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Properties and hyperfine structure of helium-muonic atoms

Alexei M. Frolov
Department of Chemistry, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 16 March 1999; published 13 January 2000!

Basic geometrical and dynamical properties of the3He21m2e2 and 4He21m2e2 helium-muonic atoms are
determined from high-precision, variational calculations. Only the bound ground states withL50 are dis-
cussed. The estimated hyperfine splitting between1/2S and 3/2S states in the3He21m2e2 atom is Dn
54166.389 MHz. The analogous result for the hyperfine splitting between0S and 1S states in the
4He21m2e2 atom isDn54464.555 MHz. Both obtained figures agree very well with the known experimen-
tal values. The evaluated hyperfine splitting for the6Li31m2e2 ion is '29311.4 MHz and for the
7Li31m2e2 ion is '36790.8 MHz.

PACS number~s!: 36.10.Dr
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In this paper we report the results of high-precision c
culations of various geometrical and dynamical proper
for the bound groundS(L50) states in helium-muonic at
oms. The main goal of this study is to evaluate very ac
rately the hyperfine splitting between1/2S and 3/2S states in
the 3He21m2e2 atom and analogous difference between0S
and 1S states in the4He21m2e2 atom. These values can b
measured experimentally with good accuracy. In fact,
maximal error of such measurements does not exceed a
kHz. In contrast with this, the best theoretical estimatio
had significantly poorer accuracy ('1 MHz) ~see, e.g.,
@1–4# and references therein!. In the present study, we dete
mine the hyperfine splitting with the maximal error which
less than 5 kHz. This means that both nucleus-electron
muonic-electrond functions must be calculated with max
mal error '131027 a.u. As it follows from the atomic
three-body calculations, the cusp between two negative
ticles ~i.e., electrons! can be determined quite accurate
when the total error in the total energy is less than
310212 a.u.. Since the total ground-state energy of
He21m2 ion is '2400 a.u., this gives the maximal po
sible error in the total bound-state energy'1310215 for
each of the helium-muonic atoms.

Hyperfine splitting in helium-muonic atoms was studi
in a number of papers almost 20 years ago@5–10#. Those
works were stimulated by experiments with helium-muo
atoms performed a few years earlier~see references in Refs
@6# and@9#!. All theoretical studies at that time were based
the two-shell model which describes approximately
structure and properties of the helium-muonic atoms. T
two-shell model for the helium-muonic atoms means t
their actual structure is represented~with very good accu-
racy! as one-electron motion in the field of the quasinucle
which is a singly-charged hydrogenlike ion He21m2. The
muon mass is'206.77 times larger than the electron ma
therefore, the muon shell radius is'(mm /me)(Z/e)'413
times smaller than the appropriate electron shell radius.

By using the two-shell model one may derive some a
lytical expressions for the expectation values of two-parti
Dirac d functions and other properties in such systems. Ho
ever, some of these analytical expressions include infi
sums and depend upon three different dimensionless pa
eters~the three mass ratios!, thus restricting the final accu
1050-2947/2000/61~2!/022509~7!/$15.00 61 0225
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racy of earlier studies. Likewise, expectation values for
Dirac d functions could not be evaluated easily. The fi
highly accurate numerical calculations of the two-particled
functions were performed in Chen’s papers@1–3#, where the
Hylleraas variational expansion of the trial wave functi
was used throughout. In our earlier study of the heliu
muonic atoms@4# ~see also Ref.@11#! we applied an expo-
nential variational expansion producing the ground-state
ergies much better than the values derived in previ
calculations. Moreover, we have determined not onlyd func-
tions, but also all three two-particle cusps. By using t
agreement between computed and predicted cusp values
can easily evaluate the reliability of thed function expecta-
tion values used in calculations. Unfortunately, in@4# such
good agreement was observed only for the muon-nuc
cusp.

