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Manipulation of Feshbach resonances in ultracold atomic collisions
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We have calculated the time-dependent dynamics of two ultracold Na atoms in an atom trap where a
time-dependent magnetic fieR(t) moves a Feshbach resonance state across the energy threshold for a binary
collision. Our coupled-channel scattering calculations, which reproduce the observed properties of such reso-
nances in sodium atom collisions, can be reduced to an effective two-channel configuration-interaction model
for one bound state and one continuum. The model is adapted to describe the time-dependent dynamics
induced byB(t) for two atoms trapped either in a strongly confining single well of an optical lattice or in an
optical potential in the presence of a Bose-Einstein condensate. We show that a simple Landau-Zener curve
crossing model gives quantitative agreement with exact calculations of field-induced transition rB{gy. If
sweeps the resonance across threshold from above, two atoms in the ground state of the trap potential can be
efficiently converted to translationally cold dimer molecules. If the resonance is swept from below, the atoms
can be removed from the ground state and placed in hot vibrational levels of the trap. Our calculations
reproduce the rapid atom loss rates observed in a Na Bose-Einstein condensate due to sweeping a Feshbach
resonance state through the binary collision threshold.

PACS numbd(s): 34.20—b, 34.10+x, 34.50-s

[. INTRODUCTION lem areas for which the model we develop is relevant. First,
it explains the unexpectedly large loss of atoms from a Na
Early in the study of the collision dynamics of ultracold BEC in a recent experiment at the Massachusetts Institute of
atoms Tiesinga and co-workdrk,2] brought attention to the Technology(MIT) which used a time-dependeBtfield to
important role Feshbach resonances in atom-atom collisionrswveep a Feshbach resonance through the collision threshold
might play both in determining loss mechanisms, and in theegion[7,8]. Second, it predicts that translationally cold di-
manipulation of the sign and magnitude of scattering length&tomic molecules can be made efficiently in optical traps or
for the purpose of affecting the properties of a Bose-Einsteitattices by using sucB(t) fields. Finally, since atomic col-
condensatéBEC). In particular it was suggestdd,3] that lisions in optical lattices have recently been proposed for
the Zeeman effect induced by a static magnetic fieldight  conditional quantum logical operations in quantum comput-
be used to move the resonance into a favorable position nearg [10,11, our model should be useful for exploring the
the zero-energy collision threshold. The field could then bepossible role of Feshbach resonances in such a context.
fine tuned to achieve a desired effect. Since that time several The sodium BEC experiments of Refg,8] observed two
experimental results involving alkali atoms in ultracold trapsdistinct types of unexplained atom loss. In one experiment,
above the critical Bose-Einstein condensation temperaturB(t) was slowly varied and then stopped in order to bring a
[4-6], as well as in condensat€s,8] have been interpreted resonance close to but not through the threshold region. An
in terms of such resonance phenomena. Of course these obbvious mechanism for enhanced atom loss is a collision
servations have been complemented by many theoreticalith a third atom that supplies or removes energy from the
studies which have found such resonances manifest in thdiatomic collision complex12,13. Referenc¢13] proposed
close-coupled scattering calculations for the alkali atGsee  a resonance-enhanced three-body mechanism with a three-
review in Ref.[9]). body rate constanyy which is adjusted to fit the observa-
In this paper we will(1) develop exact scattering calcula- tions. This mechanism is likely to provide the dominant atom
tions to represent the threshold collision of two Na atoms irloss for this first type of MIT experiment. In a second MIT
a magnetic field(2) show how a two-channel configuration- experimentB(t) was rapidly ramped to move the resonance
interaction(Cl) model is sufficient to represent the effect of state across the threshold region. The two-body mechanism
the Feshbach resonance on the scattefBlgadapt the con- we propose in this paper explains the enhanced atom loss in
tinuum scattering model for the discrete energy levels of twahis case; a related picture derived from the coupled atom-
atoms in a trapping potential4) calculate the transition molecule Gross-Pitaevskii equations for the system has been
probability out of the initial state of two atoms in the trap proposed by van Abeelen and Verha#]. The two-body
when a time-dependent magnetic fi@dt) sweeps a reso- mechanism is a rigorous result associated with binary reso-
nance through the threshold region, af®l show that a nance scattering, and does not require the introduction of any
simple Landau-Zener curve crossing model quantitativelyadjustable parameters. Essentially, a nonconservative time-
explains our results. There are at least three different probdependent magnetic or opticgl5] field can also act as a
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“third body” and induce energy transfer and offer a loss e,

mechanism. Significant population can be transferred to 2WV§,VEFn(6v)W,

other energy states of the atom pair, depending on the ramp-

ing rate 9B/dt of B(t). When the Feshbach resonance ) . i

crosses the zero-energy threshold from below, the atom pal¥n€redv/de, is the density of discrete trap staf@d].
will gain energy from the magnetic field and be excited into_ S€ction Il introduces two different trapping potentials.
higher-kinetic-energy states, effectively heating the trapped "€ first is a spherical harmonic potential of frequemgy.
atoms. In contrast when the resonance crosses the zerbliS iS @ good approximation when the two interacting atoms
energy threshold from above we find that we can transfef"® held in a tightly confining well of an optical lattice or
significant, and under proper conditions, all, the populatiorP€!0ng to a confined but dilute and uncondensed ultracold
from the initial state via the resonance state into the highed@s- In this case the center-of-mass motion of two identical
lying vibrational level of the molecular dimer. By this INteracting atoms of masais rigorously separable from the
mechanism we propose that an ensemble of ultracold alkaff'ative motion, and t?e2d|mer experiences a trapping poten-
atoms can be efficiently converted into an ensemble of ultralidl Utrap(R) = (1/2)wR®, whereR is the interatomic sepa-
cold molecules. These molecules will be in a very high, butation andu the reduced mass of the pair, which must be
well prescribed vibrational level, and will be translationally added to the untrapped dimer interaction poteritigh(R).

@)

and rotationally ultracold. The eigenvalues satisfy the energies of a three-dimensional
The remainder of the paper is divided into the following harmonic oscillatof21], shifted due tdJpy. _
sections. Section || summarizes ttime-independentulti- The second type of dimer trapping potential we use is a

channel close-coupletCC) scattering calculations that un- Spherical confining box. The box forms a good model for the
derlie our modeling of two interacting atoms in a time- interaction of two atoms in the presence of a finite-sized
dependent magnetic field. For a static magnetic fieldBEC. The two atoms populate the lowest-energy box state
interacting with a pair of ultracold atoms it is a simple matterand the radiug. of the box is chosen in such a way that this
to solve the time-independent close-coupled scattering equé2pPping energye, equals the mean kinetic energy of the
tions and calculate the binary elastic and inelastic collisiorAtoms in a condensate. The Appendix evaluates the mean
dynamics amongst the field-dressed atomic hyperfine statédnetic energy per atom of a finite-sized condensate using a
[16]. The main purpose of this section is to demonstrate thafirst-order correction to the Thomas-Fermi mo@22], and

the exact CC calculations for two Na atoms in their lowestestimates that is on the order of the Thomas-Fermi radius
hyperfine state can be reduced to a time-independent Gif the condensatg23].

model[17] involving a single isolated resonance statend In Sec. IV we introduce into the trapped state Cl model a
a single open channel or continuum state. In this case there {ne-dependent magnetic fieB(t) which is linear in time.
only elastic scattering. The Cl model will allow us to extract The entire effect oB(t) is to make the eigenvalue of the

a Fano-Beutler-typ§18] expression for the resonance en- resonance state’%(B) a function of time, i.e.,

hanced elastic scattering phase shift, i.e.,

B
res, __ _res, res
I (o) €r (1)=€, (Bg)+(de, /&B)—&t t, 3

= — _l—
&(€,B)=¢&pg(€) —tan e c®B)]’

.Y

where B, is the magnetic field at=0. It is important to
understand that this relatively simple time-dependent CI
where {p4(€) is the elastic scattering phase shift in the ab-model is rigorously and quantitatively related to the exact
sence of the resonance. By choosBghe Feshbach reso- fiye-channel close-coupled description of the Feshbach reso-
nance with field dependent energff*(B) can be brought nances. The simplicity comes from the fact that the reso-
into coincidence with the scattering state at kinetic enetgy nances are very sparse and isolated, together with the fortu-
The strength of the resonance coupling is measured by igous property that the entire time dependence of the
width I",(¢€), which obeys the Wigner threshold la&9] and  Hamiltonian only manifests itself on the resonance eigen-
varies asye at threshold. The MIT group7,8] used thee  value in Eq.(3). In future applications we intend to general-
—0 limit of Eqg. (1) to interpret the experimentally observed ize the Cl model to include inelastic couplings to other open
Na scattering length as a function Bf channels. This should be equally rigorous, but in that case
Section Il introduces the modifications that are imposedhe time-dependence will no longer be so neatly confined to
on the time-independent ClI model when the boundary cona single Cl parameter.
ditions associated with a confining trap are imposed on the Section IV will show that the time-dependent Cl model
continuum state of the atom pair. The scattering continuuntan be visualized as a single resonance stateossing a
is transformed into a discrete set of stateg) for v sparse manifold of true dimer bound states0, and a
=0,1, ... with energye,>0. The “true” bound states of dense manifold of trapped dimer states 0. In view of the
the dimer withe, <0 will be labeled byv=—-1,—2,.... close analogy of this multiple curve crossing problem to a
The matrix elemenY¥, , which defines the coupling between Landau-Zener(LZ) curve crossing mode[24] we were
the resonance stateand the discrete state=0 is obtained pleased to find excellent agreement between our exact nu-
by making the substitution merical solutions and LZ crossing probabilitigzb,26. We
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find the probability ofremainingin a statev once the reso-
nancen is swept through is given by the LZ expressions

