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Manipulation of Feshbach resonances in ultracold atomic collisions
using time-dependent magnetic fields

F. H. Mies, E. Tiesinga, and P. S. Julienne
Atomic Physics Division, National Institute of Standards and Technology, 100 Bureau Drive Stop 8423,

Gaithersburg, Maryland 20899-8423
~Received 17 August 1999; published 18 January 2000!

We have calculated the time-dependent dynamics of two ultracold Na atoms in an atom trap where a
time-dependent magnetic fieldB(t) moves a Feshbach resonance state across the energy threshold for a binary
collision. Our coupled-channel scattering calculations, which reproduce the observed properties of such reso-
nances in sodium atom collisions, can be reduced to an effective two-channel configuration-interaction model
for one bound state and one continuum. The model is adapted to describe the time-dependent dynamics
induced byB(t) for two atoms trapped either in a strongly confining single well of an optical lattice or in an
optical potential in the presence of a Bose-Einstein condensate. We show that a simple Landau-Zener curve
crossing model gives quantitative agreement with exact calculations of field-induced transition rates. IfB(t)
sweeps the resonance across threshold from above, two atoms in the ground state of the trap potential can be
efficiently converted to translationally cold dimer molecules. If the resonance is swept from below, the atoms
can be removed from the ground state and placed in hot vibrational levels of the trap. Our calculations
reproduce the rapid atom loss rates observed in a Na Bose-Einstein condensate due to sweeping a Feshbach
resonance state through the binary collision threshold.

PACS number~s!: 34.20.2b, 34.10.1x, 34.50.2s
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I. INTRODUCTION

Early in the study of the collision dynamics of ultraco
atoms Tiesinga and co-workers@1,2# brought attention to the
important role Feshbach resonances in atom-atom collis
might play both in determining loss mechanisms, and in
manipulation of the sign and magnitude of scattering leng
for the purpose of affecting the properties of a Bose-Eins
condensate~BEC!. In particular it was suggested@1,3# that
the Zeeman effect induced by a static magnetic fieldB might
be used to move the resonance into a favorable position
the zero-energy collision threshold. The field could then
fine tuned to achieve a desired effect. Since that time sev
experimental results involving alkali atoms in ultracold tra
above the critical Bose-Einstein condensation tempera
@4–6#, as well as in condensates@7,8# have been interprete
in terms of such resonance phenomena. Of course these
servations have been complemented by many theore
studies which have found such resonances manifest in
close-coupled scattering calculations for the alkali atoms~see
review in Ref.@9#!.

In this paper we will~1! develop exact scattering calcula
tions to represent the threshold collision of two Na atoms
a magnetic field,~2! show how a two-channel configuration
interaction~CI! model is sufficient to represent the effect
the Feshbach resonance on the scattering,~3! adapt the con-
tinuum scattering model for the discrete energy levels of t
atoms in a trapping potential,~4! calculate the transition
probability out of the initial state of two atoms in the tra
when a time-dependent magnetic fieldB(t) sweeps a reso
nance through the threshold region, and~5! show that a
simple Landau-Zener curve crossing model quantitativ
explains our results. There are at least three different p
1050-2947/2000/61~2!/022721~17!/$15.00 61 0227
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lem areas for which the model we develop is relevant. Fi
it explains the unexpectedly large loss of atoms from a
BEC in a recent experiment at the Massachusetts Institut
Technology~MIT ! which used a time-dependentB field to
sweep a Feshbach resonance through the collision thres
region @7,8#. Second, it predicts that translationally cold d
atomic molecules can be made efficiently in optical traps
lattices by using suchB(t) fields. Finally, since atomic col-
lisions in optical lattices have recently been proposed
conditional quantum logical operations in quantum comp
ing @10,11#, our model should be useful for exploring th
possible role of Feshbach resonances in such a context.

The sodium BEC experiments of Refs.@7,8# observed two
distinct types of unexplained atom loss. In one experime
B(t) was slowly varied and then stopped in order to bring
resonance close to but not through the threshold region.
obvious mechanism for enhanced atom loss is a collis
with a third atom that supplies or removes energy from
diatomic collision complex@12,13#. Reference@13# proposed
a resonance-enhanced three-body mechanism with a th
body rate constantgd which is adjusted to fit the observa
tions. This mechanism is likely to provide the dominant ato
loss for this first type of MIT experiment. In a second MI
experiment,B(t) was rapidly ramped to move the resonan
state across the threshold region. The two-body mechan
we propose in this paper explains the enhanced atom los
this case; a related picture derived from the coupled ato
molecule Gross-Pitaevskii equations for the system has b
proposed by van Abeelen and Verhaar@14#. The two-body
mechanism is a rigorous result associated with binary re
nance scattering, and does not require the introduction of
adjustable parameters. Essentially, a nonconservative t
dependent magnetic or optical@15# field can also act as a
©2000 The American Physical Society21-1
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‘‘third body’’ and induce energy transfer and offer a lo
mechanism. Significant population can be transferred
other energy states of the atom pair, depending on the ra
ing rate ]B/]t of B(t). When the Feshbach resonan
crosses the zero-energy threshold from below, the atom
will gain energy from the magnetic field and be excited in
higher-kinetic-energy states, effectively heating the trap
atoms. In contrast when the resonance crosses the z
energy threshold from above we find that we can trans
significant, and under proper conditions, all, the populat
from the initial state via the resonance state into the high
lying vibrational level of the molecular dimer. By thi
mechanism we propose that an ensemble of ultracold a
atoms can be efficiently converted into an ensemble of ul
cold molecules. These molecules will be in a very high,
well prescribed vibrational level, and will be translationa
and rotationally ultracold.

The remainder of the paper is divided into the followin
sections. Section II summarizes thetime-independentmulti-
channel close-coupled~CC! scattering calculations that un
derlie our modeling of two interacting atoms in a tim
dependent magnetic field. For a static magnetic fi
interacting with a pair of ultracold atoms it is a simple mat
to solve the time-independent close-coupled scattering e
tions and calculate the binary elastic and inelastic collis
dynamics amongst the field-dressed atomic hyperfine st
@16#. The main purpose of this section is to demonstrate
the exact CC calculations for two Na atoms in their low
hyperfine state can be reduced to a time-independen
model@17# involving a single isolated resonance staten and
a single open channel or continuum state. In this case the
only elastic scattering. The CI model will allow us to extra
a Fano-Beutler-type@18# expression for the resonance e
hanced elastic scattering phase shift, i.e.,

j~e,B!5jbg~e!2tan21
Gn~e!

2@e2en
res~B!#

, ~1!

wherejbg(e) is the elastic scattering phase shift in the a
sence of the resonance. By choosingB the Feshbach reso
nance with field dependent energyen

res(B) can be brought
into coincidence with the scattering state at kinetic energye.
The strength of the resonance coupling is measured b
width Gn(e), which obeys the Wigner threshold law@19# and
varies asAe at threshold. The MIT group@7,8# used thee
→0 limit of Eq. ~1! to interpret the experimentally observe
Na scattering length as a function ofB.

Section III introduces the modifications that are impos
on the time-independent CI model when the boundary c
ditions associated with a confining trap are imposed on
continuum state of the atom pair. The scattering continu
is transformed into a discrete set of statesuev& for v
50,1, . . . with energyev.0. The ‘‘true’’ bound states of
the dimer withev,0 will be labeled byv521,22, . . . .
The matrix elementVn,v which defines the coupling betwee
the resonance staten and the discrete statev>0 is obtained
by making the substitution
02272
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2pVn,v
2 [Gn~ev!

]ev

]v
, ~2!

where]v/]ev is the density of discrete trap states@20#.
Section III introduces two different trapping potential

The first is a spherical harmonic potential of frequencyvo .
This is a good approximation when the two interacting ato
are held in a tightly confining well of an optical lattice o
belong to a confined but dilute and uncondensed ultrac
gas. In this case the center-of-mass motion of two ident
interacting atoms of massm is rigorously separable from th
relative motion, and the dimer experiences a trapping po
tial Utrap(R)5(m/2)vo

2R2, whereR is the interatomic sepa
ration andm the reduced mass of the pair, which must
added to the untrapped dimer interaction potentialUbg(R).
The eigenvalues satisfy the energies of a three-dimensi
harmonic oscillator@21#, shifted due toUbg .

The second type of dimer trapping potential we use i
spherical confining box. The box forms a good model for t
interaction of two atoms in the presence of a finite-siz
BEC. The two atoms populate the lowest-energy box s
and the radiusL of the box is chosen in such a way that th
trapping energye0 equals the mean kinetic energy of th
atoms in a condensate. The Appendix evaluates the m
kinetic energy per atom of a finite-sized condensate usin
first-order correction to the Thomas-Fermi model@22#, and
estimates thatL is on the order of the Thomas-Fermi radiu
of the condensate@23#.

In Sec. IV we introduce into the trapped state CI mode
time-dependent magnetic fieldB(t) which is linear in time.
The entire effect ofB(t) is to make the eigenvalue of th
resonance stateen

res(B) a function of time, i.e.,

en
res~ t !5en

res~B0!1~]en
res/]B!

]B

]t
t, ~3!

where B0 is the magnetic field att50. It is important to
understand that this relatively simple time-dependent
model is rigorously and quantitatively related to the ex
five-channel close-coupled description of the Feshbach r
nances. The simplicity comes from the fact that the re
nances are very sparse and isolated, together with the fo
itous property that the entire time dependence of
Hamiltonian only manifests itself on the resonance eig
value in Eq.~3!. In future applications we intend to genera
ize the CI model to include inelastic couplings to other op
channels. This should be equally rigorous, but in that c
the time-dependence will no longer be so neatly confined
a single CI parameter.