Furthermore, our method used in Ref.@4# obviously could
not provide the relative accuracy even comparable with
310215. However, recently we have developed a very effe
tive two-stage strategy@12# to construct high-precision varia
tional wave functions. This strategy can be used to determ
the bound state energies in few-body systems, in princi
with an arbitrarily high accuracy. In the present study th
strategy is applied to the high-precision calculation of t
bound states in the helium-muonic atoms. A detailed desc
tion of the two-stage strategy for the helium-muonic ato
can be found below. Finally, the hyperfine splitting for th
helium-muonic atoms has been determined with the maxi
error of a few kHz. Such improved theoretical values co
cide very well with the known experimental data~for both
helium-muonic atoms!. In particular, the coincidence of ou
presently computed and known experimental results is
nificantly better than observed previously. This indicates t
the ignored relativistic corrections are much smaller than
was predicted in earlier papers.

The nonrelativistic HamiltonianH of the helium-muonic
atoms takes the following general form:

H52
\2

2 F 1

me
¹e

21
1

mm
¹m

2 1
1

mN
¹N

2 G1
e2

r em
22

e2

r eN
22

e2

r mN
,

~1!

where the notationm designates the negatively charge
©2000 The American Physical Society09-1
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TABLE I. The convergence for the total energies in atomic units for the ground state in the he
muonic atoms.

Na 3He21m2e2 4He21m2e2 `He21m2e2

200 2399.042336832862230 2402.637263035135090 2414.036536946808025
300 2399.042336832862295 2402.637263035135158 2414.036536946808084
400 2399.042336832862342 2402.637263035135222 2414.036536946808125
500 2399.042336832862371 2402.637263035135262 2414.036536946808156
550 2399.042336832862384 2402.637263035135275 2414.036536946808169
600 2399.042336832862399 2402.637263035135289 2414.036536946808176
700 2399.042336832862417 2402.637263035135314 2414.036536946808198

aThese results correspond to the short-term~i.e., booster! wave functionC1(N05200).
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muonm2, while N stands for the helium nucleus3He, 4He,
or `He. In atomic units\51, e251, andme51 it is written
in the form

H52
1

2 F¹e
21

1

mm
¹m

2 1
1

mN
¹N

2 G1
1

r em
2

2

r eN
2

2

r mN
,

~2!

where the bothmm andmN masses are expressed in atom
units ~i.e., in the electron mass!. In the present study, no
assumptions are made that some parts of this Hamilto
are negligible in comparison to others. Note also, that~1! our
present calculations are completely nonadiabatic, and Eq~2!
they have been performed in atomic units (\51,me51, and
e51). In these units the following values for the partic
masses@13#

mm5206.768262, M `He215`,

M 3He2155495.8852, M 4He2157294.2996,

were used in calculations.
Our present consideration is restricted to the case of

bound groundS states (L50) in the helium-muonic atoms
In the case ofS states the trial wave functioncL50 in the
relative coordinatesr 32, r 31, andr 21 takes the form

cL50~r 32,r 31,r 21!5(
i 51

N

Ciexp~2a i r 322b i r 312g i r 21!,

~3!

whereN is the number of terms in the variational expansio
The subscript 1 denotes the electron, the subscript 2 de
nates muonm2, while subscript 3 stands for the helium
nucleus. This meansr 325r 235r mN5urWm2rWNu, r 315r 13

5r eN5urWe2rWNu, and r 215r 125r em5urWe2rWmu, respectively.
The linear parametersCi are determined by the solution o
the variational~eigenvalue! problem. The principal question
is the choice of the nonlinear parametersa i ,b i ,g i , where
i 51,2, . . . ,N. The regular@14# or quasirandom choices o
these parameters obviously cannot provide a final accu
sufficient for the helium-muonic atoms~see above and ou
results from@4#!. Presently, to improve the final accurac
drastically we shall apply our two-stage procedure propo
in @12#.
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In this approach the trial wave functionC is represented
by the sum of the very well-optimized, short-term~or
booster! functionC1 and roughly optimized~or even nonop-
timized!, long-term functionC2. If the total number of terms
equals N, then we may write C(N)5C1(N0)1C2(N
2N0), whereN0!N ~but alsoN0@1). For the exponentia
variational expansion, each of the basis functions conta
three nonlinear parameters. Therefore, the short-t
C1(N0) function includes 3N0 nonlinear parameters, while
the secondC2(N2N0) function contains 3(N2N0) such
parameters. Correspondingly, the first stage of the proce
is to well optimize only the 3N0 nonlinear parameters, whic
is significantly smaller than the total number of these para
eters (3N) in the trial wave functionC. In the second stage
the total number of nonlinear parameters grows extensiv
but they can be chosen by approximate optimization or e
without optimization, e.g., in a regular@14# or quasirandom
manner~see, e.g.,@4# and references therein!.

