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Alexei M. Frolov
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6
(Received 16 March 1999; published 13 January 2000

Basic geometrical and dynamical properties of the? " 1.~ e~ and*He?* x e~ helium-muonic atoms are
determined from high-precision, variational calculations. Only the bound ground states wihare dis-
cussed. The estimated hyperfine splitting betwé&6 and %2S states in the®He?" n e~ atom is Av
=4166.389 MHz. The analogous result for the hyperfine splitting betw®nand 1S states in the
4He?* w~ e atom isAv=4464.555 MHz. Both obtained figures agree very well with the known experimen-
tal values. The evaluated hyperfine splitting for tAei®*x e ion is ~29311.4 MHz and for the
"Li®"u e ion is ~36790.8 MHz.

PACS numbd(s): 36.10.Dr

In this paper we report the results of high-precision cal-racy of earlier studies. Likewise, expectation values for the
culations of various geometrical and dynamical propertieDirac & functions could not be evaluated easily. The first
for the bound ground&(L=0) states in helium-muonic at- highly accurate numerical calculations of the two-partiéle
oms. The main goal of this study is to evaluate very accufunctions were performed in Chen’s papgts-3], where the
rately the hyperfine splitting betwee¥fS and %S states in  Hylleraas variational expansion of the trial wave function
the 3He?* e~ atom and analogous difference betwé&  was used throughout. In our earlier study of the helium-
and 'S states in theé*He? e~ atom. These values can be muonic atomg4] (see also Ref{11]) we applied an expo-
measured experimentally with good accuracy. In fact, thenential variational expansion producing the ground-state en-
maximal error of such measurements does not exceed a feergies much better than the values derived in previous
kHz. In contrast with this, the best theoretical estimationscalculations. Moreover, we have determined not ahfync-
had significantly poorer accuracy~(lL MHz) (see, e.g., tions, but also all three two-particle cusps. By using the
[1-4] and references thergirin the present study, we deter- agreement between computed and predicted cusp values, one
mine the hyperfine splitting with the maximal error which is can easily evaluate the reliability of thefunction expecta-
less than 5 kHz. This means that both nucleus-electron antibn values used in calculations. Unfortunately,[#] such
muonic-electrond functions must be calculated with maxi- good agreement was observed only for the muon-nucleus
mal error ~1x10 7 a.u. As it follows from the atomic cusp.
three-body calculations, the cusp between two negative par- Furthermore, our method used in Ref] obviously could
ticles (i.e., electrons can be determined quite accurately not provide the relative accuracy even comparable with 1
when the total error in the total energy is less than 1x10 ! However, recently we have developed a very effec-
X102 a.u.. Since the total ground-state energy of thetive two-stage strategyl 2] to construct high-precision varia-
He? ™ ion is ~—400 a.u., this gives the maximal pos- tional wave functions. This strategy can be used to determine
sible error in the total bound-state energyl x10 % for  the bound state energies in few-body systems, in principle,
each of the helium-muonic atoms. with an arbitrarily high accuracy. In the present study this

Hyperfine splitting in helium-muonic atoms was studiedstrategy is applied to the high-precision calculation of the
in a number of papers almost 20 years 4§e10. Those bound states in the helium-muonic atoms. A detailed descrip-
works were stimulated by experiments with helium-muoniction of the two-stage strategy for the helium-muonic atoms
atoms performed a few years earlisee references in Refs. can be found below. Finally, the hyperfine splitting for the
[6] and[9]). All theoretical studies at that time were based onhelium-muonic atoms has been determined with the maximal
the two-shell model which describes approximately theerror of a few kHz. Such improved theoretical values coin-
structure and properties of the helium-muonic atoms. Theide very well with the known experimental dat@r both
two-shell model for the helium-muonic atoms means thahelium-muonic atoms In particular, the coincidence of our
their actual structure is representésith very good accu- presently computed and known experimental results is sig-
racy) as one-electron motion in the field of the quasinucleushificantly better than observed previously. This indicates that
which is a singly-charged hydrogenlike ion He.~. The the ignored relativistic corrections are much smaller than it
muon mass is=206.77 times larger than the electron masswas predicted in earlier papers.
therefore, the muon shell radius is(m,/m,)(Z/e)~413 The nonrelativistic Hamiltoniam of the helium-muonic
times smaller than the appropriate electron shell radius.  atoms takes the following general form:

By using the two-shell model one may derive some ana-
lytical expressions for the expectation values of two-particle , h?[ 1 , 1 _, 1 e e e
Dirac é functions and other properties in such systems. How-' '~ 2 Eve+ m—#VM+ m_NVN + @ _Za _Zm’
ever, some of these analytical expressions include infinite
sums and depend upon three different dimensionless param-
eters(the three mass ratifjsthus restricting the final accu- where the notationu designates the negatively charged
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TABLE I. The convergence for the total energies in atomic units for the ground state in the helium-
muonic atoms.

N@ SHE e HE e “HE e

200 —399.042336832862230 —402.637263035135090 —414.036536946808025
300 —399.042336832862295 —402.637263035135158 —414.036536946808084
400 —399.042336832862342 —402.637263035135222 —414.036536946808125
500 —399.042336832862371 —402.637263035135262 —414.036536946808156
550 —399.042336832862384 —402.637263035135275 —414.036536946808169
600 —399.042336832862399 —402.637263035135289 —414.036536946808176
700 —399.042336832862417 —402.637263035135314 —414.036536946808198

#These results correspond to the short-tére, boosterwave functionW ;(Ny=200).

muon ., while N stands for the helium nuclede, “He, In this approach the trial wave functioh is represented
or “He. In atomic unitdi =1, e?=1, andm,=1 itis written Dy the sum of the very well-optimized, short-terfor
in the form boostey function V', and roughly optimizedor even nonop-
timized), long-term functiort¥,. If the total number of terms
He—flyzy Loz Loe|, 2 2 equals N, then we may write W (N)="W(Ng)+¥,(N
2% m, #* my N frew Ten Tun’ —Np), whereNy<<N (but alsoNy>1). For the exponential

(2)  variational expansion, each of the basis functions contains
three nonlinear parameters. Therefore, the short-term
¥, (Np) function includes Bly nonlinear parameters, while
aWe second¥,(N—Ng) function contains 3{—Ng) such
parameters. Correspondingly, the first stage of the procedure
present calculations are completely nonadiabatic, andZq. is to well optimize only the Bl nonlinear parameters, which
they have been performed in atomic units<(1m,=1, and is significantly smaller than the total number of these param-
i lile 1 . . .
e=1). In these units the following values for the particle €t€rs () in the trial wave function?. In the second stage

where the botlm, and my masses are expressed in atomic
units (i.e., in the electron magsin the present study, no
assumptions are made that some parts of this Hamiltoni
are negligible in comparison to others. Note also, thabur

masse$13] the total number of nonlinear parameters grows extensively,
but they can be chosen by approximate optimization or even
m,,=206.768262, M2+ =0, without optimization, e.g., in a regul@t4] or quasirandom
manner(see, e.g.[4] and references thergin
Msyye2+=5495.8852, Maye2+=7294.2996, For the considered helium-muonic atoms the number of

basis functions in the booster functions has been chosen
equal 200, i.e.Ny=200. The 600 nonlinear parameters in
the booster function have been optimized carefully for each
of the three helium-muonic atoms considered, i.e. for the
SH e, *H e, and “He e atoms. Fi-
nally, the variational energies obtained with such booster

were used in calculations.

bound grounds states L =0) in the helium-muonic atoms.
In the case ofS states the trial wave functiogh —4 in the
relative coordinatess,, rg;, andr,; takes the form

N functions(200 basis functions in eaglare significantly bet-
WL _o(T 32,731, 21) = O CieXp(— @il 39— Bil 33— Vil 21), ter than energies determined for these systemigtjrwith
i=1 400 nonoptimized basis functions. The final accuracy with