Section IV will show that the time-dependent CI mod
can be visualized as a single resonance staten crossing a
sparse manifold of true dimer bound statesv,0, and a
dense manifold of trapped dimer statesv>0. In view of the
close analogy of this multiple curve crossing problem to
Landau-Zener~LZ! curve crossing model@24# we were
pleased to find excellent agreement between our exact
merical solutions and LZ crossing probabilities@25,26#. We
1-2
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MANIPULATION OF FESHBACH RESONANCES IN . . . PHYSICAL REVIEW A61 022721
find the probability ofremainingin a statev once the reso-
nancen is swept through is given by the LZ expressions

pv
LZ5exp~2wn,v

LZ !, wn,v
LZ 5

2puVn,vu2

\U~]en
res/]B!

]B

]t U
. ~4!

The probability of removing population is 12pv
LZ . We will

show that in the Wigner threshold regime the most criti
parameter in determining the removed population is the r
tive kinetic energyev . The population removed by the pas
ing resonance state is ultimately deposited into the adja
manifold of bound dimer or excited trap states depending
the direction of the sweep.

In Sec. IV A we demonstrate the possibility of formin
ultracold alkali dimers in a tight harmonic trap where t
population initially resides in the lowest trapped statev
50. If the magnetic field is such that the Feshbach re
nance lies above the dimer dissociation threshold and is
tially unpopulated, and if the magnetic field is swept su
that the resonance position moves below threshold, then
can transfer the initial population fromv50 into true bound
states. Actually the population transferred fromv50 now
resides in the first accessible bound statev521, and we
form an ensemble of molecules which are translationally
rotationally ultracold, but vibrationally very hot. This sam
mechanism can also be used to form dimers in a BEC.

In Sec. IV B we consider the excitation of trapped sta
populations when the magnetic field is swept upward. T
can lead to a significant heating of the trapped populat
and is demonstrated both for the tight spherical harmo
trap and for the weakly confining spherical box trap whi
simulates a BEC. Since the loss of population from the lo
est box state mainly depends one0, the loss rate is insensi
tive to whether the BEC is represented as a spherical
monic potential or as a spherical box as long as the confin
potentials have the same value fore0. Section IV C gives
practical Landau-Zener expressions for the Na resonanc

In Sec. V we explicitly apply the Feshbach CI model
the BEC experiment at MIT. Using the theoretical LZ pro
abilities without introducing adjustable parameters, we
tain loss rates that are consistent with the observation
Refs. @7,8#, but with the caveat that we are assuming th
heating of a condensate leads to trap loss. We also dis
the effects of three body collisions on the time-depend
magnetic-field experiments in a BEC. A macroscopic d
scription in terms of coupled Gross-Pitaevskii equations w
developed by Timmermanset al. @12# and applied to the
MIT experiments by Yurovskyet al. @13#. We show how the
effects of resonance-enhanced three-body recombination
easily be incorporated into our microscopic scattering mo
using a Breit-Wigner expression@27# to describe the process
Our results and conclusions are summarized in Sec. VI.

II. TWO-ATOM SCATTERING THEORY

A. Five-channel close coupling

This section sets up the exact multichannel close-coup
scattering calculation for two freely colliding23Na atoms.
02272
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The formalism can be readily extended to other alkali s
cies. The main purpose is to demonstrate that the CC ca
lation can be reduced to a configuration-interaction mo
@17# involving a single isolated resonance state and a sin
open channel or continuum state. The CI model will ena
us to model a time-dependent magnetic-field sweep in s
sequent sections.

For two interacting2S 23Na atoms in an external mag
netic field B, the relevant Hamiltonian for the dynamics o
the relative motion contains a kinetic-energy operator,
atomic Hamiltonian for each of the atoms, and molecu
adiabatic Born-Oppenheimer~ABO! potentials for theX 1Sg

1

and a 3Su
1 states, where the molecular electron spinSW 5sWa

1sWb is zero and 1, respectively. Weak spin-spin dipole
teractions can safely be ignored for our purposes. The ato
Hamiltonian contains a hyperfine contact term that coup
the electron spin to the nuclear spin and a Zeeman inte
tion @16# that couples the electron and nuclear spin to
magnetic field. The electron spin is denoted assa51/2, and
the nuclear spin is denoted asi a53/2 for atomsa5a or b,
respectively.

The eight atomic eigenstates of each Na atom that dia
nalize the hyperfine contact and Zeeman interaction are
beled ua&,ub&, . . . ,uh& in order of increasing~internal! en-
ergy, and are shown in Fig. 1. The projectionma of fWa

5sWa1iWa along the magnetic-field direction is conserved.
the absence of a magnetic fieldf a is conserved as well, suc
that the three atomic statesua&, ub&, anduc& are degenerate
and correlate tof a51, while the remaining states form th
fivefold-degeneratef a52 state. TheB50 energy splitting
between thef a51 and 2 states equals the hyperfine splitti
Eh f . Note that throughout this paper we will express ene
in temperature units by dividing any energy by the Bol
mann constantkB . Thus, for Na,Eh f /kB585.02 mK. At
large magnetic fields, where the Zeeman interaction do
nates the hyperfine interaction, the bottom~top! four states
have an electron spinvecsa that is antiparallel~parallel! to
the magnetic field. The projection ofsa along the magnetic
field is msa .

In the absence of the spin-spin interaction, the symme
properties of the molecular Hamiltonian dictates that
magnetic quantum numberm5ma1mb and the mechanica

FIG. 1. The internal energy of a Na atom as a function of m
netic field. The states are labeled alphabetically. The quantum n
bers are discussed in the text.
1-3
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F. H. MIES, E. TIESINGA, AND P. S. JULIENNE PHYSICAL REVIEW A61 022721
angular momentuml are conserved. For ultracold collision
it is sufficient to include onlys-wave (l 50) scattering.
Moreover, we consider scattering between two Na ato
each in their lowestua& hyperfine state~other cases could
also be treated!. Hence the magnetic quantum numberm
equals 2 and we see that there are only five combination
atomic states that satisfy them52 and l 50 criteria. These
are, in order of increasing internal energy,u$aa%&, u$ag%&,
u$bh%&, u$ f h%&, and u$gg%&. The brackets indicate that th
molecular states are symmetrized to account for the fact
Na atoms are composite bosons@16#. We introduce the sim-
plified notation u1&, u2&, u3&, u4&, and u5& for these five
states, which are also called scattering channels. In our
culations the zero of energy is always taken to be the se
rated atom energy of channelu1&, irrespective of the magni
tude of B. The colliding atoms are initially in theu1&
channel. Given the very small collision energye!Eh f , the
other four channels are closed when the two atoms in ch
nel u1& are infinitely far apart.

The asymptotic energies of channelsu2&–u5& depend on
the magnitude ofB. For B50 channelsu2& and u3& dissoci-
ate toEh f and channelsu4& and u5& dissociate to 2Eh f . For
BÞ0 it is convenient to definedB such that the asymptoti
energy separation between channelsu5& and u1& equals
2Eh f14dB . In this waydB'mBB is approximately linear in
B for field strengths at which the Feshbach resonances
observed. The magnetic momentmB /kB50.6717 mK/mT
equals the Bohr magneton.

We use a full close-coupled expansion of the total wa
function @16# for a givenB-field and a specific incident ki
netic energye for the open channelu1&, i.e.,

C~e,B,R!5u1&F1~e,R!1(
j 52

5

u j &F j~e,R! ~5!

for m52 s-wave scattering. The coupled equations introdu
a 535 interaction matrixW(B,R) which is diagonal forR
→` and dependent on the interatomic potentials of
X 1Sg

1 and a 3Su
1 electronic states. The short-range o

diagonal matrix elements ofW(B,R) are proportional to the
‘‘exchange’’ interaction, which is half the difference be
tween thea 3Su

1 and X1Sg
1 potentials. The two ABO’s have

been carefully modeled by us to insure an excellent fit to
entire collection@28# of known spectroscopic Na2 data and
the observed Feshbach resonances@7,8# ~see below!. When
the two electronic potentials have scattering lengths
AS50520.3ao andAS51563.9ao (1ao50.0529177 nm! re-
spectively, a fit to all the data can be achieved forB50. Our
model gives Af 51,m521554.6ao for the Bose-Einstein-
condenseduc& state, which agrees with other determinatio
within their stated uncertainties@29–31#. The value ofAS51
is revised from our earlier determination@29#, which re-
portedAS5158563 ao , andAf 51,m52155265 ao . The
X 1Sg

1 anda 3Su
1 states support 66 and 16 vibrational stat

respectively.
The diagonal elements of the interaction mat

Wj , j (B,R) define what we call the ‘‘diabatic’’ interaction
potentials. At largeR these are equivalent to the ‘‘adiabatic
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s,

of

at

al-
a-

n-

re

e

e

e

e

f

s

,

potential curvesU j (B,R) shown in Fig. 2, which are ob
tained by diagonalizingW(B,R) at eachR. The figure shows
three of the five diabatic potential curves for magnetic fie
strengths of 0 and 91 mT, respectively. The value ofB591
mT is slightly larger than the magnetic field values whe
Feshbach resonances in theu$aa%& collision are observed
@7,8#. At any finite R, the five states are mixed by the of
diagonal exchange couplings inW. For the internuclear
separations shown in Fig. 2 theX 1Sg

1 anda 3Su
1 ABO po-

tentials are degenerate, the exchange couplings are n
gible, and consequently all the curves are parallel withU j
5Wj , j .