Lz 27T|Vn,v|2

nv (4)

e —exp(—ukZ), iz T
ﬁ‘ ((96?195/(98) T

The probability of removing population is-1p5%. We will
show that in the Wigner threshold regime the most critical
parameter in determining the removed population is the rela-
tive kinetic energye, . The population removed by the pass-
ing resonance state is ultimately deposited into the adjacent
manifold of bound dimer or excited trap states depending on g, 1. The internal energy of a Na atom as a function of mag-
the direction of the sweep. netic field. The states are labeled alphabetically. The quantum num-
In Sec. IV A we demonstrate the possibility of forming pers are discussed in the text.
ultracold alkali dimers in a tight harmonic trap where the
population initially resides in the lowest trapped state The formalism can be readily extended to other alkali spe-
=0. If the magnetic field is such that the Feshbach resocies. The main purpose is to demonstrate that the CC calcu-
nance lies above the dimer dissociation threshold and is iniation can be reduced to a configuration-interaction model
tially unpopulated, and if the magnetic field is swept such[17] involving a single isolated resonance state and a single
that the resonance position moves below threshold, then wepen channel or continuum state. The CI model will enable
can transfer the initial population from=0 into true bound us to model a time-dependent magnetic-field sweep in sub-
states. Actually the population transferred frame=0 now  sequent sections.
resides in the first accessible bound state—1, and we For two interacting®S ?*Na atoms in an external mag-
form an ensemble of molecules which are translationally andietic field B, the relevant Hamiltonian for the dynamics of
rotationally ultracold, but vibrationally very hot. This same the relative motion contains a kinetic-energy operator, an
mechanism can also be used to form dimers in a BEC.  atomic Hamiltonian for each of the atoms, and molecular
In Sec. IV B we consider the excitation of trapped stateadiabatic Born-Oppenheim@BO) potentials for theX 12;
populations when the magnetic field is swept upward. Thisanda 33 states, where the molecular electron sfins,
can lead to a significant heating of the trapped population,_z

: . i . +s, is zero and 1, respectively. Weak spin-spin dipole in-
and is demonstrated both for the tight spherical harmonigg» ions can safely be ignored for our purposes. The atomic

trap lar:d foréréeé:wg_akly ::honflnlng ];sphenlcsé_l bofx tralCt’hwrl"(:hHamiltonian contains a hyperfine contact term that couples
S'mtt')a esa : Ilnge edoss 0 hp0||ou ation from the IoWspe electron spin to the nuclear spin and a Zeeman interac-
est box state mainly depends ef, the loss rate Is insenst- [16] that couples the electron and nuclear spin to the

tive to whether the BEC is represented as a spherical hafﬁagnetic field. The electron spin is denotedsas: 1/2, and
monic potential or as a spherical box as long as the confininghe nuclear spin is denoted Bs=3/2 for atomsa=a ’or b
potentials have the same value fey. Section IV C gives respectively '

practical Landau-Zener expressions for the Na resonances. The eight atomic eigenstates of each Na atom that diago-

In Sec. V we explicitly apply the Feshbach CI model to nalize the h : : :
_ . . yperfine contact and Zeeman interaction are la-
the BEC experiment at MIT. Using the theoretical LZ prob- beled|a),|b), . . . ,|h) in order of increasinginterna) en-

abilities without introducing adjustable parameters, we ob- L o N
tain loss rates that are consistent with the observations "9y, and are shown in Fig. 1. The projectiam, of f,
Refs.[7,8], but with the caveat that we are assuming that=S.ti. along the magnetic-field direction is conserved. In
heating of a condensate leads to trap loss. We also disculise absence of a magnetic fieflg is conserved as well, such
the effects of three body collisions on the time-dependenthat the three atomic statés), |b), and|c) are degenerate
magnetic-field experiments in a BEC. A macroscopic de-and correlate td ,=1, while the remaining states form the
scription in terms of coupled Gross-Pitaevskii equations wadvefold-degeneraté ,=2 state. TheB=0 energy splitting
developed by Timmermanst al. [12] and applied to the between theé ,=1 and 2 states equals the hyperfine splitting
MIT experiments by Yurovsket al.[13]. We show how the Ep¢. Note that throughout this paper we will express energy
effects of resonance-enhanced three-body recombination cédim temperature units by dividing any energy by the Boltz-
easily be incorporated into our microscopic scattering modeimann constankg. Thus, for Na,E,;/kg=85.02 mK. At
using a Breit-Wigner expressig@7] to describe the process. large magnetic fields, where the Zeeman interaction domi-
Our results and conclusions are summarized in Sec. VI. nates the hyperfine interaction, the bottdtop) four states
have an electron spinecs, that is antiparalle(paralle) to
Il. TWO-ATOM SCATTERING THEORY the magnetic field. The projection gf, along the magnetic

field is mg, .

In the absence of the spin-spin interaction, the symmetry

This section sets up the exact multichannel close-couplegroperties of the molecular Hamiltonian dictates that the
scattering calculation for two freely colliding®Na atoms. magnetic quantum numben=m,+m, and the mechanical

0 50 100 150
B (mT)

A. Five-channel close coupling
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angular momentunh are conserved. For ultracold collisions 5

it is sufficient to include onlyswave (=0) scattering. o — 4850
Moreover, we consider scattering between two Na atoms, 46,

each in their lowesta) hyperfine statgother cases could 37

also be treated Hence the magnetic quantum numbar 2

equals 2 and we see that there are only five combinations o

atomic states that satisfy te=2 andl =0 criteria. These -
are, in order of increasing internal enerdiaa}), |{ag}), &
[{bh}), |{fh}), and|{gg}). The brackets indicate that the =5 _ |
molecular states are symmetrized to account for the fact tha

o

405\
1\

Na atoms are composite bosdi$]. We introduce the sim- -2

plified notation|1), |2), |3), |4), and|5) for these five 3]

states, which are also called scattering channels. In our cal

culations the zero of energy is always taken to be the sepa  ~*1

rated atom energy of channldl), irrespective of the magni- -5

tude of B. The colliding atoms are initially in thel) 70

channel. Given the very small collision energs%E,, the R (units of a,)
other four channels are closed when the two atoms in chan-
nel [1) are infinitely far apart.

The asymptotic energies of chann¢®y—|5) depend on

FIG. 2. Three of the five adiabatic potentidlg of the m=2
swave scattering process are shown as functions of internuclear

: - . . separation. The dashed curves corresporiBl=td® adiabatic poten-
the magnitude oB. ForB=0 channelé,z) and|3> dissoci- tials and are labeled(0), while the solid curves correspond to

ate tOEhf and chqnnel$4> and |5) dissociate to Ep. For_ B=91 mT adiabatic potentials and are labej¢B), where in gen-
B#0 it is convenient to definég such that the asymptotic gra)jis 1, 2, 3, 4, or 5 in order of increasing energy. However, for
energy separation between channg$ and |1) equals clarity thej =2 and 3 curves are omitted. For bdlvalues the zero
2Epi+406g. In this way g~ ugB is approximately linear in - of energy is set at thR— o asymptote of thg =1 adiabatic po-
B for field strengths at which the Feshbach resonances atential. For the range of internuclear separation shown the adiabatic
observed. The magnetic momept/kg=0.6717 mK/mT  potentials 10) and 1@) are identical. As is explained in the text,
equals the Bohr magneton. the two Feshbach resonances are due to weak coupling to bound
We use a full close-coupled expansion of the total wavestates in thg =4 and 5 adiabatic potentials. The vibrational levels
function[16] for a givenB-field and a specific incident ki- €,°%(0) and €,°%(B) show the relevant bound state fB=0 and
netic energye for the open chann¢u>, ie., B=91 mT, respectively. On the energy scale of the figure jthe
=4 and 5 Feshbach resonances are indistinguishable. The arrow
labeled E,; indicates theB=0 splitting between level (D) and
V(e,B,R)=[1)F(e,R)+ Z |j>Fj(€uR) ) levels 40) or 5(0). The arrows labeled & show that the energy
I=2 shift of the asymptotic energies of state 5 fr&w 0 to B=91 mT
is approximately equal to the energy shift of the bound states.
for m=2 s-wave scattering. The coupled equations introduce
a 5X5 interaction matrixW(B,R) which is diagonal foR  potential curvesU;(B,R) shown in Fig. 2, which are ob-
— and dependent on the interatomic potentials of theained by diagonalizingV(B,R) at eactR. The figure shows
X 12; and a33 | electronic states. The short-range off- three of the five diabatic potential curves for magnetic field
diagonal matrix elements &/ (B,R) are proportional to the strengths of 0 and 91 mT, respectively. The valudef9l
“exchange” interaction, which is half the difference be- mT is slightly larger than the magnetic field values where
tween thea 33 | and xlzg potentials. The two ABO’s have Feshbach resonances in tH@a}) collision are observed
been carefully modeled by us to insure an excellent fit to th¢7,8]. At any finite R, the five states are mixed by the off-
entire collection[28] of known spectroscopic Nadata and diagonal exchange couplings W. For the internuclear
the observed Feshbach resonari@s8] (see below. When  separations shown in Fig. 2 the'S; anda s ABO po-
the two electronic potentials have scattering lengths otentials are degenerate, the exchange couplings are negli-
As-0=20.3, andAg_,=63.9, (1a,=0.0529177 nmre-  gible, and consequently all the curves are parallel With
spectively, a fit to all the data can be achievedBer0. Our =W, ;.
model gives A¢_,n-_1=54.6a, for the Bose-Einstein- As we shall see from our close-coupled calculations, the
condensedc) state, which agrees with other determinationspair of resonances seen in Reff,8] originate from states
within their stated uncertaintig29—31. The value ofAg_; |4) and|5), since we find that the position of the resonances
is revised from our earlier determinatid29], which re- relative to the open channgl) threshold as a function @&
portedAg_,=85+3 a,, andA;_;,,—-_;=52*5 a,. The varies almost perfectly aség. At zero field both resonances
Xlig anda 33 states support 66 and 16 vibrational statesbegin as “true” five-channel bound states that exist well
respectively. below the zero-kinetic-energy threshold for chanfigl. In
The diagonal elements of the interaction matrixFig. 2 this is indicated by the vibrational level marked
W, (B,R) define what we call the “diabatic” interaction |e;**(0)). The position of these resonances are well approxi-
potentials. At largdR these are equivalent to the “adiabatic” mated by the vibrational eigenvalues defined by the adiabatic

