k'=

with the back-transformation froi® to C, results in the fol- In the next step, we substitute the long-pulse &).for
lowing solution to Eq.(4): the Rydberg-state population amplitudes into Eq.for the
continuum-state population amplitude. By the use of the
C(t)=PA(t)PTC(to) (5 summation relatiofi17]

or 2N

] In-1(D+In+1(2) = — In(2) (10

Ci(t)= PikPmiCm(to) €Sy, 6
i k,mzzl kPmiCrm(to) © the latter amplitude is found as
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. +o0 n n
w; To=B3 Pil(1—6 o)(eeg2) =™ Py
E(t)__el tO_NZx 2 21 (N/)\k)VE]PJkPm at ¢ nq 1m a
+(1- 5q,n—l)(1_6q,n)(e802)n:3.}.r?’m_ Pq+2,k]y
t QO ] , !
Xf JN()\kEf(t/))el(EfEanﬁw)t /ﬁdt/. (11) (17)
to

As a fully analytically solvable case, we then consider the with Zn " m being the standard matrix element of theom-
square pulse, meanmt{t) 1 andty,=0. In this case, the ponent of the electron radius between the states shown. As a
resulting time integralf® exp(at’ )dt’o is elementary. When result, the following final form of the differential photoion-
taking squared modulus and then integrating over the photoIzatlon rate is obtained:

electron energy, this time integral results#it Sy , in the
1dW =

long-pulse limit wt>1). The summation oveX in the ion- Y Z' Y. (0.4)Y, (6, 18
ization probability is then performed analytically combining tdQ % qz, , Caw am(0,)Y g (0,¢),  (18)
Eq. (10) with the relation[17]
where
—+ oo
Y Jn(@IN(Z)=3,(2%2). (12 n
N= Zow= 2 Riw(QUo)ThTo,. . (19)

Kk =
As a result, one obtains the following differential rate for the
photoelectron to be emitted into tlk) solid angle: Obviously, this differential rate depends on one angle only,
0, the angle of the photoelectron emission measured with

1dw 77 respect to the direction of linear polarizati@) of the optical
tdo 7 ‘ kz_l 2_1 Rk () pulse. As follows from the symmetry with respect to tRg)
s plane — 7— 6), Z'qq, must vanish ifg andq’ are numbers
X VEjPijkPi(Vej Pjr Pikr)*, (13)  of different parity. We verified this requirement numerically

_ _ _ for different )/ w ratios. By integrating over all photoemis-
whered is the density of the continuum states around thesion directions, Eq(18) transforms into the following total

energyE=E,+#Aw, and photoionization rate:
Q n
W )
31(()\k_>\k');> —=gd2 Zq- (20)
Rk,k’(Q/w): Q . (14) t a=0
(M= M) © Equation(18) for the differential phtoionization rate, Eq.

(20) for the total ionization rate, and the previous £9). for
Ry ' is an intensity-dependent parameter, which tends to 1/¢he time-averaged Rydberg-state population are the basic
in the weak-field limit of 2/w—0. Only in this limit, Eq.  equations for the study of both thal|=1 migration of the
(13) converts into the standard Fermi golden rule differentialpopulation along the chain dfstates and the effect of this
rate for photoionization. migration on the photoionization characteristics in the model
Finally, we apply the partial-wave expansif®] for the  with onen manifold only.
function ¥ ¢ of the photoelectron emitted from théh Ryd-

berg state under the action of light linearly polarized inzhe
direction: For the application, let us assume that initialty=(t,) the

first state of the Rydberg chain is populated onily(, 14
=m;=0). Then, Eqs(18) and(20) reduce to