As we shall see from our close-coupled calculations,
pair of resonances seen in Refs.@7,8# originate from states
u4& andu5&, since we find that the position of the resonanc
relative to the open channelu1& threshold as a function ofB
varies almost perfectly as 4dB . At zero field both resonance
begin as ‘‘true’’ five-channel bound states that exist w
below the zero-kinetic-energy threshold for channelu1&. In
Fig. 2 this is indicated by the vibrational level marke
uen

res(0)&. The position of these resonances are well appro
mated by the vibrational eigenvalues defined by the adiab

FIG. 2. Three of the five adiabatic potentialsU j of the m52
s-wave scattering process are shown as functions of internuc
separation. The dashed curves correspond toB50 adiabatic poten-
tials and are labeledj (0), while the solid curves correspond t
B591 mT adiabatic potentials and are labeledj (B), where in gen-
eral j is 1, 2, 3, 4, or 5 in order of increasing energy. However,
clarity the j 52 and 3 curves are omitted. For bothB values the zero
of energy is set at theR→` asymptote of thej 51 adiabatic po-
tential. For the range of internuclear separation shown the adiab
potentials 1~0! and 1(B) are identical. As is explained in the tex
the two Feshbach resonances are due to weak coupling to b
states in thej 54 and 5 adiabatic potentials. The vibrational leve
en

res(0) and en
res(B) show the relevant bound state forB50 and

B591 mT, respectively. On the energy scale of the figure thj
54 and 5 Feshbach resonances are indistinguishable. The a
labeled 2Eh f indicates theB50 splitting between level 1~0! and
levels 4~0! or 5~0!. The arrows labeled 4dB show that the energy
shift of the asymptotic energies of state 5 fromB50 to B591 mT
is approximately equal to the energy shift of the bound states.
1-4
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MANIPULATION OF FESHBACH RESONANCES IN . . . PHYSICAL REVIEW A61 022721
potentialsU4(0,R) and U5(0,R), respectively. As the field
strength is increased these levels becomes displaced
move to the position indicated byuen

res(B)&. In the process
of passing through the threshold the resonance states be
degenerate with the continuum states associated with
open channelu1&.

When the five coupled equations are solved numerica
an asymptotic analysis of the wave function gives theT ma-
trix, which describes the transition amplitudes between
asymptoticallyopenchannels. The energy and magnetic-fie
dependence of theT-matrix allow us to define phase shif
and scattering lengths and to extract resonance widths
positions. Since in this case theu1& state is the only open
channel, the asymptotic analysis of the energy-normali
wave functionF1 leads to

F1~e,R!→A 2m

p\2

sin„kr1j~e!…

Ak
for R→`, ~6!

wheree5\2k2/2m, andm is the reduced mass of the dime
j(e) is the phase shift andT1,1512exp(2ij) describes the
full T matrix. A scattering length is defined byA5
2tanj/k in the limit e→0.

Figure 3 shows the magnetic-field dependence of the s
tering lengthA, a property ofe→0 scattering, near the two
Feshbach resonances that are present in the ultracoldu$aa%&

FIG. 3. The absolute value of the scattering lengthA vs the
magnetic-field strengthB evaluated in the vicinity of the strong
@panel~a!# and weak@panel~b!# Na resonance. The filled dots ar
extracted from a close-coupling calculation for an incident kine
energye of 1 nK. The curve passing through the dots fit the re
nant expressionAn562.8a0 @120.0975/„B(mT)290.983…# for the
strong resonance andAn563.8a0 @120.00095/„B(mT)285.758…#
for the weak resonance.
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collision. The scattering phase is actually evaluated at a
netic energye51 nK, but this is well within the Wigner
threshold region, so thatA is independent of the actua
choice of energy. These data fit very well to the resonan
like expression suggested by Eq.~1!:

A~B!5AbgF12
Dn

B2Bn
resG . ~7!

This expression, which will be justified later in this sectio
is identical to that derived in Ref.@3# and used in the analysi
of Refs.@7,8#. Our theoretical results conform with this func
tional form and yield resonance positionsBn5s

res 591.0 mT
@32# for the ‘‘strong’’ resonance andBn5w

res 585.8 mT for the
‘‘weak’’ resonance, in excellent agreement with the expe
mentally observed valuesBs

res590.762 mT @32# and Bw
res

585.362 mT @7,8#. The calculated ‘‘strong’’ resonanc
width Ds50.098 mT is also confirmed by experiment. Th
‘‘weak’’ resonance widthDw50.00095 mT is a factor of
four larger than found by experiment. Our calculated re
nance positions and widths are consistent with the calc
tions of van Abeelen and Verhaar@30# ~also see Ref.@8#!.

Figure 4 shows theuT1,1u2[4 sin2j matrix element for
elastic scattering in stateu1&5u$aa%& as a function of colli-

c
-

FIG. 4. The energy dependence of the square of theT matrix
uT1,1(e,B)u2 for several magnetic-field strengths close to the fie
locations of the two Na Feshbach resonances. Solid lines co
spond to numerical close-coupling calculations, dashed lines co
spond to the results from a two-channel CI model, and dotted li
describes the background scattering in the absence of a reson
Panel~a! shows results for~1! B591.5 mT,~2! 92.0 mT, and~3!
93.0 mT close to the ‘‘strong’’ resonance. Panel~b! shows results
for B586.15 mT close to the ‘‘weak’’ resonance. Fits to Eq.~1!,
with Gn(e) obtained from Eq.~24!, gives for the fourB field
strengthse res/kB51300mK, 2550 mK, 5110 mK, and 4.00mK,
and Gn(e res)/kB5350 mK, 440 mK, 520 mK, and 2.95mK, re-
spectively.
1-5
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sion energy. The figure comparesuT1,1u2 for magnetic-field
strengths that are slightly larger than the calculated re
nance positions, so that the resonance aten

res(B) lies above
the e50 threshold. We find in all cases thaten

res(B) in-
creases for increasing magnetic-field strength. In fact,
position of the resonances which are extracted by fitting
Eq. ~1! are observed to vary as

kB
21]en

res~B!/]B512540mK/mT. ~8!

This closely follows the magnetic-field dependence of
splitting between hyperfine statesu1& and u4& or u5&.

B. Two-channel configuration interaction

The observed sparseness of resonances, and the exc
fit to the Fano-Beutler line shape of Eq.~1!, suggest that the
exact close-coupled wave function of Eq.~5! can be ex-
pressed in anequivalentCI form @17#,

Cn~e,B,R![u1,CI&F1~e,R!1An~e,B!uen
res~B!&. ~9!

This CI expansion consists of a single open-channel c
tinuum wave functionF1(e,R) interacting with a single iso-
lated resonance stateuen

res(B)& which embodies the exac
close-coupled interactions between the four closed chann
The resonance amplitudeAn(e,B) is independent ofR. The
isolatedR-dependent resonance state can be represented
simple product state

uen
res~B!&'un~B!&fn

res~R!, ~10!

where un& consists of afixed e-independent combination o
channel states@35#:

un~B!&'(
j 52

5

u j &aj
n~B!. ~11!

The CI wave function can be calculated using the tw
channel Hamiltonian

Hn~B!5u1,CI&^1,CIu$T1Ubg~R!%1un&^nu$T1Un~B,R!%

1$u1,CI&^nu1un&^1,CIu%Wn,1~R!, ~12!

whereT is the radial kinetic-energy operator. We will con
struct effective potentials for the background continuu
Ubg(R), for the resonance levelUn(B,R), and for the cou-
pling between them,Wn,1(R). Our construction will be both
simple and capable of reproducing the results of the full fi
channel CC calculation. In this regard, it is useful, thou
not necessary, to introduce ideas from the multichann
quantum-defect theory~MQDT! @33,34#.

1. Open-channel effective potential

It is convenient to introduce asingle reference potentia
Ubg(R) for CI channelu1,CI&, where this potential has th
same long-range form and asymptotic energy as that
channelu1&. When the reference potential is chosen to rep
duce the exact background phase shiftjbg away from any
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resonance,j5jbg1j res can be expressed as a sum of
background and resonance phase shift as in Eq.~1!. This
behavior is derived by noting that the exact open chan
radial wave functionF1 in Eq. ~9! can be asymptotically
represented in MQDT form as a linear combination of t
regulars(e) and irregularc(e) reference functions that ar
independent solutions of the HamiltonianT1Ubg(R) at col-
lision energye:

F1~e,R!→A 2m

p\2
cosjn

res@s~e,R!2tanjn
resc~e,R!#.

~13!

This insures that away from resonanceF1(e,R)5fe(R),
wherefe(R) is the regular solution of

F2
\2

2m

d2

dR2
1Ubg~R!Gfe~R!5efe~R! ~14!

and

fe~R![A 2m

p\2
s~e,R!→A 2m

p\2

sin~kR1jbg!

Ak
.

~15!

The factor tanjn
res which multiplies the irregular referenc

function, c→k21/2cos(kR1jbg), embodies the effect due t
the Feshbach resonance. The phase shiftjbg for elastic scat-
tering byUbg(R), describes the physics in the absence o
resonance. The resonance contribution to the phas
@17,33,34#

tanjn
res~e,B!5

Gn~e!

2@e2en
res~B!#

, ~16!

whereGn(e) is the resonance width. Equation~1! immedi-
ately follows.

We find that we obtain an excellent description of t
exact close-coupled background phase shiftjbg by taking
Ubg(R) to be the diabatic potentialW1,1(R). Furthermore,
since the scattering length of theW1,1(R) potential is almost
identical to the 63.9ao scattering length of thea 3Su

1 poten-
tial, we can simply equateUbg(R) to the a 3Su

1 potential.
The explanation for this simple behavior is as follows. At t
magnetic-field strengths where the Feshbach resonance
observed, the electron spin of an atom in stateua& is nearly
antiparallel to the magnetic-field direction, and the stateu1&
5u$aa%& is predominantly of triplet character. Consequen
the correspondingdiabatic potential W1,1(R) is predomi-
nantly ana 3Su

1 potential. AtR'19ao this diabatic potential
crosses a predominantlyX 1Sg

1 potential originating from
channelu2& which is much deeper than thea 3Su

1 potential
for R,19ao . However, the coupling is very weak, an
hence the crossing isdiabatic and can be neglected.