5
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FIG. 4. The energy dependence of the square ofTtheatrix
|T1.1(e,B)|? for several magnetic-field strengths close to the field
locations of the two Na Feshbach resonances. Solid lines corre-
FIG. 3. The absolute value of the scattering lengtlvs the spond to numerical close-coupling calculations, dashed lines corre-
magnetic-field strengttB evaluated in the vicinity of the strong spond to the results from a two-channel Cl model, and dotted lines
[panel(a)] and weak{panel(b)] Na resonance. The filled dots are describes the background scattering in the absence of a resonance.
extracted from a close-coupling calculation for an incident kineticPanel(a) shows results fofl) B=91.5 mT,(2) 92.0 mT, and(3)
energye of 1 nK. The curve passing through the dots fit the reso-93.0 mT close to the “strong” resonance. Pafigl shows results
nant expressiod,= 62.8, [1—0.0975(B(mT)— 90.983] for the for B=86.15 mT close to the “weak” resonance. Fits to Efy),

strong resonance andl,=63.8, [1—0.00095(B(mT)—85.759] with T',(€) obtained from Eq.(24), gives for the fourB field
for the weak resonance. Stl’engthsereslkBil?:OO,u,K, 2550 ,lLK, 5110 ,lLK, and 400MK,

and T (€"®%)/kg=350 uK, 440 uK, 520 uK, and 2.95uK, re-

potentialsU,(0,R) and U5(O,R), respectively. As the field Spectively.

strength is increased these levels becomes displaced and

move to the position indicated by'®%(B)). In the process collision. The scattering phase is actually evaluated at a ki-
n .

of passing through the threshold the resonance states becoff@lic energye=1 nK, but this is well within the Wigner

degenerate with the continuum states associated with tHEreshold region, so thad is independent of the actual
open channell). choice of energy. These data fit very well to the resonance-

When the five coupled equations are solved numerically!ik€ expression suggested by H):

1 . . .
85.74 85.75 35.76 85.77 85.78
B (mT)

an asymptotic analysis of the wave function gives Thma-
trix, which describes the transition amplitudes between all A(B)=Apd 1— Ay )
asymptoticallyopenchannels. The energy and magnetic-field bg B—BIes '

dependence of th&-matrix allow us to define phase shifts
and scattering lengths and to extract resonance widths anthis expression, which will be justified later in this section,
positions. Since in this case th#) state is the only open is identical to that derived in Reff3] and used in the analysis
channel, the asymptotic analysis of the energy-normalizedf Refs.[7,8]. Our theoretical results conform with this func-
wave functionF; leads to tional form and yield resonance positioB>°;=91.0 mT
— [32] for the “strong” resonance anB; 5, =85.8 mT for the
2u sin(kr+§&(e€)) “weak” resonance, in excellent agreement with the experi-
h?2 Jk mentally observed valueB{**=90.7+2 mT [32] and B{;®
=85.3+2 mT [7,8]. The calculated “strong” resonance
wheree=%2k?/2u, andu is the reduced mass of the dimer. width A,=0.098 mT is also confirmed by experiment. The
£(€) is the phase shift andl; ;=1—exp(d¢) describes the “weak” resonance widthA,,=0.00095 mT is a factor of
full T matrix. A scattering length is defined bA= four larger than found by experiment. Our calculated reso-
—tané/k in the limit e—0. nance positions and widths are consistent with the calcula-
Figure 3 shows the magnetic-field dependence of the scations of van Abeelen and Verhag30] (also see Ref.8]).
tering lengthA, a property ofe—0 scattering, near the two  Figure 4 shows théT, ,|?=4 sir’é matrix element for
Feshbach resonances that are present in the ultrff@édd)  elastic scattering in statd)=|{aa}) as a function of colli-

Fi(e,R)— for R—ew, (6)

022721-5



F. H. MIES, E. TIESINGA, AND P. S. JULIENNE PHYSICAL REVIEW A1 022721

sion energy. The figure comparia‘él,ﬂz for magnetic-field resonancef=¢&,4+ é°° can be expressed as a sum of a
strengths that are slightly larger than the calculated resdsackground and resonance phase shift as in (Eqg. This
nance positions, so that the resonance ai(B) lies above behavior is derived by noting that the exact open channel
the e=0 threshold. We find in all cases thaf*%(B) in-  radial wave functionF, in Eqg. (9 can be asymptotically
creases for increasing magnetic-field strength. In fact, théepresented in MQDT form as a linear combination of the
position of the resonances which are extracted by fitting tde€gulars(e) and irregularc(e) reference functions that are
Eq. (1) are observed to vary as independent solutions of the HamiltonidA-U,,4(R) at col-
lision energye:
kg t9€S(B)/ 9B = + 2540uK/mT. (8)

. . 2
This closely follows the magnetic-field dependence of the F;(e,R)— /—'uz cosé T s(e,R) —tané;**c(€,R)].
splitting between hyperfine statgk) and|4) or |5). mh 13

B. Two-channel configuration interaction This insures that away from resonanBg(e,R)=a.(R),

The observed sparseness of resonances, and the excellertiere ¢ (R) is the regular solution of
fit to the Fano-Beutler line shape of Ed,), suggest that the
exact close-coupled wave function of E) can be ex-
pressed in arquivalentCl form [17],

h? d?

— 5 7 TU(R)

2/“‘ dRZ ¢E(R):€¢E(R) (14)

V.(€,B,R)=|1,CI)F,(e,R)+A,(€,B)|e%(B)). (9
and
This CI expansion consists of a single open-channel con-
tinuum wave functiorf(e,R) inter_acting With. a single iso- 2u 2u Sin(KR+ &yg)
lated resonance stafe[°%(B)) which embodies the exact d(R)= ?S(f,R)H 2 K :
close-coupled interactions between the four closed channels. m m
The resonance amplitud®,(e,B) is independent oR. The

isolatedR-dependent resonance state can be represented a
simple product state

(15

Yhe factor targ;°® which multiplies the irregular reference
function, c—k~*2coskR+&,), embodies the effect due to
|€1¥5(B))~|n(B)) [*%(R), (100  the Feshbach resonance. The phase ghiffor elastic scat-
tering by U4(R), describes the physics in the absence of a
where|n) consists of dixed e-independent combination of resonance. The resonance contribution to the phase is
channel statef35]: [17,33,34

I'n(e)

Ae-erel

5
In(B)=~2, [)a(B). (1D tang*¥(e,B) =

The CI wave f_unction can be calculated using the tWO'wheran(e) is the resonance width. Equatidét) immedi-
channel Hamiltonian

ately follows.
_ We find that we obtain an excellent description of the
Ha(B)=[1,CI(L.CI{T+Usg(R)}+ m}{n[{T+Un(B,R)} exact close-coupled background phase skiff by taking
+{|1,Cly{n|+|n){1,CIl}W, 1(R), (12) Upg(R) to be the diabatic potentidl, ;(R). Furthermore,
since the scattering length of thé, ;(R) potential is almost
whereT is the radial kinetic-energy operator. We will con- identical to the 63.8, scattering length of tha 33 poten-
struct effective potentials for the background continuumitial, we can simply equate,(R) to the a3y potential.
Upg(R), for the resonance levél,(B,R), and for the cou-  The explanation for this simple behavior is as follows. At the
pling between them\V,, ;(R). Our construction will be both magnetic-field strengths where the Feshbach resonances are
simple and capable of reproducing the results of the full five-observed, the electron spin of an atom in stateis nearly
channel CC calculation. In this regard, it is useful, thoughantiparallel to the magnetic-field direction, and the staje
not necessary, to introduce ideas from the multichannel—_—|{aa}> is predominantly of triplet character. Consequently
quantum-defect theorfMQDT) [33,34. the correspondingliabatic potential W, 4(R) is predomi-
nantly ana 33 | potential. AtR~ 19a, this diabatic potential
crosses a predominantl¢ 'S potential originating from
It is convenient to introduce aingle reference potential channel|2) which is much deeper than t&®s | potential
Upg(R) for CI channel|1,Cl), where this potential has the for R<19%,. However, the coupling is very weak, and
same long-range form and asymptotic energy as that fohence the crossing @iabatic and can be neglected.
channel1). When the reference potential is chosen to repro- We actually use an even simpler analytic form tyy(R)
duce the exact background phase skijf§ away from any in our CI model,

1. Open-channel effective potential
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Ce corresponds to the second level below threshale - 2)
Upg(Bo,R)=aexp(y(Re— R))——6, (17) and mimics the properties of the exddbth) resonance vi-

R brational state associated with both of the observed MIT
resonances. We merely must set the cons&ug(B,) to
insure that, for a chosen field streng®y, the calculated

