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Variational R-matrix methods for many-electron systems: Unified nonrelativistic theory
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A nonrelativistic R-matrix theory for many-electron systems is formulated in the language of integral
operators. A relationship between the operator and matrix formulations is provided. Six variational principles
related to the subject are presented. The Rayleigh-Ritz linear trial functions are used in these principles,
yielding second-order variational estimates of eigenvalues, elements, and reciprocals of elements of theR
matrix and its inverse. Following the ideas of Hinze and Hamacher@J. Chem. Phys.92, 4372 ~1990!#, a
multiconfiguration Hartree-Fock approach to theR-matrix method is proposed.

PACS number~s!: 34.10.1x, 31.15.2p
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I. INTRODUCTION

Despite their considerable usefulness in the analysis
Rydberg spectra, photoionization of complex atoms, and
lated atomic and molecular phenomena@1–4# variational
R-matrix methods still seem to be unappreciated in comp
son with much more popularR-matrix approaches based o
ideas of Wigner@5–9#. This state of affairs must be partl
attributed to the relative newness of these variational m
ods and to a lack of their unified mathematical treatment~cf.,
however, Ref.@10#!. It is the goal of the present work to fil
this gap.

In this work we shall consider a system composed oN
nonrelativistic electrons. These may all be electrons of
atom ~or molecule! moving in a Coulomb field produced b
an infinitely heavy nucleus~nuclei! or a group of valence
electrons moving in an effective field due to an infinite
heavy nucleus~nuclei! and an electronic core. Our conside
ations will be very general in that we shall not make use
any possible symmetries of the system in order not to
scure the main ideas and the underlying mathematical
malism. Also, we shall not discuss any particular physi
process and shall not impose any restrictions on the en
of the system apart from those required by applicability
the nonrelativistic description. Once the ideas and the
malism are understood in general, it will not be difficult
apply them to any specific case when restriction to a part
lar energy range or exploitation of eventual symmetries
the system may lead to a considerable simplification of
mathematical treatment.

The paper is divided into nine sections. After this intr
duction, in Sec. II the notation used in the rest of the work
presented. In Sec. III we follow the ideas of Nesbet@11,12#
and introduce two mutually reciprocal integral operato
B̂(E) andR̂(E) and investigate their properties. It is show
in Sec. IV that matrix representations of these two opera
are the commonly used logarithmic derivative matrixB(E)
and theR-matrix R(E). Section V is devoted to a present
tion of six variational principles: for eigenvalues, matrix e
ements, and reciprocals of matrix elements of the opera
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B̂(E) andR̂(E). The principles are given without details o
their derivations since the latter are nearly identical to th
presented in our earlier works@13,14# concerning the theory
for the single-particle case. In Sec. VI we use the Raylei
Ritz linear trial functions in the principles discussed earl
and find second-order estimates of matrix elements and
genvalues of the operatorsB̂(E) andR̂(E). Spectral expan-
sions of kernels of operators approximatingB̂(E) andR̂(E)
are also derived. Although basis functions used in
Rayleigh-Ritz expansions may be arbitrary, when deal
with many-electron systems the most convenient choice
these functions is in the form of Slater determinants built
one-electron spin orbitals. Use of such functions is discus
in Sec. VII. Following the ideas of Hinze and Hamach
@15,2#, in Sec. VIII we consider the possibility to adapt th
multiconfiguration Hartree-Fock technique for a determin
tion of approximate eigenvalues and eigenfunctions of
operatorsB̂(E) and R̂(E). Remarks concluding the pape
constitute Sec. IX.

II. DEFINITIONS AND NOTATION

Let V,R3 be a finite volume enclosed by a surfaceS. A
position vector, relative to some reference origin, of a po
in the volumeV, will be denoted byr . If the point is located
on the surfaceS, the position vector will be marked withr.
A unit outward vector normal to the surfaceS at the pointr
will be denoted byn(r).

If f(r ) and f8(r ) are any two sufficiently regular two
component spinor functions, their scalar products overV and
S are defined as

^fuf8&[E
V
d3r f†~r !f8~r ! ~2.1!

and

~fuf8![ R
S
d2r f†~r!f8~r!, ~2.2!

respectively. Hered3r is an infinitesimal volume element o
V around the pointr , d2r is an infinitesimalscalar surface
element ofS around the pointr, and the dagger denotes th
©2000 The American Physical Society25-1
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matrix Hermitian conjugation. A normal outward derivativ
of the functionf(r ) at the surface pointr will be denoted by
]nf(r).

With the volumeV,R3 one may associate a hypervolum
V,R3N defined as

V5$r5@r1 ,...,rK ,...,rN#PR3N;;1<K<N:rKPV%
~2.3!

or, equivalently, as theN-fold Cartesian product ofV:

V5VN[V13¯3VN . ~2.4!

The hypervolumeV is bounded by a hypersurfaceS

S5 ø
K51

N

V13¯3VK213SK3VK113¯3VN . ~2.5!

If the pointr lies on the hypersurfaceS, we shall denote this
using the symbol% instead ofr. A unit outward vector nor-
mal to the hypersurfaceS at the point% will be denoted by
n(%).

The hypersurfaceS is composed ofN geometrically simi-
lar hyperfaces, with theKth hyperfaceSK defined as

SK5V13¯3VK213SK3VK113¯3VN

~K51,2, . . . ,N!. ~2.6!

If the point % is on SK , we shall indicate this adding th
subscriptK at %, i.e., writing %K instead of%. Explicitly,

%K5@r1 ,...,rK21 ,rK ,rK11 ,...,rN#. ~2.7!

It follows from the definition ofS and from Eq.~2.7! that on
SK the unit outward normal vector is

n~%K!5@01 ,...,0K21 ,n~rK!,0K11 ,...,0N#, ~2.8!

where n(r) is a unit outward vector normal toS at the
point r.

If F(r) andF8(r) are sufficiently regular 2N-component
spinor functions defined inV and onS, their scalar products
over V and overS are

^FuF8&V[E
V

d3Nr F†~r!F8~r!, ~2.9!

~FuF8!S[ R
S

d3N21% F†~%!F8~%!, ~2.10!

respectively, where

E
V

d3Nr~¯ ![E
V
d3r1¯E

V
d3rN~¯ ! ~2.11!

and

R
S

d3N21%~¯ ![ (
K51

N E
SK

d3N21%K~¯ !, ~2.12!
02272
with

E
SK

d3N21%K~¯ ![E
V
d3r1¯E

V
d3rK21

3 R
S
d2rKEV

d3rK11¯E
V
d3rN~¯ !.

~2.13!

Hered3Nr denotes an infinitesimal element of the hyperv
ume V around the pointr, and d3N21% is an infinitesimal
scalar element of the hypersurfaceS around the point%.
The scalar product of the functionsF(%) andF8(%) over a
particular hyperfaceSK is defined as

~FuF8!SK
[E

SK

d3N21%K F†~%K!F8~%K!. ~2.14!

From Eqs.~2.10!, ~2.12!, and~2.14!, one has

~FuF8!S5 (
K51

N

~FuF8!SK
. ~2.15!

A space of all completely antisymmetric 2N-component
spinor functionsF(r) defined in the hypervolumeV and
such that̂ FuF&V,` will be denoted byAV . The projector
on the space of such functions~the hypervolume antisymme
trizer! will be marked withÂV . A class of functions from
AV that are twice differentiable inV will be designed with
AV9 . A space of all completely antisymmetric functionsF~%!
defined on the hypersurfaceS and such that (FuF)S,`
will be denoted byAS ; the projector on the space of suc
functions~the hypersurface antisymmetrizer! will be marked
with ÂS .

If F~%! andF8(%) are any two functions fromAS , from
their antisymmetry and from the geometric similarity of a
two hyperfacesSK andSK8 , one infers that

;1<K,K8<N:~FuF8!SK
5~FuF8!SK8

„F~% !,F8~% !PAS… ~2.16!

and consequently@cf. Eq. ~2.15!#

;1<K<N:~FuF8!SK
5

1

N
~FuF8!S

„F~%!,F8~%!PAS…. ~2.17!

III. OPERATORS B̂„E… AND R̂„E…

Consider a system ofN nonrelativistic electrons describe
by the Hamiltonian
5-2
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Ĥ~r!5 (
K51

N

Ĥ~rK!1
1

2 (
K,K851
~KÞK8!

N

Û~rK ,rK8!

5 (
K51

N S 2
\2

2m
“K

2 1V̂~rK! D1
1

2 (
K,K851
~KÞK8!

N

Û~rK ,rK8!.

~3.1!

In this definition,rK is a position vector of theKth electron
in the three-dimensional physical space~relative to an origin
common to all the electrons! while “K is a gradient operato
with respect to coordinates of theKth electron. The symbo
r5@r1 ,...,rN# denotes a position hypervector of a point d
scribing a configuration of the system in an abstr
3N-dimensional configuration space, and we shall use
symbol“5@“1 ,...,“N# to denote the hypergradient oper
tor with respect to components ofr. The multiplicative po-
tential operatorsV̂(rK) and Û(rK ,rK8) are real scalar~i.e.,
spin-independent! functions of electronic spatial coordinate
with the function Û(rK ,rK8) being symmetric in its argu
ments.