3 700 basis functions is sufficient to stabilize at least 15 sig-

hereN is th ber of t i th ational . nificant figures, i.e., to reach the relative accuracy 1
whereN is the number of terms in the variational expansion., 1 5-15 ¢,/ the total energy. This givesX10~ %2 a.u. for

The subscript 1 denotes the electron, the subscript 2 desigﬁe helium-muonic atoms

nates muory™, while subscript 3 staﬁndsafor the helium The variational energies obtained in calculations are pre-
nucleus. This means’s;=rp3=r,n=|r,—fnl, r31=f1z  sented in Table I. The numerical values for some of the
=ren=|re—rnl, @andry=ri,=rq,=|r.—r,|, respectively. propertiesi.e., expectation valug¢san be found in Table II.
The linear parameter§,; are determined by the solution of In both Tables | and Il only atomic units are used,=1,

the variational(eigenvalug¢ problem. The principal question e=1, andz=1. As follows from Table I, the accuracy
is the choice of the nonlinear parameters 3;,v;, where achieved for the total energi&sby using the two-stage ap-
i=1,2,...N. The regulaf14] or quasirandom choices of proach is significantly higher than that obtained in the previ-
these parameters obviously cannot provide a final accuraayus works. Note that, in principle, such accuracy can also be
sufficient for the helium-muonic atomsee above and our increased drastically by performing better optimization for
results from[4]). Presently, to improve the final accuracy the short-term¥; function. The physical meaning for all of
drastically we shall apply our two-stage procedure proposethe expectation values in Table Il is quite clear from the
in [12]. notations usedfor more detail, se¢12]). Now, we want to
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TABLE II. The expectation values in atomic units{=1/i=1,e=1) of some properties for the ground
Sstates [ =0) of the 'He?" e~ atoms(wherei=3, 4, andw).

System SHE e ‘HE e "HE e
Particles 321 321 321
(ryf? 1.99913907599 1.99931125680 1.99985633100
(r3d) 1.99969855311 1.99986366763 2.00038742025
(raf 317672.089970 323428.825393 342024.895809
(rof) 0.9998492589984 0.9998912308494 1.000024296854
(rad) 0.9998638509791 0.9999057441944 1.000038566251
(r3s) 398.5423976114 402.1373029064 413.5365105290
((rars) ) 398.4877927370 402.0990589015 413.5521314933
((rarp) ™) 398.4849137616 402.0961688833 413.5492072979
((rar)™ ) 1.992047926597 1.992280422629 1.993010072434
((ragralo) ) 794.90908505 802.16418121 825.17752181
(rz) 1.500229562409 1500166624663 1.499967090001
(rap) 1.500223659552 1500160720184 1499961186483
(rap) 3.76371506603%¢ 102 3.730069344784 10 3 3.62724931563% 10 3
(r3) 3.000925384153 3.000673562997 2.999875258280
(r3y 3.000907793135 3.000655963785 2.999857652388
(r3y) 0.18887401854210°*  0.185512234665210 4  0.175425838043410 *
(r3y 7.503489911979 7.502545354839 7.499551220113
(r3) 7503437239738 7502492656457 7.499498497710
(r3y) 0.11847800345810 %  0.115328921644610 °  0.106052212923710 °
(r3p 22.51402052822 22.51024148604 22.49826332561
(r3y 22.51384507503 22.51006594791 22.49808771573
(r3) 0.89183495671910 °  0.860369810776810 °  0.769355685011810 °
((ra1-ray) 0.648192301701210 ®  0.476005617644210 °  —0.316537662171610 '
((rar21) 0.182392095525010 4  0.180752178488810 *  0.175742375705610 *
((ra1-ra0)) 3.000907144943 3.000655487779 2.999857684042
1 0.7949897389 10 * 0.573662694204410 4  —0.103021058436910 *
Ta1 0.2429269699 10 2 0.242907934773810 2 0.242852927925910 2
T32 0.9999874898390 0.9999877108127 0.9999883739697
(f) 0.624064628028210 %  0.618539107459710 %  0.601650285777910 3
(—=V,-V3) —158836.012273384 —161714.388101948 —171012.450045429
(—=V1-V3) —0.968050038563694  —0.976746235435464 —1.00433918647835
(=V1-Vy) —0.0316792133619937 —0.0230667712584065 0.00426059055935379
(—3V3) 0.4998646259628 0.4999065033469 0.5000392979595
(—3V3) 79418.02197630 80857.20558436 85506.22289242
(—3V3) 79418.49016171 80857.68242409 85506.72719231
(850) 0.313681896 0.313760812 0.314002531
(v21) 0.994773280 0.994934677 0.999486447
Ty ® 0.9951869453478 0.995186453478 0.995186453478
(831) 0.320611819 0.320631162 0.320697954
(vs1) —2.0007595 —1.9980667 —1.9994278
Ve —1.999636157582 —1.999725850875 -2.0
(832) 20149938.827 20700137.343 22510841.038
(vsp) —308.5424086 —402.1373156 —413.5365311
Var® —308.5424113627 —402.1373165919 —413.5365240000
(8320) 0.64142x 10" 0.65899% 10" 0.716904 10"
7 0.4741x 1014 0.5157 10 4 0.4037x 104
= —398.542411362650112 —402.137316591922656 —413.536524000000000