B “18 . . eigenvaluee,*(B,) coincides with the corresponding CC
=4.359743% 10" ). Although this potential only supports resonance in Fig. 4. Once this is set Bdield dependence

five bound states, rather than the 16 that actually exist in thﬁltroduced in Eq(19) will automatically shift the eigenvalue

3 + . . .
a“%, potential, the parameters have been adjusted to msureees(B) as required. In Sec. IV we will mak&(t) a function

that its long-range behavior, and especially the scattering’f‘ time and introduce the ramping of the magnetic field to

length a=63.%, and the position of the last bound Statetnsimulate the MIT experiments.

agree with the values for the exact potential. This is useful i
Sec. Il B below, since reducing the number of nodes in the
short-range portion of the wave function reduces the numeri-

cal effort in evaluating CI matrix elements. ( ';’he Cl expression for the width',(e) in Egs. (1) and
16) is

with @=8.24322<10 3, C4=1562.155,y=1.666, andR,
=13.02, all in atomic unitglength ina,, energy ine?/a,

3. Cl width and threshold properties

2. Closed-channel effective potential
_ , o . Tn(e)=2m|Vo(e)[*=27( ¢y Wqal )% (2D
The unit-normalized resonance vibrational sta#{g(R)

at energye,%(B) satisfies the Schdinger equation In the CC calculations, the width depends in a complex way

on the off-diagonal matrix elements of the interaction matrix

A2 g2 o e o W, but the resonant position and width can easily be ex-
_ﬂﬁ—i_un(BvR) n (R)=€,7(B)¢, (R). tracted by fitting the calculated resonance shapes, such as

those in Fig.(4). Since the coupling of the resonance to the
continuum depends on short-range interactions, we use the
éollowing arbitrary exponential form to simulate these cou-
tp1ings in the CI model:

(18)

Given the linear dependence of the resonance position on
as noted in the discussion of Fig. 4, we can infer tha
U,(R,B) depends linearly oiB: W, 4(R)=B.e &, (22)

JEr*S(B)
9B

We chooseB,, so that the width calculated from E¢R1),
agrees with the exact CC width. This fitting is done for the
same field strengtB, that is used to choséU,(B,) in Eq.
where B, is a magnetic-field strength not too far removed(20). In order to avoid the subtle energy dependences that are
from B;°®. introduced by the threshold, we place the resonance we are

The dependence of the resonance positioBatiows us fitting well above threshold. OncéU ,(B,) and 3, are set,
to be more specific about the shapdpf(R,B). The depen- the threshold effects will be properly and, for all intentions,
dence conforms almost perfectly with the displacement ofxactly handled by the Cl model. For the strong resonance in
the |[4)=|{fh}) and|5)=|{gg}) thresholds relative to the Fig. 4@), we fit B,/kg=2.156<10° uK using the e kg
|1)=|{aa}) threshold. Furthermore the adiabatic potentials=1300uK resonance withl",,/kg=350 uK for B,=91.5
that correlate to the asymptoti¢) and|5) channels corre- mT. For the weak resonance in Fig(bf 8,/kg=2.103
late to thea 33, potential at short distances. In fact the X 10° uK was found for thee|*/kz=953.4 uK resonance
vibrational level positions of these two adiabatic potentialswith T",/kg=2.95uK for B,=86.15 mT. The agreement
are in very good agreement with the vibrational level of thebetween the dashed and solid lines in Ki§). demonstrates
pure a33_ potential. These observations demonstrate thathe excellent quality of the Cl model in describing the exact
the resonance in Eql1) is predominantly generated by CC scattering.
channels 4 and/or B5], and that theesonance vibrational For ultracold collision applications it is crucial to take
wave functiong®%(R) is well approximated by the vibra- into account the energy dependence of the wi@®. This
tional wave functions supported by a paé3 ! potential. Wigner threshold behavior can be derived from the energy
However, a CC calculation is necessary to obtain the exadlependence of the; %(e) coefficient defined in the MQDT
position of the resonance, which depends on nonadiabatigheory [33,20. The unperturbedenergynormalized con-
mixing among the five channels in the problem. tinuum wave functionp(R) associated with channgl) in

To model the variation o£'®(B) with B, it is both nu-  EQ- (15 introduces the Wigner threshold behavior through

merically convenient, and physically reasonable to take thés dependence on the threshold parametet(e) — \k, i.e.,

Un(B,R)=Uy(B,,R)+ (B=Bo), (19

resonance potential to be a shifted versiorUgf;: s(e,R)=C; (e)f1(R). The analytic functiorf,(R) is a so-
lution of the Schrdinger equation for the reference potential
Un(Bo,R)=Upg(R)+ 68U (By). (200 and is uniquely defined by agtinsensitive boundary condi-

tion at a small internuclear separation where the exchange
Numerical tests confirm thap°° is well approximated by splitting is large compared to the Zeeman and hyperfine in-
the fourth bound state supported bl in Eq. (17). This  teractions. Then it follows that
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oms are confined in a trap, we must add a trapping potential

4u B _

I'y(e)= ﬁ|<¢ﬁes|Wn,1| f1)|°C12(e), (23)  and replac&Jy,g by Upg=Upg(R) +Uyap(R). AlthoughUy,

has a continuous spectrum wit>0 and corresponding
which can be rewritten as energy-normalized continuum wave functiogg(R), Uy,
has a discrete spectrum of vibrational eigenvalagavith

sz(f) € corresponding unit-normalized bound-state eigenfunctions
— res res
I‘n(f) = l_‘n(en Cl_z( 6:165) _’Fn( €n ) Eges. (24) ¢v )

T(R)+Upy(R R)= R). 28
Equation(24) clearly shows the expectede dependence as [T(RI+ Upg(RN S (R)=evdu(R) 28

e—0. The resonance state amplitullg(e,B) in Eq. (9) is

. We refer to the infinite set of levels with positive energy a
proportional toV,(e) [17], infinite s vels with positiv gy as

“trapped states” or, sometimes, “box-normalized con-
Y tinuum states.” We chose the vibrational quantum numbers
n(€) (25) such thatv=0 defines the lowest trapped state. We are es-
V(e—€92+T (e)%/4’ pecially interested in this first positive energy staig since
we will generally assume that the entire trapped-atom popu-
and also exhibits appropriate Wigner threshold behavior. |ation initially resides in this state. As we shall see, because

The Wigner threshold behavior df,(e) and A,(€,B)  of the Wigner threshold dependence, the eigenvajus the
rests on the assumption that, except for its resonance positi@itical parameter that determines the magnitude of the popu-
€, %(B), the resonance wave functi¢e,°%(B)) is not modi-  lation loss due to the time-dependent magnetic field. Aside
fied appreciably byB or €. The resonance state wave func- from determining this energy, the detailed form of the trap-
tion can then be factored as in E@.0). In our case this is ping potential plays only a secondary role in the dynamics.
justified since the matrix element&/, ; are short ranged. Equation(28) also defines a finite set of vibrational states
Except for a well-understood scalii@j *(€) associated with ~ with negative eigenvalues,<0. These are the true dimer
the asymptotic normalization of the open channel, both théound states defined hy,, and will be labeled in descend-
reference wave functionp(R) and the resonance wave ing order with negative vibrational quantum numbersO.
function ¢,°%(R) are otherwise insensitive to the asymptotic Thus thev=—1 level approximates the highest bound state
energy or to the magnetic-field strength. supported by tha 33 potential.

Equation(7) for the scattering length near an isolated Fes-  We have taken two forms fddy,,,. We first assume that
hbach resonance follows immediately from our Cl analysiseach trapped atorn=1 and 2 of massn experiences an
upon using Eq(1) and the definition of scattering length, harmonic confining potentiallya,(R;) =Mw2R7/2. This
A(B)=—k 'tan{(e,B), for e—0. Define the resonant field might be a reasonable choice for atoms tightly confined in an
strengthB;° as optical lattice[10,11], or for a low-density atom trap before
the atoms become condensed. It is an especially attractive

An(e,B)~=

e €°5(B)= — deq *(B) (B—B'®S) 26) choice because, for two identical atoms of massonfined
n JB nn in a spherically harmonic trap, the Hamiltonian transformed
A into center of masR.,=(R;+R,)/2 and relative coordi-
andan as natesR=R,— R, is separable:
B T,

n:&E;‘es 2kAbga (27)

1 2
TR, T 5MwoR;

1 2
T,il-i- Mo R |+ >

2
where A, =—k 'tanépy(e) for e—0 is the scattering 1 ,
length in the absence of the resonance.eAs0, Eq.(24) E(Tﬁcrﬁ FMooRey
implies thatA, approaches a constant, and we recover Eq.