The time-independent Schro¨dinger equation for the sys
tem under consideration is

@Ĥ~r!2E#C~E,r!50, ~3.2!

whereE is the total electronic energy of the system. Since
are dealing with electrons, we shall conform to Pauli’s e
clusion principle and consider only those solutions to E
~3.2! which are completely antisymmetric 2N-component
spinors. In what follows, we shall assume that the electro
energyE is fixed at some prescribed real value, and consi
those configurations of the system where allN electrons are
in some fictitious finite volumeV enclosed by a surfaceS.
Then the configuration pointr lies in the corresponding~fic-
titious! hypervolumeV defined by Eq.~2.4! and bounded by
the hypersurfaceS defined by Eq.~2.5!. We emphasize tha
we do not confine the electrons to the volumeV in any way
since we do not impose any artificial boundary condition
the wave functionC(E,r) at S.

We shall denote byAV(E) a subspace ofAV built of all
completely antisymmetric regular solutions to the Sch¨-
dinger equation~3.2! in the hypervolumeV at the real en-
ergy E; the projector on this subspace will be denoted
ÂV(E). Let C(E,r)PAV(E) andC8(E,r)PAV(E). In vir-
tue of the reality ofE, we have

^ĤC8uC&V2^C8uĤC&V50, ~3.3!

which means that the HamiltonianĤ(r) is Hermitian on
AV(E). On the other hand, application of the 3N-
dimensional Green integration theorem to the expression
the left-hand side of Eq.~3.3! yields
02272
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^ĤC8uC&V2^C8uĤC&V5
\2

2m
~C8u¹nC!S

2
\2

2m
~¹nC8uC!S , ~3.4!

where

¹nC~E,%!5n~%!•“C~E,%! ~3.5!

denotes the normal derivative of the functionC(E,r) at the
point % on the hypersurfaceS. Equations~3.3! and ~3.4!
imply

~C8u¹nC!S5~¹nC8uC!S . ~3.6!

We define a linear integral operatorB̂(E) such that

¹nC~E,%!5B̂~E!C~E,%! ~3.7!

for any C(E,r)PAV(E). The operatorB̂(E) is represented
by its integral kernelB(E,%,%8) which is simultaneously a
function of the hypersurface coordinates% and %8 and a
square 2N32N matrix in the jointN-electron spin space. In
terms of the kernelB(E,%,%8), Eq. ~3.7! reads

¹nC~E,% !5 R
S

d3N21%8B~E,%,%8!C~E,%8!. ~3.8!

Substitution of Eq.~3.7! into relation~3.6! gives

~B̂C8uC!S5~C8uB̂C!S , ~3.9!

which means that the operatorB̂(E) is Hermitian with re-
spect to the scalar product (u)S . Consequently, its kerne
possesses the symmetry property

B~E,%,%8!5B†~E,%8,%!. ~3.10!

The left-hand side of Eq.~3.7! remains invariant after oper
ating on it from the left with the antisymmetrizerÂS , and
this implies that

B̂~E!5ÂSB̂~E!. ~3.11!

SinceB̂(E) and ÂS are Hermitian under the scalar produ
(u)S , one infers that

B̂~E!5ÂSB̂~E!ÂS , ~3.12!

which means that the operatorB̂(E) is symmetric in all theN
electrons.

Consider now a set$Ck(E,r)%,AV(E) of functions
which on the hypersurfaceS satisfy

¹nCk~E,%!5bk~E!Ck~E,%!, ~3.13!

where bk(E) is a number associated with the functio
Ck(E,%). On combining Eq.~3.13! with definition ~3.7!, we
obtain
5-3
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B̂~E!Ck~E,%!5bk~E!Ck~E,%!, ~3.14!

which means that the numbers$bk(E)% are eigenvalues o
the operator B̂(E), and the hypersurface function
$Ck(E,%)% are corresponding eigenfunctions. Since the
erator B̂(E) is Hermitian, all eigenvalues$bk(E)% are real,
and eigenfunctions associated with different eigenvalues
mutually orthogonal in the sense of

~CkuC l !S50 „bk~E!Þbl~E!…. ~3.15!

Eigenfunctions associated with degenerate eigenvalue~if
there are any! may also be orthogonalized, and it is conv
nient to normalize all eigenfunctions so that

~CkuC l !S5dkl ~3.16!

for any pair of the indicesk,l. For the sake of later use, w
notice here that, with the aid of Eq.~3.13!, the orthogonality
relation ~3.16! may be equivalently rewritten in the form

~¹nCku¹nC l !S5bk
2~E!dkl . ~3.17!

In terms of its eigenfunctions and eigenvalues, the spec
expansion of the kernelB(E,%,%8) is

B~E,%,%8!5(
k

Ck~E,%!bk~E!Ck
†~E,%8!. ~3.18!

Equivalently, on using Eq.~3.13!, expansion~3.18! may be
rewritten in the form

B~E,%,%8!5(
k

¹nCk~E,%!bk
21~E!¹nCk

†~E,%8!.

~3.19!

The functions$Ck(E,r)% form a complete set in the sub
spaceAV(E), and any functionC(E,r)PAV(E) may be
expanded in this set according to

C~E,r!5(
k

ck~E!Ck~E,r!, ~3.20!

with the expansion coefficients given by

ck~E!5~CkuC!S . ~3.21!

On the hypersurfaceS, Eq. ~3.20! reads

C~E,%!5(
k

ck~E!Ck~E,%!. ~3.22!

Equations~3.21! and ~3.22! imply that the relation

AS~E,%,%8!5(
k

Ck~E,%!Ck
†~E,%8! ~3.23!

defines the kernel of a linear integral operatorÂS(E) such
that for anyC(E,r)PAV(E):

ÂS~E!C~E,%!5C~E,%!. ~3.24!
02272
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-
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Since the operatorÂS(E) is evidently Hermitian under the
scalar product (u)S , and since, on using Eqs.~3.23! and
~3.16!, it is readily verifiable that

ÂS
2 ~E!5ÂS~E!, ~3.25!

we conclude that the operatorÂS(E) is the projector on a
subspaceAS(E),AS defined as

AS~E!5$F~%!PAS ;'C~E,r!PAV~E!:

F~%!5C~E,% !%. ~3.26!

For the sake of later comparison~cf. Sec. VI D! we notice at
this moment that, with the aid of Eq.~3.13!, the defining
relation ~3.23! may be rewritten equivalently as

AS~E,%,%8!5(
k

¹nCk~E,%!bk
22~E!¹nCk

†~E,%8!.

~3.27!

We define the linear integral operatorR̂(E), symmetric
in all the N electrons and possessing the property

R̂~E!5ÂSR̂~E!ÂS , ~3.28!

analogous to that expressed by Eq.~3.12!, as the operator
reciprocal toB̂(E) in the sense of

R̂~E!B̂~E!5B̂~E!R̂~E!5ÂS~E!. ~3.29!

The operatorR̂(E) is Hermitian with respect to the scala
product (u)S , and is represented by the integral kern
R(E,%,%8), in terms of which the reciprocity relation~3.29!
reads

R
S

d3N21%9R~E,%,%9!B~E,%9,%8!

5 R
S

d3N21%9B~E,%,%9!R~E,%9,%8!

5AS~E,%,%8!. ~3.30!

On using the operatorR̂(E), Eqs. ~3.7! and ~3.8! may be
converted into

C~E,%!5R̂~E!¹nC~E,%! ~3.31!

and

C~E,%!5 R
S

d3N21%8R~E,%,%8!¹n8C~E,%8!,

~3.32!

respectively.
Operating on both sides of Eq.~3.14! with R̂(E), using

relations ~3.29! and ~3.24!, and performing an elementar
transformation of the resulting equation, one finds
5-4
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R̂~E!Ck~E,%!5bk
21~E!Ck~E,%!, ~3.33!

which means that the functions$Ck(E,%)% are also eigen-
functions of the operatorR̂(E) associated with eigenvalue
$bk

21(E)%. In terms of its eigenfunctions and eigenvalue
the spectral expansion of the kernelR(E,%,%8) is

R~E,%,%8!5(
k

Ck~E,%!bk
21~E!Ck

†~E,%8!. ~3.34!

After Eq. ~3.13! is used, expansion~3.34! may be trans-
formed to the form

R~E,%,%8!5(
k

¹nCk~E,%!bk
23~E!¹nCk

†~E,%8!.

~3.35!

We conclude this section with an observation that the
erators B̂(E) and R̂(E) possess not only the propertie
~3.12! and ~3.28!, respectively, but also the properties

B̂~E!5ÂS~E!B̂~E!ÂS~E!, ~3.36!

R̂~E!5ÂS~E!R̂~E!ÂS~E!, ~3.37!

which are the consequences of Eqs.~3.18!, ~3.34!, and
~3.24!.

IV. MATRIX REPRESENTATIONS OF THE OPERATORS
B̂„E… AND R̂„E…

Presume that a basis set$F i(%)%, orthonormal under the
scalar product (u)S , is given in AS(E). In this basis the
kernelsB(E,%,%8) andR(E,%,%8) possess the bilinear ex
pansions

B~E,%,%8!5(
i , j

F i~%!~F i uB̂F j !SF j
†~%8!, ~4.1!

R~E,%,%8!5(
i , j

F i~%!~F i uR̂F j !SF j
†~%8!, ~4.2!

respectively. The expansion coefficients

~F i uB̂F j !S

[ R
S

d3N21% R
S

d3N21%8F i
†~%!B~E,%,%8!F j~%8!,

~4.3!

~F i uR̂F j !S

[ R
S

d3N21% R
S

d3N21%8F i
†~%!R~E,%,%8!F j~%8!