&The exact value from Ed5).
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make only a few following remarks. In all formulas given Fan— Tt Fon=0 (10)
. . 32 31 21 .
below and also in Table II, the notations 1 and 2 refer to the

electron and muon, respectively. The notation 3 designatepherefore, the three following equaliti€éi, j,k) = (1,2,3)]
the helium nucleusds;, 8,;, and &3, stand for the two- and

three-particle DiradS functions, respectively. The two-body - - 5 2 o
; : ; . . Fik-Tik==(ri+ro.—rs) 11
cusp is determined in a traditional manih&b,16: ik Tjk T ik T k]
s i hold in any case. For the appropriate expectation values one
(rij)&r” “ finds (see Table
T TN PV NP P
Fik- ik =5 i) H(rig—(rs)). 12
where &;=4(rjj) is the appropriate Dirad function and (T Ty = 5 (i) + 41 = (1ij)) (12
(ij)=(21) and (31). The exact valug; of the two-particle . )
Coulomb cusp equald5] Analogously, sincey;+p,+ p3;=0, then we write
-1
W mim; Pi- =5 (P p{—p}) (13)
vi=0;; ———, 5 i j k i j
= e, () 2

whereq; andq; are the charges and, andm; the masses of and

the particles. 1
The expectation values of the two interparticle cosine (pi- ;)= 5 (PR —(PYy —(P)), (14)
functions are determined traditionally: 2

(6) determined by the reIatiorfa=(— |)ﬁi in Cartesian coordi-

rik'rjk> respectively (i, j,k)=(1,2,3)]. Moreover, if the threqSi are
nates, then one finds

Tij < 3 ik ]k)> <rik'rjk
where (,j,k)=(1,2,3). The quantity(f) is expressed in

terms of the relative coordinatess(,rs»,r»1) Or perimetric <—ﬁ-~ﬁ-)=< _ 1V2> _<_ EV-2> _< _ EV-2> (15)
coordinates (§;,u,,us) [where uj=3(rjj+ry—rj), and b 2 kK 21 21

(i,j,k)=(1,2,3)] as follows: ) .
where (,j,k)=(1,2,3). The expectation values from both

sides of this equality can be found in Table II. Note, how-
ever, that the last three equalities are obeyed only in Carte-

sian coordinates and only ib;=(—1)V,. In the present
:f J J | (Uy Uy, U3)[2ugUrusdu dupdu,.  (7)  Study such a choice is used, and theref¢reV;- V;) can be
expressed through—3V?) and vice versa.