(7) in Section Il A. This equation is used in the analysis of _ _ . . .
Refs.[7,8]. We have already demonstrated in Fig. 3 the exvhereM=2m, p=m/2, and Ty is the three-dimensional

cellent agreement between our exact CC result{d@) at (S’D) kR'nEt'C Eg‘g‘gy Foperator. thu at||0t(129) SQ ows that
e=1 nK and the CI expression in E0). wrap(R) = nwgR/2. For nonspherical trapf7,8] we can

use the mean trapping frequeney= \[ 3wywyw;. The 3D
harmonic-oscillator spectrum for the=0 state of relative
motion is

J’_

1
Tet EMwORz), (29

Ill. TRAPPED STATES

A. Trapping potentials and vibrational levels

3+2
5 T2V

We now turn our attention to describing collisions in the
presence of an external trapping potential which confines the
atoms. We might envision the atoms to be confined in a
single cell of an optical lattic€10,11] or in an optical trap These eigenvalues are only slightly shifted when the interac-
such as used for the MIT BEC experimdiit8]. When at-  tion potentialU is taken into account. Figure 5 schemati-

. (30)

e,=hw,
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wn<ed.B>=|1,CI>§ $,(R)C,(&q)

100

+[n(B)) ¢y (R)An(€q,B). (33

2 TR 2

g 7 - . :

3 e \\\ 8 The coefficientsC,(eq) and A,(eq4,B) are obtained by in-

g 7 p— "=§ """""""""""""""""""""""" serting Eq.(33) into Eq.(12), whereU4(R) is replaced by
- /I - b Upg(R) and solving the resulting matrix eigenvalue problem.
\fi; BB The e4's are eigenenergies belonging to the multichannel
- U,BR eigenfunctions¥ ,(e4,B), which for a fixedB form a dis-

crete set of states.
Solving for the multichannel trapped states requires the
evaluation of the coupling matrix eleme¥t, ,(B) between

o 25 % 5 the isolated resonance stdte) ¢,°° and the trapped state
Riarbitrary units) |1,Clh ¢, :
FIG. 5. Schematic diagram of the spectrum definedUhy, Vv ={( 1 Wi 1(R) | dy). (39

=UpgtUyrap in Eq. (28) and the resonance energf(B) of the
vibrational states'®® supported by the potentia),,. The location  Using the relatior{33,34]
of the resonance is a function Bf The bell-shaped curve schemati-

cally represents the squared resonance state contributions res c7V_ res
|An(B, eg)|? for multichannel eigenfunctions, with energy in the (én IWqa(R)|¢y) \/(9_6\1—<¢n |Whi(R)[¢e) (35
vicinity of €°°.

between bound-bound and bound-free matrix elements,
cally represents these trapped state eigenvalues for tp{éhereﬁv/o’?ev measures the density of trapped states in the

harmonic-potential solutions of E¢28). vicinity of €,~€;"°, we can relate/,, , to the widthI',(e) in
Our second choice is a spherical box poter{t2d], Eq. (21):
2 Je,
0 forR<L 271'Vn,vzrn(ev)W- (36)
Urap(RI=) for R>L. (31 res

The exact positiore, >(B) of the resonant vibrational level,
determined by the reference potentis|(B,R) in Eq. (18),
Thel=0 spectrum for a box potential is shifts linearly withB as prescribed by E¢19). As long asB

is such thate[°° is well removed from threshold, we can

expect the distribution of resonance state amplitudes

B 5 |A.(€q,B)|? for eigenvaluesey in the vicinity of €/°° to
GV_Z/LLZ(V+1) : (32 mimic a discretized version of the Lorentzian line shape in
Eq. (25). This feature is sketched in Fig. 5.
Using the interactionW, ;(R) defined in Eq.(22), we

Again, for the traps we shall consider, the actual eigenvaluesxplicitly evaluateV,, , by using in Eq.(34) the numerical
are slightly shifted whet, is taken into account. This box solutions to the Cl model. This allows us to rigorously treat
simulates a confined collision in the presence of a finite-size@ll v levels, including those near threshold and even below
Bose-Einstein condensate where the sizeughly approxi- threshold where the true bound states exist. Using B4
mates the dimension of the condensate wave function. In fa¢B6) and the threshold properties of Eq23) and (24), we
we determinel by requiring thate, equal the mean kinetic predict the following threshold energy dependence:
energy of a colliding pair of atoms in the condensate. The
exact fitting procedure, discussed in Sec. V and the Appen-
dix, follows from an extension of the Thomas-Fermi model
[22].

#2572

Je,

v’ (37)

V. =constx Ve,

This predicted variation is confirmed by our numerical cal-
culations for both the harmonic and box trapping potentials.
B. Trapped-state ClI model and coupling matrix elements Sincede, /v = 2% w, is independent o, for the spheri-

The configuration-interaction model of Sec. Il B is modi- ¢&l harmonic trapV, , approaches threshold 4&,. The
fied due to the presence of a trapping potential in the opefagnitude of the coupling varies ag* for a trapped level
channel 1,Cly. We introduce the trapping into the Cl model With v=0. Noting that the characteristic scale lendth
by replacing the radial functioR, in Eq. (9) with a summa- = V%/uw, of a harmonic trapping potential varies@af vz
tion over the complete set of vibrational statgssupported we find thatV, , is proportional tol ;%2 and is inversely
by Eq.(28), i.e., proportional to the square root of the volume of the trap.
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An additional [ 4¢, energy dependence is obtained from
the density of states factor for the spherical-box potential

[oe, a[2e,h%m?
v wul?

and in this cas®,,, approaches threshold g%,. Neverthe-
less, for a giverv=0 the coupling matrix element,, var-
ies asL ~®”2 and also scales inversely with the square root of
the volume of the confining potential. In fact, as long the
volume of the condensate is correctly introduced into the
calculations by choosing eithér or w, to yield the proper
trapped-state eigenvalug in Eg. (37), the condensate mod-

eling will be insensitive, to within a factor of 1.5 due to a
difference in thev =0 density of states, to the exact form we

(38)

probability

take for the trapping potential.
IV. TIME DEPENDENT CI MODEL
OF FESHBACH RESONANCES

We convert the Cl wave functiofEg. (33)] into a time-
dependent form by taking

probability

FIG. 6. (a) Population density for negative ramp rate0.76
T/ms where the resonance crosses the initial harmonic trapistate
=0 from above andv,/2m=1 MHz. Choosingt;=2 us, the ini-

Bo, t<0 tial € %/kg position is 3.8 mK above threshold and crosses the
B(t)= JB (39 initial =0 state akk=~0. The 61% depletion g, is exactly given
Bot Wt’ t=0, by Landau-Zener probability5%. This loss (1 po)=pn+p_1
leads to the formation dftable dimer moleculeg\fter crossing the
such that threshold the population is predominantly in the resonance gtate
which now represents a true bound state of the dinfi@r.The
H.(B t<0 expanded time scale shows the population as the resonance crosses
n(Bo), the highest vibrational state=—1 in potentialU,, and the popu-
Hy(t)= Je®s 9B (40 lation p,, is switched top_;.
" Ha(Bo)+ —o- —t, t=0. ’
JB ot
PRALIUNTEAAN 43
We assume that the population initially resides in the I at n(BM)¥n(t). (43)

trapped vibrational state=i which imposes the initial con-

dition

V.(t)=|1Cl)¢; t<O. (41
In particular we are interested in the case0. The initialB,
is chosen such that the resonance positfii(B,) is well
removed from the vicinity of the threshold. i, is not suf-

ficiently removed from the threshold, then it is imperative to
use an initial state which is properly “dressed” by the initial
magnetic field. This corresponds to choosing an eigenstal .

W, (eq,B) of the HamiltoniarH (B,) in Eq.(33). The proper fr the coefticientsh
choice of initial state is dictated by how the initial state was
prepared in a particular experiment. For example, we implic

Given the coupling matrix element, ,, , which we evaluate
numerically for a finite, but large, set of vibrational levels,
we can easily solve the set of linear first-order equations

res

JB
T —t|A+ > Vi Cy, (49
A"

sx A _| _res
1 Ag=| € X(Bo) + — —

ihC,=[€,]Cy+Vn Ay (45)
a(t) andC,(t) using a standard numeri-

cal algorithm. We have carefully checked the convergence of
the results to insure they are independent of the size of the

vibrational basis.

ity assume that the system was slowly and adiabatically

brought to itst=0 condition.
The coefficients in Eq(33) are now time dependent,

wn<t>=|1>2 Bu(R)ICy (1) +[n(1) GES(R)AL(L),
(42)

and must satisfy the time-dependent Sclimger equation

A. Dimer formation in a harmonic trap

An example of our numerical results is shown in Fig. 6,
where we start the system &0 in the lowest harmonic
state|1)¢p, with wy/2m=1 MHz, |,=561a,, and €,/kg
=78.4 uK. With an initial field B,~92.5 mT the resonance
state is located a#°%(B,)/kg~3.8 mK, and is far enough
above threshold that the interaction with the lowest trap state
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is negligible. The field is then rampatbwnwardat a rate
dB/ot=—0.76 T/ms, such that the resonance energy positio
€,(B;™® coincides with the eigenvalue of the initial state
€ g att,~2 us, i.e.,

ot

tn:[BLes_ Bo]a_B- (46)
Shortly after passing, at t=t,, the resonance sweeps past
threshold at which times/°%(B) becomes negative and the
resonance state representsu® bound statef the dimer.

The probability of being in a specific vibrational stage
associated with the open chann@|Cl) is given by p,(t)
=|C,(t)|?, while the probability that the population is trans-
ferred into the passing resonance state is givenppft)
=|A,(t)|?. The various populations are plotted in Fig. 6 ver-
sus the dimensionless quantity: (t/t,—1), wherex=0 co-

incides with the crossing of the resonance and the initial

bound statgpassage across threshold occursat0.005).
Initially po(0)=1, and all other probabilities are zero. As

PHYSICAL REVIEW /1 022721

1 dB/dt=—152 T/ms
n 08- P2 ©
2> ]
2 . [ XXMM o fa TN ARTIA RN ;
& 0.2—- /\ N nAns Pdimer Pexcited
L J’ V VVVVVY
0 : : . .
0 05 1 1
x=(t/t,—"
g dB/d=—3.04 T/ms )
084 7
2 1..p2 ~
% 06— N NN NN WVAY
Q J
B 04-
- 02 - AN Pdimer
O_- _4/"‘ S pexcit ed
0 05 1 1s
x=(t/t,—

we pasx=0 and the resonance state is dragged well below

threshold by the decreasing magnetic field we find in this

case that 61% of the initial population is lost. Initially this
population is mostly transferred ti,, implying that the loss
is due to thdormation of stable dimer molecul@sthe state
[n(t))#(R). Moreover, a small amount of population be-
gins to appears ip_,, which is also a stable state of the

dimer corresponding to the very last bound state supporteté

by the open-channel potentidl,(R).

