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Nonlinear Landau-Zener tunneling
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A self-interacting two-level system depending on an external parameter is investigated. The most striking
feature exhibited in this system is the presence of a nonzero tunneling probability in the adiabatic limit for
large enough interaction strength. Possible experimental observation of this breakdown of adiabaticity using a
Bose-Einstein condensate in an optical potential is suggested.

PACS numbe(s): 32.80.Pj, 03.75.Fi, 73.40.Gk, 03.65v

Landau-Zener tunneling between energy levels is a basic In the near adiabatic regime—0, the study of the
process in quantum mechaniff], and a vast amount of Landau-Zener transition in the linear case is facilitated by
literature has been devoted to its application in varioussolving for the eigenenergies and eigenstates of the Hamil-
physical systems, such as current driven Josephson junctiotsnian. The adiabatic levels are given by (y?+v?)'2
[2], atoms in accelerating optical lattickd], and field-driven  which are plotted as dashed lines in Fig. 1. The nonadiabatic
superlattice$4]. transition between these adiabatic levels is dominated by the

In this paper, we study Landau-Zener transition in a nonbranch pointt=iv/«a in the analytic dependence of these
linear two-level system in which the level energies dependevels as functions of the time in its complex domain. The
on the occupation of the levels, representing a mean-fieldkact that the branch point is off the real axis leads to a tran-
type of interaction between the particles. We show that thaition probability vanishing exponentially in the adiabatic
interactions tend to increase the tunneling probability, andimit [1]:
that there exists a critical value of the interaction strength
beyond which the transition probability becomes nonzero
even in the adiabatic limit. As an application of this model, mV
we consider the transition between Bloch bands for a Bose- r0=exr{ T oa
Einstein condensate in an optical lattj€&e-7], and work out
the experimental conditions for the observation of the theo-
retical prediction. Other possible applications include the Similarly, we need to analyze the behavior of the adia-
transition of a condensate in a double-well poterfi10  patic levels in the nonlinear model in order to understand the
and the motion of small polarojg 1]. Landau-Zener transition for the new problem. We define

these levels as the solution of the time-independent version
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The nonlinear two-level system is described by the di- I(a): ¢=0.1 [(b): ¢=0.2 [(c): c=0.4 |
mensionless Schdinger equation | 1 1 ]
d[a a
with the Hamiltonian given by
Y, C o2 2 v
2+ 5 (bl2=[a?) .
H - 1
7 5 — 25 (bP=[al?)
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where vy is the level separationy is the coupling constant i 1 | |
between the tWO |eve|S' and's the non“near parameter TN AR ERERA RN T AER1 SRARE SRNRE RN (REWE ARRR] ARRRE AUET)

describing the interaction. For convenience, we have left out -05 0 05 -050 05 -050 05

the average of the diagonal elements because it does not 4 Y Y

affect the evolution of the probabilities. The total probability  FiG. 1. Adiabatic energy levels for the linear cadashed lines
|a]?+[b|? is conserved and is set to be 1. As in the linearand nonlinear casesolid lines. The result is forv=0.2, and a
Zener model, we will taker to be independent of time, and proportional change of the energy scales of the two axes should be
v to change at a constant rate, i.¢(f) = at. made for other values of.
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of EqQ. (1) obtained by replacing(d/dt) with the energye. UL L B LA B
After some elaboration, we find the following quartic equa- " ]
tion:

o
o

x*+29x3+ (g2 —h?—1)x*—2gx—g?=0, (4)

wherex=2¢/v, g=cl/v, andh=vy/v. This quartic equation
has two real roots wheev (g=<1), while it can have four
real roots wherc>v (g>1). All the real solutions must lie
outside the energy range-(/2,v/2). In Fig. 1a), wherec
<v, we see that the energy levels are lower than the ones for
c=0, except aty=0, where they touch. The upper level
becomes flatter at the tip while the lower level becomes
sharper. In Fig. ), wherec=v, a quite drastic change
appears with the lower tip becoming a sharp angle, a phe-
nomenon related to the critical point of self-trapping in the
context of small polaron theoryll]. In Fig. 1(c), wherec el T
>v, we have an even more dramatic change: a loop appears 0 0.02 0.04 0.06 0.08 0.1
at the tip of the lower level, which reflects the hysteresis o
accompany!ng a phase traQSItlon. . . . FIG. 2. Numerical results for the tunneling probability as a func-
The looping new feature in the adiabatic level brings up ﬁion of a for the linear and nonlinear cases witk-0.2. For com-

very interesting phenomenon, the breakdown of adiabatiGison, we have included the result from E8). (open circles for
evolution even in the adiabatic limit. Suppose we start with e |inear case=0.0.

