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Variational R-matrix methods for many-electron systems: Unified nonrelativistic theory
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A nonrelativistic R-matrix theory for many-electron systems is formulated in the language of integral
operators. A relationship between the operator and matrix formulations is provided. Six variational principles
related to the subject are presented. The Rayleigh-Ritz linear trial functions are used in these principles,
yielding second-order variational estimates of eigenvalues, elements, and reciprocals of elementR of the
matrix and its inverse. Following the ideas of Hinze and Hama¢helChem. Phys92, 4372 (1990], a
multiconfiguration Hartree-Fock approach to fRematrix method is proposed.

PACS numbdss): 34.10+x, 31.15—p

I INTRODUCTION B(E) andR(E). The principles are given without details of

_ ) _ ) ~their derivations since the latter are nearly identical to those
Despite their considerable usefulness in the analysis Ghresented in our earlier work&3,14 concerning the theory
Rydberg spectra, photoionization of complex atoms, and refor the single-particle case. In Sec. VI we use the Rayleigh-
lated atomic and molecular phenomefia-4] variational  Ritz jinear trial functions in the principles discussed earlier
R-matrix methods still seem to be unappreciated in compariang find second-order estimates of matrix elements and ei-

son with much more populdR-matrix approaches based on genyalues of the operatoB E) andR(E). Spectral expan-
ideas of Wignerl5-9]. This state of affairs must be partly gjons of kernels of operators approximatif¢g) andR(E)
attributed to the relative newness of these variational meths.e 5150 derived. Although basis functions used in the
ods and to a lack of their unified mathematical treatnteft Rayleigh-Ritz expansions may be arbitrary, when dealing
however, Ref[10]). It is the goal of the present work to fill \yith many-electron systems the most convenient choice of
this gap. _ these functions is in the form of Slater determinants built of
In this work we shall consider a system composedNof  one_glectron spin orbitals. Use of such functions is discussed
nonrelativistic electrong. These may all _be electrons of am, sec. VI Following the ideas of Hinze and Hamacher
atom (or moleculg moving in a Coulomb field produced by [15 7] in Sec. VIIl we consider the possibility to adapt the
an infinitely heavy nucleugnucle) or a group of valence siconfiguration Hartree-Fock technique for a determina-
electrons moving in an effective field due to an infinitely on of approximate eigenvalues and eigenfunctions of the

heavy nucleugnucle) and an electronic core. Our consider- - A .
ations will be very general in that we shall not make use ofggﬁ;ﬁa;zséa ?)r(]d R(E). Remarks concluding the paper

any possible symmetries of the system in order not to ob-
scure the main ideas and the underlying mathematical for-
malism. Also, we shall not discuss any particular physical Il. DEFINITIONS AND NOTATION

process and shall not impose any restrictions on the energy | et ) R3 be a finite volume enclosed by a surfageA

of the system apart from those required by applicability ofyosition vector, relative to some reference origin, of a point
the nonrelativistic description. Once the ideas and the foriy the volume)), will be denoted by . If the point is located
malism are understood in general, it will not be difficult to op the surfaces, the position vector will be marked witp.
apply them to any specific case when restriction to a particua ynit outward vector normal to the surfaceat the pointp

lar energy range or exploitation of eventual symmetries ofyj|| pe denoted byn(p).

the system may lead to a considerable simplification of the | #(r) and ¢'(r) are any two sufficiently regular two-

mathematical treatment. , _ o component spinor functions, their scalar products avand
The paper is divided into nine sections. After this intro- g gre defined as

duction, in Sec. Il the notation used in the rest of the work is
presented. In Sec. Il we follow the ideas of NeskEt,12] ) s Lt ,
and introduce two mutually reciprocal integral operators (dlo >Ejvd ro'(r)¢'(r) (2.1)
B(E) andR(E) and investigate their properties. It is shown
in Sec. IV that matrix representations of these two operatorgnd
are the commonly used logarithmic derivative maBi¢€)
and theR-matrix R(E). Section V is devoted to a presenta- o ,
tion of six variational principles: for eigenvalues, matrix el- (¢ld")= 3€8d2p ¢'(p)' (p), 22
ements, and reciprocals of matrix elements of the operators
respectively. Herel®r is an infinitesimal volume element of
V around the point, d2p is an infinitesimalscalar surface
*Electronic address: radek@mif.pg.gda.pl element ofS around the poinp, and the dagger denotes the
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matrix Hermitian conjugation. A normal outward derivative with

of the function¢(r) at the surface poirp will be denoted by
Ind(p).

With the volumeVC R® one may associate a hypervolume

BC R3N defined as

B={r=[rq,...Nc,...,n] e RPN ;VI<K<N:rc eV}

(2.3
or, equivalently, as thé&l-fold Cartesian product oy

B=WN=p, XX Vy. (2.4

The hypervoluméY is bounded by a hypersurfacg

N
6: U V1><~"XVK_1><SK><VK+1X~"><VN.
K=1

(2.9

If the pointe lies on the hypersurfac®, we shall denote this
using the symbop instead ofe. A unit outward vector nor-
mal to the hypersurfac& at the pointo will be denoted by
n(Q).

The hypersurfacé is composed oN geometrically simi-
lar hyperfaces, with th&th hyperfaceSy defined as

Sy =V X XV 1 XS X Vg1 X X Wy
(K=12,...N). (2.6)

If the point ¢ is on &, we shall indicate this adding the
subscriptk at g, i.e., writing ok instead ofg. Explicitly,

(2.7

It follows from the definition ofS and from Eq.(2.7) that on
Sk the unit outward normal vector is

Ok=[r1, k1P TR 10N

Onl, (2.8
where n(p) is a unit outward vector normal t& at the
point p.

If ®(x) and®’(x) are sufficiently regular B-component
spinor functions defined i?f and on&, their scalar products
over and overS are

n(ek)=[0r,..-.0c—1,N(Pk), Ok 41;---

(DD )= fmd3th)T(t)<I)’(t), (2.9
(P[D')s= jgedm’lQ@T(e)@’(e), (2.10
respectively, where
3Ny(oo )= ... 3 (...
L}d r(-) Ld ry Jvd rn(ees) (2.11

and

N
b o= | a o, 212

f d3N_1QK("‘)EJd3T1"'fder—l
S« Y v

X ﬂdZPKLd%KH' "Lder(' ).
(2.13

Hered®*Nt denotes an infinitesimal element of the hypervol-
ume U around the point, andd®N"1p is an infinitesimal
scalar element of the hypersurfac® around the poinfp.
The scalar product of the functiods(g) and®’ () over a
particular hyperfac&y is defined as

(<I>|<I>')6KEJ6 d* o @M P (k). (2.14

K

From Egs.(2.10, (2.12, and(2.14), one has

N

(PP )= 2, (P|D)g, . (2.19
K=1 K

A space of all completely antisymmetrid*2Zomponent
spinor functions®(t) defined in the hypervolum& and
such tha{ ®|d )y <o will be denoted byAy;. The projector
on the space of such functiofthe hypervolume antisymme-
trizer) will be marked withAy;. A class of functions from
Ay that are twice differentiable i3 will be designed with
Ay . A space of all completely antisymmetric functiobgo)
defined on the hypersurfac® and such that @|d)g<
will be denoted byAg; the projector on the space of such
functions(the hypersurface antisymmetrizevill be marked
with Ag .

If ®(p) and®’(p) are any two functions fromdg, from
their antisymmetry and from the geometric similarity of any
two hyperfacesSy and &y, one infers that

V1=K K =N:(®[D')g = (P|D")s,,

(@(0),P'(0) e As) (2.16
and consequentljcf. Eq. (2.15]
1
V1$K$N:(<D|(I>’)GK= N(<I)|(I)’)G
(@(0),P'(0) € Ag). (2.17)

lIl. OPERATORS B(E) AND R(E)

Consider a system df nonrelativistic electrons described
by the Hamiltonian
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N N
A N 1 -
=2 Ard+5 2 Orere)
K=1 KK’ =1
(K#K")
N 2 N
h - 1 -
= —_—— 2 —_ ’
2| Tam vk Vo )ty 3 Orere).
(K#K")

(3.2

In this definition,ry is a position vector of th&th electron
in the three-dimensional physical spdcelative to an origin
common to all the electropsvhile V is a gradient operator
with respect to coordinates of th&th electron. The symbol
v=[rq,..