For the considered helium-muonic atoms the number
basis functions in the booster functions has been cho
equal 200, i.e.,N05200. The 600 nonlinear parameters
the booster function have been optimized carefully for ea
of the three helium-muonic atoms considered, i.e. for
3He21m2e2, 4He21m2e2, and `He21m2e2 atoms. Fi-
nally, the variational energies obtained with such boos
functions~200 basis functions in each! are significantly bet-
ter than energies determined for these systems in@4# with
400 nonoptimized basis functions. The final accuracy w
700 basis functions is sufficient to stabilize at least 15 s
nificant figures, i.e., to reach the relative accuracy
310215 for the total energy. This gives 1310212 a.u. for
the helium-muonic atoms.

The variational energies obtained in calculations are p
sented in Table I. The numerical values for some of
properties~i.e., expectation values! can be found in Table II.
In both Tables I and II only atomic units are used:me51,
e51, and \51. As follows from Table I, the accurac
achieved for the total energiesE by using the two-stage ap
proach is significantly higher than that obtained in the pre
ous works. Note that, in principle, such accuracy can also
increased drastically by performing better optimization
the short-termC1 function. The physical meaning for all o
the expectation values in Table II is quite clear from t
notations used~for more detail, see@12#!. Now, we want to
9-2
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TABLE II. The expectation values in atomic units (me51,\51,e51) of some properties for the groun
S states (L50) of the iHe21m2e2 atoms~wherei 53, 4, and`).

System 3He21m2e2 4He21m2e2 `He21m2e2

Particles 3 2 1 3 2 1 3 2 1

^r 21
22& 1.99913907599 1.99931125680 1.99985633100

^r 31
22& 1.99969855311 1.99986366763 2.00038742025

^r 32
22& 317672.089970 323428.825393 342024.895809

^r 21
21& 0.9998492589984 0.9998912308494 1.000024296854

^r 31
21& 0.9998638509791 0.9999057441944 1.000038566251

^r 32
21& 398.5423976114 402.1373029064 413.5365105290

^(r 31r 32)
21& 398.4877927370 402.0990589015 413.5521314933

^(r 32r 21)
21& 398.4849137616 402.0961688833 413.5492072979

^(r 31r 21)
21& 1.992047926597 1.992280422629 1.993010072434

^(r 32r 31r 21)
21& 794.90908505 802.16418121 825.17752181

^r 21& 1.500229562409 1.500166624663 1.499967090001
^r 31& 1.500223659552 1.500160720184 1.499961186483
^r 32& 3.76371506603131023 3.73006934478431023 3.62724931563731023

^r 21
2 & 3.000925384153 3.000673562997 2.999875258280

^r 31
2 & 3.000907793135 3.000655963785 2.999857652388

^r 32
2 & 0.18887401854231024 0.185512234665231024 0.175425838043431024

^r 21
3 & 7.503489911979 7.502545354839 7.499551220113

^r 31
3 & 7.503437239738 7.502492656457 7.499498497710

^r 32
3 & 0.11847800345331026 0.115328921644631026 0.106052212923731026

^r 21
4 & 22.51402052822 22.51024148604 22.49826332561

^r 31
4 & 22.51384507503 22.51006594791 22.49808771573

^r 32
4 & 0.89183495671931029 0.860369810776531029 0.769355685011831029

^(r31•r32)& 0.648192301701231026 0.476005617644231026 20.316537662171631027

^(r32•r21)& 0.182392095525031024 0.180752178488831024 0.175742375705631024

^(r31•r21)& 3.000907144943 3.000655487779 2.999857684042
t21 0.794989738931024 0.573662694204431024 20.103021058436931024

t31 0.242926969931022 0.242907934773331022 0.242852927925931022

t32 0.9999874898390 0.9999877108127 0.9999883739697
^ f & 0.624064628028231023 0.618539107459731023 0.601650285777931023