state on the lower branch of the adiabatic level in Fig,),1

and move it up along the branch by changipgso slowly o values of two states evolved froma,p)=(1,0) and
that little tunneling to the upper level is generated. After(a,b)=(0,1) using Eq(1). The results are shown in Fig. 4
passing the crossing poid, the state remains in the course g, the case ofv=0.001 andv=0.2. In Fig. 4a), wherec
moving up in energy until hitting the terminal poiif where  _q 1y, e see the excellent match between the dynamical
there is no way to go any further except to jump to the UpPejeyels and the adiabatic levels. In Figh# wherec=0.2,

and lower levels. Because jumping to the lower level is aspare js a small deviation between the two kinds of levels
d|s_cont|nu0us as It is to the_ upper one from the t?_rm'nahfter passing the tip at=0. Beyond the critical interaction,
point, we expect that there will be a nonzero probability fr 54 g for the case of=0.4>v in Fig. 4(c), there is still
going into the upper levefand remain in that level after- 506t perfect matching between the levels for the entire
wards. upper branch and part of the lower branch, but the loop is

This_ breakdowr_1 of adiabatip evolution_ _is C(_)nfirmed by completely ignored by the dyamical level and there is a vio-
numerical calculation of tunneling probability directly from

Eqg. (1). The numerical results of the probability for different
interaction strengths are shown in Fig. 2 fov=0.2. The
small wiggles appearing in the curves are because the nu-
merical simulation must start at some finite time instead of L c
the ideal limit: t=—o. We see that the tunneling is in- __ ¢
creased overall because of the interaction. Most strikingly,
the tunneling probability foc=0.4>v is not zero in the 4 o -
adiabatic limita— 0, while it goes to zero foc=0.1<v. At =
the critical pointc=v=0.2, the transition probability seems
to vanish witha with a nonzero slope. On the other hand, for .
subcritical values of the interactiorg<<v, the tunneling L Oo‘f" 50 o -
probability still vanishes exponentially witta (Fig. 3). From F
the slopes of the curves we find that for smal, 2 ’ o”
r~exgd —q(mv¥2a)], whereq=1, 0.7, 0.46, and 0.32 for - ]
c=0, 0.03, 0.07, and 0.1, respectively. The dependence of
the exponent o can be qualitatively understood from the
fact that, forc<v, the nearest branching point that connects
to the lower level occurs at==*i[1—(c/v)Z?*]®/a, ol v 11
whose distance to the real axis of time vanishes: ap- 20 40 1/a 60 80
proaches its critical value from below.

To achieve further insight into the behavior of the tunnel-  FIG. 3. Exponential dependence of the nonadiabatic transition
ing probability in the nonlinear model, we have obtained theprobability on the speed of level crossing, for subcritical values
dynamical energy levels by calculating the energy expectasf the interactiorc<v=0.2.
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il (65 CI_O |1 T tial force in the comoving frame of an accelerating lattice or
0.5 w the gravity force. After the following change of variables
r E _ ~ _ 4%
woor ] x=2k X, ¢= i t=—k?t,
- ] Vo m
—05 ] ,
r 5 F - ~  mV, ~ m TN
_Illllllllllllllllllll' 'IIIIIIIIIIIIIIIIIIIII' p— —
1-05 0 05 1 Z1-05 0 05 1 VI mad “Taad® T 6)
=at 7=at
il '(é),' <':=IOI4' L wheren, is the average density of the condensate, (Bgis
0.5 F ' ' - cast into a dimensionless form
r ) S8-8-5 505000686 ] b 1({d¢ 2
voor ] i—=—=|——iat| + +c|¢|2.
: : = 2(8)( iat| +vcogx)p+c|o|cd.  (7)
-05 [ .