.,Fn] denotes a position hypervector of a point de-
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- “ #?
<H\I’/|‘I’>m_<‘l"|7'f‘l’>m:ﬁ(‘l"|vn‘l’)6

2

h
(VW) (34

where
(3.5

denotes the normal derivative of the functid{(E,t) at the
point ¢ on the hypersurfac&. Equations(3.3) and (3.4)
imply

VoW (E,@)=n(0)- V¥ (E,0)

(W'Y ) s=(V ' |W). (3.6

scribing a configuration of the system in an abstract We define a linear integral operatB(E) such that
3N-dimensional configuration space, and we shall use the

symbolV=[V,,...
tor with respect to components ef The multiplicative po-

tential operators/(ry) andU(ry,ry.) are real scalafi.e.,

,Vu] to denote the hypergradient opera-

V. W(E,0)=B(E)¥(E,p) 3.7

for any W (E,r) e Ay(E). The operatoi3(E) is represented

spin-independehtunctions of electronic spatial coordinates by its integral kernel3(E,,0") which is simultaneously a

with the functionU(rK,rK,) being symmetric in its argu-
ments.

The time-independent Schitimger equation for the sys-

tem under consideration is

[H(v)—E]¥(E,r)=0, (3.2

whereE is the total electronic energy of the system. Since we

function of the hypersurface coordinatesand ¢’ and a
square 2x 2N matrix in the jointN-electron spin space. In
terms of the kerneB(E,¢,¢0'), Eq. (3.7) reads

VW (E,. @)= fﬁsdgN_le’B(E,Q,Q’)‘I’(E,Q’)- (3.8

Substitution of Eq(3.7) into relation(3.6) gives

(BY'|¥)s=(V'|BY)g, (3.9

are dealing with electrons, we shall conform to Pauli's ex-
clusion principle and consider only those solutions to Edyhich means that the operat®(E) is Hermitian with re-

(3.2 which are completely antisymmetricNZzomponent

spect to the scalar product)§. Consequently, its kernel

spinors. In what follows, we shall assume that the electroni¢ossesses the symmetry property
energyE is fixed at some prescribed real value, and consider

those configurations of the system whereNiklectrons are
in some fictitious finite volumé&’ enclosed by a surfacs.
Then the configuration pointlies in the correspondingic-
titious) hypervolumeXZ defined by Eq(2.4) and bounded by

B(E,e,0')=B'(E,0’,0). (3.10

The left-hand side of Eq.3.7) remains invariant after oper-
ating on it from the left with the antisymmetrize?tg, and

the hypersurface defined by Eq(2.5. We emphasize that this implies that

we do not confine the electrons to the voluén any way

since we do not impose any artificial boundary condition on

the wave function? (E,t) at &.
We shall denote bydy(E) a subspace afly built of all

B(E)=AsB(E). (3.11)

Since B(E) and Ag are Hermitian under the scalar product

completely antisymmetric regular solutions to the Sehro (|)g, one infers that

dinger equation3.2) in the hypervolumel at the real en-

ergy E; the projector on this subspace will be denoted by

Ay(E). Let W (E,v) € Ax(E) and¥’ (E,x) € Ay(E). In vir-
tue of the reality ofE, we have

(R [ W)= (W' |[HW¥) =0, (3.3

which means that the Hamiltonia®(t) is Hermitian on
Ay(E). On the other hand, application of theN3

B(E)=AsB(E) As, (3.12
which means that the operatB(E) is symmetric in all theN
electrons.
Consider now a se{V(E,t)}C.Ay(E) of functions
which on the hypersurfac® satisfy
Va¥(E,0)=by(E)¥(E,0), (3.13

where b, (E) is a number associated with the function

dimensional Green integration theorem to the expression oW (E,¢). On combining Eq(3.13 with definition (3.7), we

the left-hand side of Eq3.3) yields

obtain
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B(E)\Ifk(E,Q)=bk(E)‘Ifk(E,Q), (3.14 Since the operatoﬁlG(E) is evidently Hermitian under the
scalar product |js, and since, on using Eq$3.23 and
which means that the numbefb,(E)} are eigenvalues of (3.16), it is readily verifiable that
the operator B(E), and the hypersurface functions R R
{¥(E,0)} are corresponding eigenfunctions. Since the op- AZ(E)=Ag(E), (3.29
erator B(E) is Hermitian, all eigenvaluesb(E)} are real,
and eigenfunctions associated with different eigenvalues af@e conclude that the operatots(E) is the projector on a

mutually orthogonal in the sense of subspaceds(E) C Ag defined as
W |¥)s=0 (b (E)#b(E)). (3.19 As(E)={P(0) e Ag;IV(E,v) € Ay(E):
Eigenfunctions associated with degenerate eigenvalifies ®(g)=V(E,0)}. (3.26

there are anymay also be orthogonalized, and it is conve-

nient to normalize all eigenfunctions so that For the sake of later comparisdcf. Sec. VI D we notice at

this moment that, with the aid of Ed3.13, the defining
(VW)= bk (3.1  relation(3.23 may be rewritten equivalently as

for any pair of the indice%,l. For the sake of later use, we N _y + ,
notice here that, with the aid of E¢3.13, the orthogonality As(E,0.0 )_; VoW (E,0)b (E)V, W (E,0").
relation(3.16 may be equivalently rewritten in the form (3.27
_p2 R
(Va¥il VoW 1) e=Dbic(E) S (3.17 We define the linear integral operat®(E), symmetric

In terms of its eigenfunctions and eigenvalues, the spectrdfl &ll the N electrons and possessing the property

expansion of the kerné8(E,p,0') is . ~ -
g (F.0.09 R(E)= AsR(E) As, (328
B(E,Q,Q')ZEK: W\ (E,0)b(E)¥L(E,0"). (3.18  analogous to that expressed by E8.12, as the operator
reciprocal tofS’(E) in the sense of
Equivalently, on using Eq3.13, expansion(3.18 may be

rewritten in the form R(E)B(E)=B(E)R(E)=Ag(E). (3.29
" -1 T / The operatoer(E) is Hermitian with respect to the scalar
B(E.e.0") Ek V(@D BV (E 7). product ()g, and is represented by the integral kernel

(3.19 R(E,p,0'), in terms of which the reciprocity relatidi3.29

. i reads
The functions{ ¥ (E,x)} form a complete set in the sub-

spaceAy(E), and any function¥ (E,r) e Ay(E) may be aN_1
expanded in this set according to f]ggd 0"R(E,e,0")B(E,0",0")

\P(E,t):; Ck(E)\Pk(E,t), (320) _ é@d:‘;N_lQ"B(E,Q,Q,’)R(E,Q”,Q/)
with the expansion coefficients given by = A(E,0,0'). (3.30

c(BE)=(V|V)gs. 3.2 A
(B)=(1d¥)e (321 On using the operatoR(E), Egs. (3.7) and (3.8) may be

On the hypersurfac®, Eq.(3.20 reads converted into

V(EQ)= cl(E)VY(E.Q). (322 VEQ=REV.H(E.Q) (339

and

Equations(3.21) and(3.22 imply that the relation

V(E,0)= jg d*N"1o"R(E,0,0" )V, W(E,0"),
AG<E,e,e'>=§ ¥ (E,0)ViE,0) (323 ®

(3.32
defines the kernel of a linear integral operathg(E) such ~ respectively. )
that for anyWV (E,v) € Ay(E): Operating on both sides of E¢3.14) with R(E), using
A relations (3.29 and (3.24), and performing an elementary
As(E)V(E,0)=V(E,0). (3.249  transformation of the resulting equation, one finds
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R(E)W(E,0)=b, Y(E)V¥\(E,0), (3.33 R(E)B(E)=B(E)R(E) =1, (4.9

which means that the fUnCtiOf{SIfk(E,Q)} are also eigen_ the right-hand side of which follows from the fact that in any
functions of the operatoR(E) associated with eigenvalues Orthonormal basis indg(E) the projectorAg(E) is repre-

{b*(E)}. In terms of its eigenfunctions and eigenvalues,Sented by the unit matrik

the spectral expansion of the kerfe(E,0,0') is In the literature of the subject, the matiR(E) is known
as “the R matrix for the Schrdinger equatiori3.2) at energy

o 1 N ) E, in the basis{®;(¢)} spanning As(E).” The matrix
R(E,0,0 )_; Vi(E,0)b (E)Wy(E,e'). 334  B(E), sometimes denoted by the symbg{E) instead of
B(E), is, as implied by Eq(4.5), the inverse oR(E) and is
After Eq. (3.13 is used, expansioli3.34 may be trans- known as “the logarithmic derivative matrix.”
formed to the form Matrix representations of the relatio(&7) and(3.31) are

I ) D(E)=B(E)P(E) (4.6
R(E.e,m:Zk V.V (E,0)b (E)V, ¥ (E, Q).