We actually use an even simpler analytic form forUbg(R)
in our CI model,
1-6
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Ubg~Bo ,R!5a exp„g~Re2R!…2
C6

R6
, ~17!

with a58.2432231023, C651562.155,g51.666, andRe
513.02, all in atomic units~length in ao , energy ine2/ao
54.359743310218 J!. Although this potential only support
five bound states, rather than the 16 that actually exist in
a 3Su

1 potential, the parameters have been adjusted to in
that its long-range behavior, and especially the scatte
length a563.9ao and the position of the last bound sta
agree with the values for the exact potential. This is usefu
Sec. III B below, since reducing the number of nodes in
short-range portion of the wave function reduces the num
cal effort in evaluating CI matrix elements.

2. Closed-channel effective potential

The unit-normalized resonance vibrational statefn
res(R)

at energyen
res(B) satisfies the Schro¨dinger equation

F2
\2

2m

d2

dR2
1Un~B,R!Gfn

res~R!5en
res~B!fn

res~R!.

~18!

Given the linear dependence of the resonance position o
as noted in the discussion of Fig. 4, we can infer t
Un(R,B) depends linearly onB:

Un~B,R!5Un~Bo ,R!1
]en

res~B!

]B
~B2Bo!, ~19!

where Bo is a magnetic-field strength not too far remov
from Bn

res .
The dependence of the resonance position onB allows us

to be more specific about the shape ofUn(R,B). The depen-
dence conforms almost perfectly with the displacement
the u4&5u$ f h%& and u5&5u$gg%& thresholds relative to the
u1&5u$aa%& threshold. Furthermore the adiabatic potenti
that correlate to the asymptoticu4& and u5& channels corre-
late to thea 3Su

1 potential at short distances. In fact th
vibrational level positions of these two adiabatic potenti
are in very good agreement with the vibrational level of t
pure a 3Su

1 potential. These observations demonstrate t
the resonance in Eq.~11! is predominantly generated b
channels 4 and/or 5@35#, and that theresonance vibrational
wave functionfn

res(R) is well approximated by the vibra
tional wave functions supported by a purea 3Su

1 potential.
However, a CC calculation is necessary to obtain the ex
position of the resonance, which depends on nonadiab
mixing among the five channels in the problem.

To model the variation ofen
res(B) with B, it is both nu-

merically convenient, and physically reasonable to take
resonance potential to be a shifted version ofUbg :

Un~Bo ,R!5Ubg~R!1dUn~Bo!. ~20!

Numerical tests confirm thatfn
res is well approximated by

the fourth bound state supported byUbg in Eq. ~17!. This
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corresponds to the second level below threshold (n522)
and mimics the properties of the exact~15th! resonance vi-
brational state associated with both of the observed M
resonances. We merely must set the constantdUn(Bo) to
insure that, for a chosen field strengthBo , the calculated
eigenvalueen

res(Bo) coincides with the corresponding C
resonance in Fig. 4. Once this is set theB-field dependence
introduced in Eq.~19! will automatically shift the eigenvalue
en

res(B) as required. In Sec. IV we will makeB(t) a function
of time and introduce the ramping of the magnetic field
simulate the MIT experiments.

3. CI width and threshold properties

The CI expression for the widthGn(e) in Eqs. ~1! and
~16! is

Gn~e![2puVn~e!u252pu^fn
resuWn,1ufe&u2. ~21!

In the CC calculations, the width depends in a complex w
on the off-diagonal matrix elements of the interaction mat
W, but the resonant position and width can easily be
tracted by fitting the calculated resonance shapes, suc
those in Fig.~4!. Since the coupling of the resonance to t
continuum depends on short-range interactions, we use
following arbitrary exponential form to simulate these co
plings in the CI model:

Wn,1~R!5bne20.2R. ~22!

We choosebn so that the width calculated from Eq.~21!,
agrees with the exact CC width. This fitting is done for t
same field strengthBo that is used to chosedUn(Bo) in Eq.
~20!. In order to avoid the subtle energy dependences tha
introduced by the threshold, we place the resonance we
fitting well above threshold. OncedUn(Bo) andbn are set,
the threshold effects will be properly and, for all intention
exactly handled by the CI model. For the strong resonanc
Fig. 4~a!, we fit bn /kB52.1563106 mK using theen

res/kB

51300mK resonance withGn /kB5350 mK for Bo591.5
mT. For the weak resonance in Fig. 4~b! bn /kB52.103
3105 mK was found for theen

res/kB5953.4mK resonance
with Gn /kB52.95mK for Bo586.15 mT. The agreemen
between the dashed and solid lines in Fig.~4! demonstrates
the excellent quality of the CI model in describing the exa
CC scattering.

For ultracold collision applications it is crucial to tak
into account the energy dependence of the width@20#. This
Wigner threshold behavior can be derived from the ene
dependence of theC1

22(e) coefficient defined in the MQDT
theory @33,20#. The unperturbedenergy-normalized con-
tinuum wave functionfe(R) associated with channelu1& in
Eq. ~15! introduces the Wigner threshold behavior throu
its dependence on the threshold parameterC1

21(e)→Ak, i.e.,
s(e,R)5C1

21(e) f 1(R). The analytic functionf 1(R) is a so-
lution of the Schro¨dinger equation for the reference potent
and is uniquely defined by ane-insensitive boundary condi
tion at a small internuclear separation where the excha
splitting is large compared to the Zeeman and hyperfine
teractions. Then it follows that
1-7
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Gn~e!5
4m

\2
u^fn

resuWn,1u f 1&u2C1
22~e!, ~23!

which can be rewritten as

Gn~e!5Gn~en
res!

C1
22~e!

C1
22~en

res!
→Gn~en

res!A e

en
res

. ~24!

Equation~24! clearly shows the expectedAe dependence a
e→0. The resonance state amplitudeAn(e,B) in Eq. ~9! is
proportional toVn(e) @17#,

An~e,B!'
Vn~e!

A~e2en
res!21Gn~e!2/4

, ~25!

and also exhibits appropriate Wigner threshold behavior.
The Wigner threshold behavior ofGn(e) and An(e,B)

rests on the assumption that, except for its resonance pos
en

res(B), the resonance wave functionuen
res(B)& is not modi-

fied appreciably byB or e. The resonance state wave fun
tion can then be factored as in Eq.~10!. In our case this is
justified since the matrix elementsWn,1 are short ranged
Except for a well-understood scalingC21(e) associated with
the asymptotic normalization of the open channel, both
reference wave functionfe(R) and the resonance wav
function fn

res(R) are otherwise insensitive to the asympto
energy or to the magnetic-field strength.

Equation~7! for the scattering length near an isolated F
hbach resonance follows immediately from our CI analy
upon using Eq.~1! and the definition of scattering length
A(B)52k21tanj(e,B), for e→0. Define the resonant field
strengthBn

res as

e2en
res~B!52

]en
res~B!

]B
~B2Bn

res!, ~26!

andDn as

Dn5
]B

]en
res

Gn

2kAbg
, ~27!

where Abg52k21tanjbg(e) for e→0 is the scattering
length in the absence of the resonance. Ase→0, Eq. ~24!
implies thatDn approaches a constant, and we recover
~7! in Section II A. This equation is used in the analysis
Refs.@7,8#. We have already demonstrated in Fig. 3 the
cellent agreement between our exact CC results forA(B) at
e51 nK and the CI expression in Eq.~7!.

III. TRAPPED STATES

A. Trapping potentials and vibrational levels

We now turn our attention to describing collisions in t
presence of an external trapping potential which confines
atoms. We might envision the atoms to be confined in
single cell of an optical lattice@10,11# or in an optical trap
such as used for the MIT BEC experiment@7,8#. When at-
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oms are confined in a trap, we must add a trapping poten
and replaceUbg by Ūbg5Ubg(R)1Utrap(R). AlthoughUbg
has a continuous spectrum withe.0 and corresponding
energy-normalized continuum wave functionsfe(R), Ūbg
has a discrete spectrum of vibrational eigenvaluesev with
corresponding unit-normalized bound-state eigenfuncti
fv ,

@T~R!1Ūbg~R!#fv~R!5evfv~R!. ~28!

We refer to the infinite set of levels with positive energy
‘‘trapped states’’ or, sometimes, ‘‘box-normalized co
tinuum states.’’ We chose the vibrational quantum numb
such thatv50 defines the lowest trapped state. We are
pecially interested in this first positive energy statef0, since
we will generally assume that the entire trapped-atom po
lation initially resides in this state. As we shall see, beca
of the Wigner threshold dependence, the eigenvaluee0 is the
critical parameter that determines the magnitude of the po
lation loss due to the time-dependent magnetic field. As
from determining this energy, the detailed form of the tra
ping potential plays only a secondary role in the dynamic

Equation~28! also defines a finite set of vibrational stat
with negative eigenvaluesev,0. These are the true dime
bound states defined byUbg and will be labeled in descend
ing order with negative vibrational quantum numbersv,0.
Thus thev521 level approximates the highest bound sta
supported by thea 3Su

1 potential.
We have taken two forms forUtrap . We first assume tha

each trapped atomi 51 and 2 of massm experiences an
harmonic confining potentialUtrap(Ri)5mvo

2Ri
2/2. This

might be a reasonable choice for atoms tightly confined in
optical lattice@10,11#, or for a low-density atom trap befor
the atoms become condensed. It is an especially attrac
choice because, for two identical atoms of massm confined
in a spherically harmonic trap, the Hamiltonian transform
into center of massRW cm5(RW 11RW 2)/2 and relative coordi-
natesRW 5RW 22RW 1 is separable:

S TRW 1
1

1

2
mvoR1

2D1S TRW 2
1

1

2
mvoR2

2D
[S TRW cm

1
1

2
MvoRcm

2 D1S TRW 1
1

2
mvoR2D , ~29!

where M52m, m5m/2, and TxW is the three-dimensiona
~3D! kinetic energy operator. Equation~29! shows that
Utrap(R)5mvo

2R2/2. For nonspherical traps@7,8# we can
use the mean trapping frequencyv05A@3vXvYvZ . The 3D
harmonic-oscillator spectrum for thel 50 state of relative
motion is

ev5\voF3

2
12vG . ~30!