B. Application and results

V= BaRea(1)Yqm(9,0)Ygm(0,¢),  (15)
ATt 1dw

. , T dQ _27 2 qu’Yqo(e) 10(0) (21)

where ¥, ¢ are the spherical angles of the electron radius,

and ¢ the spherical angles describing the photoemission di-
rection, andB,=i9T(q+1+i/y)/T'(q+1—ily)]*?withy  and
= \2E and E being the photoelectron energy in a.u. This

expansion leads to W
—2%52 r (22
n n
,—Z’l VeiPiPix qZ‘O TaYam (6,4, (16 respectively, where:?P is the Fermi golden rule total rate of
ionization from the initialns Rydberg state to th@ con-
where tinuum, whereag ;' is obtained fromZéq, by formally re-
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placing T3 — Tox=Ta (€€02) 505 In the standard model, tacular photoionization proof for the population from the ini-
only the first state in the Rydberg chain is left. Thég, tial ns state to migrate transiently to higheRydberg states
=Z,,=1/2 and in this standard case the photoelectron angud =1,2, . ..) of thesamen due to the|Al|=1 nonresonant

lar distribution [Eq. (21)] is reduced to the familiar transitions. As a measure of this breakdown, we introduce
[Y10(0)|?~cog 6 law, according to which no photoelectron the intensity-dependent ratio of two photoemissions, one per-
is ejected in the direction perpendicular to the polarizationpendicular and the other parallel to the direction of the laser-
direction of the optical pulse. Thus, the breakdown of thepulse polarization. Equatiof21) gives for this ratio the ex-
prohibited emission in thé= /2 direction would be a spec- pression:

n

, (=DM (q'=1)!
—1)9*a)2\(2q+1)(2q' +1 :
(dw) /(dw) q’qgeveﬁ ) V(2a+1)(29' +1) ar g Zas
r= d_Q . d_Q |_ n . (23)
ZO V(29+1)(29' +1)Zgq
9.9 =

What one can expect is>0 when(/w=1. Moreover, in  such values at which the population from the initiak3@ate
the standard model of one-Rydberg state, the total ionizatiomigrates to, at most, a few nearest highstates. In some
rate[Eg. (22)] converts into the common Fermi golden rule cases, these model results will be compared with exact re-
rate. Thus, a different photoionization measure for |thg sults, i.e., those obtained without the equal-Rabi approxima-
=1 migration and breakdown of the standard model is theion. In the latter case, botk, and P need to be found by
ratio standard numerical procedures. In the analytical equal-Rabi
case, theA matrix from Eq.(4) has unit elements on the
n diagonals above and below the main diagonal. Following the
P:Ws=220 Zygs (24 paper by Biatynicka-Birula, Biatynicki-Birula, Eberly, and
4 Shore [18], the eigenvalues of such aA [det(A—A\l)

. S S =D, (\)=0, wherel is the unit matri} can be found by the
whereWS= yEPt is the total ionization yield in thel standard Lapllélc)e expanding d(\) with resgect to the last co)llumn.
model. Because the Bessel functidn(z), entering Zyq This expansion creates the recurrence relatidf(\)=
through Rk,k,((_)/w)., tends to zero at large argumgn.ts, We—?\anl(R)—anz()\), with the conditionsDo(\)=1 and
expect the ratig will drop.belowll yvhgr()/w>1, pointing D_1(N)=D_5(\)=0. The recurrence relation mentioned
to a strong-field suppression of ionization due to nonresonanjafines the Chebyshev polynomial of the second kind:

|Al|=1 migration to highei-Rydberg states. As to the/ D, (\)=U,(—\/2)=(-1)"U,(\/2) [17]. It is then found
alone, it increases slowly with the increase in laser intensit)frgm zerog ofU,(A/2) that n
n

I, namely, asl¥*~(Q/w)Y? The highest intensity in our
model is, however, limited by the conditid'<1 rooted in

the perturbative treatment of the bound-free transitions. ANe=—2 cos{k—w , (25
Equations(23) and (24) for r and p, respectively, are the n+1

photoionization indicators of the strong-field breakdown of )

the standard model with only one Rydberg state retained, P =(—1)"*itkel /isin k7 (26)

namely, the initially populateds state. An additional non- Ik n+1 n+1/°

photoionization indicator is, obviously, E() for the time-

averaged populatiorp; , of different| states of the same, For the equal-Rabi case, i.e., with E¢®&5) and(26) used,

in whichi=1 must be substituted now. To haregp, andp; we show in Fig. 2 the time-averaged populatignsof dif-

in their explicit forms we need to know the eigenvalugs ferentl states [=j—1) versus the intensity paramet@fw.