(3.39

We conclude this section with an observation that the op-
erators B(E) and R(E) possess not only the properties respectively, wher®(E) andD(E) are column vectors with

and

P(E)=R(E)D(E), (4.7)

(3.12 and(3.28), respectively, but also the properties elements
B(E)=As(E)B(E) As(E), (3.36 Pi(E)=(Di|¥)g (4.9
R(E)=As(E)YR(E) As(E), (33p and

which are the consequences of Ed8.18, (3.34, and Di(B)=(®i[Va¥)s, 4.9
(3.24. respectively. The matrix counterparts of the eigenvalue equa-

tions (3.14 and(3.33 are
IV. MATRIX REPRESENTATIONS OF THE OPERATORS

B(E) AND R(E) B(E)Pw(E)=Dby(E)P(E), (4.10

Presume that a basis g&b;(¢)}, orthonormal under the R(E)Py(E)=by {(E)Py(E), (4.11)
scalar product |[s, is given in Ag(E). In this basis the

kernelsB(E,e,0") andR(E,e,0") possess the bilinear ex- respectively, where the eigenvectdi®,(E)} have compo-
pansions nents

BE0)=3 ®(o)@|Bb)e0f(e). @1 Pi(B)=(®i[ ¥, (4.12

while the counterparts of the spectral expansi(48 and

. (3.39 are
R(E,Q,Q’)=i§j) Di(0)(P|RD) P ("), (4.2
' B(E)=>, Py(E)b(E)PL(E), (4.13
respectively. The expansion coefficients k
(®i|BP))e R(E)= Py(E)by X(E)PL(E), (4.14

k
_ — 1T ’ ’
= fﬁed”‘ ‘o jged“” o' ®/(Q)B(E,0.0)Pi(),  regpeciively.

4.3 V. VARIATIONAL PRINCIPLES FOR EIGENVALUES,
®.|Bd MATRIX ELEMENTS, AND INVERSES OF MATRIX
(®|RP))e ELEMENTS OF THE OPERATORS B(E) AND R(E)
= é d3N-1p % dB*N1o'dT(0)R(E,0,0" )P (0) In this section we present six variational principles related
N I il il J . . .
& & to the R-matrix theory of many-electron systems. Listed in

(4.4) the order of their presentation, these are variational prin-

ciples for eigenvalues of the operatoBE) and R(E),
form square matriceB(E) and R(E), respectively, related variational principles for matrix elements of these operators,
through the matrix representation of .29, and variational principles for reciprocals of matrix elements
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of B(E) and 7A2(E). The principles are presented here with-

out derivations: all of them may be obtained in a systematic (®[B5P")e= stati (P[Va¥ )+ (Va¥|P')s

manner generalizing in the obvious way the author’s con- v
struction of parallel principles in the single-particle case —— 2m — . —,
[13,14). — (VAW [W ) gt oz (WI[[H-E]W )yt

A (5.3
A. Variational principle for eigenvalues of the operator B(E)

The variational principle for eigenvalues of the operatorThe trial functions@(t) and‘?’(r) may be varied freely in

B(E) is Ay The functional on the right side of Ep.3) reaches its
- _ _ stationary value fol' (v)="(E,x) and¥'(x)=¥'(E,x),
(V|V,W)s 2m(¥Y|[H-E]¥)y whereV (E,t) andV'(E,r) are these particular completely
b(E)=st_a — = +? — — : antisymmetric solutions to the Schiinger equation(3.2)
v (VW) (V|¥)e which on the hypersurfac® obey the boundary conditions

(5.7

_ V(E,0)=®(0), ¥Y'(E,0)=d'(0), (5.9
The trial functionW () is to be varied inAgy; no other
restrictions need to be imposed dn(t). Stationary points respectively. It is to be stressed that the trial functigh&)
of the functional in Eq(5.1) are eigenvalues d8(E), while  andW¥’(x) neednot satisfy boundary relations analogous to
trial functions which yield these values are those solutions tahose in Eq.(5.4). If, however, they are subjected to such
the Schrdinger equatior{3.2) which on the hypersurfacé constraints, i.e., if
are corresponding eigenfunctions [@@E). If the trial func- o .
tion W () is varied freely, the principle providesl eigen- Y(e)=®(0), V' (0)=d'(0), (5.9
values and eigenfunctions &‘(E); for that reason we have . ) i
not added any subscript B(E) on the left of Eq.(5.1). The the second_ and the third terms in f[he functh@B) cancel
principle (5.1) has the advantage in yieldimgal estimates of ~and we arrive at the restricted variational principle
eigenvaluegb,(E)} for any particular trial function used. )

In the literature of the subject the princigl®.1) is known By o T M o s T

as Kohn’s principle. Its one-dimensional analog was pre—(q)wq) e —Stg,t (W]Va¥")et h? (WIIH=EI¥ -

. . . . - v,v
sented by Kohn in his seminal papEt6] on variational (5.6)
methods in quantum scattering theory. At present the prin-
ciple (5.1) is the starting point for variational eigenchannel The |atter principle was discussed by Altigk8], who ap-
R-matrix studies of atomic photoionization procesfe%2|  pied it to a problem modeling elastic scattering of electrons
and of Rydberg spectra of complex atofgs. from hydrogen atoms. We are not aware of any presentation

of the more general principlé.3).

B. Variational principle for eigenvalues of the operator‘f\’,(E)
D. Variational principle for matrix elements

The variational principle .
of the operator R(E)

b-Y(E)=sta (VoW |¥) g B 2_m (V|[H—E]P)y _ .Le.t D (p) e As(E) -and<I>’(Q) EJ‘}G(E)- The variational
v (Vn‘l_’Wn‘I_’)e %2 (Vn‘ﬂvn‘?)e principle for the matrix element®| Rd') s is
(5.2 _ _ _
(P|RD")s= Stat[(‘DI‘I”)GH‘I’I@’)e—(‘I’IVn‘I”)s
yields all eigenvalues and eigenfunctions of the operator R
R(E) if the trial functionW () is varied freely inAy. The 2m — . _
value of the functional on the right side of EG.2) is real — 5z (YI[H- E]‘I’h}]- (5.7

for any admissible trial function. To the best of our knowl-

edge, the principlé5.2) has never been discussed before. i = — )
The trial functions¥(x) and ¥’ (xr) may be any functions

from A% . The stationary value of the functional in E&.7)

is obtained for¥ (¥)=W¥(E,x) and V' (x)=W"'(E,t), with

W (E,r) and¥'(E,r) denoting those particular completely
Let ®(g) e Ag(E) and®’(¢) e As(E) [these functions antisymmetric solutions to the Scliiager equation(3.2)

need not be orthonormal with respect to the scalar produaihich on the hypersurfac® satisfy the boundary conditions

(el The variational principle for the matrix element

(®|Bd’)e has the form Va¥(E,0)=®(0), V,¥'(E,0)=P'(0), (5.9

C. Variational principle for matrix elements
of the operator B(E)
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respectively. The trial fUﬂCtiOﬂg(t) and ¥ "(¥) neednot
satisfy conditions analogous to these in E5.8). If, how-
ever, the constraints

VW (0)=®(0), V¥ (0)='(0)

are imposed, principl€5.7) reduces to

(5.9

~ — 2m — . _
(PRD")s= stat) (VW[ W)~ 57 (V[ H-EIW )y
RN\
(5.10

Principle (5.7) was considered by Shimamufa9] in the

context of R-matrix theory of electron-atom collisions. The
restricted principle(5.10 was proposed earlier, within the

framework of the nuclear collision theory, by Jack$@g].

