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Nonlinear Landau-Zener tunneling
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A self-interacting two-level system depending on an external parameter is investigated. The most striking
feature exhibited in this system is the presence of a nonzero tunneling probability in the adiabatic limit for
large enough interaction strength. Possible experimental observation of this breakdown of adiabaticity using a
Bose-Einstein condensate in an optical potential is suggested.

PACS number~s!: 32.80.Pj, 03.75.Fi, 73.40.Gk, 03.65.2w
as
f
u

tio

on
n

el
th
n

gt
er
el
s

eo
th

di

t
r
o

ity
a

d

by
mil-

atic
the
e

he
an-
tic

ia-
the
ne
sion

d be
Landau-Zener tunneling between energy levels is a b
process in quantum mechanics@1#, and a vast amount o
literature has been devoted to its application in vario
physical systems, such as current driven Josephson junc
@2#, atoms in accelerating optical lattices@3#, and field-driven
superlattices@4#.

In this paper, we study Landau-Zener transition in a n
linear two-level system in which the level energies depe
on the occupation of the levels, representing a mean-fi
type of interaction between the particles. We show that
interactions tend to increase the tunneling probability, a
that there exists a critical value of the interaction stren
beyond which the transition probability becomes nonz
even in the adiabatic limit. As an application of this mod
we consider the transition between Bloch bands for a Bo
Einstein condensate in an optical lattice@5–7#, and work out
the experimental conditions for the observation of the th
retical prediction. Other possible applications include
transition of a condensate in a double-well potential@8–10#
and the motion of small polarons@11#.

MODEL

The nonlinear two-level system is described by the
mensionless Schro¨dinger equation

i
]

]t S a

bD 5H~g!S a

bD ~1!

with the Hamiltonian given by

H~g!5S g
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~ ubu22uau2!
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c

2
~ ubu22uau2!

D ,

~2!

whereg is the level separation,v is the coupling constan
between the two levels, andc is the nonlinear paramete
describing the interaction. For convenience, we have left
the average of the diagonal elements because it does
affect the evolution of the probabilities. The total probabil
uau21ubu2 is conserved and is set to be 1. As in the line
Zener model, we will takev to be independent of time, an
g to change at a constant rate, i.e.,g(t)5at.
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In the near adiabatic regimea→0, the study of the
Landau-Zener transition in the linear case is facilitated
solving for the eigenenergies and eigenstates of the Ha
tonian. The adiabatic levels are given by6 1

2 (g21v2)1/2,
which are plotted as dashed lines in Fig. 1. The nonadiab
transition between these adiabatic levels is dominated by
branch pointt5 iv/a in the analytic dependence of thes
levels as functions of the time in its complex domain. T
fact that the branch point is off the real axis leads to a tr
sition probability vanishing exponentially in the adiaba
limit @1#:

r 05expS 2
pv2

2a D . ~3!

Similarly, we need to analyze the behavior of the ad
batic levels in the nonlinear model in order to understand
Landau-Zener transition for the new problem. We defi
these levels as the solution of the time-independent ver

FIG. 1. Adiabatic energy levels for the linear case~dashed lines!
and nonlinear cases~solid lines!. The result is forv50.2, and a
proportional change of the energy scales of the two axes shoul
made for other values ofv.
©2000 The American Physical Society02-1
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of Eq. ~1! obtained by replacingi (]/]t) with the energye.
After some elaboration, we find the following quartic equ
tion:

x412gx31~g22h221!x222gx2g250, ~4!

wherex52e/v, g5c/v, andh5g/v. This quartic equation
has two real roots whenc<v (g<1), while it can have four
real roots whenc.v (g.1). All the real solutions must lie
outside the energy range (2v/2,v/2). In Fig. 1~a!, wherec
,v, we see that the energy levels are lower than the one
c50, except atg50, where they touch. The upper lev
becomes flatter at the tip while the lower level becom
sharper. In Fig. 1~b!, where c5v, a quite drastic change
appears with the lower tip becoming a sharp angle, a p
nomenon related to the critical point of self-trapping in t
context of small polaron theory@11#. In Fig. 1~c!, wherec
.v, we have an even more dramatic change: a loop app
at the tip of the lower level, which reflects the hystere
accompanying a phase transition.