The analysis of the computed properties for helium-
muonic atoms indicates clearly that they have two-shell clus-
ter structure, as expected. This means that the muon moves

_ at very short distances from the nucleus. The radius of the
mart oot 151 = 144 ®  uonic shell is~413.5 times smaller than the radius of the
hold for arbitrary three-body nonsymmetric systems. Theou_tside, electron shell. The electron and muon velocit_ies are
virial factor 7 is determined as follows: quite comparable to each other. However, the correlation be-

tween electron and muon motions in the helium-muonic at-
(V) oms is significantly smaller than the electron-electron corre-
7R

up Uz Ug

l3231 121

<f>=<w

The value(f) can be calculated directly or by applying .
The equalities

, (9) lation in the usual helium atom. In order to show the
principal difference between our previo(i$] and present

wave functions, let us introduce the following parameter,
which is very useful in few-body bound-state computations:

2
(i) 1) . (16)

Vij

where(T) and(V) are the expectation values of the kinetic
and potential energy, respectively. The deviation of the fac
tor » from zero indicates the quality of the wave function 1
x=10° \/ = (
31

used. The appropriate binding energiesare given in eV
(1 Ry=27.2113961 eV). Note also that in Table Il only
stable figures from calculations with the higher values\of
are presented. Here,(v;;) andv;; are the computed and expect@e., pre-
Note that some expectation values in Table Il can be exdicted cusp values. The summation is to be extended over
pressed as the linear combinations of other properties. Faill different pairs of particles in th&l-body system, i.e.i
instance, for the three relative vectcfr@, Fgl, andro, we #j=1,...N and also {j)=(ji). In particular, for the
have three-body systems(where N=3) one finds {j)
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=(32),(31),(21). The parametgrindicates the cusp quality equals; exactly. The fine structure constamf proton mass
of the wave function determined in calculations. For the exm,, and g factors used in calculations were chosen from
act wave function this parameter equals zero exactly. In thgl3], [17], and[18]

general case, the smaller values of theparameter corre- .

spond to more accurate wave functions. The wave function a=7.2973530& 10, m,=1836.152701,

used in Ref.[4] gives y~4.0028447. Our present wave
functions have a significantly better cusp quality, since, e.g.,
for the 3He?* e~ atomy~0.40329858. It should be men-
tioned, however, that cusps as well as other geometrical and

dynamical propertiegsee, e.g., Table Jlare the so-called | tact the hyperfine splitting is traditionally expressed in
secondary properties. The only primary property is theéy ., Tq recalculate the energies from a.u. to MHz the fol-
bound-state energy. The main point to be emphasized is th?c;wing conversion factor 6.579683920610° (MHz /

any improvement of the secondary properties is real if an%.u.)[l?] has been used. Now, one can easily calculatéthe
only if the same wave function provides also the betterg onqc constants

bound-state energy. A separate improvement of the second-

ge=2.002319304386,9,, = 2.002331846,

gn(®He) =4.2552496, gy(*He)=0.

ary properties, and in particular, an artificial “cusp- A(®He)=16.468831488009 MHzA(*He)=0,
improvement” has no sense. Furthermore, such an artifi-
cially corrected cusp does not indicate the better quality of B(®He)=14229.180106055 MHz,
the computeds function.
Now, let us discuss the hyperfine splitting calculations for B(*He)=14229.180106055 MHz,
the helium-muonic atoms in detail. The hyperfine perturba-
tion of the groundS(L=0) state is given by the expectation C(°He)=3405.2103352634 MHz,C(*He)=0.

value of the following operator: , i
Thus, the main problem is now to compute the expecta-

8mw. . 8mw. . tion values of the appropriate Diratfunctions. In fact, the
Hur= = 3 s UNO(Tun) ~ 5 My med(Tey) numerical computation of al functions does not contain
any principal difficulties. However, in contrast with the
T, - bound-state energies, there is no maximum-minimum prin-
3 He mnO(Ten), (17 ciple for the & function expectation values. Briefly, this

means that the results of such calculations may oscillate
around the exact values when the total number of basis func-