^2“2•“3& 2158836.012273384 2161714.388101948 2171012.450045429
^2“1•“3& 20.968050038563694 20.976746235435464 21.00433918647835
^2“1•“2& 20.0316792133619937 20.0230667712584065 0.00426059055935379

^2
1
2“1

2& 0.4998646259628 0.4999065033469 0.5000392979595

^2
1
2“2

2& 79418.02197630 80857.20558436 85506.22289242

^2
1
2“3

2& 79418.49016171 80857.68242409 85506.72719231

^d21& 0.313681896 0.313760812 0.314002531
^n21& 0.994773280 0.994934677 0.999486447

n̄21
a 0.9951869453478 0.995186453478 0.995186453478

^d31& 0.320611819 0.320631162 0.320697954
^n31& 22.0007595 21.9980667 21.9994278

n̄31
a 21.999636157582 21.999725850875 22.0

^d32& 20149938.827 20700137.343 22510841.038
^n32& 2398.5424086 2402.1373156 2413.5365311

n̄32
a 2398.5424113627 2402.1373165919 2413.5365240000

^d321& 0.64142231017 0.65899931017 0.71690431017

h 0.4741310214 0.5157310214 0.4037310214

Etr 2398.542411362650112 2402.137316591922656 2413.536524000000000

aThe exact value from Eq.~5!.
022509-3
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ALEXEI M. FROLOV PHYSICAL REVIEW A 61 022509
make only a few following remarks. In all formulas give
below and also in Table II, the notations 1 and 2 refer to
electron and muon, respectively. The notation 3 design
the helium nucleus.d31, d21, andd321 stand for the two- and
three-particle Diracd functions, respectively. The two-bod
cusp is determined in a traditional manner@15,16#:

^n i j &5

K d~r i j !
]

]r i j
L

^d~r i j !&
, ~4!

where d i j 5d(r i j ) is the appropriate Diracd function and
( i j )5(21) and (31). The exact valuen̄ i j of the two-particle
Coulomb cusp equals@15#

n̄ i j 5qiqj

mimj

mi1mj
, ~5!

whereqi andqj are the charges andmi andmj the masses o
the particles.

The expectation values of the two interparticle cos
functions are determined traditionally:

t i j 5^cos~r ik•r jk!&5 K r ik•r jk

r ik•r jk
L , ~6!

where (i , j ,k)5(1,2,3). The quantitŷ f & is expressed in
terms of the relative coordinates (r 31,r 32,r 21) or perimetric
coordinates (u1 ,u2 ,u3) @where ui5

1
2 (r i j 1r ik2r jk), and

( i , j ,k)5(1,2,3)# as follows:

^ f &5 K cU u1

r 32

u2

r 31

u3

r 21
Uc L

5E E E uc~u1 ,u2 ,u3!u2u1u2u3du1du2du3 . ~7!

The value^ f & can be calculated directly or by applyingt i j .
The equalities

t211t321t315114^ f & ~8!

hold for arbitrary three-body nonsymmetric systems. T
virial factor h is determined as follows:

h5U11
^V&
2^T&

U, ~9!

where^T& and ^V& are the expectation values of the kine
and potential energy, respectively. The deviation of the f
tor h from zero indicates the quality of the wave functio
used. The appropriate binding energies« are given in eV
(1 Ry527.2113961 eV). Note also that in Table II on
stable figures from calculations with the higher values oN
are presented.

Note that some expectation values in Table II can be
pressed as the linear combinations of other properties.
instance, for the three relative vectorsrW32, rW31, and rW21 we
have
02250
e
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or

rW322rW311rW2150. ~10!

Therefore, the three following equalities@( i , j ,k)5(1,2,3)#

rW ik•rW jk5
1

2
~r ik

2 1r jk
2 2r i j

2 ! ~11!

hold in any case. For the appropriate expectation values
finds ~see Table II!

^rW ik•rW jk&5
1

2
~^r ik

2 &1^r jk
2 &2^r i j

2 &!. ~12!