These eigenvalues are only slightly shifted when the inter
tion potentialUbg is taken into account. Figure 5 schema
1-8
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cally represents these trapped state eigenvalues for
harmonic-potential solutions of Eq.~28!.

Our second choice is a spherical box potential@23#,

Utrap~R!5H 0 for R,L

` for R.L.
~31!

The l 50 spectrum for a box potential is

ev5
\2p2

2mL2
~v11!2 . ~32!

Again, for the traps we shall consider, the actual eigenva
are slightly shifted whenUbg is taken into account. This bo
simulates a confined collision in the presence of a finite-si
Bose-Einstein condensate where the sizeL roughly approxi-
mates the dimension of the condensate wave function. In
we determineL by requiring thate0 equal the mean kinetic
energy of a colliding pair of atoms in the condensate. T
exact fitting procedure, discussed in Sec. V and the App
dix, follows from an extension of the Thomas-Fermi mod
@22#.

B. Trapped-state CI model and coupling matrix elements

The configuration-interaction model of Sec. II B is mod
fied due to the presence of a trapping potential in the o
channelu1,CI&. We introduce the trapping into the CI mod
by replacing the radial functionF1 in Eq. ~9! with a summa-
tion over the complete set of vibrational statesfv supported
by Eq. ~28!, i.e.,

FIG. 5. Schematic diagram of the spectrum defined byUbg

5Ubg1Utrap in Eq. ~28! and the resonance energyen
res(B) of the

vibrational statefn
res supported by the potentialUn . The location

of the resonance is a function ofB. The bell-shaped curve schema
cally represents the squared resonance state contribu
uAn(B,ed)u2 for multichannel eigenfunctions, with energyed in the
vicinity of en

res .
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Cn~ed ,B!5u1,CI&(
v

fv~R!Cv~ed!

1un~B!&fn
res~R!An~ed ,B!. ~33!

The coefficientsCv(ed) and An(ed ,B) are obtained by in-
serting Eq.~33! into Eq. ~12!, whereUbg(R) is replaced by
Ūbg(R) and solving the resulting matrix eigenvalue proble
The ed’s are eigenenergies belonging to the multichan
eigenfunctionsCn(ed ,B), which for a fixedB form a dis-
crete set of states.

Solving for the multichannel trapped states requires
evaluation of the coupling matrix elementVn,v(B) between
the isolated resonance stateun&fn

res and the trapped stat
u1,CI&fv :

Vn,v5^fn
resuWn,1~R!ufv&. ~34!

Using the relation@33,34#

^fn
resuWn,1~R!ufv&A ]v

]ev
5^fn

resuWn,1~R!ufe& ~35!

between bound-bound and bound-free matrix eleme
where]v/]ev measures the density of trapped states in
vicinity of ev'en

res , we can relateVn,v to the widthGn(e) in
Eq. ~21!:

2pVn,v
2 5Gn~ev!

]ev

]v
. ~36!

The exact positionen
res(B) of the resonant vibrational level

determined by the reference potentialUn(B,R) in Eq. ~18!,
shifts linearly withB as prescribed by Eq.~19!. As long asB
is such thaten

res is well removed from threshold, we ca
expect the distribution of resonance state amplitu
uAn(ed ,B)u2 for eigenvaluesed in the vicinity of en

res to
mimic a discretized version of the Lorentzian line shape
Eq. ~25!. This feature is sketched in Fig. 5.

Using the interactionWn,1(R) defined in Eq.~22!, we
explicitly evaluateVn,v by using in Eq.~34! the numerical
solutions to the CI model. This allows us to rigorously tre
all v levels, including those near threshold and even be
threshold where the true bound states exist. Using Eqs.~34!–
~36! and the threshold properties of Eqs.~23! and ~24!, we
predict the following threshold energy dependence:

Vn,v5const3A4 ev A]ev

]v
. ~37!

This predicted variation is confirmed by our numerical c
culations for both the harmonic and box trapping potentia

Since]ev /]v52\vo is independent ofev for the spheri-
cal harmonic trap,Vn,v approaches threshold asA4 ev . The
magnitude of the coupling varies asvo

3/4 for a trapped level
with v>0. Noting that the characteristic scale lengthl o

5A\/mvo of a harmonic trapping potential varies atvo
21/2,

we find thatVn,v is proportional tol o
23/2 and is inversely

proportional to the square root of the volume of the trap.

ns
1-9
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An additionalA@4ev energy dependence is obtained fro
the density of states factor for the spherical-box potentia

A]ev

]v
5A4 2ev\2p2

mL2
, ~38!

and in this caseVn,v approaches threshold asAev. Neverthe-
less, for a givenv>0 the coupling matrix elementVs,v var-
ies asL23/2, and also scales inversely with the square roo
the volume of the confining potential. In fact, as long t
volume of the condensate is correctly introduced into
calculations by choosing eitherL or vo to yield the proper
trapped-state eigenvaluee0 in Eq. ~37!, the condensate mod
eling will be insensitive, to within a factor of 1.5 due to
difference in thev50 density of states, to the exact form w
take for the trapping potential.

IV. TIME DEPENDENT CI MODEL
OF FESHBACH RESONANCES

We convert the CI wave function@Eq. ~33!# into a time-
dependent form by taking

B~ t !5H Bo , t,0

Bo1
]B

]t
t, t>0,

~39!

such that

Hn~ t !5H Hn~Bo!, t,0

Hn~Bo!1
]en

res

]B

]B

]t
t, t>0.

~40!

We assume that the population initially resides in t
trapped vibrational statev5 i which imposes the initial con
dition

Cn~ t !5u1,CI&f i t<0. ~41!

In particular we are interested in the casei 50. The initialBo

is chosen such that the resonance positionen
res(Bo) is well

removed from the vicinity of the threshold. IfBo is not suf-
ficiently removed from the threshold, then it is imperative
use an initial state which is properly ‘‘dressed’’ by the initi
magnetic field. This corresponds to choosing an eigens
Cn(ed ,B) of the HamiltonianH(Bo) in Eq. ~33!. The proper
choice of initial state is dictated by how the initial state w
prepared in a particular experiment. For example, we imp
itly assume that the system was slowly and adiabatic
brought to itst50 condition.

The coefficients in Eq.~33! are now time dependent,

Cn~ t !5u1&(
v

fv~R!Cv~ t !1un~ t !&fn
res~R!An~ t !,

~42!

and must satisfy the time-dependent Schro¨dinger equation
02272
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]Cn~ t !

]t
5Hn„B~ t !…Cn~ t !. ~43!

Given the coupling matrix elementsVn,v , which we evaluate
numerically for a finite, but large, set of vibrational level
we can easily solve the set of linear first-order equations

i\Ȧn5Fen
res~Bo!1

]en
res

]B

]B

]t
tGAn1(

v
Vn,vCv , ~44!

i\Ċv5@ev#Cv1Vn,vAn ~45!

for the coefficientsAn(t) andCv(t) using a standard numeri
cal algorithm. We have carefully checked the convergenc
the results to insure they are independent of the size of
vibrational basis.

A. Dimer formation in a harmonic trap

An example of our numerical results is shown in Fig.
where we start the system att50 in the lowest harmonic
state u1&fo with vo/2p51 MHz, l o5561ao , and eo /kB
578.4mK. With an initial field Bo'92.5 mT the resonance
state is located aten

res(Bo)/kB'3.8 mK, and is far enough
above threshold that the interaction with the lowest trap s

FIG. 6. ~a! Population density for negative ramp rate20.76
T/ms where the resonance crosses the initial harmonic trap sti
50 from above andvo/2p51 MHz. Choosingt052 ms, the ini-
tial en

res/kB position is 3.8 mK above threshold and crosses
initial i 50 state atx'0. The 61% depletion ofp0 is exactly given
by Landau-Zener probabilityp0

LZ . This loss (12p0)5pn1p21

leads to the formation ofstable dimer molecules. After crossing the
threshold the population is predominantly in the resonance statepn ,
which now represents a true bound state of the dimer.~b! The
expanded time scale shows the population as the resonance cr
the highest vibrational statev521 in potentialU1, and the popu-
lation pn is switched top21.
1-10
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is negligible. The field is then rampeddownwardat a rate
]B/]t520.76 T/ms, such that the resonance energy posi
en(Bn

res) coincides with the eigenvalue of the initial sta
e i 50 at tn'2 ms, i.e.,

tn5@Bn
res2Bo#

]t

]B
. ~46!

Shortly after passinge0 at t5tn the resonance sweeps pa
threshold at which timeen

res(B) becomes negative and th
resonance state represents atrue bound stateof the dimer.