E. Variational principle for reciprocals of matrix elements
of the operator B(E)

The variational principle for reciprocals of matrix ele-

ments of the operatoB(E) between the functionsb (o)
e As(E) and®’ (o) e A(E) is

R RN
(®|BD')t= stat (Vo | o
v (PV,¥)s(V P[P
2m  (V|[[H-E]¥ )y

_am X v
A% (@) (VP D) s

(5.11

where\?(t) e Ay and ‘I_"(t) e Ay;. The stationary value is
obtained for ¥(v)= V¥ (E,x) and ¥'(xv)=7"V'(E,x),

where ¥ (E,x) and V' (E,r) are completely antisymmetric

solutions to the Schringer equatiori3.2) at energyE obey-
ing the boundary condition&.4), while » and ' are arbi-

trary nonzero complex numbers. The principle was discussed

by Nesbe{12].

F. Variational principle for reciprocals of matrix elements
of the operator R(E)

Let (@) e As(E) and®’'(0) € As(E). The variational

PHYSICAL REVIEW A 61 022725

V' (v)=75"V'(E,¢), whereW(E,r) andV'(E,r) are com-
pletely antisymmetric solutions to the ScHimger equation
(3.2 at energyE obeying the boundary condition&.8)
while » and %' are arbitrary nonzero complex numbers. The
principle was discussed by Neshdtl] in the context of
solid-state physics.

VI. DERIVATION OF VARIATIONAL ESTIMATES
FOR MATRIX ELEMENTS AND EIGENVALUES
OF THE OPERATORS R(E) AND B(E) WITH THE USE
OF LINEAR TRIAL FUNCTIONS

In the preceding sections our approach to Bienatrix
theory has been formal. In the rest of this work we shall be
concerned with practical aspects of the theory, and show how
the variational principles of Sec. V, together with the knowl-
edge gained in Sec. Ill, may be used for approximating ei-
genvalues, matrix elements, and integral kernels of the op-
eratorsB(E) and R(E). We shall exploit the fact that the
variational functionals presented in Sec. V are ideally suited
for applications of linear trial functions of the Rayleigh-Ritz

type.

A. Estimates of matrix elements of R (E)

We shall approximate the solutions to the Sclinger
equation(3.2), satisfying the Neumann boundary conditions
(5.8, by linear combinations off sufficiently regular func-
tions{®;(x)} chosen fromAy,,

\I_f(r):;la@i(r), \17'<r>=§la®i<r>, (6.)

where{c;} and{c{} are yet unknown coefficients which re-
main to be determined. Substitution of the trial functions
(6.1) into the functional

F[D,0" W, W' ]=(D|W )+ (V|D)g— (V|V,¥')s

2m — —,
— 5z (YI[H-E]¥")y (6.2
[cf. the right side of Eq(5.7)] yields
F[f',f:ct,c’]=f'c’+c'f' —c'Sc, (6.3

= : . t ongat ; ;
principle for the inverses of matrix elements of the operatof/heref' andc’ aren-component row matrices with elements

R(E) is

(O|RD') G = stat

[ (alvna’)G
v v

(W) g(V]D') g
L 2m (VI[A-ETV )y
h? (DU )o(V]D) g

]. (5.12

The variational functions?(t) and \I_f’(t) are from Ag;.
The stationary value is reached fdf(x)= WV (E,tr) and

{ff=(®|0,)s} and {ci'}, respectively,f" and c’ are
n-component column matrices with elementgf]
=(0,;|®")s} and{c{}, respectively, an&(E) is a Hermit-
ian nXn matrix with elements

2 N
SHE)=(0/[V,0)) o+ 57 (O[H—E10))y. (6.0

A stationary value of the functional6.3) with respect to
independent variations in components @f and ¢’ is an

approximate value of the matrix eIememI>|(f3<b’)G; here-
after this stationary value will be denote®(R®')s. Thus
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6.5 in which & is the kth eigenvalue andi, is an associated
' eigenvector with elementty;}, (i=1,2,...n). Provided
the matricesY and O are nonsingular, problert6.14 has
The yet unknown vectors' andc’ for which the functional ~ exactlyn solutions. Because of the Hermiticity §fand O,
(6.3 is stationary will be denoted b§' andg’, respectively. the eigenvalue$&,} are real and eigenvectors corresponding
The first variation of Eq(6.3) due to infinitesimal variations to different eigenvalues are mutually orthogonal in the sense
of ¢" andc’ around&' and@&’ is of

(D|RD") = stat{f’c +c'f —c'ST').
et

SE[fT,f:&" & 1=[f—&'S]sc’ + sc'[f' —SE']. (6.6) uou=0 (&#&). (6.19

A sufficient condition for vanishing of this first variation is Further, since eigenvectors associated with degenerate eigen-
values(if there are anymay always be orthogonalized, and
ff—g's=0, ' —S&'=0; (6.7  since all eigenvectors may be normalized conveniently,

. henceforth we shall assume that
hence it follows that

T — —
uOu =6, (klI=12...n). (6.16
gi=fls1 &=s71f, 6.9 K
The eigenvectorgu,} may be collected in a squarexn

Since the matrbS is the function of energyct. Eq. (6.4],  matrix U such thatuy is its kth column. Then from Egs.
the optimal vector&" and&’ will also be energy dependent. (6.14 and(6.16 we deduce

We now substitute the optimal vectog$ and &’ for ¢!

and ¢’ into Eq. (6.5 and, after making use of Eq6.1), YU=0UE, (6.17
arrive at the following estimate of the matrix element
(PIRD)s: ufou=1, (6.18

. n where € is a diagonalnxXn matrix with elements{&,
(<p|7"éq>/)6:ffs—lf/: 2 (¢|@i)6[3—1]ij(@j|q>')e_ =&S}, while 1 is the unitnXn matrix. Equationg6.17)
ij=1 and (6.18 imply
(6.9
, _ . , u'yu=¢ (6.19
Since the function®(p) and®’(p) are arbitrary functions
from Ag(E), Eq. (6.9 defines a Hermitian integral operator while Eqgs.(6.11), (6.18, and(6.19 yield

R(E) with the kernel

n

R(E,0.0)= 2 0[S YE)];0](e") (6.10 , o ,
=1 Hence, after simple manipulations, we arrive at

2m
UTS(E)u= sz [E-EN. (6.20

2

approximating the kernel of the operat®(E). It is inter- h
PP g perati(£) S‘l(E)=ﬁU[8— EI]-U. (6.22)

esting to notice that one also arrives at E@s9) and(6.10
using the functional from the principlés.12). With a suit-
able change of the variational basis, expang®h0 may be  Equation(6.21) shows that thdjth element of the matrix
transformed to a simpler form. To show this, let us rewriteS™1(E) is
the matrixS(E) as
= i g Ukt (6.22
S(E)= iL—T[Y—EO], (6.1 1S E)i=ome &—E

. . . Making use of this result in Eq6.10 and defining the func-
whereY and O are Hermitiann X n matrices with elements tions

2 n
Yi=5m (@il V0 et (Oil Oy (6.12 MO=3 w®(®) (k=12,...n) (623

and with the orthonormality property

(A A y= b, (6.24

following from the matrix relation(6.18), we obtain

0;j=(0|0))y, (6.13

respectively. The matridO is the Gram matrix for the set
{0;(v)}, and therefore it is non-negative definite. Now con-
sider a generalized matrix eigenvalue problem 52 0 Ak(Q)AI(Q,)

R(E,0.0)=5=2> —a—. 6.2
YUk:gkOUk, (614) ( e.¢ ) 2m k=1 gk_E ( 3
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Notice that since, in general, the hypersurface functions n

{A(@)} are not orthogonal under the scalar produgt; (

Eqg. (6.29 is not the spectral expansion of the kernel of

7'22(E) [cf. Sec. VID.