and the component®; =P;(\,) of the corresponding A variety of pulse envelopes is assum@tuare- f(t)=1;
eigenvectors of thé\ matrix from Eq.(4). In one case, at SirP—f(t)=sir(wt/7)); Gaussian- f(t) =ex{d —(t/)?]; sech
least, both\, and P have simple analytical forms. This is —f(t)=sech{/r;)=2/expt/s)+exp(—t/m)]), all pulses of
the case of equal-Rabi frequencies between consecutive paitsee same full width at half maximunfFWHM) 7= 7,/2

of Rydberg states in the chain. As results from the estimation= 1.665r,= 2.634r;=8 ps nearly equal twice the Kepler pe-
of the Rabi frequencies in Sec. I, such an approximation ofiod of the initially populated 3§state. To avoid a resonance
equal-Rabi frequencies should work well when 1 and, at  with any lower lying hydrogenic state we took the frequency
the same time|<n. We taken=30 to obtain illustrative ©=0.2a.u.(in this case, a virtual state lying in between the
model results. Thus, for the approximation in question to ben=1 andn=2 states is reached from the initial stat€he
reliable we should restrict the intensity paramefbiw to  corresponding optical periodl is such thatr;,/ T=10" en-
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field region of Q/w>1 (1>0.25x 101°W/cn?), higher}
states (=1) of both opposite and the same parity as that of
the initial Rydberg state will be populated transiently due to
a sequence of nonresondntl|=1 transitions. Also, Fig. 2
shows that a strong square pulse produced-gtate popu-
lation generally different from the population produced by
smooth pulses. Some differences observed in thel lpapu-
lation for different strong smooth pulses are likely due to
different areaP under the pulse envelopes of the same
FWHM [ P(sirf):P(Gaussian)P(sech)=1:1.06:2.38§.

In Fig. 2, a number of different states is seen to be
populated for the highesf)/w ratio (Q/w=10, I=2.5
x 10 W/cn?). Thus, the conditioh<n= 30 of the validity
of the approximation of equal-Rabi frequencies is expected
to be violated in this case. F6Y/ v =10, we compare in Fig.
3 the time-averageldstate populatiom; obtained with(solid
line) and without(dashed ling the equal-Rabi approxima-
tion, assuming square pulse in one cémeand smooth sech
pulse in the other cas@). As expected, some quantitative
differences do occur between the approximéelid line)
and exact(dashed ling curves ifl is high, but the general
tendency remains the same. We confirmed that these differ-
ences tend to disappear quickly with decreasing the intensity
parametef)/w and become practically negligible & v<3.

Through ther and p indicators[Egs. (23) and (24)], we
have an insight into the effect of tHal|=1 Rydberg-to-
Rydberg migration on photoionization. In Fig(af we
presentr versus the intensity parametél/w, calculated
with (solid line) and without(dashed ling the equal-Rabi
approximation. The increase inwith increasing the()/w
parameter points to the breakdown of the?abfaw of the
standard model for the photoelectron distribution. At the
strongest field considered)({ w=10), the photoelectrons
emitted in the direction perpendicular to that of the light
polarization (i.e., the direction forbidden by the standard
mode) amount to nearly one tenth of the photoelectrons
emitted in the preferred direction of the light polarization.
Figure 4b) shows the bulge of the photoelectron angular
distribution in the perpendicular direction when coming from
the weak field (/w=1/10) to the strong field @/w
=10/1). The light-polarization direction, with respect to
which the photoemission angleis measured, is marked by
the vertical arrow. As in Fig. @), the solid (dashed line
corresponds to the calculations performed witlithout) the
equal-Rabi approximation.