Where pie, i, and uy are the magnetic moments of the tions grows. The typical situation is shown in Table Il

electron, muon, and nucleus, respectively. The Didanc- " . . .
tion 8(ry) is determined traditionally, i.e.(r; )= 8(r; where the “convergence” of the threé functions is pre-
1 P ' . sented for the’He? " u~ e~ and “He’" .~ e~ atoms. By us-

—r;). For the considere®(L=0) states the nonrelativistic )
J . ) : . ing the results of our present calculations we have deter-
wave function factorizes into a product of coordinate-space

and spin-space parts. Following RES] it can be shown that mined the following expectation values for the approprigte

the spin-space expectation val{id ) (i.e., spin operator functions:
can be represented in the form (83)(®He) =20149938.85 1X 10" 2,
SHs=(Hug)=—as, - Iy—bs;'s,—cS: Ty,  (18) (555)(*He)=20700137.3% 1X 10°2,
where§e, 5;“ and rN are the spin vectors of the electron, (831)(®*He)=0.32061195-1x 10 7,
muon, and nucleus, respectively. In this formula the con-
stantsa, b, and ¢ have the following valuegin atomic (631)(4He)=0.32063105: 1x107,
units):
(8,1)(®*He)=0.31368181x 10 7,
27 ,9,9n
— — 29K
a=A(d(r,n))= 5« m(f?(r,m)% (19) (8,1)(*He)=0.3137605:1x 107,
27 0. where the subscript 1 denotes the electron, the subscript 2
b=B(8(re,))= _a2ﬁ<5(reﬂ)>, (20) designates muop —, and subscript 3 stands for the helium
3 mem, nucleus. Here, the expectation values for&functions are
5 taken from the results of calculations with the maximal num-
_ _ 47 ,9e0N ber of basis functions, i.eN=700. In Table IIl for each
c=C(oren) = 3¢ memp<5(re'\‘)>’ 21) expectation value only ten significant figures are presented.

The appropriate uncertainties have been determined from
wherew is the fine structure constamt,, m,, andm, are  comparison with the results of calculations with a smaller
the electron, muon, and proton masses, respectively. Heraumber of basis functiongsee, e.g., Table Il for the
we used the fact that in atomic units the Bohr magnetor®He?* u~ e~ and *He?* u e~ atoms.
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TABLE Ill. The observed “convergence” for thé function expectation values in atomic units for the
ground states in the helium-3-muonic and helium-4-muonic atoms.

N? (932) (931) (820)
400 0.2014993888 10° 0.3206117828 0.3136817601
500 0.2014993884 10° 0.3206117849 0.3136818352
550 0.2014993888 10° 0.3206118465 0.3136817879
600 0.2014993888 10° 0.3206118671 0.3136818350
700 0.2014993888 10° 0.3206118514 0.3136818415
20149938.85:1x 102 0.32061195:1x 1077 0.3136818-1x 10"’
N# (632 (830 (620
400 0.2070013736 10° 0.3206309205 0.3137605171
500 0.2070013736 10° 0.3206309726 0.3137605354
550 0.207001373810° 0.3206310118 0.3137604991
600 0.207001373810° 0.3206311011 0.3137605325
700 0.207001373810° 0.3206311005 0.3137605147
20700137.35:1x 102 0.3206310%:1x 1077 0.3137605:1x 107
Now, for thea, b, andc coefficients in theSH operator Av(®He)= 10671.885079542(r¢,,))

we find
+2553.9077514476(rn)) MHz, (22
a(®He)=331845941.65024 MHza(*He)=0
where(d(r,)) and(8(rey)) are the expectation values for

b(®He) =4463.4348281917 MHz, the electron-muonic and electron-nucledsfunctions, re-
spectively. From these formulas and our expectation values

b(*He)=4464.5461271580 MHz we find Aw(*He)~4464.555 MHz and Awv(®He)
~4166.383 MHz. These values are very close to the experi-

c(®*He)=1091.7511257490 MHzc(*He)=0. mentally known values forA v(*He)~4464.95 MHz[19]