B. Estimates of matrix elements ofB(E)

: . . 6.
Considerations analogous to those presented in Sec. le
lead to variational estimates of matrix elements and the kers,

nel of the operatoi3(E). Substitution of the trial functions

(6.1) into the functional

F[O,0 W, W/ ]=(D|V W) s+ (VoW |D)g
—(an7|*?')e+i—r§<l?l[ﬂ— ETV )y
(6.26
[cf. the right side of Eq(5.3)] gives

Flg".g';c’,c’]1=g'c’ +clg’'—c'TC’,

(6.27

whereg' is ann-component row matrix with elemenfg*
=(®|V,0)) s}, g’ is ann-component column matrix with
elements{g/ =(V,0,|®")s}, and T(E) is a Hermitian
nXn matrix with elements

2m -
Tij(E)=(V,00))s— ?<®i|[H_E]®j>‘U-
(6.28

A stationary value of the functiondb.27) with respect to
infinitesimal variations of components of andc’ is a ma-
trix element, between the functiods(p) and®’(g), of the

operatorE(E) being a variational estimate &f{(E):

(®|BD’) o= stat{g'e’ + &g’ —cITE').

che

(6.29

These vectorg' and ¢’ for which the functional(6.27) is
stationary will be denoted b§' and&’. The stationary con-
dition

SF[g'.g";&",e'1=0 (6.30
leads to the relations
gt=g'T7!, &=T1g". (6.30)

On using this result in Eq(6.29, we obtain the following
estimates of the matrix eIemenb(Bd)’)G:

(®BD")s=g'T g’
n
=”E:1 (@IV,0) [T (V0@ g;

(6.32
and those of the integral kernB(E,p,0"):

'B(E,e,m:ijz:l VO[T XE)]; V.0l ().
' (6.33

It is evident that kerne6.33 is Hermitian. Equation$6.32
and (6.33 are also obtained if one uses the trial functions
1) in the variational principlg5.117).

Let Z be a nonsingular HermitianX n matrix with ele-
ents

2

fi ,\
Zij:_ﬁ(vn®i|®j)6+<®i|H®j>‘E! (6.34

and let O be a nonsingulanxn matrix defined by Eq.
(6.13. Then

2m
T(E)z—?[Z—EO]. (6.35

We denote by€ the spectral matrixwith elements[ &, 5y })
and byV the modal matrixwith elementgv;,}) for a matrix
eigenvalue problem

ZV=O0VE, (6.36

and assume that

viov=1. (6.37)

After a few movements similar to those presented at the end
of Sec. VIA, we arrive at

2

#
T’l(E)z—ﬁV[s—El]’lvT, (6.39

which is equivalent to the statement that th#h element of
T YE) is
2

_ _h : VikVik
[THE)]j=— 5 2

ST

Denoting

Yk(t)=i§1vik®i(t) (k=1,2,...n), (6.40

and combining resul6.39 with Eq. (6.33, we obtain

72 X VoY (0)VaYie)

B(E,e,0 ):_ﬁk=l Z—E

. (6.4)

It is to be mentioned that Eq6.41) is not the spectral ex-

pansion of the kerneTB(E,Q,g’) (cf. the remark concluding
the preceding subsection; see also Sec. VIC

C. Estimates of eigenvalues o3(E)

The linear trial functions may also be used for estimating
eigenvalues of3(E). Choosing, in the functional

022725-9



RADOSEAW SZMYTKOWSKI

ey (VITae | 2m (VILR-ETY),

— — , (6.42
VW) B (VW)

[cf. the right-hand side of the principlé&.1)] the trial func-
tion ¥ () in the form

%):,21 20i(v) (O;(x)e Ay

(6.43
leads to the functional
F[a',a]= a'Sa (6.44)
[a'al= e :

in which a is ann-component column matrix with elements
{a;}, a' is ann-component row matrix with elemen{a’},
S=S(E) is the Hermitiann X n matrix defined by Eq(6.4),
andM is a Hermitiann X n overlap matrix with elements

(6.495

We shall denote by and &' these vectorsa and a' for
which the functional(6.44) is stationary with respect to
variations in their components, i.e.,

Mi;=(0i0))s.

SF[a’,a]=0. (6.46)

PHYSICAL REVIEW A 61 022725

since the matrixS is the function of energycf. Eq. (6.4)],

the eigenvector$a,} and the eigenvalueth,} will be en-
ergy dependent.

We observe that the Hermiticity properties®fE) andM
imply that any two eigenvectoi& (E) anda,(E) [with ele-
ments{a;(E)} and{a;(E)}, respectively of the problem

(6.50, associated with different eigenvaluds(E) and

by(E), respectively, are orthogonal in the sense of

alE)Ma(E)=0 (b(E)#b/(E)).  (6.5)

In what follows, we shall assume that eigenvectors corre-
sponding to degenerate eigenvalidsthere are any have

also been orthogonalized and that all eigenvectors have been
normalized so that for any pair of eigenvectors one has

AL(E)M& (E)= 5. (6.52

We shall use the symbo{sifk(E,r)} to denote functions
of the form (6.43 with the expansion coefficients being
components of the eigenvectdi® (E)}:

n
V(E,v)=2, A(E)O(r) (k=1,2,...rank M).
=1
(6.53
Then it is evident that the matrix relatid6.51) implies the

The corresponding stationary values, approximating eigenerthonormality relation

values of B(E), will be denoted byb; one has

5 a'sa 6.4
~EMa° (649
From Eq.(6.44) one finds that the first variation of the func-
tional F[a',a] due to infinitesimal variations ch' and a
arounda’ and 4, respectively, is

: (a'Ma)Sa—(a'sa)Ma

SF[a",a]= da GTVE)?
(a"Ma)a's—(a'sa)a'm
GTVE)? Sa. (6.48

It is seen that conditions fdf[a',a] to be stationary ah'
anda are

_ a'sa . &lsa_.
Sa= §M—5Ma, a's= g‘-,vl_éa M1 (649)

hence we conclude thét is an eigenvalue whilé and a'

(P T)) 6=y (6.54
for the functions{@k(E,Q)} [cf. Eq.(3.16)].

We have found that the set of the functio{ﬁ;k(E,t)},
(k=1,2,...rank M), defined by Eq.(6.53, is ideally
suited as a basis for variational approximation of matrix el-

ements and the kernel of the opera‘fth). To show this,
let us construct trial functions of the form

. rank M . rank M
V()= gl SGV(Ex), V()= gl CWL(E ),

(6.55

where{c,} and{c,} are variational parameters. Proceeding
along the lines of Sec. VIA, we obtain

rank M

(P|RD") 5= 2 (@[FYS (T,
' (6.56

are, respectively, corresponding right and left eigenvectors oivhere S(E) is the square Hermitian matrix of dimensions

the generalized matrix eigenvalue problems

Sa=bMa, a'S=ba'Mm. (6.50

If the matrix S is nonsingular, the number of solutions to

rankM X rankM with elements

~ ~ ~ 2m -~ . ~
Su(B)= (BT, 7)o+ 5 (TIH—ETT))y.
(6.57

these eigenproblems will be equal to the rank of the matrix

M which, in general, will bdessthan the numben of coor-
dinate functions use(tf. Refs.[16], [21]). We note also that

Upon making use of Eq$6.53 and(6.4), Eq.(6.57) may be
rewritten in the form

022725-10
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S(E)=aL(E)S(E)&(E). (6.59

The right side of Eq(6.58 may be simplified further if one

PHYSICAL REVIEW A 61 022725
which, after making use of E¢6.53, may be rewritten as

TW(E)=3LE)T(E)&(E), (6.64

takes into account either of the two eigenvalue equations

(6.50 and the orthonormality conditio(6.52). This results
in

S(E)=by(E) 8y, (6.59

which implies that the matri$~*(E) is diagonal and that its

with the Hermitiann X n matrix T(E) defined by Eq(6.28).
It is seen that, as opposed &E), the matrixT(E) is not
diagonal. Therefore, the variational approximations

rank M
(D[BD') = kgl (@|V Ve[ T (V¥ ) g

diagonal matrix elements are reciprocals of eigenvalues of

the problem(6.50. From Eqs.(6.56), (6.59, and(6.53, we
obtain

rank M

(O|RD")s= 2 (@[Teb (T )e

rank M

2 Fub a0

=iJZ:l (®0)s

(6.60

Since the function$(p) and®’ (o) are arbitrary, from Eq.
(6.60 we deduce the spectral expansfan Eq.(3.34)]

rank M

R(E,0,0")= gl T\ (E,0)by (E)PI(E,0")

0i(e)

-3

i,j=1
rank M
x| X B(E)b (E)EL(E) O] (e)).