We have replaced with x, etc, in the above equation with-
out causing confusion. We assume that the nonlinear term
does not break the periodic symmetry, so that the band struc-
ture remains. In the neighborhood kf 1/2, the Brillouin

FIG. 4. Comparison of the dynamical levétspen squarésand ~ zone edge, the wave function can be approximated by
the adiabatic levelsésolid lineg. The results are for=0.2 anda x (k= 1)
=0.001, and a proportional change of the energy scales of the two p(x,t)=a(t)e™ +b(t)e ; 8
axes should be made for other valuesvof

-1 -0.5 0 0.5 1
y=at

where|a|?+ |b|?=1. Substituting this back into E¢7) and

; " ik i(k—1
lent shaking above and about the lower branch of the adig¢®mparing the coefficients & and e'"PX, we have
batic level after the terminal point. The shaking represents a

A . . da 1 oV )
guantum beating between the amplitude tunneled into the i —==(k—at)?a+ zb+c(1+|b|?)a,
upper adiabatic level and that remaining in the lower adia- a2 2
batic level.

b 1 5V 5
i—=z(k—1—at)’b+ za+c(1+]|al?)b. (9)
APPLICATION ot 2 2

The nonlinear two-level model can be used to understan@his equation is equivalent to E¢l) after the linearization
Landau-Zener tunneling of a Bose-Einstein condensate bef the quadratic kinetic terms aroute= 1/2 and dropping a
tween Bloch bands in an optical lattice. In the low-densityconstant energy of[ 1+ (|al?+ |b|?)/2]. Therefore, we see
limit, where the interaction between the atoms can be nethat the nonlinear two-level model does provide the basis for
glected, the problem is essentially the same as that for anderstanding the tunneling of the condensate in an optical
system of ultracold but noncondensate atqd,3], except lattice. To observe the breakdown of adiabaticity, we need
with a much sharper initial condition. As we will show be- the ratio
low, high enough densities of the atoms can be achieved
such that the nonlinear effect discussed above should be
readily detectable.

At sufficiently low temperatures, the motion of a Bose-
Einstein condensate can be modeled by the one-dimension@ be greater than unity. In typical experiments to date, we
nonlinear Schrdinger equatio6,12] have ny=3x10° m*,a,=2.75 nm for sodiun{13], which

gives usc/v=1.34 forV,/h=34 KHz, a result well within

_ Amh®noas

e (10)

C
\'%

2

. dd 1 aJ . the experimental range,5].
ih—-=- %<h5—|ma|t ¢+ Vocos 2k x) b Another system, a Bose-Einstein condensate in a double-
) well potential[8], is also very promising for observing the
Amhicas breakdown of adiabaticity. The mathematical model for this

2
+ m [41°¢, (5 system[9] is very similar to our model described by E4).

The only difference is that the external paramegeshould
wherem is the mass of the atomk, is the wave number of be replaced by the lowest energy levels in the two wells.
the laser light,as is the sswave scattering length between Such a double well may be achieved by a laser sheet dividing
atoms, and/, is the strength of the periodic potential that is a trap, and the energy levels may be moved by shifting the
proportional to the laser intensity. The absolute square of thiaser sheet. It must be noted, however, that one needs an
wave functiong(x,t) is the number density of atoms at po- attractive interaction between the atoms in this context in
sition x and timet. A force of ma is represented in the order to have a positive in our model. For a repulsive
vector potential gauge, which may stand for either the inerinteraction, the parameterbecomes negative, and the adia-
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batic spectrum is then inverted from that shown in Fig. 1. Indegrees of freedom neglected in the nonlinear Stihger
order to see the adiabatic breakdown in this case, one has égjuation.
trap the condensate initially in the well that is higher than the

other, and lower this well relative to the other in time. The
adiabatic state is then a metastable state, and one has the

extra burden of distinguishing between the breakdown of This work was supported by the NSF and the Welch
adiabaticity and decay into the ground stdtté] due to other  Foundation.
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