Our numerical calculations show that the probability of
remaining in the initial stat¢l)¢; ast—o is given by the
Landau-Zener expressiga4]

pi(t—+o)=prZ=exp —wy5), (47)
where
2|V, |2
= T2 55 !,eS'!B - (49
n
9B ot

This agreement is demonstrated in Fig. 6 fer0, and is
found to work equally well for the depletion of any initial

FIG. 7. (@) Population density for a negative ramp rate of
—1.52 T/ms with the resonance crossing the initially populated har-
monic trap staté=2 from above(b) Same aga) but with a ramp
rate of —3.04 T/ms.

from p, to p_;. Again, as demonstrated in Fig(bj, this
ansfer is given by the LZ theory, i.e,=pjoss0)p-5 and
_1=DPios0)(1—p%). The probability p-5=exp
(—wh%y) is obtained from Eq(48) with V, _; replacing
Vi 0. Since theV, _; coupling is two orders of magnitude
larger thanV,,, we find thatp4~0. This means the
n—v=—1 crossing is essentially 100% adiabatic wjih
~0 and all the lost population is transferred f
~Pios<(0).

Let us denote the total population of dimer molecules,
regardless of their internal state as follows:

Pdimer=Pn Tt E Py - (50)
v<0

We also definge,.iteq @S the total population of harmonic
trap states that has been removed from the initial state,

state which is crossed by the time-dependent resonance state.

Although the LZ theory only predicts thasymptoticprob-

ability when the resonance is sufficiently distant that it no

Pexcited™ VZO Py—0i, (51)

longer interacts with the initial state, we see that the loss o )
occurs over a finite time interval, and is essentially completéuch that; + pgimert Pexcited= 1. IN this instance, since we

by x~0.5.
If the sweeping field is stopped at says +1, as in Fig.
6(a), the total loss
Ploss(i)=1—p?=1—exp —w;5 (49)
primarily contributes to the resonance state populatign
~Pios0), with a small quantity appearing ip_,. Of

are starting from =0, this means thgbyime~Piosi) and
Pexcited0. These equalities are demonstrated nicely in Fig.
6. Note that by manipulating the ramp rate of the applied
magnetic field we can control the formation of the alkali
dimers. At very slow ramp rates EGL9) predicts that essen-
tially 100% of the population is transferred fropg to p,,

and then tg ;. In this scenari®@gimer= Pioss(i) =1 and the
entire initial trapped population can be transformed to vibra-

course if we continue sweeping the magnetic field downwardionally hot, but translationally and rotationally ultracold
the resonance will eventually cross the bound vibrationatimers.

statev=—1, and we then find that population is transferred

Figure 7 illustrates the case of starting from a higher ini-
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FIG. 8. (a) Population density for a ramp rate 6f0.76 T/ms FIG. 9. (a) Population density for a ramp rate &f0.76 T/ms,
and w,/2m=1 MHz, where the resonance crosses the initial har-where the resonance crosses the initial spherical box trap istate
monic trap statd =0 from below, starting from—3.8 mK. An =0 from below, starting from—3.8 mK (L=800(,). The lost

identical amount of population is lost as in Fig. 6, and is againpopulation is deposited into vibrationally excited trap state<),
exactly given byps®. In this case the lost population is deposited with the detailed distribution in agreement with the generalized LZ
into vibrationally excited trap states>0, with the detailed distri- expression in Eq(53). (b) Comparison of exact and Landau-Zener
bution in agreement with the generalized LZ expression in(&8). distributions of box trap states fa>i excited by three different
(b) Comparison of exact and Landau-Zener distributions of harpositive ramp ratesl(=8000g,).
monic trap states fov>i excited by three different positive ramp
rates. is exactly given by the multiple-crossing LZ thedi®5,26|

for ¢B/gt>0 andv>i,
tial harmonic state, such as=2. The lost population Clr Lz Ly Ly
Pioss(2) is distributed between the trapped stafBScited Py(+%) = Prosd1)PiT1Pi T2 - PyZ1(1=py%). (53
with Ov<i and the true dimer stategyime,. We find
agreement with the predictions of multiple crossing Landau- The success of Eq53) is amply demonstrated in Fig.
Zener theory fov <i, 8(b), where we show the complete excited state distributions

for three different ramp rategB/dt. The total loss rates
00) ~ VpLtZ ntZ .. .pLtZ (1 _ptZ i) equals iteqlisted in Fig. 8b) and scale perfectl
PY(+ o) =Prosd DPIZ1P=2 - Pyma(1=RyT)- - (52 zl(?éts)(rging to Eééc('ffg% (48), andg(53). The individpual LZy
probabilities map the exact numerical results to within a few
B. Excitation of trapped-state populations percent forp,>10"’, and small deviations are probably due
For the case shown in Fig. 8, we reverse the procedure ifp numerical inaccuracies in our calculations. The table in
Fig. 5 and start with the resonance located at the same di&ig. 8b) shows howpe,iiegdecreases with the inverse ramp
tancebelow thresholdand ramp the fieldipwardat the rate  rate Jt/dB, becoming proportional to it as it becomes
9Blgt=+0.76 T/ms. Again we start in the initial state smaller. It is interesting to note that when the ramp rate is
=0, but now with an initial magnetic field,~89.5 mT increased the smaller amount of population that is transferred
which locates the resonance statesgtB,)/kg~ — 3.82 mK from the initial state to the resonance is ultimately deposited
and y|e|dS the same Crossing t|me|n Eq (46) The reso- into Significantly h|gher vibrational states. Therefore, as seen
nance lies between the last bound state —1 and the in the Fig. &b), the mean amount of vibrational energy de-
threshold, and far enough removed that the initial interactiorivered to the system,
with the lowest trap state is negligible.
As the magnetic field sweeps upward the resonance N
crosses the initial statie=0 atx=0. By the time the reso- <€ex°'te‘>_\,§>:i by, 4
nance reaches~0.5 it has crossed 20 trap states and any
population it acquired in crossing=0 has been lost along has a much slower dependence on the inverse ramp rate than
the way. As implied byp,—0 and the definitions in EQS. peycited-
(50) and (51), all the population lost from=0 resides in Figure 9 demonstrates that we obtain exactly the same
excited vibrational levels, i.epeycited™ Pioss(0). Again, we  behavior, and the same excellent agreement with the LZ
find the distribution amongst the individual vibrational statestheory if we use a box trapping potential in place of the
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harmonic potential. In this case we have substantially inlZ probabilities in Eqs(56) and(58) only differ by a factor
creased the density of states by uslng 800(a,~0.4 um  of 1.5 due to the difference in the density of vibrational
in Eg. (32), such thatej_o/kg=1.172uK. We also use statesde, /dv.

slower ramp rates and the loss in now perfectly linear in

dt/9B. Again the mean amount of energy deposited into the V. APPLICATION OF FESHBACH MODEL

excited harmonic trap states decreases much more gradually TO MIT EXPERIMENTS

than ited-
Pexcited A. Ramp of resonance through threshold
C. Landau-Zener parameters for Na resonances It would not be realistic to represent the trapping potential
. . in the case of a Na BEC as a harmonic one. The reason for
Our numerical calculations have demonstrated that the L4nhis is that atom-atom interactions cause the condensate

expressions are essentially exact. The largeste could  \aye function to expand and to occupy a volume many times
comfortably handle in our exact time-dependent calculationg, ot of the ground state of the harmonic oscillator, and to
was thel. = 8000, used to obtain the results in Fig. 9. Since pave a much lower kinetic energy thdrw, . This expan-
we will need much larget values in Sec. V, here we give gjon moifies the properties of the threshold matrix element,
simple expressions for evaluating the LZ loss rates for th§hich scales with. as described in Sec. IV C. As discussed
two Na resonances in arbitrary size traps. These LZ expresg the appendix, we propose to represent the trapping poten-
sions can be used with confidence to predict the magnetiGyy| in 3 BEC formed in a harmonic trap of mean frequency
field response for cases where explicit numerical solutions tg, by the spherical-box potential in E€81) with radiusL
. . o .