Analogously, sincepW 11pW 21pW 350, then we write

pW i•pW j5
1

2
~pk

22pi
22pj

2! ~13!

and

^pW i•pW j&5
1

2
~^pk

2&2^pj
2&2^pi

2&!, ~14!

respectively@( i , j ,k)5(1,2,3)#. Moreover, if the threepW i are
determined by the relationspW i5(2ı)¹W i in Cartesian coordi-
nates, then one finds

^2¹W i•¹W j&5 K 2
1

2
¹k

2L 2 K 2
1

2
¹ i

2L 2 K 2
1

2
¹ j

2L , ~15!

where (i , j ,k)5(1,2,3). The expectation values from bo
sides of this equality can be found in Table II. Note, ho
ever, that the last three equalities are obeyed only in Ca
sian coordinates and only ifpW i5(2ı)¹W i . In the present
study such a choice is used, and therefore,^2¹W i•¹W j& can be
expressed througĥ2 1

2 ¹ i
2& and vice versa.

The analysis of the computed properties for heliu
muonic atoms indicates clearly that they have two-shell cl
ter structure, as expected. This means that the muon m
at very short distances from the nucleus. The radius of
muonic shell is'413.5 times smaller than the radius of th
outside, electron shell. The electron and muon velocities
quite comparable to each other. However, the correlation
tween electron and muon motions in the helium-muonic
oms is significantly smaller than the electron-electron cor
lation in the usual helium atom. In order to show th
principal difference between our previous@4# and present
wave functions, let us introduce the following paramet
which is very useful in few-body bound-state computatio

x5103A1

3 (
( i j )

S ^n i j &

n̄ i j

21D 2

. ~16!

Here,^n i j & and n̄ i j are the computed and expected~i.e., pre-
dicted! cusp values. The summation is to be extended o
all different pairs of particles in theN-body system, i.e.,i
Þ j 51, . . . ,N and also (i j )5( j i ). In particular, for the
three-body systems ~where N53) one finds (i j )
9-4
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PROPERTIES AND HYPERFINE STRUCTURE OF . . . PHYSICAL REVIEW A 61 022509
5(32),(31),(21). The parameterx indicates the cusp quality
of the wave function determined in calculations. For the
act wave function this parameter equals zero exactly. In
general case, the smaller values of thex parameter corre-
spond to more accurate wave functions. The wave func
used in Ref.@4# gives x'4.0028447. Our present wav
functions have a significantly better cusp quality, since, e
for the 3He21m2e2 atomx'0.40329858. It should be men
tioned, however, that cusps as well as other geometrical
dynamical properties~see, e.g., Table II! are the so-called
secondary properties. The only primary property is
bound-state energy. The main point to be emphasized is
any improvement of the secondary properties is real if a
only if the same wave function provides also the bet
bound-state energy. A separate improvement of the sec
ary properties, and in particular, an artificial ‘‘cus
improvement’’ has no sense. Furthermore, such an ar
cially corrected cusp does not indicate the better quality
the computedd function.

Now, let us discuss the hyperfine splitting calculations
the helium-muonic atoms in detail. The hyperfine pertur
tion of the groundS(L50) state is given by the expectatio
value of the following operator:

HHF52
8p

3
mW m•mW Nd~rmN!2

8p

3
mW m•mW ed~rem!

2
8p

3
mW e•mW Nd~reN!, ~17!

where mW e , mW m , and mW N are the magnetic moments of th
electron, muon, and nucleus, respectively. The Diracd func-
tion d(r i j ) is determined traditionally, i.e.,d(r i j )5d(r i
2r j ). For the consideredS(L50) states the nonrelativisti
wave function factorizes into a product of coordinate-sp
and spin-space parts. Following Ref.@6# it can be shown tha
the spin-space expectation value^HHF& ~i.e., spin operator!
can be represented in the form

dHs5^HHF&52asWm• IWN2bsWe•sWm2csWe• IWN , ~18!

wheresWe , sWm , and IWN are the spin vectors of the electro
muon, and nucleus, respectively. In this formula the c
stants a, b, and c have the following values~in atomic
units!:

a5A^d~rmN!&5
2p

3
a2

gmgN

mmmp
^d~rmN!&, ~19!

b5B^d~rem!&5
2p

3
a2

gegm

memm
^d~rem!&, ~20!

c5C^d~reN!&5
2p

3
a2

gegN

memp
^d~reN!&, ~21!

wherea is the fine structure constant,me , mm , andmp are
the electron, muon, and proton masses, respectively. H
we used the fact that in atomic units the Bohr magne
02250
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equals1
2 exactly. The fine structure constanta, proton mass

mp , and g factors used in calculations were chosen fro
@13#, @17#, and@18#

a57.2973530831023, mp51836.152701,

ge52.002319304386,gm52.002331846,

gN~3He!54.2552496, gN~4He!50.