and Av(®He)~4166.41 MHz(for references and a review
of experimental data sef5] and [10]). For the Av(3He)
value the observed agreement can be considered as excellent.
1 1 Furthermore, we estimate the maximal numerical errors for
N=g(atbto)+ E\/a2+ b2+ c’—ab—ac—bc, the both theoreticah v values as a few kHz. The difference
between the hyperfine splittings determined in the standard
1 1 approach and by using the exact diagonalizatiotdf op-
A,=—(a+b+c)— =aZ+bZ+c2—ab—ac—bc, erator is also a few kHz.
4 2 The results of our present study can be also presented in
the same form as in Ref7]:

The diagonalization of theSHg operator (in spin spacg
yields the three following eigenvalues:

1
Ag=—z(at+b+oc). Av=Av, (1+€), (23)

The hyperfine splitting equald ,— \ 5| for the *He? " e~ whereA v andA v, are the exadtor experimentaland com-
atom and|\;—\3|=b(*He) for the *He?* e~ atom, re- puted nonrelativistic hyperfine splittings, respectivedy.is
spectively. Now, by using the, b, andc values presented the total correction which includes relativistic, radiative, and
above one easily finds th&k,—\ 3| =4166.3894655 MHz radiative recoil contributions. The absolute valueebfis of
~4166.389 MHz (the hyperfine spliting for the principal interest for all future theoretical works. In RET]
SHe " e” atom and |\;—\3|=4464.5546647 MHz it was found that the factoe'~2x 10 2, since[7] the nu-
~4464.555 MHz (the hyperfine spliting for the merical value of thee" has been decreased significantly. In
‘Ht e atom. the present study the determinedvalues are~300 times
The standard approach widely used in earlier papers imaller than in Ref[7] for the “He** . " e~ atom and even
based on the fact tha>b anda>c. In this approximation ~3000 times smaller in the case of tfiele’* e~ atom.
one easily finds that the hyperfine splitting equils=b for In fact, this means that all relativistic and radiative correc-
the “He’*u e~ atom and Av=3(b+c) for the tions are significantly smaller than was predicted in earlier
3He?* e~ atom. In other words, we have in this approxi- Works. In other words, the high-precision, nonrelativistic
mation wave functions reproduce the hyperfine splitting for both
helium-muonic atoms quite accurately. However, our com-
Av(“He)z14229.18006105(5)‘(reﬂ)) MHz, puted values do not coincide with the known experimental
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numbers exactly. Furthermore, the leading, lowest-ordehyperfine splitting for the positively charge®lLi®" u e~
(~a?) self-energy and vacuum-polarization corrections toand Li®* w~e™ muonic ions. The appropriate analytical ex-
the hyperfine splitting must be evaluated accurately. Theipressions can easily be found from Es7)—(23) mentioned

total contribution can be approximatdd] by the known
hydrogenic  value [20], i.e., Ava?(In2—2.5)~0.39

above. The following values for the nuclear constants

have
—0.41 MHz, but the real lowest-order correction can bep (6Lj) = 10957.60mn,,

calcualtions:
M (“Li)

used in our present
gn(8Li) =1.64410,

been

smaller. Actually, the new high-precision measurements of_ 12780.888n,, and gy('Li) =6.51288 [21-23. Finally,
the hyperfine splitting should be performed for both helium-yhe hyperfine splitting for the ®Li3*x e~ ion is

muonic atoms’He?* u~ e~ and *“He?* uw~e™. The results of

~29311.4 MHz and for the Li**u e ion it is

such measurements are critically important to provide further. 36790 8 MHz. These values to the best of our knowledge
progress in theoretical studies of such systems. Hopefullyy5ye not been computed or measured previously.

this our work will stimulate further experimental activity to

perform the high-precision measurements for the hyperfine It is a pleasure to thank Dr. Garry T. Smith for his valu-

splitting in the helium-muonic atoms.

able help, and the Natural Sciences and Engineering Re-

The present approach can also be used to determine tisearch Council of Canada for financial support.
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