The probability of being in a specific vibrational statefv
associated with the open channelu1,CI& is given by pv(t)
5uCv(t)u2, while the probability that the population is tran
ferred into the passing resonance state is given bypn(t)
5uAn(t)u2. The various populations are plotted in Fig. 6 ve
sus the dimensionless quantityx5(t/tn21), wherex50 co-
incides with the crossing of the resonance and the in
bound state~passage across threshold occurs atx50.005).
Initially p0(0)51, and all other probabilities are zero. A
we passx50 and the resonance state is dragged well be
threshold by the decreasing magnetic field we find in t
case that 61% of the initial population is lost. Initially th
population is mostly transferred topn , implying that the loss
is due to theformation of stable dimer moleculesin the state
un(t)&fn

res(R). Moreover, a small amount of population b
gins to appears inp21, which is also a stable state of th
dimer corresponding to the very last bound state suppo
by the open-channel potentialUbg(R).

Our numerical calculations show that the probability
remaining in the initial stateu1&f i as t→` is given by the
Landau-Zener expression@24#

pi~ t→1`![pi
LZ5exp~2wn,i

LZ!, ~47!

where

wn,i
LZ5

2puVn,i u2

\U]en
res

]B

]B

]t
U . ~48!

This agreement is demonstrated in Fig. 6 fori 50, and is
found to work equally well for the depletion of any initia
state which is crossed by the time-dependent resonance
Although the LZ theory only predicts theasymptoticprob-
ability when the resonance is sufficiently distant that it
longer interacts with the initial state, we see that the l
occurs over a finite time interval, and is essentially compl
by x'0.5.

If the sweeping field is stopped at say,x511, as in Fig.
6~a!, the total loss

ploss~ i !512pi
LZ512exp~2wn,i

LZ! ~49!

primarily contributes to the resonance state populationpn
'ploss(0), with a small quantity appearing inp21. Of
course if we continue sweeping the magnetic field downw
the resonance will eventually cross the bound vibratio
statev521, and we then find that population is transferr
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from pn to p21. Again, as demonstrated in Fig. 6~b!, this
transfer is given by the LZ theory, i.e,pn5ploss(0)p21

LZ and
p215ploss(0)(12p21

LZ ). The probability p21
LZ 5exp

(2wn,21
LZ ) is obtained from Eq.~48! with Vn,21 replacing

Vn,0 . Since theVn,21 coupling is two orders of magnitud
larger thanVn,0 , we find that p21

LZ '0. This means the
n↔v521 crossing is essentially 100% adiabatic withpn
'0 and all the lost population is transferred top21
'ploss(0).

Let us denote the total population of dimer molecule
regardless of their internal state as follows:

pdimer5pn1 (
v,0

pv . ~50!

We also definepexcited as the total population of harmoni
trap states that has been removed from the initial state,

pexcited5 (
v>0

pv2pi , ~51!

such thatpi1pdimer1pexcited[1. In this instance, since we
are starting fromi 50, this means thatpdimer'ploss( i ) and
pexcited'0. These equalities are demonstrated nicely in F
6. Note that by manipulating the ramp rate of the appl
magnetic field we can control the formation of the alk
dimers. At very slow ramp rates Eq.~49! predicts that essen
tially 100% of the population is transferred fromp0 to pn ,
and then top21. In this scenariopdimer5ploss( i )51 and the
entire initial trapped population can be transformed to vib
tionally hot, but translationally and rotationally ultraco
dimers.

Figure 7 illustrates the case of starting from a higher i

FIG. 7. ~a! Population density for a negative ramp rate
21.52 T/ms with the resonance crossing the initially populated h
monic trap statei 52 from above.~b! Same as~a! but with a ramp
rate of23.04 T/ms.
1-11
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tial harmonic state, such asi 52. The lost population
ploss(2) is distributed between the trapped statespexcited
with 0<v, i and the true dimer statespdimer . We find
agreement with the predictions of multiple crossing Land
Zener theory forv, i ,

pv~1`!'ploss~ i !pi 21
LZ pi 22

LZ
•••pv21

LZ ~12pv
LZ!. ~52!

B. Excitation of trapped-state populations

For the case shown in Fig. 8, we reverse the procedur
Fig. 5 and start with the resonance located at the same
tancebelow threshold, and ramp the fieldupwardat the rate
]B/]t510.76 T/ms. Again we start in the initial statei
50, but now with an initial magnetic fieldBo'89.5 mT
which locates the resonance state aten(Bo)/kB'23.82 mK
and yields the same crossing timetn in Eq. ~46!. The reso-
nance lies between the last bound statev521 and the
threshold, and far enough removed that the initial interact
with the lowest trap state is negligible.

As the magnetic field sweeps upward the resona
crosses the initial statei 50 at x50. By the time the reso-
nance reachesx'0.5 it has crossed 20 trap states and a
population it acquired in crossingi 50 has been lost along
the way. As implied bypn→0 and the definitions in Eqs
~50! and ~51!, all the population lost fromi 50 resides in
excited vibrational levels, i.e.,pexcited5ploss(0). Again, we
find the distribution amongst the individual vibrational sta

FIG. 8. ~a! Population density for a ramp rate of10.76 T/ms
and vo/2p51 MHz, where the resonance crosses the initial h
monic trap statei 50 from below, starting from23.8 mK. An
identical amount of population is lost as in Fig. 6, and is ag
exactly given byp0

LZ . In this case the lost population is deposit
into vibrationally excited trap statesv.0, with the detailed distri-
bution in agreement with the generalized LZ expression in Eq.~53!.
~b! Comparison of exact and Landau-Zener distributions of h
monic trap states forv. i excited by three different positive ram
rates.
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is exactly given by the multiple-crossing LZ theory@25,26#
for ]B/]t.0 andv. i ,

pv~1`!5ploss~ i !pi 11
LZ pi 12

LZ
•••pv21

LZ ~12pv
LZ!. ~53!

The success of Eq.~53! is amply demonstrated in Fig
8~b!, where we show the complete excited state distributio
for three different ramp rates]B/]t. The total loss rates
ploss( i ) equalspexcited listed in Fig. 8~b! and scale perfectly
according to Eqs.~49!, ~48!, and ~53!. The individual LZ
probabilities map the exact numerical results to within a f
percent forpv.1027, and small deviations are probably du
to numerical inaccuracies in our calculations. The table
Fig. 8~b! shows howpexciteddecreases with the inverse ram
rate ]t/]B, becoming proportional to it as it become
smaller. It is interesting to note that when the ramp rate
increased the smaller amount of population that is transfe
from the initial state to the resonance is ultimately deposi
into significantly higher vibrational states. Therefore, as s
in the Fig. 8~b!, the mean amount of vibrational energy d
livered to the system,

^eexcited&5(
v. i

evpv , ~54!

has a much slower dependence on the inverse ramp rate
pexcited.

Figure 9 demonstrates that we obtain exactly the sa
behavior, and the same excellent agreement with the
theory if we use a box trapping potential in place of t

-

n

r-

FIG. 9. ~a! Population density for a ramp rate of10.76 T/ms,
where the resonance crosses the initial spherical box trap sti
50 from below, starting from23.8 mK (L58000ao). The lost
population is deposited into vibrationally excited trap statesv.0,
with the detailed distribution in agreement with the generalized
expression in Eq.~53!. ~b! Comparison of exact and Landau-Zen
distributions of box trap states forv. i excited by three different
positive ramp rates (L58000ao).
1-12
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harmonic potential. In this case we have substantially
creased the density of states by usingL58000ao'0.4 mm
in Eq. ~32!, such thate i 50 /kB51.172mK. We also use
slower ramp rates and the loss in now perfectly linear
]t/]B. Again the mean amount of energy deposited into
excited harmonic trap states decreases much more grad
thanpexcited.

C. Landau-Zener parameters for Na resonances

Our numerical calculations have demonstrated that the
expressions are essentially exact. The largestL we could
comfortably handle in our exact time-dependent calculati
was theL58000ao used to obtain the results in Fig. 9. Sin
we will need much largerL values in Sec. V, here we giv
simple expressions for evaluating the LZ loss rates for
two Na resonances in arbitrary size traps. These LZ exp
sions can be used with confidence to predict the magne
field response for cases where explicit numerical solution
Eqs.~44! and ~45! are impractical.

Using the CI parameters deduced in Sec. II B 3 to rep
duce the strongGs5350 mK resonance located ates

res

51300mK for B591.5 mT in Fig. 4~a!, we obtain the fol-
lowing bound-state coupling matrix element forv>0:

Vs,v~mK!5177.0Aev~m K!

L~ao!
51.5263106

~v11!

@L~ao!#3/2
,

~55!

where the units needed are indicated in parentheses. We
confirmed this formula by numerical examples. Introduci
expression~55! into Eq. ~48!, and using Eq.~8!, we predict

vs,v
LZ5

1.11310210~v11!2

@L~cm!#3 U ]t~s!

]B~mT!
U. ~56!

A similar fitting for the weakB586.15 mT resonance in Fig
4~b! using Gw52.95mT at ew

res5953.4mK yields a LZ
probability which is two orders of magnitude smaller:

vw,v
LZ 50.0095vs,v

LZ . ~57!

It is interesting to note that the LZ probability predicte
using the 3D harmonic trapping potential in place of sphe
cal box potential has a similar functional dependence
those of Eqs.~56! and~57!, with the characteristic harmoni
length parameterl o5A\/(mvo) replacingL:

vs,v
LZ~harmonic!5

1.27310211S 11
4

3
v D

@ l o~cm!#3 U ]t~s!

]B~mT!
U.

~58!

The same functional form is obtained for the weak resona
with the coefficient reduced to 1.20310212. Note that if we
choosel o[A3L/p, which insures that harmonic and bo
traps both yield identical trapped state eigenvaluese0, the
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LZ probabilities in Eqs.~56! and~58! only differ by a factor
of 1.5 due to the difference in the density of vibration
states]ev /]v.