In fact, the hyperfine splitting is traditionally expressed
MHz. To recalculate the energies from a.u. to MHz the f
lowing conversion factor 6.579683920613109 (MHz /
a.u.) @17# has been used. Now, one can easily calculate thA,
B, andC constants

A~3He!516.468831488009 MHz,A~4He!50,

B~3He!514229.180106055 MHz,

B~4He!514229.180106055 MHz,

C~3He!53405.2103352634 MHz,C~4He!50.

Thus, the main problem is now to compute the expec
tion values of the appropriate Diracd functions. In fact, the
numerical computation of alld functions does not contain
any principal difficulties. However, in contrast with th
bound-state energies, there is no maximum-minimum p
ciple for the d function expectation values. Briefly, thi
means that the results of such calculations may oscil
around the exact values when the total number of basis fu
tions grows. The typical situation is shown in Table I
where the ‘‘convergence’’ of the threed functions is pre-
sented for the3He21m2e2 and 4He21m2e2 atoms. By us-
ing the results of our present calculations we have de
mined the following expectation values for the appropriated
functions:

^d32&~
3He!520149938.856131022,

^d32&~
4He!520700137.356131022,

^d31&~
3He!50.320611956131027,

^d31&~
4He!50.320631056131027,

^d21&~
3He!50.31368186131027,

^d21&~
4He!50.31376056131027,

where the subscript 1 denotes the electron, the subscri
designates muonm2, and subscript 3 stands for the heliu
nucleus. Here, the expectation values for alld functions are
taken from the results of calculations with the maximal nu
ber of basis functions, i.e.,N5700. In Table III for each
expectation value only ten significant figures are presen
The appropriate uncertainties have been determined f
comparison with the results of calculations with a smal
number of basis functions~see, e.g., Table III for the
3He21m2e2 and 4He21m2e2 atoms!.
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TABLE III. The observed ‘‘convergence’’ for thed function expectation values in atomic units for th
ground states in the helium-3-muonic and helium-4-muonic atoms.

Na ^d32& ^d31& ^d21&

400 0.20149938853108 0.3206117828 0.3136817601
500 0.20149938843108 0.3206117849 0.3136818352
550 0.20149938853108 0.3206118465 0.3136817879
600 0.20149938853108 0.3206118671 0.3136818350
700 0.20149938853108 0.3206118514 0.3136818415

20149938.856131022 0.320611956131027 0.31368186131027

Na ^d32& ^d31& ^d21&

400 0.20700137363108 0.3206309205 0.3137605171
500 0.20700137363108 0.3206309726 0.3137605354
550 0.20700137353108 0.3206310118 0.3137604991
600 0.20700137353108 0.3206311011 0.3137605325
700 0.20700137353108 0.3206311005 0.3137605147

20700137.356131022 0.320631056131027 0.31376056131027
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Now, for thea, b, andc coefficients in thedHs operator
we find

a~3He!5331845941.65024 MHz,a~4He!50

b~3He!54463.4348281917 MHz,

b~4He!54464.5461271580 MHz

c~3He!51091.7511257490 MHz,c~4He!50.

The diagonalization of thedHs operator ~in spin space!
yields the three following eigenvalues:

l15
1

4
~a1b1c!1

1

2
Aa21b21c22ab2ac2bc,

l25
1

4
~a1b1c!2

1

2
Aa21b21c22ab2ac2bc,

l352
1

4
~a1b1c!.

The hyperfine splitting equalsul22l3u for the 3He21m2e2

atom andul12l3u5b(4He) for the 4He21m2e2 atom, re-
spectively. Now, by using thea, b, and c values presented
above one easily finds thatul22l3u54166.3894655 MHz
'4166.389 MHz ~the hyperfine splitting for the
3He21m2e2 atom! and ul12l3u54464.5546647 MHz
'4464.555 MHz ~the hyperfine splitting for the
4He21m2e2 atom!.