In Fig. 5@), we present the other photoionization indica-
tor of the|Al|=1 Rydberg-to Rydberg couplings, namely

FIG. 2. The time-averaged populatiopg of differentl; states,
calculated from Eq(9), versus the pulse-strength parameigiov.
The conditions: equal Rydberg-to-Rydberg couplifiggs.(25) and
(26)], the 30s initial state, the frequenay=0.2 a.u., and the pulse
duration (FWHM) of 10* optical periods irrespective of the pulse
envelope. The results of this and other figures were obtained appl
ing the onen-manifold approximation.

in its dependence on the intensity paraméléw. The same

is shown in Fig. Bo) but with a different horizontal scale.
Again, the solid(dashedl line corresponds to the results ob-
tained with (without) the equal-Rabi approximation. The
}guppression of the total photoionization due to thé|=1
Rydberg-to-Rydberg couplings starts evidently when the in-
tensity parametef)/ w approaches 1. A}/ w= 10, the sup-
suring the long-pulse approximation. In Fig. 2, only the dotspression is by as much as the factor of 5.85. In Fig) &is
have physical meaning but these dots were joined by a line teuppression is shown along a different line, i.e., we compare
guide the eye. This figure confirms the Corless and Strouthe total ionization ratéV/t obtained from Eq.(22) (i.e.,

[1] predictions from their excitation model that in the strong-with the inclusion of thgAl|=1 Rydberg-to-Rydberg cou-
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FIG. 3. The strong-field/»=10) time-averaged populations  F|G. 4. The ratior [Eq. (23)] of the photoemissions in two
p; of different|; states, calculated witksolid ling) and without  orthogonal directions, one perpendicular and the other along the
(dashed lingthe approximation of equal Rydberg-to-Rydberg cou- |ight polarization direction, versus the pulse-strength parameter
plings, for square puls@) and sech puls). Qlw (a); the weak-field (/w=0.1) and the strong-field(}/w
=10) photoelectron angular distributions pointing to the bulge of
the photoemission in thé=7r/2 direction(b). The solid(dasheg
line corresponds to the calculations witlithout) the approxima-
tion of equal Rydberg-to-Rydberg couplings. The case is of the long

lings with the rateWS/t=yEP of the standard model. Let
plingsy 7 square pulse of»=0.2 a.u.

us notice that now there |sﬂ(/co)2 instead ofQ)/w on the
horizontal axis. Figure (&) shows clearly the departure from
the standard linear dependence of the photoionization rate on
laser intensity. As follows from Fig.(5), a picosecond pulse shows that, in weak fields, onlg,;=1/2 is essential and
of the maximum intensity consideref{Q/w)?=100—1  determines completely the standa(6)|*>~ cos # photo-
=2.5x 10" W/cn?] gives the ionization probabilityy<1,  electron distribution and the standard Fermi golden rule total
as required by our perturbative treatment of the bound-freénization rate. However, with increasing field strength;
transitions. begins to decrease monotonically and the relative contribu-
In Fig. 6, we give an explanation of the results of Figs. 4tions of Z,x(Y2q), Zoo(Yo,0, and Zz3(Ysq) become non-
and 5 in terms of the dependence of thg, parameter$Eq.  negligible. TheZ,,, Zy, and Zz; contributions are what
(19 and the note after Eq22)] on the field strength. We predominantly modify, in strong fields, the results of the
concentrate on the diagonal paramet&yg only, which are ~ standard model of photoionization with no Rydberg-to-
the weights at which the squared spherical harmonicsRydberg couplings. The effect @, with higherq is minor
|Yqol?, enter the photoelectron angular distributidBq. due to a rapid decrease of the bound-free matrix element
21)] According to Eq.(22), these diagonal parameters are zn I+10W|th increasing angular momentum quantum number
the only ones determining the total ionization rate. Figure @.
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; the long square pulse af=0.2 a.u. Soliddasheglline corresponds
° 107 b to the calculations with(without) the approximation of equal
*é' Rydberg-to-Rydberg couplings.
< 1 o® 1
-,(:U, lll. EFFECT OF ADDITIONAL n MANIFOLDS
,él 105 _"/ AND CONCLUSION
Re) The photoionization results presented and discussed
4 T T above, particularly those concerning the electron ejection in
10 T o A SR ;
0.01 0.1 1 10 100 the “forbidden” directions and the ionization suppression,
) look very exciting. However, we cannot forget that they were
(Q/ ) obtained within the simplified model which included only