(6.6

Expansion (6.61) and the orthonormality relatior{6.54)

show that the numbei®, *(E)}, (k=1,2, ... rankM), are
eigenvalues of the Hermitian opera@(E) with the kernel
R(E,0,0') and the functions{qfk(E,Q)} are normalized
eigenfunctions of this operator. The operav%(E) is the

variational estimate of the operat&(E).
It is also natural to use the trial functiori6.43 to ap-

proximate matrix elements @(E) by employing the proce-

dure outlined in Sec. VI B. Denoting the resulting estimate o

(®|BD') s by (®|BD')s we obtain
rank M

(D|Bd’) = 2 @V T[T (Va0
’ (6.62)

whereT=T(E) is a Hermitian rankVix rank M matrix with
elements

= ~ o~ 2m -~ . ~
Ta(E)= (VoW W))e— 27 (W[ H-E]V )y,
(6.63

n rank M
=2 (®IV0)e| 2 Al T E]
ihj=1 kl=1
X(V,0)|®") g (6.65
and
rank M

B(E,p,0')= kgl VbW (E,0) [T HE) Ve[ (E0")

= > V.00
hj=1
rank M
X kE A(E) T HE) k@) (E) | V.0 (")

(6.66

will be of less practical value than their counterpad@s60
and (6.61).
It is worth noticing that, in analogy with the spectral ex-

pansion(3.18, one may introduce the operatﬁiz’r(E) with
the kernel

B(E,0.0")
rank M

= gl U (E,0)b(E)VL(E,0")

n rank M
&

2 0 gl B (E)B(E)JEL(E) |0F ()

(6.67)

As an estimate d(E). It is seen from the definition.61)

and (6.67) and from the orthonormality relatio(6.54) that
the operator®3(E) andR(E) are reciprocal in the sense that

B(E)R(E)=R(E)B(E)=A(E),  (6.68

where the operatQﬁG(E) with the kernel[cf. Eq. (3.23]

rank M
As(E,0,0")= gl ¥ (E,0)VLE,0') (6.69

is the projector on the subspace 4§ (E) spanned by the
approximate eigenfunctions¥(E,0)}, (k=1.2, ... rank
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M). It should be pointed out, however, that, as opposed to The Hermiticity of T(E) andN implies that eigenvectors

%(E), the operatOF%(E) is not the variational estimate of
B(E).

D. Estimates of eigenvalues ofR(E)

of the problem(6.75 associated with different eigenvalues
are orthogonal in the sense that

AL(E)N&(E)=0 (b, L(E)#b;, Y(E)). (6.7

Finally, we shall use the Rayleigh-Ritz trial functions In what follows, we shall also assume that eigenvectors as-

(6.43 in the functional

(V¥ [¥)s  2m (W[~ E]¥)y

F[W]=——0 S
VW) B (VW)

(6.70

[cf. the right side of Eq(5.2)] to find approximations to

eigenvalues ofR(E). Substitution of Eq.(6.43 into the
functional (6.70 transforms the latter to the form

—— a'Ta 67
[a',a]= =5 (6.71
Herea anda' are defined as in Eq6.44), T=T(E) is the
Hermitian nXn matrix defined by Eq(6.28 while N is a
Hermitiann X n matrix with elements

Nij=(V,0i|V,0))s. (6.72
Denoting bya anda' these vectora anda’ for which
SF[at,a]=0, (6.73
and defining the real number
b i= iT—a (6.74)
a'Na

from Eqgs.(6.71) and(6.73 we find thatEFi, a, anda' are
solutions to the matrix eigenvalue problems

atT=b tafN.

(6.79

If T is nonsingular, the number of nontrivial solutions to

these eigenproblems equals to the raniNof

It should be clearly stated here that even if the basis func-

tions{®;(x)} used for constructing the trial function@(t)
substituted to the functional$.42 and(6.70 are the same,

in general one has rarik+rankM. Moreover, ifb;l(E) is
an eigenvalue of the probler6.75 approximating some

particular eigenvalueb[l(E) of the operatorR(E) and if
by(E) is an eigenvalue of the proble(B.50 approximating
the eigenvalué,(E) of B(E), in general, one finds

b {(E)# By (E). (6.76

Similarly, the eigenvector§,(E) [and &,(E)] of the prob-
lems (6.50 and (6.75 associated with eigenvaluds(E)

andb, Y(E), respectively, in general will be different though

we use the same symbols to denote them.

sociated with degenerate eigenvaldiéshere are anyhave
also been orthogonalized, and that all eigenvectors have been
normalized so that

~

al(E)N& (E)=[b, ((E)] 234 (6.78

Relation(6.78 implies that the functions

\'I‘rk(E,r)=iZl 3 (E)Oi(v) (k=1,2,...rank N),
(6.79

with the coefficients{@; (E)}, being components of the
eigenvectorda,(E)} of the problem(6.75), satisfy the fol-
lowing orthogonality relation or®:

(Vo Vo)) = [ by {(E)] 285 (6.80

[cf. the orthogonality relatior3.17)]. On the hypersurface

S, the functiong6.79 approximate eigenfunctions &f(E).
Once the optimal function&.79 have been found, their
linear combinations of the forms

rank N . rank N
V(v)= k; W (E,x), W'(v)= gl T \(E,v),

(6.8

with the coefficients{c,} and{c,} subjected to variations,
may be suitably used for construction of the variational ap-
proximation of the operatoB(E). Utilizing the results of
Sec. VIB, we obtain

rank N
(D|BO)g= klzl (@IV W)l T (Vo | )s,

i (6.82

with T(E) being the square Hermitian matrix of dimensions
rank N X rank N with elements

~ -~ 2m ~ . -
Tk|(E)=(Vn\I’k|‘I’|)6_?<‘I’k|[H—E]‘I’|>m-
(6.83

[The matriced (E) andT(E) defined by apparently identical
Egs. (6.63 and (6.83 are, in generaldifferent since the
approximate eigenfunctior($.53 and(6.79 differ in num-
ber and form| Upon substituting Eq(6.79 into Eq. (6.82),
the latter becomes

TW(E)=aL(E)T(E)&(E). (6.84
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Then, as a result of any of the eigenvalue probléth35 ~ - - ’m -~ . -
and the orthogonality relatiof6.78), the above equation is Su(E)=(V|V, W) s+ p‘(‘l’d[H— EIV)y
transformed to the form (6.90
Tkl(E):Eﬁl(E)]*lgkl, (6.85  or, equivalently, after substituting E¢6.79, by
~ e _~t ~
showing that the matri¥ (E) is diagonal. Consequently, its Su(E)=ax(E)S(B)a(E), (6.9
g\tversmn is trivial and from Eq<€6.82 and(6.85, we arrive where S(E) is the Hermitiannx n matrix defined by Eq.
(6.4). [The matricesS(E) and S(E) defined by Eqs(6.57)
. rank N o and (6.90), respectively, in general will be different; cf. the
(B|BP)e= > (P|V ¥ )by VT D) remark following Eq.(6.83.]
k=1 . . -~ . .
Since, in general, the matri(E) is not a diagonal one,
n rank N the relationg6.88 and(6.89 will not be suitable for use for
=> (®|V,0)e > aikbglaj*k practical purposes. Instead, it will be more convenient to
ij=1 k=1 N o
Y approximateR(E) by the operatofR(E) with the kernelcf.
X(Va0Oj|P") g (6.8 Eq. (3.39]
and[cf. Eq. (3.19] N rank N — -
R(E,0.0)= 2 VoV (E,0)b (E)I°V,T{(E Q")
rank N . k=1
B(E,0.0")= 2, VaVu(E, Qb (B)V,¥i(E,Q") n
=2 V40i(0)
n ihj=1
= > V,.0,(0) rank N L
“ B _ ,
" x| 2 Aw(E)b H(E)TR(E) V40 ().
rank N _ k=1
x| 2 Bi(E)b (E)E(E) | Va0](e"). (6.92