~4.4!

form square matricesB(E) and R(E), respectively, related
through the matrix representation of Eq.~3.29!,
02272
,

-

R~E!B~E!5B~E!R~E!5I, ~4.5!

the right-hand side of which follows from the fact that in an
orthonormal basis inAS(E) the projectorÂS(E) is repre-
sented by the unit matrixI.

In the literature of the subject, the matrixR(E) is known
as ‘‘theR matrix for the Schro¨dinger equation~3.2! at energy
E, in the basis$F i(%)% spanningAS(E). ’’ The matrix
B(E), sometimes denoted by the symbolY(E) instead of
B(E), is, as implied by Eq.~4.5!, the inverse ofR(E) and is
known as ‘‘the logarithmic derivative matrix.’’

Matrix representations of the relations~3.7! and~3.31! are

D~E!5B~E!P~E! ~4.6!

and

P~E!5R~E!D~E!, ~4.7!

respectively, whereP(E) andD(E) are column vectors with
elements

Pi~E!5~F i uC!S ~4.8!

and

Di~E!5~F i u¹nC!S , ~4.9!

respectively. The matrix counterparts of the eigenvalue eq
tions ~3.14! and ~3.33! are

B~E!Pk~E!5bk~E!Pk~E!, ~4.10!

R~E!Pk~E!5bk
21~E!Pk~E!, ~4.11!

respectively, where the eigenvectors$Pk(E)% have compo-
nents

Pik~E!5~F i uCk!S , ~4.12!

while the counterparts of the spectral expansions~3.18! and
~3.34! are

B~E!5(
k

Pk~E!bk~E!Pk
†~E!, ~4.13!

R~E!5(
k

Pk~E!bk
21~E!Pk

†~E!, ~4.14!

respectively.

V. VARIATIONAL PRINCIPLES FOR EIGENVALUES,
MATRIX ELEMENTS, AND INVERSES OF MATRIX
ELEMENTS OF THE OPERATORS B̂„E… AND R̂„E…

In this section we present six variational principles rela
to the R-matrix theory of many-electron systems. Listed
the order of their presentation, these are variational p
ciples for eigenvalues of the operatorsB̂(E) and R̂(E),
variational principles for matrix elements of these operato
and variational principles for reciprocals of matrix elemen
5-5
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of B̂(E) andR̂(E). The principles are presented here wit
out derivations: all of them may be obtained in a system
manner generalizing in the obvious way the author’s c
struction of parallel principles in the single-particle ca
@13,14#.

A. Variational principle for eigenvalues of the operator B̂„E…

The variational principle for eigenvalues of the opera
B̂(E) is

b~E!5stat
C̄
H ~C̄u¹nC̄!S

~C̄uC̄!S

1
2m

\2

^C̄u@Ĥ2E#C̄&V

~C̄uC̄!S

J .

~5.1!

The trial function C̄(r) is to be varied inAV9 ; no other

restrictions need to be imposed onC̄(r). Stationary points
of the functional in Eq.~5.1! are eigenvalues ofB̂(E), while
trial functions which yield these values are those solution
the Schro¨dinger equation~3.2! which on the hypersurfaceS
are corresponding eigenfunctions ofB̂(E). If the trial func-

tion C̄(r) is varied freely, the principle providesall eigen-
values and eigenfunctions ofB̂(E); for that reason we have
not added any subscript atb(E) on the left of Eq.~5.1!. The
principle~5.1! has the advantage in yieldingreal estimates of
eigenvalues$bk(E)% for any particular trial function used.

In the literature of the subject the principle~5.1! is known
as Kohn’s principle. Its one-dimensional analog was p
sented by Kohn in his seminal paper@16# on variational
methods in quantum scattering theory. At present the p
ciple ~5.1! is the starting point for variational eigenchann
R-matrix studies of atomic photoionization processes@17,2#
and of Rydberg spectra of complex atoms@3#.

B. Variational principle for eigenvalues of the operator R̂„E…

The variational principle

b21~E!5stat
C̄
H ~¹nC̄uC̄!S

~¹nC̄u¹nC̄!S

2
2m

\2

^C̄u@Ĥ2E#C̄&V

~¹nC̄u¹nC̄!S

J .

~5.2!

yields all eigenvalues and eigenfunctions of the opera

R̂(E) if the trial functionC̄(r) is varied freely inAV9 . The
value of the functional on the right side of Eq.~5.2! is real
for any admissible trial function. To the best of our know
edge, the principle~5.2! has never been discussed before

C. Variational principle for matrix elements
of the operator B̂„E…

Let F(%)PAS(E) andF8(%)PAS(E) @these functions
need not be orthonormal with respect to the scalar prod
(u)S#. The variational principle for the matrix elemen
(FuB̂F8)S has the form
02272
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~FuB̂F8!S5 stat
C̄,C̄8

H ~Fu¹nC̄8!S1~¹nC̄uF8!S

2~¹nC̄uC̄8!S1
2m

\2 ^C̄u@Ĥ2E#C̄8&VJ .

~5.3!

The trial functionsC̄(r) andC̄8(r) may be varied freely in
AV9 . The functional on the right side of Eq.~5.3! reaches its

stationary value forC̄(r)5C(E,r) and C̄8(r)5C8(E,r),
whereC(E,r) andC8(E,r) are these particular completel
antisymmetric solutions to the Schro¨dinger equation~3.2!
which on the hypersurfaceS obey the boundary conditions

C~E,%!5F~%!, C8~E,%!5F8~%!, ~5.4!

respectively. It is to be stressed that the trial functionsC̄(r)

andC̄8(r) neednot satisfy boundary relations analogous
those in Eq.~5.4!. If, however, they are subjected to suc
constraints, i.e., if

C̄~% !5F~%!, C̄8~%!5F8~%!, ~5.5!

the second and the third terms in the functional~5.3! cancel
and we arrive at the restricted variational principle

~FuB̂F8!S5 stat
C̄,C̄8

H ~C̄u¹nC̄8!S1
2m

\2 ^C̄u@Ĥ2E#C̄8&VJ .

~5.6!

The latter principle was discussed by Altick@18#, who ap-
plied it to a problem modeling elastic scattering of electro
from hydrogen atoms. We are not aware of any presenta
of the more general principle~5.3!.

D. Variational principle for matrix elements
of the operator R̂„E…

Let F(%)PAS(E) andF8(%)PAS(E). The variational
principle for the matrix element (FuR̂F8)S is

~FuR̂F8!S5 stat
C̄,C̄8

H ~FuC̄8!S1~C̄uF8!S2~C̄u¹nC̄8!S

2
2m

\2 ^C̄u@Ĥ2E#C̄&VJ . ~5.7!

The trial functionsC̄(r) and C̄8(r) may be any functions
from AV9 . The stationary value of the functional in Eq.~5.7!

is obtained forC̄(r)5C(E,r) and C̄8(r)5C8(E,r), with
C(E,r) and C8(E,r) denoting those particular complete
antisymmetric solutions to the Schro¨dinger equation~3.2!
which on the hypersurfaceS satisfy the boundary condition

¹nC~E,%!5F~%!, ¹nC8~E,%!5F8~%!, ~5.8!
5-6
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respectively. The trial functionsC̄(r) and C̄8(r) neednot
satisfy conditions analogous to these in Eq.~5.8!. If, how-
ever, the constraints

¹nC̄~%!5F~%!, ¹nC̄8~%!5F8~%! ~5.9!

are imposed, principle~5.7! reduces to

~FuR̂F8!S5 stat
C̄,C̄8

H ~¹nC̄uC̄8!S2
2m

\2 ^C̄u@Ĥ2E#C̄8&VJ .

~5.10!

Principle ~5.7! was considered by Shimamura@19# in the
context ofR-matrix theory of electron-atom collisions. Th
restricted principle~5.10! was proposed earlier, within th
framework of the nuclear collision theory, by Jackson@20#.

E. Variational principle for reciprocals of matrix elements
of the operator B̂„E…

The variational principle for reciprocals of matrix ele
ments of the operatorB̂(E) between the functionsF(%)
PAS(E) andF8(%)PAS(E) is

~FuB̂F8!S
215 stat

C̄,C̄8
H ~¹nC̄uC̄8!S

~Fu¹nC̄8!S~¹nC̄uF8!S

2
2m

\2

^C̄u@Ĥ2E#C̄8&V

~Fu¹nC̄8!S~¹nC̄uF8!S

J ,

~5.11!

whereC̄(r)PAV9 and C̄8(r)PAV9 . The stationary value is

obtained for C̄(r)5hC(E,r) and C̄8(r)5h8C8(E,r),
whereC(E,r) and C8(E,r) are completely antisymmetri
solutions to the Schro¨dinger equation~3.2! at energyE obey-
ing the boundary conditions~5.4!, while h andh8 are arbi-
trary nonzero complex numbers. The principle was discus
by Nesbet@12#.

F. Variational principle for reciprocals of matrix elements
of the operator R̂„E…

Let F(%)PAS(E) andF8(%)PAS(E). The variational
principle for the inverses of matrix elements of the opera
R̂(E) is

~FuR̂F8!S
215 stat

C̄,C̄8
H ~C̄u¹nC̄8!S

~FuC̄8!S~C̄uF8!S

1
2m

\2

^C̄u@Ĥ2E#C̄8&V

~FuC̄8!S~C̄uF8!S

J . ~5.12!

The variational functionsC̄(r) and C̄8(r) are from AV9 .