Eqs.(_44) and (45) are impractical. ) This form is suggested by the simple Thomas-Fermi solution

Using the CI parameters deduced in Sec. Il B 3 10 reproy, e Gross-Pitaevskii equation, for which the condensate

duce the strongl's=350 1K resonance located a5 atoms move in a flat effective potential inside the Thomas-
=1300 K for B=91.5 mT in Fig. 4a), we obtain the fol-  Fermj radius. Although the mean kinetic energy between a
lowing bound-state coupling matrix element fox0: pair of interacting atoms is zero in this approximation, Fetter
e n K (v+1) apd Feder{36] derived an expression for the finite mean
Voo (uK)=177.00 2 1 Boec1cp— kinetic energy(T) of a condensate atom. Furthermore, the
’ L(a,) [L(a,)]*? lowest trapped state=0 is occupied in a condensate. By

(55  requiring that the ground-state energy=%27%/2uL? of the
atom pair in the spherical box be identical to the mean ki-
where the units needed are indicated in parentheses. We hawetic energy of an atom in the condensate, ckeose Lto
confirmed this formula by numerical examples. Introducinginsure thate,=(T). The Appendix shows that for the MIT
expression55) into Eq. (48), and using Eq(8), we predict  experimentd ~10um ande,~2.1 nK.
TheB(t) ramp in the experimeriB] moves the resonance
A(s) ’ from below to above threshold, and we assume that atoms
&B(mT)|' (56) removed from the ground state and placed in trapped states
with i=1 are lost from the condensate. In essence, heating
o .. the atoms leads to atom loss. For this experiment the LZ
A S|m|lgr fitting for the wealB=286.15 mT resonance in Fig. parameterwh% is very small, only on the order of 16, so
4(b) using T',=2.95uT at €,°=953.4uK yields a LZ {4 ’
probability which is two orders of magnitude smaller:

1.11x 10 v +1)?
[L(cm)]®

LZ _
s,V

LZ
ni=0)=1—-e “no~w-2. 59
wbv?V=O.009505’%,. (57) ploss( ) n,0 ( )
This is the probability that particular atominteracting with
It is interesting to note that the LZ probability predicted one of the other atoms in the condensate will experience a
using the 3D harmonic trapping potential in place of spheriloss as the field ramps the resonance across threshold. How-
cal box potential has a similar functional dependence tever, there aréd\—2~N additional atoms with which the
those of Eqs(56) and(57), with the characteristic harmonic atom can simultaneously and, assuming that three-body in-

length parametelr,= A/ (uw,) replacingL: teractions can be neglected, independently experience reso-
nance interaction. Thus the total probability that the Fesh-

bach resonance extracts this particular atom from the ground

4
1.27x10 Y 1+ —v state of the condensate is enhanced by a factdy,asuch
_ 3 at(s) \
w"%(harmonig = . that
s [1,(cm)]3 JB(mT)] ,
(58) piotalin,0)=1-e N*“no, (60)

The same functional form is obtained for the weak resonancif Nx w4 becomes large the exponential form insures that

with the coefficient reduced to 1.20L0" *2. Note that if we  Eq. (60) maintains unitarity. Using Eq€56) and (57), the
choosel ,= 3L/, which insures that harmonic and box fraction of condensate atoms that are lost from the initial box
traps both yield identical trapped state eigenvalggsthe  statei=0 is
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agreement for the observed loss rates is very satisfying, and
strongly recommends this ramping mechanism as a possible
source of the unexplained losses in the experiment.

L B. Resonance stabilization by a third body

_bge(1_ Ploss)

© The MIT experiments also observed large atom losses
—r when a magnetic field very slowly moves a Feshbach reso-
2 4 6 8 0 nance near to but not through the threshold region. Timmer-
Inverse Romp Speed (5/T) manset al. [12] and Yurovskyet al. [13] already proposed
another possible loss mechanism for this case, namely, the
e * quasibound resonance state that introduces the resonance
154 structure strongly enhances the three-body recombination. A
N w2 collision with a third Na atom causes a vibrational relaxation
s . of the resonant state Ma) to form a stable dimer N&d),
05- i.e., Na(n)+Na—Nay(d)+Na+AE, with the excess en-
() ergy AE added to the kinetic energy of the atom and the
roo obs | obo | obs | ooo dimer. This vibrational relaxation is cha_racterized by a bi-
’ Ir;verse Romb Speed (s/T) ) nary rate cc_)nstanyd(cm3/s). Although thls_model was dg—.
veloped using a coupled Gross-Pitaevskii formalism, it is
FIG. 10. Comparison of the calculated LZ probability equally well described in a microscopic scatter_ing _approach
X w'Z(i) vs the observed quantity In(1—P,.c) from Ref.[8] for @S @ resonance-enhanced three-body recombination mecha-
both weak and strong resonances. A factor of 0.25f(i) cor- ~ NISM with a cross section given by the usual Breit-Wigner
rects the calculated resonant width to agree with the measured of&pressiorf27],
for the weak resonance, and brings the calculated and observed
losses into good agreement.

_bge(1_ I:)loss)

i Fnrd
k? (e— €92+ (I, +T )24

o(d)= (62

at(s)
&B(mT)‘)’ (6D The partial widthT"4(e)=%yg4pa for converting a quasi-
bound resonance state into the bound sthite proportional
where pp,=N/[L(cm)]® is proportional to the mean atom to the atom density,. Dimer formation and the release of
density p, of the condensate. This proportionality to meankinetic energy would lead to significant loss of trapped at-
density is a consequence of the inverse volume dependencens. This model may very well give the proper explanation
of whz,o in Eq.(56). We find «(s,0)=1.11x 10 1% for the  of the experiments where the magnetic field is slowly
strong resonance and(w,0)=1.06<10 12 for the weak brought close to resonance and then held fixed, although in
resonance. Ref.[13] the energy-transfer ratg, is introduced as an ad-

In order to compare the loss predicted by Egfl) with  justable parameter and remains to be justified. In the Wigner
the observed los§7,8], it is necessary to know, and to  threshold region the vibrational relaxation width will ap-
specify the scaling parametéer The former was measured, proach a constant, whilE,, exhibits the expectede thresh-
and the latter was obtained as described in the Appendix. Weld dependence.
find that Eq.(61) predicts fractional losses of atomic popu- If we introduce a complex resonance positie}i*(B,)
lation from statei =0 for the two observed resonances that+iI'y/2 into Eq. (44), then this resonance stabilization
are consistent with the magnitudes of the losses found in theyechanism can be introduced into our formalism as a loss
experiments. For instance, from the data in Fig. 3 of a3t process represented by the complex potenitig)/2. Al-
it is observed that 70% of the atoms are lost from the conthough we have not explicitly carried out such calculations,
densate at inverse ramp rates of 10 and 4060mT for the  the LZ theory predicts that the total loss of population from
strong (90.7 mT) and weak(85.3 mT) resonances, respec- the initial trapped state; due to a magnetic field rami(t)
tively. Our results using the measurét=9x10° predict s still given by Eqs(47) and(48). If T4 is sufficiently large
losses of 63% and 98% for these respective resonancesempared tol',, then the population is transferred to the
However, our calculated width',, is roughly a factor of 4  stable dimer statd via a three-body collision instead of be-
larger than that inferred from the experiment. Reducinging moved to other levels due to nonconservative interac-
a(w,0) by a factor of 4 reduces the weak resonance losgions with the time-dependent magnetic field.
from 98% to 63%, in good agreement with the observations. We note that Eq(62) is equivalent to the standard expres-
Comparable agreement was found for the case given in Resion for trap loss due to photoassociation. This process may
[7]. be viewed in a dressed-molecule picture as optically cou-

Figure 10 comparel X wh?o with the experimental points pling the ground scattering continuum to an optically tunable
for —In(1—Pysd, found fromP,,ss reported in Fig. 3 of Ref.  excited state Feshbach resonance level that decays by spon-
[8]. Since our theoretical calculations contain no arbitrarytaneous emissiof88]. In this case, the photon plays the role
fitting parameters, the fact that E@.1) gives generally good of the third body that causes the loss process, and the spon-

Piotaln,0)~1— exp( —a(n,0)p;,
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taneous emission width replacéy, in Eq. (62). Our CI  stable diatomic molecules which are translationally and rota-
theory could also be applied to photoassociation viewed asonally cold, but vibrationally excited, depending of the spe-
an optically induced Feshbach resonance process. An analegic levels available to the atom pair in question. This pro-
to molecule formation via 8(t) ramp of a Feshbach reso- cess might be feasible in optical lattice cells, for example, if
nance is a recent proposal to make cold molecules efficientliwo atoms were to occupy the same lattice site. Confinement
by frequency-chirped photoassociatidrb]. dimensions significantly less than Q.in should be experi-
mentally possible. There are proposals for bringing two al-
kali atoms together in the ground state of a single cell of a
VI. DISCUSSION AND CONCLUSIONS 3D optical lattice[10,11], and high fractional occupation of
_ lattice sites has recently been demonstrated for a Cs lattice
We have carried out a study of the Feshbach resonanceg7] |t is certainly possible that favorable Feshbach reso-
for the collision of two Na atoms in the lowe$t=1m= " pances might be possible in the Cs system. Molecule produc-
+1 ground-state hyperfine level in a time-dependent magtion in a Na BEC might also be feasible. However, the ex-
netic fieldB(t). The theory gives a rigorous account of the pectation of large loss rates of atoms due to collisions with a
dynamics induced bi(t) for two atoms initially confined in  thjrd atom[13] suggest that inelastic collisional relaxation of
the ground state of a 3D harmonic trap. Although our calcuthe resonance level or of high vibrational levels may prove to
lations are for Na atoms, the methodology is general and cage problematical in a condensed system. Such relaxation
be extended to any pair of alkali atoms of the same or difyould not be a problem in an doubly occupied optical lattice
ferent species. We envision applications to a variety of trapge|l where there is no third body.

ping situations, but specifically apply our results to interpret \yhen a ramp ofB(t) sweeps the resonance position

recent experiments with a Na BEC. , €l®S(B) paste; , the time-dependent field induces population
We start with a rigorous close-coupled formulation of the

o A . changes in the levels. The probabilipy,s{(n,i) of popula-
two-body collision, and end with a remarkably simple (i, |5ss from an initially populated trap levélis simply