one n manifold. Fortunately, there is one case, at least, in
which the general model from Fig. 1, with a number of ad-

calculated with the inclusion of thiAl|=1 Rydberg-to-Rydberg ditional n manifolds neighboring to the initially occupiet

couplings(the present modehnd the other calculated without these manifold, can also be solved analytically but in an approxi-
couplings(the standard modglversus the pulse-strength parameter Mat€, rather than exact, way. The case concerns the pulses
Qlw (a), (b); the present ionization rate//t [Eq. (22)] and the shorter than the Kep!er period of the initially pre'pared Ryd-
standard ionization ratg52 versus the Q/w)? parameter propor- Derg stateifo), but still much longer than the optical period
tional to laser intensityc). Solid (dashed line corresponds to the for the long-pulse approximation to be valid. In this case the
calculations with(without) the approximation of equal Rydberg-to- neighboringn manifolds are not resolved by the pulse and
Rydberg couplings. The case is of the long square pulse of can be considered as degenerate withnheanifold. Under
=0.2a.u. this condition, Eq.(3), with the bound-free term dropped,

FIG. 5. The ratiop [Eq. (24)] of two total ionization rates, one
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remains valid for the neighboring manifolds as well, pro- period. The only thing we have to do is to resc8le-£Q in
vided that we replaceC;—Cp;, Cji—Cyjr, Qjjr Eqg. (14) and Figs. 4—6. Sincé<1 and can be damped to a
—{Qpjnrjr @nd sum not only ovey’ but also oven’. Then,  very small value when including a lot of differentmani-

by the use of the quasiclassical dipole matrix elements befolds, the conclusion is that, at a given intensity, the neigh-
tween high Rydberg stat¢$,19], one finds the approximate boring n manifolds diminish drastically the photoionization
relation Q; nj =f(An)Qj;., valid for An=n"—n+#0, effects obtained within the simpler model with onemani-
where f(An)=(2/3An)J},(An), and J;,(An) stands for fold only. Due to our highly approximate approach, when
the derivative of the Bessel function. For its validity, this obtaining the damping parametérwe are not able to an-
relation needdn<ny andj=I+1<n,. Applying this rela-  swer the question whether complete cancellation of these ef-
tion, we sum the modified Eq3) over n in the next step. fects is possible. To answer this question, either numerical
Such a procedure results in an equatiorBPq:Enan which solution to the model of Fig. 1 or the experimental verifica-
has exactly the same structure as the original(Bowith the tion of the exact results of the omemanifold photoioniza-
replacement();;, — &€;;,, where £= 1-3,.f(AN). As a tion model is r_equired. Alqng t_hese lines, the applicability of
result, the solution foB; is found to take the form of Eq7).  the onen-manifold approximation of Corless and Strojud
Moreover, due to a weak dependence of bound-free matrix to the problems of highm+ Rydberg-state photoionization is
elements from high Rydberg statEs9], one sees that the €xpected to be established.

right-hand side of the modified E@l) for the photoioniza-

tion amplitude is expressed ;. All this means that the ACKNOWLEDGMENT
solutions for the photoionization characteristics, found in
Sec. Il by applying the on@-manifold approximation, re- Financial support from the Polish Committee for Scien-

main unchanged when including the neighbonnmanifolds  tific Research under Grant No. 2 PO3B 078 12 is acknowl-
and assuming the pulse shorter than the initial-state Keplezdged.
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