(6.87  From Egs.(6.87), (6.92, and(6.80 one deduces thak(E)

The trial functions(6.81) may also be used for approxi- IS the inverse of3(E) in the sense that

mating matrix elements and the kernel ®{E). Following 2 a 5 s S
the procedure outlined in Sec. VIA, one arrives at the fol- B(E)R(E)=R(E)B(E)=As(E), (6.93

lowing estimate of ®|R®’ -
g CIREe where the operatads(E), with the kerne[cf. Eq. (3.27]

rank N
(@RD o= 3 (@F0e[E LT[ @) - S T o e 2y B E o
) e - As(EB.e.0)= 2 VaW(E,Q)[b (B) PV W L(E "),
n rank N (6.94)
=2 (D]0)g| > ALS ES
ihj=1 ©0s k=1 w2l is the projector on the subspace 4§ (E) spanned by the
X(0;|d")g, (6.89  approximate eigenfunction§¥ (E,e)}, (k=1,2,...rank

N). We emphasize, however, that estimé&t92 has the
from which the following approximation to the kernel deficiency ofnotbeing a variational one.
R(E,p,0') stems:
VIl. USE OF THE SLATER DETERMINANTAL

rank N BASIS FUNCTIONS

R(E.0.0)= 2 V(EISHE)WV/(Ee)
e.e k,lzzl 4EQLSHE)¥i(Ee Although the basis function§d;(x)} used in expansions

N rank N (6.1 and(6.43 may be chosen in a great variety of ways, in
_ _ 3 (EV S YE) LA (E apphcatlons of the varlatlon&l_t—matrlx methods_to systems
i,j2=1 i(0) k,|2=1 A B)S(B)]dji (E) with more than two electrons it is most convenient to choose

. these functions as Slater determinants built of one-electron
x0j(e), (6.89  spin orbitals. Use of such functions facilitates significantly
B the evaluation of elements of the matrice€E), T(E), M,
Here S(E) is a Hermitian matrix of dimensions rank andN which appeared in Sec. VI.
NXrankN, elements of which are given by Let{#, (1)}, (@=1,2,... u with u=N), be agivenset
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of linearly independent one-electron spin orbitals. Withoutto the orthonormality property7.1) of the spin orbitals, the
loss of generality, we assume that they are orthonormadleterminant§®;(t)} form an orthonormal sewithin the hy-
within the volumey pervolumey,

<¢a|¢ﬁ>:6aﬁ' (71) <®i|®k>m: 5”(, (73)

From Kronecker's products of these spin orbitals, with thewith i ={1;1,...0n}, k={K1x5...xx} and
use of the antlsymmetnzer\m, we may construciy=(X)

linearly independeniN-electron Slater determinants of the Oik= 00k, Ouyiy Oupyiys (7.9
form
From the sef®;(x)} we choosen, (1sn<pu,), determi-
0i(v)=0y,,, . Hr1.r2,....1n) nants (for convenience, they will be assumed to be those
. with 1<i=n) which are used as basis functions in estima-
= \/mAm{d/Ll(rl)o@ ¢L2(r2)®---® l//LN(I’N)} tion procedures described in Secs. VIC and VID.

The main advantage of the use of the orthonormal Slater
1 determinantg7.2) lies in the ease with which matrix ele-
= \/ﬁdeﬂ Yo, (1), (1) th (Tl (7.2 ments of relevant operators between such functions are com-
puted. We define an annihilation operafoy (the index re-
where we assumg < :,<---<(y to avoid redundancy. Due fers to theath spin orbital, &= a<u) such thaf22]

(_)NH@?L\Ilzzl.)..Lj—1Lj+1---LN}(rl'er---erfl) for a:LJE{Ll’LZ""’LN}
A G){LILZ LN}(rl,l’z,...,I’N)= (75)
0 for ae{eg,tn,...,in}

(for the sake of clarity, in the above definition we have added 2m .
the superscripts in parentheses at @is referring to num-  S;j(E)=(0|V,0;)s+ F<®i|[H_E]®j>Q]
bers of electrons described by these functioi$ie annihi-
lators defined in that way anticommute:

= E Y bl + - > Ve (Wal Arg)

a,B=1

2mE
R

1 & .. .
+5 2 Tl p(batbd Oigiihe
It follows from the well-known properties of determinants 25720 0P SETETOY
that (71@

and

CHG :TZ RIETAGY

2m A
Ti(E)=(V,0i|0))s— F<®i|[H_E]i>Q7

1
A A 0,(v)]® r
\/m 2 [ B ( )] l//ﬁ( N-— 1) “w W A
= 2 YaB ol ¥p) = 27 E Yap{Wal HYp)
QYal(rn)- (7.7 72 o
1 & i N 2mE
Making use of Eqs(7.1), (7.5), and(7.7), one readily obtains t3 21 Uot sl Watbed Uty |+ 52 Sij»
the following expressions for elements of the matribesN, &L=
S(E), andT(E): (7.11
with the numerical coefficienty(}) andT'{) ., assuming
M;;=(0, |@J)6_ 2 7(”)(llfa|l///3) (7.8 only values 0 andt1, defined as
Yol =(A,0i|AgO;)n-1, (7.12
=(Va0i[V10))e= 2 Vo (Onthaldnthg), (7.9 0D, =(AA0 A O 2. (7.13
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Knowledge of the matrix elemeni{§.8)—(7.11) suffices to 1

find estimates of eigenvalues and eigenvectors, and conse-  @,(v)= ——dely, (1), 4, (r2),...b, (ry)]. (8.2
~ ~ Ll 1 L2 1 L LN

quently also estimates of the kernelsi#{fE) andR(E) [cf. VN!

Secs. VIC and VID.

From the latter set we choose(l=n=<gu,) determinants

VIIl. MULTICONFIGURATION HARTREE-FOCK which constitute a basis for the expansion

APPROACH TO THE R-MATRIX METHOD

In Sec. VII it has been presumed that the one-electron
spin orbitals{¢,(r)}, of which the determinantal basis func-
tions {O;(x)} are built, are known in advance. If the spin
orbitals are chosen at random from some complete set, a
number of Slater determinan{®;(t)} necessary to obtain

convergent results for eigenvalues BfE) and R(E) may

\F<r>=i§15i(r>, (8.3

which on the hypersurfac® approximates some eigenfunc-

tion of B’(E). The bars over the spin orbitals, inducing the
bars over the Slater determinants, feature the fact that opti-

. N ) o - i Tnal forms of the spin orbitals, together with the best values
of B(E) [andR(E)] might be reduced significantly if varia- o the expansion coefficient&;}, are to be found.

tional procedures were used not only for determining the best geafore we use the variational principl6.1), we have to
expansion coefficient&a;} in Eq. (6.43 but also the optimal  mqgify the functional involved in order to take into account

forms of the one-electron spin orbitals in a manner similar toe orthonormality constrainté8.1). As usual, this is done
that used in multi-configuration Hartree-FoWCHF) cal- with the aid of undetermined Lagrange multiplie{rgaﬁ}

culations of atomic and molecular structures. In this sectiorzo timal values of which are to be foundnd this results in
we develop the ideas of Hinze and Hamacher utilizing thethg functional

unified theory exposed in the preceding sections.

At first let us discuss the case when eigenvalueg((ﬁ)
are to be determined. As in Sec. VII, we choose a set of TIvT om (T H—ETT
one-electron spin orbitalsy,(r)}, («=1,2, ... u, with u FIW N ]= ( |_ n U5 + _r:( |[_ _] )
=N) but do not prescribe their forms apart from imposing (V|¥)g h (P|¥)g
the orthonormality constraints

+ Eg,B:lxaﬁ[<$a|ZB> - 501[3’] .
(Bl )= Sup- (8.1 (VW)

(8.9

These spin orbitals are used to construgt= (§) orthonor-  On evaluating the relevant matrix elements as in Sec. VI,
mal N-electron Slater determinants this functional may be rewritten in the form

B 2,3 2 Ya(Wldndp)
F[{iih{lzba}i{g_aﬁ}]: :

=M=
I
S

== L& .
o i 2 B8 20 | Ve WlRug)+ 2 2 Tolpwatd Oz | ~E8,
2 " - _
2,3 2 Y (Valdp)
I-L —_— —
om a,BZ:l saﬁ[<¢a|wﬁ>_5aﬂ]
- , (85
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highlighting its explicit dependence on the expansion coeffi-and
cients and the spin orbitals. For the sake of later conve-

nience, progressing from E.4) to Eq.(8.5), we have sub-
stituted

~5m (8.6)

Subjecting the functiongB.5) to variations in its arguments,
from the variational principle

5F[{ﬂéi}l{ﬁl/‘la}v{5aﬂ}]:01 (87)

n
ﬁf”Z:l NI (8.16

with y() andT'(?,, defined by Eqs(7.12) and (7.13), re-
spectlvely We stress that although the notation used in this
section does not emphasize this fact explicitly, it should be
remembered that all quantities marked with the tilde are
functions of the energ¥.