The looping new feature in the adiabatic level brings u
very interesting phenomenon, the breakdown of adiab
evolution even in the adiabatic limit. Suppose we start wit
state on the lower branch of the adiabatic level in Fig. 1~c!,
and move it up along the branch by changingg so slowly
that little tunneling to the upper level is generated. Af
passing the crossing pointX, the state remains in the cours
moving up in energy until hitting the terminal pointT, where
there is no way to go any further except to jump to the up
and lower levels. Because jumping to the lower level is
discontinuous as it is to the upper one from the termi
point, we expect that there will be a nonzero probability
going into the upper level~and remain in that level after
wards!.

This breakdown of adiabatic evolution is confirmed
numerical calculation of tunneling probability directly from
Eq. ~1!. The numerical results of the probability for differe
interaction strengthsc are shown in Fig. 2 forv50.2. The
small wiggles appearing in the curves are because the
merical simulation must start at some finite time instead
the ideal limit: t52`. We see that the tunneling is in
creased overall because of the interaction. Most strikin
the tunneling probability forc50.4.v is not zero in the
adiabatic limita→0, while it goes to zero forc50.1,v. At
the critical pointc5v50.2, the transition probability seem
to vanish witha with a nonzero slope. On the other hand, f
subcritical values of the interaction,c,v, the tunneling
probability still vanishes exponentially witha ~Fig. 3!. From
the slopes of the curves we find that for smalla,
r;exp@2q(pv2/2a)#, whereq51, 0.7, 0.46, and 0.32 fo
c50, 0.03, 0.07, and 0.1, respectively. The dependenc
the exponent onc can be qualitatively understood from th
fact that, forc,v, the nearest branching point that conne
to the lower level occurs att56 i @12(c/v)2/3#3/2v/a,
whose distance to the real axis of time vanishes asc ap-
proaches its critical valuev from below.

To achieve further insight into the behavior of the tunn
ing probability in the nonlinear model, we have obtained
dynamical energy levels by calculating the energy expe
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tion values of two states evolved from (a,b)5(1,0) and
(a,b)5(0,1) using Eq.~1!. The results are shown in Fig.
for the case ofa50.001 andv50.2. In Fig. 4~a!, wherec
50.1,v, we see the excellent match between the dynam
levels and the adiabatic levels. In Fig. 4~b!, wherec50.2,
there is a small deviation between the two kinds of lev
after passing the tip atg50. Beyond the critical interaction
as shown for the case ofc50.4.v in Fig. 4~c!, there is still
almost perfect matching between the levels for the en
upper branch and part of the lower branch, but the loop
completely ignored by the dyamical level and there is a v

FIG. 2. Numerical results for the tunneling probability as a fun
tion of a for the linear and nonlinear cases withv50.2. For com-
parison, we have included the result from Eq.~3! ~open circles! for
the linear casec50.0.

FIG. 3. Exponential dependence of the nonadiabatic transi
probability on the speed of level crossing,a, for subcritical values
of the interactionc,v50.2.
2-2



di
ts
th
ia

an
b
ity
n
r

-
ve

e-
io

f
n
is
th

o-

e

or

-
erm
ruc-

for
tical
ed

we

ble-
e
his

lls.
ing
the
s an

in

a-

tw

NONLINEAR LANDAU-ZENER TUNNELING PHYSICAL REVIEW A 61 023402
lent shaking above and about the lower branch of the a
batic level after the terminal point. The shaking represen
quantum beating between the amplitude tunneled into
upper adiabatic level and that remaining in the lower ad
batic level.