The stationary value is reached forC̄(r)5hC(E,r) and
02272
ed

r

C̄8(r)5h8C8(E,r), whereC(E,r) andC8(E,r) are com-
pletely antisymmetric solutions to the Schro¨dinger equation
~3.2! at energyE obeying the boundary conditions~5.8!
while h andh8 are arbitrary nonzero complex numbers. T
principle was discussed by Nesbet@11# in the context of
solid-state physics.

VI. DERIVATION OF VARIATIONAL ESTIMATES
FOR MATRIX ELEMENTS AND EIGENVALUES

OF THE OPERATORS R̂„E… AND B̂„E… WITH THE USE
OF LINEAR TRIAL FUNCTIONS

In the preceding sections our approach to theR-matrix
theory has been formal. In the rest of this work we shall
concerned with practical aspects of the theory, and show h
the variational principles of Sec. V, together with the know
edge gained in Sec. III, may be used for approximating
genvalues, matrix elements, and integral kernels of the
eratorsB̂(E) and R̂(E). We shall exploit the fact that the
variational functionals presented in Sec. V are ideally sui
for applications of linear trial functions of the Rayleigh-Ri
type.

A. Estimates of matrix elements ofR̂„E…

We shall approximate the solutions to the Schro¨dinger
equation~3.2!, satisfying the Neumann boundary conditio
~5.8!, by linear combinations ofn sufficiently regular func-
tions $Q i(r)% chosen fromAV9 ,

C̄~r!5(
i 51

n

c̄iQ i~r!, C̄8~r!5(
i 51

n

c̄i8Q i~r!, ~6.1!

where$c̄i% and$c̄i8% are yet unknown coefficients which re
main to be determined. Substitution of the trial functio
~6.1! into the functional

F@F,F8;C̄,C̄8#5~FuC̄8!S1~C̄uF8!S2~C̄u¹nC̄8!S

2
2m

\2 ^C̄u@Ĥ2E#C̄8&V ~6.2!

@cf. the right side of Eq.~5.7!# yields

F@ f†,f8; c̄†,c̄8#5f†c̄81 c̄†f82 c̄†Sc̄8, ~6.3!

wheref† andc̄† aren-component row matrices with elemen
$ f i* 5(FuQ i)S% and $c̄i* %, respectively, f8 and c̄8 are
n-component column matrices with elements$ f i8
5(Q i uF8)S% and$c̄i8%, respectively, andS(E) is a Hermit-
ian n3n matrix with elements

Si j ~E!5~Q i u¹nQ j !S1
2m

\2 ^Q i u@Ĥ2E#Q j&V . ~6.4!

A stationary value of the functional~6.3! with respect to
independent variations in components ofc̄† and c̄8 is an
approximate value of the matrix element (FuR̂F8)S ; here-

after this stationary value will be denoted (FuR̂̃F8)S . Thus
5-7
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~FuR̂̃F8!S5 stat
c̄†,c̄8

$f†c̄81 c̄†f82 c̄†Sc̄8%. ~6.5!

The yet unknown vectorsc̄† and c̄8 for which the functional
~6.3! is stationary will be denoted byc̃† andc̃8, respectively.
The first variation of Eq.~6.3! due to infinitesimal variations
of c̄† and c̄8 aroundc̃† and c̃8 is

dF@ f†,f8; c̃†,c̃8#5@ f†2 c̃†S#dc81dc†@ f82Sc̃8#. ~6.6!

A sufficient condition for vanishing of this first variation is

f†2 c̃†S50, f82Sc̃850; ~6.7!

hence it follows that

c̃†5f†S21, c̃85S21f8. ~6.8!

Since the matrixS is the function of energy@cf. Eq. ~6.4!#,
the optimal vectorsc̃† andc̃8 will also be energy dependen

We now substitute the optimal vectorsc̃† and c̃8 for c̄†

and c̄8 into Eq. ~6.5! and, after making use of Eq.~6.1!,
arrive at the following estimate of the matrix eleme
(FuR̂F8)S :

~FuR̂̃F8!S5f†S21f85 (
i , j 51

n

~FuQ i !S@S21# i j ~Q j uF8!S .

~6.9!

Since the functionsF(%) andF8(%) are arbitrary functions
from AS(E), Eq. ~6.9! defines a Hermitian integral operato

R̂̃(E) with the kernel

R̃~E,%,%8!5 (
i , j 51

n

Q i~%!@S21~E!# i j Q j
†~%8! ~6.10!

approximating the kernel of the operatorR̂(E). It is inter-
esting to notice that one also arrives at Eqs.~6.9! and~6.10!
using the functional from the principle~5.12!. With a suit-
able change of the variational basis, expansion~6.10! may be
transformed to a simpler form. To show this, let us rewr
the matrixS(E) as

S~E!5
2m

\2 @Y2EO#, ~6.11!

whereY andO are Hermitiann3n matrices with elements

Yi j 5
\2

2m
~Q i u¹nQ j !S1^Q i uĤQ j&V ~6.12!

and

Oi j 5^Q i uQ j&V , ~6.13!

respectively. The matrixO is the Gram matrix for the se
$Q i(r)%, and therefore it is non-negative definite. Now co
sider a generalized matrix eigenvalue problem

Yuk5EkOuk, ~6.14!
02272
-

in which Ek is the kth eigenvalue anduk is an associated
eigenvector with elements$uik%, (i 51,2, . . . ,n). Provided
the matricesY and O are nonsingular, problem~6.14! has
exactlyn solutions. Because of the Hermiticity ofY andO,
the eigenvalues$Ek% are real and eigenvectors correspondi
to different eigenvalues are mutually orthogonal in the se
of

uk
†Oul50 ~EkÞEl !. ~6.15!

Further, since eigenvectors associated with degenerate e
values~if there are any! may always be orthogonalized, an
since all eigenvectors may be normalized convenien
henceforth we shall assume that

uk
†Oul5dkl ~k,l 51,2, . . . ,n!. ~6.16!

The eigenvectors$uk% may be collected in a squaren3n
matrix U such thatuk is its kth column. Then from Eqs
~6.14! and ~6.16! we deduce

YU5OUE, ~6.17!

U†OU5I, ~6.18!

where E is a diagonaln3n matrix with elements$Ekl
5Ekdkl%, while I is the unitn3n matrix. Equations~6.17!
and ~6.18! imply

U†YU5E ~6.19!

while Eqs.~6.11!, ~6.18!, and~6.19! yield

U†S~E!U5
2m

\2 @E2EI#. ~6.20!

Hence, after simple manipulations, we arrive at

S21~E!5
\2

2m
U@E2EI#21U†. ~6.21!

Equation ~6.21! shows that thei j th element of the matrix
S21(E) is

@S21~E!# i j 5
\2

2m (
k51

n uikujk*

Ek2E
. ~6.22!

Making use of this result in Eq.~6.10! and defining the func-
tions

Lk~r!5(
i 51

n

uikQ i~r! ~k51,2, . . . ,n! ~6.23!

with the orthonormality property

^LkuL l&V5dkl , ~6.24!

following from the matrix relation~6.18!, we obtain

R̃~E,%,%8!5
\2

2m (
k51

n
Lk~%!Lk

†~%8!

Ek2E
. ~6.25!
5-8
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Notice that since, in general, the hypersurface functi
$Lk(%)% are not orthogonal under the scalar product (u)S ,
Eq. ~6.25! is not the spectral expansion of the kernel

R̂̃(E) @cf. Sec. VI D#.

B. Estimates of matrix elements ofB̂„E…

Considerations analogous to those presented in Sec.
lead to variational estimates of matrix elements and the
nel of the operatorB̂(E). Substitution of the trial functions
~6.1! into the functional

F@F,F8;C̄,C̄8#5~Fu¹nC̄8!S1~¹nC̄uF8!S

2~¹nC̄uC̄8!S1
2m

\2 ^C̄u@Ĥ2E#C̄8&V

~6.26!

@cf. the right side of Eq.~5.3!# gives

F@g†,g8; c̄†,c̄8#5g†c̄81 c̄†g82 c̄†Tc̄8, ~6.27!

whereg† is ann-component row matrix with elements$gi*
5(Fu¹nQ i)S%, g8 is an n-component column matrix with
elements $gi85(¹nQ i uF8)S%, and T(E) is a Hermitian
n3n matrix with elements

Ti j ~E!5~¹nQ i uQ j !S2
2m

\2 ^Q i u@Ĥ2E#Q j&V .

~6.28!

A stationary value of the functional~6.27! with respect to
infinitesimal variations of components ofc̄† and c̄8 is a ma-
trix element, between the functionsF(%) andF8(%), of the

operatorB̂̃(E) being a variational estimate ofB̂(E):

~Fu B̂̃F8!S5 stat
c̄ †,c̄8

$g†c̄81 c̄†g82 c̄†Tc̄8%. ~6.29!

These vectorsc̄† and c̄8 for which the functional~6.27! is
stationary will be denoted byc̃† and c̃8. The stationary con-
dition

dF@g†,g8; c̃ †,c̃8#50 ~6.30!

leads to the relations

c̃†5g†T21, c̃85T21g8. ~6.31!

On using this result in Eq.~6.29!, we obtain the following
estimates of the matrix element (FuB̂F8)S :

~Fu B̂̃F8!S5g†T21g8

5 (
i , j 51

n

~Fu¹nQ i !S@T21# i j ~¹nQ j uF8!S;

~6.32!

and those of the integral kernelB(E,%,%8):
02272
s

A
r-

B̃~E,%,%8!5 (
i , j 51

n

¹nQ i~%!@T21~E!# i j ¹nQ j
†~%8!.