V. APPLICATION OF FESHBACH MODEL
TO MIT EXPERIMENTS

A. Ramp of resonance through threshold

It would not be realistic to represent the trapping poten
in the case of a Na BEC as a harmonic one. The reason
this is that atom-atom interactions cause the conden
wave function to expand and to occupy a volume many tim
that of the ground state of the harmonic oscillator, and
have a much lower kinetic energy than3

2 \vo . This expan-
sion modifies the properties of the threshold matrix eleme
which scales withL as described in Sec. IV C. As discuss
in the Appendix, we propose to represent the trapping po
tial in a BEC formed in a harmonic trap of mean frequen
vo by the spherical-box potential in Eq.~31! with radiusL.
This form is suggested by the simple Thomas-Fermi solut
to the Gross-Pitaevskii equation, for which the condens
atoms move in a flat effective potential inside the Thom
Fermi radius. Although the mean kinetic energy betwee
pair of interacting atoms is zero in this approximation, Fet
and Feder@36# derived an expression for the finite mea
kinetic energy^T& of a condensate atom. Furthermore, t
lowest trapped statev50 is occupied in a condensate. B
requiring that the ground-state energye05\2p2/2mL2 of the
atom pair in the spherical box be identical to the mean
netic energy of an atom in the condensate, wechoose Lto
insure thate0[^T&. The Appendix shows that for the MIT
experimentsL'10mm andeo'2.1 nK.

TheB(t) ramp in the experiment@8# moves the resonanc
from below to above threshold, and we assume that ato
removed from the ground state and placed in trapped st
with i>1 are lost from the condensate. In essence, hea
the atoms leads to atom loss. For this experiment the
parametervn,0

LZ is very small, only on the order of 1026, so
that

ploss~n,i 50!512e2vn,0
LZ

'vn,0
LZ . ~59!

This is the probability that aparticular atominteracting with
one of the other atoms in the condensate will experienc
loss as the field ramps the resonance across threshold. H
ever, there areN22'N additional atoms with which the
atom can simultaneously and, assuming that three-body
teractions can be neglected, independently experience r
nance interaction. Thus the total probability that the Fe
bach resonance extracts this particular atom from the gro
state of the condensate is enhanced by a factor ofN, such
that

Ploss
total~n,0!512e2N3vn,0

LZ
. ~60!

If N3vn,0
LZ becomes large the exponential form insures t

Eq. ~60! maintains unitarity. Using Eqs.~56! and ~57!, the
fraction of condensate atoms that are lost from the initial b
statei 50 is
1-13
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Ploss
total~n,0!'12expS 2a~n,0!rbU ]t~s!

]B~mT!
U D , ~61!

where rb5N/@L(cm)#3 is proportional to the mean atom
densityrA of the condensate. This proportionality to me
density is a consequence of the inverse volume depend
of vn

LZ,0 in Eq. ~56!. We find a(s,0)51.11310210 for the
strong resonance anda(w,0)51.06310212 for the weak
resonance.

In order to compare the loss predicted by Eq.~61! with
the observed loss@7,8#, it is necessary to knowN, and to
specify the scaling parameterL. The former was measured
and the latter was obtained as described in the Appendix.
find that Eq.~61! predicts fractional losses of atomic pop
lation from statei 50 for the two observed resonances th
are consistent with the magnitudes of the losses found in
experiments. For instance, from the data in Fig. 3 of Ref.@8#,
it is observed that 70% of the atoms are lost from the c
densate at inverse ramp rates of 10 and 4000ms/mT for the
strong ~90.7 mT! and weak~85.3 mT! resonances, respec
tively. Our results using the measuredN593105 predict
losses of 63% and 98% for these respective resonan
However, our calculated widthGw is roughly a factor of 4
larger than that inferred from the experiment. Reduc
a(w,0) by a factor of 4 reduces the weak resonance l
from 98% to 63%, in good agreement with the observatio
Comparable agreement was found for the case given in
@7#.

Figure 10 comparesN3vn,0
LZ with the experimental points

for 2 ln(12Ploss), found fromPloss reported in Fig. 3 of Ref.
@8#. Since our theoretical calculations contain no arbitra
fitting parameters, the fact that Eq.~61! gives generally good

FIG. 10. Comparison of the calculated LZ probabilityN
3vLZ( i ) vs the observed quantity2 ln(12Ploss) from Ref. @8# for
both weak and strong resonances. A factor of 0.25 forvw

LZ( i ) cor-
rects the calculated resonant width to agree with the measured
for the weak resonance, and brings the calculated and obse
losses into good agreement.
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agreement for the observed loss rates is very satisfying,
strongly recommends this ramping mechanism as a poss
source of the unexplained losses in the experiment.

B. Resonance stabilization by a third body

The MIT experiments also observed large atom los
when a magnetic field very slowly moves a Feshbach re
nance near to but not through the threshold region. Timm
manset al. @12# and Yurovskyet al. @13# already proposed
another possible loss mechanism for this case, namely,
quasibound resonance state that introduces the reson
structure strongly enhances the three-body recombinatio
collision with a third Na atom causes a vibrational relaxati
of the resonant state Na2(n) to form a stable dimer Na2(d),
i.e., Na2(n)1Na→Na2(d)1Na1DE, with the excess en-
ergy DE added to the kinetic energy of the atom and t
dimer. This vibrational relaxation is characterized by a
nary rate constantgd(cm3/s). Although this model was de
veloped using a coupled Gross-Pitaevskii formalism, it
equally well described in a microscopic scattering appro
as a resonance-enhanced three-body recombination me
nism with a cross section given by the usual Breit-Wign
expression@27#,

s~d!5
p

k2

GnGd

~e2en
res!21~Gn1Gd!2/4

. ~62!

The partial width Gd(e)5\gdrA for converting a quasi-
bound resonance state into the bound stated is proportional
to the atom densityrA . Dimer formation and the release o
kinetic energy would lead to significant loss of trapped
oms. This model may very well give the proper explanati
of the experiments where the magnetic field is slow
brought close to resonance and then held fixed, althoug
Ref. @13# the energy-transfer rategd is introduced as an ad
justable parameter and remains to be justified. In the Wig
threshold region the vibrational relaxation widthGd will ap-
proach a constant, whileGn exhibits the expectedAe thresh-
old dependence.

If we introduce a complex resonance positionen
res(Bo)

1 iGd/2 into Eq. ~44!, then this resonance stabilizatio
mechanism can be introduced into our formalism as a l
process represented by the complex potentialiGd/2. Al-
though we have not explicitly carried out such calculatio
the LZ theory predicts that the total loss of population fro
the initial trapped statee i due to a magnetic field rampB(t)
is still given by Eqs.~47! and~48!. If Gd is sufficiently large
compared toGn , then the population is transferred to th
stable dimer stated via a three-body collision instead of be
ing moved to other levels due to nonconservative inter
tions with the time-dependent magnetic field.

We note that Eq.~62! is equivalent to the standard expre
sion for trap loss due to photoassociation. This process m
be viewed in a dressed-molecule picture as optically c
pling the ground scattering continuum to an optically tuna
excited state Feshbach resonance level that decays by s
taneous emission@38#. In this case, the photon plays the ro
of the third body that causes the loss process, and the s

ne
ed
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MANIPULATION OF FESHBACH RESONANCES IN . . . PHYSICAL REVIEW A61 022721
taneous emission width replacesGd in Eq. ~62!. Our CI
theory could also be applied to photoassociation viewed
an optically induced Feshbach resonance process. An an
to molecule formation via aB(t) ramp of a Feshbach reso
nance is a recent proposal to make cold molecules efficie
by frequency-chirped photoassociation@15#.

VI. DISCUSSION AND CONCLUSIONS

We have carried out a study of the Feshbach resona
for the collision of two Na atoms in the lowestf 51,m5
11 ground-state hyperfine level in a time-dependent m
netic fieldB(t). The theory gives a rigorous account of th
dynamics induced byB(t) for two atoms initially confined in
the ground state of a 3D harmonic trap. Although our cal
lations are for Na atoms, the methodology is general and
be extended to any pair of alkali atoms of the same or
ferent species. We envision applications to a variety of tr
ping situations, but specifically apply our results to interp
recent experiments with a Na BEC.

We start with a rigorous close-coupled formulation of t
two-body collision, and end with a remarkably simp
Landau-Zener time-dependent curve-crossing model for
dynamics of atoms in discrete energy levels in a trap. T
bridge between the contrasting scattering and trap viewpo
is facilitated by a two-channel CI theory, which gives
simple parametrization of an isolated Feshbach resonanc
teracting with the continuum states of the colliding atom
The key parameters are a tunable resonance positionen

res(B)
and a resonance widthGn . The CI theory was set up within
the standard time-independent scattering viewpoint, wh
the resonance leveln is a bound state embedded in a scatt
ing continuum where the asymptotically free particles se
rate with relative kinetic energye.0. We adapt the theory
to the case of trapped atoms which experience a confin
potential at large interatomic separationsR. In this case,
there is a discrete set of eigenstatesi with eigenenergiese i
.0 instead of a continuum of states, and the coupling
tween the resonance and these discrete levels is given
matrix elementVn,i , which is related toGn .