APPLICATION

The nonlinear two-level model can be used to underst
Landau-Zener tunneling of a Bose-Einstein condensate
tween Bloch bands in an optical lattice. In the low-dens
limit, where the interaction between the atoms can be
glected, the problem is essentially the same as that fo
system of ultracold but noncondensate atoms@12,3#, except
with a much sharper initial condition. As we will show be
low, high enough densities of the atoms can be achie
such that the nonlinear effect discussed above should
readily detectable.

At sufficiently low temperatures, the motion of a Bos
Einstein condensate can be modeled by the one-dimens
nonlinear Schro¨dinger equation@6,12#

i\
]f

]t
52

1

2m S \
]

]x
2 imal t D 2

f1V0 cos~2kLx!f

1
4p\2as

m
ufu2f, ~5!

wherem is the mass of the atoms,kL is the wave number o
the laser light,as is the s-wave scattering length betwee
atoms, andV0 is the strength of the periodic potential that
proportional to the laser intensity. The absolute square of
wave functionf(x,t) is the number density of atoms at p
sition x and time t. A force of mal is represented in the
vector potential gauge, which may stand for either the in

FIG. 4. Comparison of the dynamical levels~open squares! and
the adiabatic levels~solid lines!. The results are forv50.2 anda
50.001, and a proportional change of the energy scales of the
axes should be made for other values ofv.
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tial force in the comoving frame of an accelerating lattice
the gravity force. After the following change of variables

x̃52kLx, f̃5
f

An0

, t̃ 5
4\

m
kL

2t,

ṽ5
mV0

4\2kL
2 , ã5

m2

8\2kL
3 al , c5

pn0as

kL
2 , ~6!

wheren0 is the average density of the condensate, Eq.~5! is
cast into a dimensionless form

i
]f

]t
52

1

2 S ]f

]x
2 iat D 2

1v cos~x!f1cufu2f. ~7!

We have replacedx̃ with x, etc, in the above equation with
out causing confusion. We assume that the nonlinear t
does not break the periodic symmetry, so that the band st
ture remains. In the neighborhood ofk51/2, the Brillouin
zone edge, the wave function can be approximated by

f~x,t !5a~ t !eikx1b~ t !ei (k21)x, ~8!

whereuau21ubu251. Substituting this back into Eq.~7! and
comparing the coefficients ofeikx andei (k21)x , we have

i
]a

]t
5

1

2
~k2at !2a1

v
2

b1c~11ubu2!a,

i
]b

]t
5

1

2
~k212at !2b1

v
2

a1c~11uau2!b. ~9!

This equation is equivalent to Eq.~1! after the linearization
of the quadratic kinetic terms aroundk51/2 and dropping a
constant energy ofc@11(uau21ubu2)/2#. Therefore, we see
that the nonlinear two-level model does provide the basis
understanding the tunneling of the condensate in an op
lattice. To observe the breakdown of adiabaticity, we ne
the ratio

c

v
5

4p\2n0as

mV0
~10!

to be greater than unity. In typical experiments to date,
have n05331021 m3,as52.75 nm for sodium@13#, which
gives usc/v51.34 for V0 /h534 KHz, a result well within
the experimental range@3,5#.

Another system, a Bose-Einstein condensate in a dou
well potential @8#, is also very promising for observing th
breakdown of adiabaticity. The mathematical model for t
system@9# is very similar to our model described by Eq.~1!.
The only difference is that the external parameterg should
be replaced by the lowest energy levels in the two we
Such a double well may be achieved by a laser sheet divid
a trap, and the energy levels may be moved by shifting
laser sheet. It must be noted, however, that one need
attractive interaction between the atoms in this context
order to have a positivec in our model. For a repulsive
interaction, the parameterc becomes negative, and the adi

o
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batic spectrum is then inverted from that shown in Fig. 1.
order to see the adiabatic breakdown in this case, one h
trap the condensate initially in the well that is higher than
other, and lower this well relative to the other in time. T
adiabatic state is then a metastable state, and one ha
extra burden of distinguishing between the breakdown
adiabaticity and decay into the ground state@14# due to other
02340
to
e

the
f

degrees of freedom neglected in the nonlinear Schro¨dinger
equation.
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