~6.33!

It is evident that kernel~6.33! is Hermitian. Equations~6.32!
and ~6.33! are also obtained if one uses the trial functio
~6.1! in the variational principle~5.11!.

Let Z be a nonsingular Hermitiann3n matrix with ele-
ments

Zi j 52
\2

2m
~¹nQ i uQ j !S1^Q i uĤQ j&V , ~6.34!

and let O be a nonsingularn3n matrix defined by Eq.
~6.13!. Then

T~E!52
2m

\2 @Z2EO#. ~6.35!

We denote byE the spectral matrix~with elements$Ekdkl%!
and byV the modal matrix~with elements$v ik%! for a matrix
eigenvalue problem

ZV5OVE, ~6.36!

and assume that

V†OV5I. ~6.37!

After a few movements similar to those presented at the
of Sec. VI A, we arrive at

T21~E!52
\2

2m
V@E2EI#21V†, ~6.38!

which is equivalent to the statement that thei j th element of
T21(E) is

@T21~E!# i j 52
\2

2m (
k51

n v ikv jk*

Ek2E
. ~6.39!

Denoting

Yk~r!5(
i 51

n

v ikQ i~r! ~k51,2, . . . ,n!, ~6.40!

and combining result~6.39! with Eq. ~6.33!, we obtain

B̃~E,%,%8!52
\2

2m (
k51

n
¹nYk~%!¹nYk

†~%8!

Ek2E
. ~6.41!

It is to be mentioned that Eq.~6.41! is not the spectral ex-
pansion of the kernelB̃(E,%,%8) ~cf. the remark concluding
the preceding subsection; see also Sec. VI C!.

C. Estimates of eigenvalues ofB̂„E…

The linear trial functions may also be used for estimat
eigenvalues ofB̂(E). Choosing, in the functional
5-9
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F@C̄#5
~C̄u¹nC̄!S

~C̄uC̄!S

1
2m

\2

^C̄u@Ĥ2E#C̄&V

~C̄uC̄!S

, ~6.42!

@cf. the right-hand side of the principle~5.1!# the trial func-

tion C̄(r) in the form

C̄~r!5(
i 51

n

āiQ i~r! „Q i~r!PAV9 … ~6.43!

leads to the functional

F@ ā†,ā#5
ā†Sā
ā†Mā , ~6.44!

in which ā is ann-component column matrix with elemen
$āi%, ā† is ann-component row matrix with elements$āi* %,
S[S(E) is the Hermitiann3n matrix defined by Eq.~6.4!,
andM is a Hermitiann3n overlap matrix with elements

Mi j 5~Q i uQ j !S . ~6.45!

We shall denote byã and ã† these vectorsā and ā† for
which the functional~6.44! is stationary with respect to
variations in their components, i.e.,

dF@ ã†,ã#50. ~6.46!

The corresponding stationary values, approximating eig
values ofB̂(E), will be denoted byb̃; one has

b̃5
ã†Sã
ã†Mã . ~6.47!

From Eq.~6.44! one finds that the first variation of the func
tional F@ ā†,ā# due to infinitesimal variations ofā† and ā
aroundã† and ã, respectively, is

dF@ ã†,ã#5da†
~ ã†Mã!Sã2~ ã†Sã!Mã

~ ã†Mã!2

1
~ ã†Mã!ã†S2~ ã†Sã!ã†M

~ ã†Mã!2 da. ~6.48!

It is seen that conditions forF@ ā†,ā# to be stationary atã†

and ã are

Sã5
ã†Sã
ã†MãMã, ã†S5

ã†Sã
ã†Mã ã

†M; ~6.49!

hence we conclude thatb̃ is an eigenvalue whileã and ã†

are, respectively, corresponding right and left eigenvector
the generalized matrix eigenvalue problems

Sã5b̃Mã, ã†S5b̃ã†M. ~6.50!

If the matrix S is nonsingular, the number of solutions
these eigenproblems will be equal to the rank of the ma
M which, in general, will belessthan the numbern of coor-
dinate functions used~cf. Refs.@16#, @21#!. We note also that
02272
n-

of

x

since the matrixS is the function of energy@cf. Eq. ~6.4!#,
the eigenvectors$ãk% and the eigenvalues$b̃k% will be en-
ergy dependent.

We observe that the Hermiticity properties ofS(E) andM
imply that any two eigenvectorsãk(E) and ãl(E) @with ele-
ments$ãik(E)% and $ãi l (E)%, respectively# of the problem
~6.50!, associated with different eigenvaluesb̃k(E) and
b̃l(E), respectively, are orthogonal in the sense of

ãk
†~E!Mãl~E!50 „b̃k~E!Þb̃l~E!…. ~6.51!

In what follows, we shall assume that eigenvectors cor
sponding to degenerate eigenvalues~if there are any! have
also been orthogonalized and that all eigenvectors have b
normalized so that for any pair of eigenvectors one has

ãk
†~E!Mãl~E!5dkl . ~6.52!

We shall use the symbols$C̃k(E,r)% to denote functions
of the form ~6.43! with the expansion coefficients bein
components of the eigenvectors$ãk(E)%:

C̃k~E,r!5(
i 51

n

ãik~E!Q i~r! ~k51,2, . . . ,rank M!.

~6.53!

Then it is evident that the matrix relation~6.51! implies the
orthonormality relation

~C̃kuC̃ l !S5dkl ~6.54!

for the functions$C̃k(E,%)% @cf. Eq. ~3.16!#.

We have found that the set of the functions$C̃k(E,r)%,
(k51,2, . . . ,rank M), defined by Eq.~6.53!, is ideally
suited as a basis for variational approximation of matrix
ements and the kernel of the operatorR̂(E). To show this,
let us construct trial functions of the form

C̄~r!5 (
k51

rank M

c̄kC̃k~E,r!, C̄8~r!5 (
k51

rank M

c̄k8C̃k8~E,r!,

~6.55!

where$c̄k% and $c̄k8% are variational parameters. Proceedi
along the lines of Sec. VI A, we obtain

~FuR̂̃F8!S5 (
k,l 51

rank M

~FuC̃k!S@S̃21#kl~C̃ l uF8!S ,

~6.56!

where S̃(E) is the square Hermitian matrix of dimension
rankM3rankM with elements

S̃kl~E!5~C̃ku¹nC̃ l !S1
2m

\2 ^C̃ku@Ĥ2E#C̃ l&V .

~6.57!

Upon making use of Eqs.~6.53! and~6.4!, Eq. ~6.57! may be
rewritten in the form
5-10
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S̃kl~E!5ãk
†~E!S~E!ãl~E!. ~6.58!

The right side of Eq.~6.58! may be simplified further if one
takes into account either of the two eigenvalue equati
~6.50! and the orthonormality condition~6.52!. This results
in

S̃kl~E!5b̃k~E!dkl , ~6.59!

which implies that the matrixS̃21(E) is diagonal and that its
diagonal matrix elements are reciprocals of eigenvalues
the problem~6.50!. From Eqs.~6.56!, ~6.59!, and~6.53!, we
obtain

~FuR̂̃F8!S5 (
k51

rank M

~FuC̃k!Sb̃k
21~C̃kuF8!S

5 (
i , j 51

n

~FuQ i !SF (
k51

rank M

ãikb̃k
21ã jk* G ~Q j uF8!S .

~6.60!

Since the functionsF~%! andF8(%) are arbitrary, from Eq.
~6.60! we deduce the spectral expansion@cf. Eq. ~3.34!#

R̃~E,%,%8!5 (
k51

rank M

C̃k~E,%!b̃k
21~E!C̃k

†~E,%8!

5 (
i , j 51

n

Q i~%!

3F (
k51

rank M

ãik~E!b̃k
21~E!ã jk* ~E!GQ j

†~%8!.

~6.61!

Expansion ~6.61! and the orthonormality relation~6.54!
show that the numbers$b̃k

21(E)%, (k51,2, . . . ,rankM), are

eigenvalues of the Hermitian operatorR̂̃(E) with the kernel

R̃(E,%,%8) and the functions$C̃k(E,%)% are normalized

eigenfunctions of this operator. The operatorR̂̃(E) is the
variational estimate of the operatorR̂(E).

It is also natural to use the trial functions~6.43! to ap-
proximate matrix elements ofB̂(E) by employing the proce-
dure outlined in Sec. VI B. Denoting the resulting estimate

(FuB̂F8)S by (Fu B̂̃F8)S we obtain

~Fu B̂̃F8!S5 (
k,l 51

rank M

~Fu¹nC̃k!S@ T̃21#kl~¹nC̃ l uF8!S ,

~6.62!

whereT̃[T̃(E) is a Hermitian rankM3rank M matrix with
elements

T̃kl~E!5~¹nC̃kuC̃ l !S2
2m

\2 ^C̃ku@Ĥ2E#C̃ l&V ,

~6.63!
02272
s

of

f

which, after making use of Eq.~6.53!, may be rewritten as

T̃kl~E!5ãk
†~E!T~E!ãl~E!, ~6.64!

with the Hermitiann3n matrix T(E) defined by Eq.~6.28!.
It is seen that, as opposed toS̃(E), the matrixT̃(E) is not
diagonal. Therefore, the variational approximations

~Fu B̂̃F8!S5 (
k,l 51

rank M

~Fu¹nC̃k!S@ T̃21#kl~¹nC̃ l uF8!S

5 (
i , j 51

n

~Fu¹nQ i !SF (
k,l 51

rank M

ãik@ T̃21#klã j l* G
3~¹nQ j uF8!S ~6.65!

and

B̃~E,%,%8!5 (
k,l 51

rank M

¹nC̃k~E,%!@ T̃21~E!#kl¹nC̃ l
†~E,%8!