Landau-Zener time-dependent curve-crossing model for thg, nained by a Landau-Zener curve-crossing model, which
dynamics of atoms in discrete energy levels in a trap. Theysq accurately gives the distribution of final levels. We can
bridge between the contrasting scattering and trap viewpoinigie 5 simple intuitive interpretation of the expressions in
is facilitated by_a Fwo-chanpel Cl theory, which gives a,Eqs.(49) or (59) for poedn,i). Using the fundamental ex-
S|mpI¢ parqmetnzaﬂon .of an isolated Feshbach_resonance 'B’ression in Eq(36) which relatesV,, ;|2 to the resonance
%_erzzclig‘fpv:rt:mtzsar(;ogrt('an:uthn;L?;efesoérfgﬁcgog;d;i%%ét; MSwidth ' (), the LZ adiabaticity parametev’2 in Eq. (48)
. ~/ _ can be expressed as follows:

and a resonance width,,. The CI theory was set up within
the standard time-independent scattering viewpoint, where
the resonance levelis a bound state embedded in a scatter- Lz at | [ de
ing continuum where the asymptotically free particles sepa- Woi=| o~ es| | i =(tres) (2mvy).
rate with relative kinetic energy>0. We adapt the theory .
to the case of trapped atoms which experience a confining
potential at large interatomic separatioRs In this case, Here we have written the resonance ramp rate in the simpler
there is a discrete set of eigenstatesith eigenenergies; form de; % at. The first term on the right-hand side of Eq.
>0 instead of a continuum of states, and the coupling bet63) is clearly thetime in resonancethat is, the timet ¢ it
tween the resonance and these discrete levels is given bytakes the resonance to ramp over an energy range equal to
matrix elementV,, ;, which is related td",. the widthI',(€;). The second factor in Eq63) is the trap

A time-dependenB field shifts the energy position of the spacing divided by:, and thusy; represents the vibrational
resonance relative to the energyof the initially prepared frequency of trap level. Consequently, the LZ adiabaticity
leveli of the trapped atoms, thereby inducing transitions forparametelwh% simply equals the resonance tirhgg times
which we calculate the probability. We are especially inter-the frequency zrv;. Thus, if the resonance ramps quickly
ested in the case wheraepresents the ground state of the compared to the vibrational period#]/ then wh§<1, the
trap,i=0. When a ramp oB(t) sweeps the resonance po- dynamics is diabatic, and the trap levelemains mostly

sition €,°%(B) paste; , population transfers from leveto the  populated. On the other hand, if the resonance ramps very

resonance levei. If €/°S(B) starts belowe;, the resonance slowly compared to the vibrational period/;5>1, the dy-

5|
is carried into the “quasicontinuum” of discrete trapped namics is adiabatic, and all of the populationiiis trans-
states, and it deposits its energy in excited trapped states. Bgrred to the resonance level.
contrast, ife;°%(B) starts above;, theB(t) ramp carries the The Wigner threshold law ensures that the wilfffe;) is
resonance position below threshold where it now representsroportional toye; [see Eq(24)]. A trap is characterized by
a stable (nondecaying dimer state. If the ramp carries some scale lengthg.,e Which is equal td, andL for the

€°%(B) across a bound state= — 1 of the dimer, population harmonic and box potentials, respectively. Since in a trap

can be transferred to that level as well. A sufficiently slowe;* 1/Lgzeand 2mv;=L 2, we conclude thawi5eL 3,
ramp rate makes any of these transfer processes nearly 100%ocinversely proportional to the trap volume. This inverse
efficient. volume dependence is the manifestation of the Wigner

We therefore suggest that a downward ramp will producehreshold properties for ultracold 3D trapped state dynamics.

(63
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The application of our model to a Na BEC leads to re-tion. We also thank the Army Research Office and the Office
markably good agreement with the atom losses observed iof Naval Research for partial support.
the MIT experiments with a ramped magnetic field. Our two-
body close-coupled model gives excellent agreement with APPENDIX: ANALYSIS OF CONDENSATE
two-body scattering data, including the observed positions of PARAMETERS
the two Feshbach resonance stgathough we differ from
experiment by a factor of 4 in the experimentally inferred

width of the weaker resonanceThe key to applying our frequencyw, . It was shown by Schneider and Feddg]

model based on binary collisions is to adapt the trapping{h : ;
o o ) at for our purpose theameanalysis can be applied equall
potential in such a way that the kinetic energy of the coII|d—WeII to an gni?otropic trap simyply by equat?p to ?he y

ing atoms is properly represented. This is because the matrix . ) i
element for the coupling of the resonance to the ground staé%glo meﬁIr Ic (rfl]_efﬂ <f\r/eq>lf<nvé'ywx>w é;’é OIE(SrChrimelz(r:S(Iesp?)tf gn
of the trap depends strongly on the kinetic energy of relative . #A' "1 A H trap prop

motion. The expansion of the cloud of atoms in the conden-ensemble ofN condensate atoms in an isotropic harmonic

sate due to the mean-field interaction causes the condensé@'or'S glver; tt)y EPe e?kf)ecr;atlonn vrz]all#es 0; ;[Ete ?totrimfcv kinetic
to have a much lower mean kinetic energy and much largef"¢'9Y OPera 0(T,), the mean energy of interactiqiv,)

volume than for the ground state of the harmonic trap. Thi hich i‘c’. propor_tional to th.; usue;l scattering lengtland the
reatly reduces the coupling matrix element. Using a spherit2Monic trapping potent "/”ap.' These.are evaluated us-
g y ping gasp ng the condensate wave function obtained from the usual

cal box potential for which the mean kinetic energy matche ) ) .
P 9y (éross—Pltaevskl(GP) equation.

the actual mean kinetic energy of the anisotropic condensat We beain th Vsi ith th illator lenath f
permits us to calculate the actual coupling matrix elements. € begin the analysis wi € osciflator ‘engih for a
and loss rates. Although the LZ probability-% for atom single trapped atord,= y&/(mae). [Note that the oscilla-

loss due to a single pair of atoms in the condensate is quit,[%)r Ieng:hlo th,;ﬁh \g.e use 'R Eqs(.6§), etccj., is for the rilza'
small, the net probability of atom loss is actually quite large lve mf lon of the dimer whose reduced mass equay
because of the large number of atoms pairs in the conder@d!o= v2d,.] The mean volume occupied by the ground

. u _ 3 .
sate. The total loss probability per atom depends on the progfate of the harmonic trap iginarm) =4m7da/3. The dimen-
uct Nwt2, which is proportional to the mean atom density Sionless parametep,=Na/d, is then used to characterize

because of the above-mentioned scalingvb% with inverse the strength of the repulsive mean-field interactions intro-
volume of the condensate ' duced by the positive scattering length for the sodium triplet
The quality of the agreement between predicted and otState a=63.9,. This is related to the dimensionless

H i 1/5 i
served losses certainly suggests that the essential physics {jomas-Fermi condensate radib=(157,)">, and is a
our model is correct. Although a similar picture can be ob-T€asure of the expansion of the condensate radius due to the

tained using the formalism of coupled atom-molecule GrossMean-field _interactions. Thus the mean volunie)

Pitaevskii equation§12—14, we believe that the simple =47(9d,)%/3 of the harmonically trapped condensate is in-

physical model that we have presented will provide muchcreased by a factor aR® and the mean atom density g,

understanding of the role of Feshbach resonances in the BE@NKU)' ) ) )

context. It also proves to be useful and predictive for other _The Thomas-Fermi(TF) solution to the GP equation

situations which might utilize magnetically controlled atomic (TAT Vi Virap) W(ra) = pa¥(ra) is a “zero” temperature

collisions, such as molecule formation in lattices or quanturrf"‘pprox'ma'ﬂon an_d involves ignoring the k|n§t|c-energy op-

computing[10,11]. There is also a great deal of similarity €rator and replacing the potentialgy + Vi, with an effzec-

between magnetically induced Feshbach resonances afyfe flat potentialVer~ g, . In the TF limit ua=% wR%/2

optically-induced ones, as we noted at the end of Sec. V gand the range of the flat effective potential is of the order of

Two-color photoassociation by stimulated Raman scatterinSAm- o )

[39] is an example of using optically induced Feshbach reso- For a finite radiusi, Fetter and Fede22] have shown

nances for molecule formation in a BE@O0], a process that to ne_xt order the expectation value of the kinetic-energy

which has recently been studied experimentq#l] and  ©Operator is

theoretically[42]. Our model should be readily adaptable to

the case of condensate photoassociation. (Ta)~ iln(ZG&}i)ﬁw . (AL)
Note added in proofThe work in Ref.[14], which ap- 29R? ©

peared after our paper was submitted, comes to similar con-

clusions for?®Na BEL Feshbach experiments using an alter-This same mean kinetic energy of a condensate atom should
native and complementary point of view. correspond to the average relative kinetic energy of two col-

liding condensate atoms. Since the energy of a spherical box
potential is entirely kinetic, it is reasonable to equate the
ACKNOWLEDGMENTS lowest box state eigenvalu_e in E@O) to the mean kinetic
energy of the condensate, i.eg=(T,).
We thank Carl Williams for helpful discussions, and Vo-  As an example, we consider the parameters associated
lodia Yurovsky, Abraham Ben-Reuven, and Eddy Timmer-with condensate observed in R¢8], where the mean fre-
mans for providing preprints of their work prior to publica- quency w,/27~700 Hz andN=9x10°. This yields#wo

Our analysis is based on the work of Fetter and Feder
[22], who considered a BEC in an isotropic harmonic trap of
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=34.0 nK, d4=0.79 um, 7,=3.87x1C°, and :"=8.97. As a check, we can use the observation in R&fthat the
The mean volume of the condensate is k4D ° cm®, re-  condensate has an axial lengthLgf;s= 140 um and a waist
sulting in mean density gf,~6.1x 10" cm™2, which isin  formed by the dipole trap ofL =6 um. Equating
agreement with the measured initial density in Fig. 1 of Ref47L%3 to the volume L2, L axid4)~4.1x10"° cn?’,
[8]. The mean kinetic energy is equal to 2.07 nK, andwe estimate that ~10 um, consistent with our determina-
equated toey predicts thalL~10.0 um. tion from the kinetic-energy criterion.
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