A time-dependentB field shifts the energy position of th
resonance relative to the energye i of the initially prepared
level i of the trapped atoms, thereby inducing transitions
which we calculate the probability. We are especially int
ested in the case wherei represents the ground state of t
trap, i 50. When a ramp ofB(t) sweeps the resonance p
sition en

res(B) paste i , population transfers from leveli to the
resonance leveln. If en

res(B) starts belowe i , the resonance
is carried into the ‘‘quasicontinuum’’ of discrete trappe
states, and it deposits its energy in excited trapped states
contrast, ifen

res(B) starts abovee i , theB(t) ramp carries the
resonance position below threshold where it now repres
a stable ~nondecaying! dimer state. If the ramp carrie
en

res(B) across a bound statei 521 of the dimer, population
can be transferred to that level as well. A sufficiently slo
ramp rate makes any of these transfer processes nearly 1
efficient.

We therefore suggest that a downward ramp will produ
02272
s
log

ly

es

-

-
an
f-
-
t

e
e
ts

in-
.

re
-
-

g

-
y a

r
-

By

ts

0%

e

stable diatomic molecules which are translationally and ro
tionally cold, but vibrationally excited, depending of the sp
cific levels available to the atom pair in question. This pr
cess might be feasible in optical lattice cells, for example
two atoms were to occupy the same lattice site. Confinem
dimensions significantly less than 0.1mm should be experi-
mentally possible. There are proposals for bringing two
kali atoms together in the ground state of a single cell o
3D optical lattice@10,11#, and high fractional occupation o
lattice sites has recently been demonstrated for a Cs la
@37#. It is certainly possible that favorable Feshbach re
nances might be possible in the Cs system. Molecule prod
tion in a Na BEC might also be feasible. However, the e
pectation of large loss rates of atoms due to collisions wit
third atom@13# suggest that inelastic collisional relaxation
the resonance level or of high vibrational levels may prove
be problematical in a condensed system. Such relaxa
would not be a problem in an doubly occupied optical latt
cell where there is no third body.

When a ramp ofB(t) sweeps the resonance positio
en

res(B) paste i , the time-dependent field induces populati
changes in the levels. The probabilityploss(n,i ) of popula-
tion loss from an initially populated trap leveli is simply
explained by a Landau-Zener curve-crossing model, wh
also accurately gives the distribution of final levels. We c
give a simple intuitive interpretation of the expressions
Eqs. ~49! or ~59! for ploss(n,i ). Using the fundamental ex
pression in Eq.~36! which relatesuVn,i u2 to the resonance
width Gn(e i), the LZ adiabaticity parameterwn,i

LZ in Eq. ~48!
can be expressed as follows:

wn,i
LZ5S Gn

]t

]en
resD S ]e i

\] i D5~ t res!~2pn i !. ~63!

Here we have written the resonance ramp rate in the sim
form ]en

res/]t. The first term on the right-hand side of E
~63! is clearly thetime in resonance, that is, the timet res it
takes the resonance to ramp over an energy range equ
the width Gn(e i). The second factor in Eq.~63! is the trap
spacing divided by\, and thusn i represents the vibrationa
frequency of trap leveli. Consequently, the LZ adiabaticit
parameterwn,i

LZ simply equals the resonance timet res times
the frequency 2pn i . Thus, if the resonance ramps quick
compared to the vibrational period 1/n i , then wn,i

LZ!1, the
dynamics is diabatic, and the trap leveli remains mostly
populated. On the other hand, if the resonance ramps
slowly compared to the vibrational period,wn,i

LZ@1, the dy-
namics is adiabatic, and all of the population ini is trans-
ferred to the resonance level.

The Wigner threshold law ensures that the widthGn(e i) is
proportional toAe i @see Eq.~24!#. A trap is characterized by
some scale lengthLscale, which is equal tol o andL for the
harmonic and box potentials, respectively. Since in a t
Ae i}1/Lscaleand 2pn i}Lscale

22 , we conclude thatwn,i
LZ}Lscale

23

is inversely proportional to the trap volume. This inver
volume dependence is the manifestation of the Wig
threshold properties for ultracold 3D trapped state dynam
1-15
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The application of our model to a Na BEC leads to
markably good agreement with the atom losses observe
the MIT experiments with a ramped magnetic field. Our tw
body close-coupled model gives excellent agreement w
two-body scattering data, including the observed position
the two Feshbach resonance states~although we differ from
experiment by a factor of 4 in the experimentally inferr
width of the weaker resonance!. The key to applying our
model based on binary collisions is to adapt the trapp
potential in such a way that the kinetic energy of the coll
ing atoms is properly represented. This is because the m
element for the coupling of the resonance to the ground s
of the trap depends strongly on the kinetic energy of rela
motion. The expansion of the cloud of atoms in the cond
sate due to the mean-field interaction causes the conde
to have a much lower mean kinetic energy and much lar
volume than for the ground state of the harmonic trap. T
greatly reduces the coupling matrix element. Using a sph
cal box potential for which the mean kinetic energy match
the actual mean kinetic energy of the anisotropic conden
permits us to calculate the actual coupling matrix eleme
and loss rates. Although the LZ probabilitywn,0

LZ for atom
loss due to a single pair of atoms in the condensate is q
small, the net probability of atom loss is actually quite lar
because of the large number of atoms pairs in the cond
sate. The total loss probability per atom depends on the p
uct Nwn,0

LZ , which is proportional to the mean atom dens
because of the above-mentioned scaling ofwn,0

LZ with inverse
volume of the condensate.

The quality of the agreement between predicted and
served losses certainly suggests that the essential phys
our model is correct. Although a similar picture can be o
tained using the formalism of coupled atom-molecule Gro
Pitaevskii equations@12–14#, we believe that the simple
physical model that we have presented will provide mu
understanding of the role of Feshbach resonances in the
context. It also proves to be useful and predictive for ot
situations which might utilize magnetically controlled atom
collisions, such as molecule formation in lattices or quant
computing@10,11#. There is also a great deal of similarit
between magnetically induced Feshbach resonances
optically-induced ones, as we noted at the end of Sec. V
Two-color photoassociation by stimulated Raman scatte
@39# is an example of using optically induced Feshbach re
nances for molecule formation in a BEC@40#, a process
which has recently been studied experimentally@41# and
theoretically@42#. Our model should be readily adaptable
the case of condensate photoassociation.

Note added in proof. The work in Ref.@14#, which ap-
peared after our paper was submitted, comes to similar c
clusions for23Na BEL Feshbach experiments using an alt
native and complementary point of view.
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APPENDIX: ANALYSIS OF CONDENSATE
PARAMETERS

Our analysis is based on the work of Fetter and Fe
@22#, who considered a BEC in an isotropic harmonic trap
frequencyvo . It was shown by Schneider and Feder@43#
that for our purpose thesameanalysis can be applied equal
well to an anisotropic trap simply by equatingvo to the
geometric mean frequencyA3 vxvyvz . The chemical poten-
tial mAN5^TA&1^VH&1^Vtrap& and other properties of an
ensemble ofN condensate atoms in an isotropic harmon
trap is given by the expectation values of the atomic kine
energy operator̂TA&, the mean energy of interaction^VH&
which is proportional to the usual scattering lengtha, and the
harmonic trapping potential^Vtrap&. These are evaluated us
ing the condensate wave function obtained from the us
Gross-Pitaevskii~GP! equation.

We begin the analysis with the oscillator length for
single trapped atomdA5A\/(mAvo). @Note that the oscilla-
tor lengthl o which we use in Eqs.~64!, etc., is for the rela-
tive motion of the dimer whose reduced mass equalsmA/2
and l o[A2dA .# The mean volume occupied by the groun
state of the harmonic trap iŝ*harm&54pdA

3/3. The dimen-
sionless parameterhA5Na/dA is then used to characteriz
the strength of the repulsive mean-field interactions int
duced by the positive scattering length for the sodium trip
state a563.9ao . This is related to the dimensionles
Thomas-Fermi condensate radiusR5(15hA)1/5, and is a
measure of the expansion of the condensate radius due t
mean-field interactions. Thus the mean volume^*&
54p(RdA)3/3 of the harmonically trapped condensate is
creased by a factor ofR3 and the mean atom density isrA
5N/^*&.

The Thomas-Fermi~TF! solution to the GP equation
(TA1VH1Vtrap)C(rA)5mAC(rA) is a ‘‘zero’’ temperature
approximation and involves ignoring the kinetic-energy o
erator and replacing the potentialsVH1Vtrap with an effec-
tive flat potentialVe f f'mA . In the TF limit mA5\v0R

2/2
and the range of the flat effective potential is of the order
dAR.

For a finite radiusR, Fetter and Feder@22# have shown
that to next order the expectation value of the kinetic-ene
operator is

^TA&'
5

2R2
ln~268R!\vo . ~A1!

This same mean kinetic energy of a condensate atom sh
correspond to the average relative kinetic energy of two c
liding condensate atoms. Since the energy of a spherical
potential is entirely kinetic, it is reasonable to equate
lowest box state eigenvalue in Eq.~30! to the mean kinetic
energy of the condensate, i.e.,e0[^TA&.

As an example, we consider the parameters associ
with condensate observed in Ref.@8#, where the mean fre-
quencyvo/2p'700 Hz andN593105. This yields\vo
1-16
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534.0 nK, dA50.79mm, hA53.873103, and R58.97.
The mean volume of the condensate is 1.4731029 cm3, re-
sulting in mean density ofrA'6.131014 cm23, which is in
agreement with the measured initial density in Fig. 1 of R
@8#. The mean kinetic energy is equal to 2.07 nK, a
equated toe0 predicts thatL'10.0mm.
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f.

As a check, we can use the observation in Ref.@7# that the
condensate has an axial length ofLaxis5140 mm and a waist
formed by the dipole trap ofLwaist56 mm. Equating
4pL3/3 to the volume (pLwaist

2 Laxis/4)'4.131029 cm3,
we estimate thatL'10 mm, consistent with our determina
tion from the kinetic-energy criterion.
n
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