5 (
i , j 51

n

¹nQ i~%!

3F (
k,l 51

rank M

ãik~E!@ T̃21~E!#klã j l* ~E!G¹nQ j
†~%8!

~6.66!

will be of less practical value than their counterparts~6.60!
and ~6.61!.

It is worth noticing that, in analogy with the spectral e

pansion~3.18!, one may introduce the operatorB̂̃(E) with
the kernel

B̃~E,%,%8!

5 (
k51

rank M

C̃k~E,%!b̃k~E!C̃k
†~E,%8!

5 (
i , j 51

n

Q i~%!F (
k51

rank M

ãik~E!b̃k~E!ã jk* ~E!GQ j* ~%8!

~6.67!

as an estimate ofB̂(E). It is seen from the definitions~6.61!
and ~6.67! and from the orthonormality relation~6.54! that

the operatorsB̂̃(E) andR̂̃(E) are reciprocal in the sense th

B̂̃~E!R̂̃~E!5R̂̃~E!B̂̃~E!5 ẪS~E!, ~6.68!

where the operatorẪS(E) with the kernel@cf. Eq. ~3.23!#

ÃS~E,%,%8!5 (
k51

rank M

C̃k~E,%!C̃k
†~E,%8! ~6.69!

is the projector on the subspace ofAS(E) spanned by the

approximate eigenfunctions$C̃k(E,%)%, (k51,2, . . . ,rank
5-11
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M!. It should be pointed out, however, that, as opposed

B̂̃(E), the operatorB̂̃(E) is not the variational estimate of
B̂(E).

D. Estimates of eigenvalues ofR̂„E…

Finally, we shall use the Rayleigh-Ritz trial function
~6.43! in the functional

F@C̄#5
~¹nC̄uC̄!S

~C̄uC̄!S

2
2m

\2

^C̄u@Ĥ2E#C̄&V

~C̄uC̄!S

~6.70!

@cf. the right side of Eq.~5.2!# to find approximations to
eigenvalues ofR̂(E). Substitution of Eq.~6.43! into the
functional ~6.70! transforms the latter to the form

F@ ā†,ā#5
ā†Tā
ā†Nā . ~6.71!

Here ā and ā† are defined as in Eq.~6.44!, T[T(E) is the
Hermitian n3n matrix defined by Eq.~6.28! while N is a
Hermitiann3n matrix with elements

Ni j 5~¹nQ i u¹nQ j !S . ~6.72!

Denoting byã and ã† these vectorsā and ā† for which

dF@ ã†,ã#50, ~6.73!

and defining the real number

b21̃5
ã†Tã
ã†Nã , ~6.74!

from Eqs.~6.71! and ~6.73! we find thatb21̃, ã, andã† are
solutions to the matrix eigenvalue problems

Tã5b21̃Nã, ã†T5b21̃ã†N. ~6.75!

If T is nonsingular, the number of nontrivial solutions
these eigenproblems equals to the rank ofN.

It should be clearly stated here that even if the basis fu

tions $Q i(r)% used for constructing the trial functionsC̄(r)
substituted to the functionals~6.42! and~6.70! are the same

in general one has rankNÞrankM. Moreover, ifbk
21̃(E) is

an eigenvalue of the problem~6.75! approximating some
particular eigenvaluebk

21(E) of the operatorR̂(E) and if

b̃k(E) is an eigenvalue of the problem~6.50! approximating
the eigenvaluebk(E) of B̂(E), in general, one finds

bk
21̃~E!Þb̃k

21~E!. ~6.76!

Similarly, the eigenvectorsãk(E) @and ãk
†(E)# of the prob-

lems ~6.50! and ~6.75! associated with eigenvaluesb̃k(E)

andbk
21̃(E), respectively, in general will be different thoug

we use the same symbols to denote them.
02272
to

c-

The Hermiticity ofT(E) andN implies that eigenvectors
of the problem~6.75! associated with different eigenvalue
are orthogonal in the sense that

ãk
†~E!Nãl~E!50 „bk

21̃~E!Þbl
21̃~E!…. ~6.77!

In what follows, we shall also assume that eigenvectors
sociated with degenerate eigenvalues~if there are any! have
also been orthogonalized, and that all eigenvectors have b
normalized so that

ãk
†~E!Nãl~E!5@bk

21̃~E!#22dkl . ~6.78!

Relation~6.78! implies that the functions

C̃k~E,r!5(
i 51

n

ãik~E!Q i~r! ~k51,2, . . . ,rank N!,

~6.79!

with the coefficients$ãik(E)%, being components of the
eigenvectors$ãk(E)% of the problem~6.75!, satisfy the fol-
lowing orthogonality relation onS:

~¹nC̃ku¹nC̃ l !S5@bk
21̃~E!#22dkl ~6.80!

@cf. the orthogonality relation~3.17!#. On the hypersurface
S, the functions~6.79! approximate eigenfunctions ofR̂(E).

Once the optimal functions~6.79! have been found, thei
linear combinations of the forms

C̃~r!5 (
k51

rank N

c̄kC̃k~E,r!, C̄8~r!5 (
k51

rank N

c̄k8C̃k~E,r!,

~6.81!

with the coefficients$c̄k% and $c̄k8% subjected to variations
may be suitably used for construction of the variational a
proximation of the operatorB̂(E). Utilizing the results of
Sec. VI B, we obtain

~FuBĨ̂ F8!S5 (
k,l 51

rank N

~Fu¹nC̃k!S@TĨ 21#kl~¹nC̃ l uF8!S ,

~6.82!

with TĨ (E) being the square Hermitian matrix of dimensio
rank N3rank N with elements

TĨ kl~E!5~¹nC̃kuC̃ l !S2
2m

\2 ^C̃ku@Ĥ2E#C̃ l&V .

~6.83!

@The matricesT̃(E) andTĨ (E) defined by apparently identica
Eqs. ~6.63! and ~6.83! are, in general,different since the
approximate eigenfunctions~6.53! and ~6.79! differ in num-
ber and form.# Upon substituting Eq.~6.79! into Eq. ~6.82!,
the latter becomes

TĨ kl~E!5ãk
†~E!T~E!ãl~E!. ~6.84!
5-12
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Then, as a result of any of the eigenvalue problems~6.75!
and the orthogonality relation~6.78!, the above equation is
transformed to the form

TĨ kl~E!5@bk
21̃~E!#21dkl , ~6.85!

showing that the matrixTĨ (E) is diagonal. Consequently, it
inversion is trivial and from Eqs.~6.82! and~6.85!, we arrive
at

~FuBĨ̂ F8!S5 (
k51

rank N

~Fu¹nC̃k!Sbk
21̃~¹nC̃kuF8!S

5 (
i , j 51

n

~Fu¹nQ i !SF (
k51

rank N

ãikbk
21̃ã jk* G

3~¹nQ j uF8!S ~6.86!

and @cf. Eq. ~3.19!#

BĨ ~E,%,%8!5 (
k51

rank N

¹nC̃k~E,%!bk
21̃~E!¹nC̃k

†~E,%8!

5 (
i , j 51

n

¹nQ i~%!

3F (
k51

rank N

ãik~E!bk
21̃~E!ã jk* ~E!G¹nQ j

†~%8!.

~6.87!

The trial functions~6.81! may also be used for approx
mating matrix elements and the kernel ofR̂(E). Following
the procedure outlined in Sec. VI A, one arrives at the f
lowing estimate of (FuR̂F8)S

~FuRĨ̂ F8!S5 (
k,l 51

rank N

~FuC̃k!S@SĨ 21#kl~C̃ l uF8!S

5 (
i , j 51

n

~FuQ i !SF (
k,l 51

rank N

ãik@SĨ 21#klã j l* G
3~Q j uF8!S , ~6.88!

from which the following approximation to the kerne
R(E,%,%8) stems:

RĨ ~E,%,%8!5 (
k,l 51

rank N

C̃k~E,%!@SĨ 21~E!#klC̃ l
†~E,%8!

5 (
i , j 51

n

Q i~%!F (
k,l 51

rank N

ãik~E!@SĨ 21~E!#klã j l* ~E!G
3Q j

†~%8!, ~6.89!

Here SĨ (E) is a Hermitian matrix of dimensions ran
N3rank N, elements of which are given by
02272
-

SĨ kl~E!5~C̃ku¹nC̃ l !S1
2m

\2 ^C̃ku@Ĥ2E#C̃ l&V

~6.90!

or, equivalently, after substituting Eq.~6.79!, by

SĨ kl~E!5ãk
†~E!S~E!ãl~E!, ~6.91!

where S(E) is the Hermitiann3n matrix defined by Eq.
~6.4!. @The matricesS̃(E) andSĨ (E) defined by Eqs.~6.57!
and ~6.90!, respectively, in general will be different; cf. th
remark following Eq.~6.83!.#

Since, in general, the matrixSĨ (E) is not a diagonal one
the relations~6.88! and~6.89! will not be suitable for use for
practical purposes. Instead, it will be more convenient

approximateR̂(E) by the operatorRĨ̂ (E) with the kernel@cf.
Eq. ~3.35!#

RĨ ~E,%,%8!5 (
k51

rank N

¹nC̃k~E,%!@bk
21̃~E!#3¹nC̃k

†~E,%8!