The standard approach widely used in earlier paper
based on the fact thata@b anda@c. In this approximation
one easily finds that the hyperfine splitting equalsDn5b for
the 4He21m2e2 atom and Dn5 3

4 (b1c) for the
3He21m2e2 atom. In other words, we have in this approx
mation

Dn~4He!514229.180061055^d~rem!& MHz,
02250
is

Dn~3He!510671.885079542^d~rem!&

12553.9077514476^d~reN!& MHz, ~22!

where^d(rem)& and ^d(reN)& are the expectation values fo
the electron-muonic and electron-nucleusd functions, re-
spectively. From these formulas and our expectation val
we find Dn(4He)'4464.555 MHz and Dn(3He)
'4166.383 MHz. These values are very close to the exp
mentally known values forDn(4He)'4464.95 MHz @19#
and Dn(3He)'4166.41 MHz~for references and a review
of experimental data see@6# and @10#!. For the Dn(3He)
value the observed agreement can be considered as exce
Furthermore, we estimate the maximal numerical errors
the both theoreticalDn values as a few kHz. The differenc
between the hyperfine splittings determined in the stand
approach and by using the exact diagonalization ofdH op-
erator is also a few kHz.

The results of our present study can be also presente
the same form as in Ref.@7#:

Dn5Dnnr~11e r !, ~23!

whereDn andDnnr are the exact~or experimental! and com-
puted nonrelativistic hyperfine splittings, respectively.e r is
the total correction which includes relativistic, radiative, a
radiative recoil contributions. The absolute value ofe r is of
principal interest for all future theoretical works. In Ref.@7#
it was found that the factore r'231023, since@7# the nu-
merical value of thee r has been decreased significantly.
the present study the determinede r values are'300 times
smaller than in Ref.@7# for the 4He21m2e2 atom and even
'3000 times smaller in the case of the3He21m2e2 atom.
In fact, this means that all relativistic and radiative corre
tions are significantly smaller than was predicted in ear
works. In other words, the high-precision, nonrelativis
wave functions reproduce the hyperfine splitting for bo
helium-muonic atoms quite accurately. However, our co
puted values do not coincide with the known experimen
9-6
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numbers exactly. Furthermore, the leading, lowest-or
(;a2) self-energy and vacuum-polarization corrections
the hyperfine splitting must be evaluated accurately. Th
total contribution can be approximated@5# by the known
hydrogenic value @20#, i.e., Dna2(ln 222.5)'0.39
20.41 MHz, but the real lowest-order correction can
smaller. Actually, the new high-precision measurements
the hyperfine splitting should be performed for both heliu
muonic atoms3He21m2e2 and 4He21m2e2. The results of
such measurements are critically important to provide furt
progress in theoretical studies of such systems. Hopefu
this our work will stimulate further experimental activity t
perform the high-precision measurements for the hyper
splitting in the helium-muonic atoms.

The present approach can also be used to determine
02250
r

ir

f
-

r
y,

e

the

hyperfine splitting for the positively charged6Li31m2e2

and 7Li31m2e2 muonic ions. The appropriate analytical e
pressions can easily be found from Eqs.~17!–~23! mentioned
above. The following values for the nuclear consta
have been used in our present calcualtio
M (6Li) 510957.602me , gN(6Li) 51.64410, M (7Li)
512780.885me , and gN(7Li) 56.51288 @21–23#. Finally,
the hyperfine splitting for the 6Li31m2e2 ion is
'29311.4 MHz and for the 7Li31m2e2 ion it is
'36790.8 MHz. These values to the best of our knowled
have not been computed or measured previously.
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52.51002488, ^deN&52.55876520, ^dNm&571830578.5 for
the 6Li31m2e2 ion, and ^dem&52.51020916, ^deN&
52.55883058,̂ dNm&572402942.6 for the7Li31m2e2 ion.

@22# I. P. Grant, inAtomic, Molecular and Optical Physics, Hand
book ~Ref. @17#!, p. 258.

@23# G.W.F. Drake, inAtomic, Molecular and Optical Physics
Handbook~Ref. @17#!, p. 154 and references therein.
9-7