Although general similarities in the form between the

we derive the following set of multiconfiguration Hartree- MCHF system(8.9)—(8.12 and the common MCHF systems
Fock equations determining the optimal expansion coeffiencountered in computations of atomic and molecular struc-

cients{#;}, the optimal spin orbital§,(r)}, the optimal
Lagrange multiplierdz .z} and the best approximation

b=F[{a}{¥.} . {Fup}]

to a particular eigenvalue d8(E) we are focusing on

(8.9

(8.9

“
Fugh (177, T e 5T 077
2, FasH 700+ 2 T (B O ¥s(r)

o
=ﬁ§lsagpﬂ(r) (in V), (8.10
# ~ ~ o~
2, Fapl 0nths(p)~Bis(p)]=0 (o0 5) (8.1
and
<Tpa|¢ﬁ>: 5&,8 ) (812'
with
~ IL ~ ~
M”:a;:l Y (ol i) (8.13
and
y73
E Yol (Walany ¢B>+ ; Yl (Ul Hrg)
1S i) o~ o~ 2mE
+§g,gz:1 Uot s atbd Uthgtho)ye _75”'
(8.14

[the nX n matrix S composed of the element8.14) should
not be confused with the matrix defined by E®.57)],
where

n

%fiZ

7* i3

70([3’ (815

tures[22,23 are evident, there are also significant differ-
ences between these systems. First, in the standard MCHF
theory one aims to find energy levels, while in the present
case the energ¥ is prescribed. Second, in the standard
theory the domain on which spin orbitals are definetkis

in the present case the problem is considered in the finite
volume VCR3. Third, in atomic and molecular structure
computations spin orbitals are forced to vanish on a bound-
ary of the domairii.e., at infinity); in the present case on the
surfaceS enclosingV spin orbitals obey the boundary con-

ditions (8.11) which are not prescribe@inceﬁ is not known

in advance but is to be determined in the course of solving
the MCHF system, as well Finally, matrices in algebraic
parts of the standard and the present systems are defined
differently, and a peculiar feature of the present problem is

an unavoidable singularity of the weight mattik [cf. the
remark following Eq.(6.50].

Because of their complexity, the finite-volume MCHF
equations(8.9—(8.12 must be solved in an iterative way.
The algorithm suggested below is an adaptation of the one
used for solving the standard MCHF equations in atomic and
molecular structure computatiofi24].

(i) Obtain starting orthonormal spin-orbitals.

(i) [Begin the configuration-interactiofCI) cycle] con-
struct and solve the Cl equatiof.9).

(iii) 1dentify the particular eigenvaluie in which you are
interested.

(iv*) If the eigenvalue and the corresponding eigenvector
are unchanged theend the CI cycleotherwise continue.

(v) Compute the coefficientsy, s} and{liagﬁg}.

(vi) [Begin the HF cyclé construct the HF equations
(8.10.

(vii) Construct the boundary conditio8.11).

(viii) Solve the resulting boundary-value problem.

(ix) Correct the eigenvaIuE using Eq.(8.8).

(x*) If the eigenvalue and the spin-orbitals are unchanged
thenend the HF cyclgotherwise go to stefvi) [end the HF
cycle].

(xi) Go to step(ii) [end the CI cyclé

Steps(iv*) and (x*) are to be omitted during the first itera-
tions in the Cl and HF cycles, respectively.
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The above considerations have been based on the variabtained from the functional involved in the variational prin-

tional principle for eigenvalues of the operaf®(E). How-

ciple (5.2 after including the orthonormality constraif@. 1).

ever we might as well attempt to develop an analogous proAs before,{faﬁ} are the Lagrange coefficients which are to
cedure aimed at determining the best approximations t@e determined. Defining, for convenience,

eigenvalues o‘fz(E). The starting point for such a procedure

is the functional

_ _ _ _ hP_
— V., V|w 2m (V|[H—E]¥ Eap=7 " Nap (8.18
7] ( n_| i@ __2< |[_ ]_>m om
(Vo¥|[VW)s A7 (VW |V, W)
zg’ﬁzlfaﬂKEaWB)_ Sap] [the difference in signs between the right sides of Eﬁasﬁ_)
+ e — (817  and(8.18 is intentiona] and substituting the trial function
(Vo¥ |V, ¥)g (8.3 into the functional8.17) yields
n M _
3 2, T 2 Aol (vl ve)
Fl{ai} {at {eapt]= 5 m
|12:1 Ei*EJa;:l 'y(c:]ﬁ)(an’//awn'rl/ﬁ)
" a e
o i 2 8 2 ( Vb WelHig)+ = 2 Fﬁg?wwauwmz) ~ES;
a2 e
z:la;kaj ;:1 72';;)(19n¢/a|t9n9’/ﬁ)
/-L JR— —
om a,f}2=l 8aﬂ[<¢a|¢,3>_ 501[3]
ﬁ a m — (8.19
2 a:kEJ 2 V(C:,Jf})(an‘/’amn‘/’ﬁ)
ij=1 af=1
|
From the variational principle @aw[;): Sup (8.24
SFI{AY { ¥} {Fast]1=0, 8.2 _
RCURTARCHRY ®20
one derives the set of MCHF equations
M
L~ Nij= 2 ¥4 (nthaldnip). (829
> [T;—b ;T8 =0, (8.21 Vel TR
=1

“ 3
Y. H(r)Y T RSB
B§=:l Yap (r)'pﬁ(r)+[;’§=l at, gl el Ui ()

o
=B§1 Bapip(r) (in V), (8.22

“
B; Vgl b 0nds(p)—Ps(p)]1=0 (on S) (8.23

and

’y(ci};({j/al H”;ZI,B>

- H i)y s~ 1= 2m X
— i A
Tij—a’ﬁz:1 Ve (Ontal p) 72 aﬁEjl

2mE
+ =79

1 & . ~ o~ am o~
+ 5521 FS'g?ﬁg( Potb | Uthgih)ye
(8.26

[elementg8.26) should not be confused with elements of the
matrix defined by Eq(6.63] and the coefficient§y,z} and

{Tag,ﬁ;} defined by Eqs.(8.15 and (8.16), respectively.
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Solving these equations provides us with optimal spin orbit{8.21)—(8.24) for atomic systems. An output from that code
als, expansion coefficients, the Lagrange multipliers, and theill be used in computations of low-energy electron-atom

best estimates collision and half-collision processes. Second, it is obvious
—~ - that the theory exposed in this work is applicable only to
b~ =F[{a}.{¥.} {Zus}] (8.27  nonrelativistic systems. To be able to treat electron scattering

. from heavy atomic targets and their photoionization, the pro-
of eigenvalues of the operat@t(E). After obvious modifi-  cesses in which both direct and indirect relativistic effects
cations, algorithm step$)—(xi) may be used for solving the are known to be important, one shall need a unified formu-
MCHF equationg8.21)—(8.24). lation of the variationaR-matrix theory for many-electron

It should be noticed that starting with the same initial relativistic systems, and, in this connection, the multicon-
guess of the spin orbitals/,(r)}, the MCHF system&.9—  figuration Dirac-Hartree-FocR-matrix method would be of
(8.12 and(8.21)—(8.24 in general will yielddifferentfinal ~ particular use. Work on this project is also in progress.
results; the results will be identical only when the number of
spin orbitals(and the resulting Slater determingntscreases
to infinity. At the present stage, without prior numerical ex- ACKNOWLEDGMENTS
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