5 (
i , j 51

n

¹nQ i~%!

3F (
k51

rank N

ãik~E!@bk
21̃~E!#3ã jk* ~E!G¹nQ j

†~%8!.

~6.92!

From Eqs.~6.87!, ~6.92!, and~6.80! one deduces thatRĨ̂ (E)

is the inverse ofBĨ̂ (E) in the sense that

BĨ̂ ~E!RĨ̂ ~E!5RĨ̂ ~E!BĨ̂ ~E!5AĨ̂ S~E!, ~6.93!

where the operatorAĨ̂ S(E), with the kernel@cf. Eq. ~3.27!#

AĨ S~E,%,%8!5 (
k51

rank N

¹nC̃k~E,%!@bk
21̃~E!#2¹nC̃k

†~E,%8!,

~6.94!

is the projector on the subspace ofAS(E) spanned by the

approximate eigenfunctions$C̃k(E,%)%, (k51,2, . . . ,rank
N!. We emphasize, however, that estimate~6.92! has the
deficiency ofnot being a variational one.

VII. USE OF THE SLATER DETERMINANTAL
BASIS FUNCTIONS

Although the basis functions$Q i(r)% used in expansions
~6.1! and~6.43! may be chosen in a great variety of ways,
applications of the variationalR-matrix methods to system
with more than two electrons it is most convenient to choo
these functions as Slater determinants built of one-elec
spin orbitals. Use of such functions facilitates significan
the evaluation of elements of the matricesS(E), T(E), M,
andN which appeared in Sec. VI.

Let $ca(r )%, (a51,2, . . . ,m with m>N!, be agivenset
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of linearly independent one-electron spin orbitals. Witho
loss of generality, we assume that they are orthonor
within the volumeV

^caucb&5dab . ~7.1!

From Kronecker’s products of these spin orbitals, with t
use of the antisymmetrizerÂV , we may constructmN5(N

m)
linearly independentN-electron Slater determinants of th
form

Q i~r![Q$i1i2 ...iN%~r1 ,r2 ,...,rN!

5AN! ÂV$ci1
~r1! ^ ci2

~r2! ^¯^ ciN
~rN!%

5
1

AN!
detuci1

~r1!,ci2
~r2!,...,ciN

~rN!u, ~7.2!

where we assumei1,i2,¯,iN to avoid redundancy. Due
e

ts

02272
t
al

e

to the orthonormality property~7.1! of the spin orbitals, the
determinants$Q i(r)% form an orthonormal setwithin the hy-
pervolumeV,

^Q i uQk&V5d ik , ~7.3!

with i 5$i1i2 ...iN%, k5$k1k2 ...kN% and

d ik5di1k1
di2k2

¯diNkN
. ~7.4!

From the set$Q i(r)% we choosen, (1<n<mN), determi-
nants ~for convenience, they will be assumed to be tho
with 1< i<n! which are used as basis functions in estim
tion procedures described in Secs. VI C and VI D.

The main advantage of the use of the orthonormal Sla
determinants~7.2! lies in the ease with which matrix ele
ments of relevant operators between such functions are c
puted. We define an annihilation operatorÂa ~the index re-
fers to theath spin orbital, 1<a<m! such that@22#
ÂaQ$i1i2 ...iN%
~N! ~r1 ,r2 ,...,rN!5H ~2 !N1 jQ$i1i2 ...i j 21i j 11 ...iN%

~N21! ~r1 ,r2 ,...,rN21! for a5i jP$i1 ,i2 ,...,iN%

0 for a¹$i1 ,i2 ,...,iN%
~7.5!
~for the sake of clarity, in the above definition we have add
the superscripts in parentheses at theQ’s referring to num-
bers of electrons described by these functions!. The annihi-
lators defined in that way anticommute:

ÂaÂb1ÂbÂa50. ~7.6!

It follows from the well-known properties of determinan
that

Q i~r!5
1

AN
(
a51

m

@ÂaQ i~r!# ^ ca~rN!

5
1

AN~N21!
(

a,b51

m

@ÂbÂaQ i~r!# ^ cb~rN21!

^ ca~rN!. ~7.7!

Making use of Eqs.~7.1!, ~7.5!, and~7.7!, one readily obtains
the following expressions for elements of the matricesM, N,
S(E), andT(E):

Mi j [~Q i uQ j !S5 (
a,b51

m

gab
~ i j !~caucb!, ~7.8!

Ni j [~¹nQ i u¹nQ j !S5 (
a,b51

m

gab
~ i j !~]ncau]ncb!, ~7.9!
d
Si j ~E![~Q i u¹nQ j !S1

2m

\2 ^Q i u@Ĥ2E#Q j&V

5 (
a,b51

m

gab
~ i j !~cau]ncb!1

2m

\2 (
a,b51

m Fgab
~ i j !^cauĤcb&

1
1

2 (
j,z51

m

Gaj,bz
~ i j ! ^cacjuÛcbcz&V2G2

2mE

\2 d i j

~7.10!

and

Ti j ~E![~¹nQ i uQ j !S2
2m

\2 ^Q i u@Ĥ2E#Q j&V

5 (
a,b51

m

gab
~ i j !~]ncaucb!2

2m

\2 (
a,b51

m Fgab
~ i j !^cauĤcb&

1
1

2 (
j,z51

m

Gaj,bz
~ i j ! ^cacjuÛcbcz&V2G1

2mE

\2 d i j ,

~7.11!

with the numerical coefficientsgab
( i j ) and Gaj,bz

( i j ) , assuming
only values 0 and61, defined as

gab
~ i j !5^ÂaQ i uÂbQ j&VN21, ~7.12!

Gaj,bz
~ i j ! 5^ÂaÂjQ i uÂbÂzQ j&VN22. ~7.13!
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Knowledge of the matrix elements~7.8!–~7.11! suffices to
find estimates of eigenvalues and eigenvectors, and co
quently also estimates of the kernels ofB̂(E) andR̂(E) @cf.
Secs. VI C and VI D#.

VIII. MULTICONFIGURATION HARTREE-FOCK
APPROACH TO THE R-MATRIX METHOD

In Sec. VII it has been presumed that the one-elect
spin orbitals$ca(r )%, of which the determinantal basis func
tions $Q i(r)% are built, are known in advance. If the sp
orbitals are chosen at random from some complete se
number of Slater determinants$Q i(r)% necessary to obtain
convergent results for eigenvalues ofB̂(E) and R̂(E) may
be formidable. Hinze and Hamacher@15,2# pointed out, how-
ever, that an amount of labor in calculations of eigenval
of B̂(E) @andR̂(E)# might be reduced significantly if varia
tional procedures were used not only for determining the b
expansion coefficients$āi% in Eq. ~6.43! but also the optimal
forms of the one-electron spin orbitals in a manner simila
that used in multi-configuration Hartree-Fock~MCHF! cal-
culations of atomic and molecular structures. In this sect
we develop the ideas of Hinze and Hamacher utilizing
unified theory exposed in the preceding sections.

At first let us discuss the case when eigenvalues ofB̂(E)
are to be determined. As in Sec. VII, we choose a se
one-electron spin orbitals$c̄a(r )%, (a51,2, . . . ,m, with m
>N! but do not prescribe their forms apart from imposin
the orthonormality constraints

^c̄auc̄b&5dab . ~8.1!

These spin orbitals are used to constructmN5(N
m) orthonor-

mal N-electron Slater determinants
02272
se-

n

a

s

st

o

n
e

f

Q̄ i~r!5
1

AN!
detuc̄i1

~r1!,c̄i2
~r2!,...,c̄iN

~rN!u. ~8.2!

From the latter set we choosen (1<n<mN) determinants
which constitute a basis for the expansion

C̄~r!5(
i 51

n

āiQ̄ i~r!, ~8.3!

which on the hypersurfaceS approximates some eigenfunc
tion of B̂(E). The bars over the spin orbitals, inducing th
bars over the Slater determinants, feature the fact that o
mal forms of the spin orbitals, together with the best valu
of the expansion coefficients$āi%, are to be found.

Before we use the variational principle~5.1!, we have to
modify the functional involved in order to take into accou
the orthonormality constraints~8.1!. As usual, this is done
with the aid of undetermined Lagrange multipliers$l̄ab%
~optimal values of which are to be found! and this results in
the functional

F@C̄,$l̄ab%#5
~C̄u¹nC̄!S

~C̄uC̄!S

1
2m

\2

^C̄u@Ĥ2E#C̄&V

~C̄uC̄!S

1
(a,b51

m l̄ab@^c̄auc̄b&2dab#

~C̄uC̄!S

. ~8.4!

On evaluating the relevant matrix elements as in Sec. V
this functional may be rewritten in the form
F@$āi%,$c̄a%,$«̄ab%#5

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~ c̄au]nc̄b!

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~ c̄auc̄b!

1
2m

\2

(
i , j 51

n

āi* ā jF (
a,b51

m S gab
~ i j !^c̄auĤc̄b&1

1

2
(

j,z51

m

Gaj,bz
~ i j ! ^c̄ac̄juÛc̄bc̄z&V2D 2Ed i j G

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~ c̄auc̄b!

2
2m

\2

(
a,b51

m

«̄ab@^c̄auc̄b&2dab#

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~ c̄auc̄b!

, ~8.5!
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highlighting its explicit dependence on the expansion coe
cients and the spin orbitals. For the sake of later con
nience, progressing from Eq.~8.4! to Eq.~8.5!, we have sub-
stituted

«̄ab52
\2

2m
l̄ab . ~8.6!

Subjecting the functional~8.5! to variations in its arguments
from the variational principle

dF@$ãi%,$c̃a%,$«̃ab%#50, ~8.7!

we derive the following set of multiconfiguration Hartre
Fock equations determining the optimal expansion coe
cients $ãi%, the optimal spin orbitals$c̃a(r )%, the optimal
Lagrange multipliers$«̃ab% and the best approximation

b̃5F@$ãi%,$c̃a%,$«̃ab%# ~8.8!

to a particular eigenvalue ofB̂(E) we are focusing on

(
j 51

n

@S̃i j 2b̃ M̃ i j #ã j50, ~8.9!

(
b51

m

g̃abĤ~r !cb̃~r !1 (
b,j,z51

m

G̃aj,bz^c̃juÛc̃z&c̃b~r !

5 (
b51

m

«̃abc̃b~r ! ~ in V!, ~8.10!

(
b51

m

g̃ab@]nc̃b~r!2b̃c̃b~r!#50 ~on S! ~8.11!

and

^c̃auc̃b&5dab , ~8.12!

with

M̃ i j 5 (
a,b51

m

gab
~ i j !~ c̃auc̃b! ~8.13!

and

S̃i j 5 (
a,b51

m

gab
~ i j !~ c̃au]nc̃b!1

2m

\2 (
a,b51

m Fgab
~ i j !^c̃auĤc̃b&

1
1

2 (
j,z51

m

Gaj,bz
~ i j ! ^c̃ac̃juÛc̃bc̃z&V2G2

2mE

\2 d i j

~8.14!

@the n3n matrix S̃ composed of the elements~8.14! should
not be confused with the matrix defined by Eq.~6.57!#,
where

g̃ab5 (
i , j 51

n

ãi* gab
~ i j !ã j ~8.15!
02272
-
-

-

and

G̃aj,bz5 (
i , j 51

n

ãi* Gaj,bz
~ i j ! ã j , ~8.16!

with gab
( i j ) and Gaj,bz

( i j ) defined by Eqs.~7.12! and ~7.13!, re-
spectively. We stress that although the notation used in
section does not emphasize this fact explicitly, it should
remembered that all quantities marked with the tilde
functions of the energyE.

Although general similarities in the form between th
MCHF system~8.9!–~8.12! and the common MCHF system
encountered in computations of atomic and molecular str
tures @22,23# are evident, there are also significant diffe
ences between these systems. First, in the standard M
theory one aims to find energy levels, while in the pres
case the energyE is prescribed. Second, in the standa
theory the domain on which spin orbitals are defined isR3;
in the present case the problem is considered in the fi
volume V,R3. Third, in atomic and molecular structur
computations spin orbitals are forced to vanish on a bou
ary of the domain~i.e., at infinity!; in the present case on th
surfaceS enclosingV spin orbitals obey the boundary con
ditions ~8.11! which are not prescribed~sinceb̃ is not known
in advance but is to be determined in the course of solv
the MCHF system, as well!. Finally, matrices in algebraic
parts of the standard and the present systems are de
differently, and a peculiar feature of the present problem
an unavoidable singularity of the weight matrixM̃ @cf. the
remark following Eq.~6.50!#.

Because of their complexity, the finite-volume MCH
equations~8.9!–~8.12! must be solved in an iterative way
The algorithm suggested below is an adaptation of the
used for solving the standard MCHF equations in atomic a
molecular structure computations@24#.

~i! Obtain starting orthonormal spin-orbitals.
~ii ! @Begin the configuration-interaction~CI! cycle# con-

struct and solve the CI equations~8.9!.
~iii ! Identify the particular eigenvalueb̃ in which you are

interested.
~iv* ! If the eigenvalue and the corresponding eigenvec

are unchanged thenend the CI cycle; otherwise continue.

~v! Compute the coefficients$g̃ab% and$G̃aj,bz%.
~vi! @Begin the HF cycle# construct the HF equation

~8.10!.
~vii ! Construct the boundary conditions~8.11!.
~viii ! Solve the resulting boundary-value problem.
~ix! Correct the eigenvalueb̃ using Eq.~8.8!.
~x* ! If the eigenvalue and the spin-orbitals are unchang

thenend the HF cycle; otherwise go to step~vi! @end the HF
cycle#.

~xi! Go to step~ii ! @end the CI cycle#.

Steps~iv* ! and ~x* ! are to be omitted during the first itera
tions in the CI and HF cycles, respectively.
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The above considerations have been based on the v
tional principle for eigenvalues of the operatorB̂(E). How-
ever we might as well attempt to develop an analogous p
cedure aimed at determining the best approximations
eigenvalues ofR̂(E). The starting point for such a procedu
is the functional

F@C̄#5
~¹nC̄uC̄!S

~¹nC̄u¹nC̄!S

2
2m

\2

^C̄u@Ĥ2E#C̄&V

~¹nC̄u¹nC̄!S

1
(a,b51

m l̄ab@^c̄auc̄b&2dab#

~¹nC̄u¹nC̄!S

~8.17!
02272
ia-

o-
to

obtained from the functional involved in the variational pri
ciple ~5.2! after including the orthonormality constraint~8.1!.

As before,$l̄ab% are the Lagrange coefficients which are
be determined. Defining, for convenience,

«̄ab5
\2

2m
l̄ab ~8.18!

@the difference in signs between the right sides of Eqs.~8.6!
and ~8.18! is intentional# and substituting the trial function
~8.3! into the functional~8.17! yields
F@$āi%,$c̄a%,$«̄ab%#5

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~]nc̄auc̄b!

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~]nc̄au]nc̄b!

2
2m

\2

(
i , j 51

n

āi* ā jF (
a,b51

m S gab
~ i j !^c̄auĤc̄b&1

1

2
(

j,z51

m

Gaj,bz
~ i j ! ^c̄ac̄juÛc̄bc̄z&V2D 2Ed i j G

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~]nc̄au]nc̄b!

1
2m

\2

(
a,b51

m

«̄ab@^c̄auc̄b&2dab#

(
i , j 51

n

āi* ā j (
a,b51

m

gab
~ i j !~]nc̄au]nc̄b!

. ~8.19!
he
From the variational principle

dF@$ãi%,$c̃a%,$«̃ab%#50, ~8.20!

one derives the set of MCHF equations

(
j 51

n

@ T̃i j 2b21̃Ñi j #ã j50, ~8.21!

(
b51

m

g̃abĤ~r !c̃b~r !1 (
b,j,z51

m

G̃aj,bz^c̃juÛc̃z&c̃b~r !

5 (
b51

m

«̃abc̃b~r ! ~ in V!, ~8.22!

(
b51

m

g̃ab@b21̃]nc̃b~r!2c̃b~r!#50 ~on S! ~8.23!

and
^c̃auc̃b&5dab , ~8.24!

with

Ñi j 5 (
a,b51

m

gab
~ i j !~]nc̃au]nc̃b!, ~8.25!

T̃i j 5 (
a,b51

m

gab
~ i j !~]nc̃auc̃b!2

2m

\2 (
a,b51

m Fgab
~ i j !^c̃auĤc̃b&

1
1

2 (
j,z51

m

Gaj,bz
~ i j ! ^c̃ac̃juÛc̃bc̃z&V2G1

2mE

\2 d i j

~8.26!

@elements~8.26! should not be confused with elements of t
matrix defined by Eq.~6.63!# and the coefficients$g̃ab% and

$G̃aj,bz% defined by Eqs.~8.15! and ~8.16!, respectively.
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Solving these equations provides us with optimal spin or
als, expansion coefficients, the Lagrange multipliers, and
best estimates

b21̃5F@$ãi%,$c̃a%,$«̃ab%# ~8.27!

of eigenvalues of the operatorR̂(E). After obvious modifi-
cations, algorithm steps~i!–~xi! may be used for solving the
MCHF equations~8.21!–~8.24!.

It should be noticed that starting with the same init
guess of the spin orbitals$c̃a(r )%, the MCHF systems~8.9!–
~8.12! and ~8.21!–~8.24! in general will yielddifferentfinal
results; the results will be identical only when the number
spin orbitals~and the resulting Slater determinants! increases
to infinity. At the present stage, without prior numerical e
periments, it is impossible to predict which of the tw
MCHF systems derived should be preferred in actual co
putations.

IX. CONCLUSIONS

There are two directions in which we plan to continue t
present work. First, we are developing a computer code s
ing the finite-volume MCHF equations~8.9!–~8.12! and
cs

ys

a
l

-

02272
t-
e

l

f

-

v-

~8.21!–~8.24! for atomic systems. An output from that cod
will be used in computations of low-energy electron-ato
collision and half-collision processes. Second, it is obvio
that the theory exposed in this work is applicable only
nonrelativistic systems. To be able to treat electron scatte
from heavy atomic targets and their photoionization, the p
cesses in which both direct and indirect relativistic effe
are known to be important, one shall need a unified form
lation of the variationalR-matrix theory for many-electron
relativistic systems, and, in this connection, the multico
figuration Dirac-Hartree-FockR-matrix method would be of
particular use. Work on this project is also in progress.
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