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Local spin-density approximation for spin eigenspaces and its application to the excited states
of atoms
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The main objective of this paper is to investigate the applicability of the subspace density-functional theory
~SDFT! for the calculation of excited-state energies. The exchange and correlation energy density functionals,
Exc(r), used in the present calculation are local and depend on the polarizability parameterz52S/N. The
deviations of the calculated excited-state energies from their corresponding experimental values range from
0.1% to 0.8% for systems with more than two electrons, while for the helium isoelectronic series the corre-
sponding range is from 0.1% to 1.9%. Thus the SDFT accuracy compares well in most cases with that of the
ground-state local-density approximation calculations. Virial theorem and other relations concerning atoms are
verified in the context of SDFT calculations. In this paper we also present a new formulation of the SDFT. Our
new formulation alleviates the initial Kohn and Sham~KS! theory from the constraint of densities representable
by single Slater determinants. This is an essential development as there are eigenstates of spin and other
quantum operators, not representable by single Slater determinants.

PACS number~s!: 31.15.2p
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I. INTRODUCTION

Although the excited-state Kohn and Sham~KS! theory
was established long ago@1–3#, its applications are very lim-
ited. Kohn, Oliveira, and Gross~KOG! @2# used the subspac
~equiensemble! exchange and correlation functionalExc(r)
derived by Kohn@4# to calculate the energies of light atom
Most of their results compare well with experiment, indica
ing that theExc(r) used has sufficient accuracy. Howeve
the nonlocal dependence of this functional makes the ca
lations practically difficult. This is one of the reasons, in o
view, that this method did not become popular. To o
knowledge, after the work of Kohn@4# only Nagy@5# tried to
determine explicit forms ofExc(r) and do applications
However, her efforts were on the general ensemble the
@2#, and thus the advantages derived from the geometric
tures of the subspace density-functional theory~SDFT! @6#
were not taken into account.

One of these advantages is that in the SDFT the subs
density has the symmetry of the external potential, wher
in the KOG theory this is not the case. The consequenc
this asymmetry is catastrophic in the case of degeneracy
no solutions of the KS equations exist, transforming acco
ing to the irreducible representations~irreps! of the symme-
try group of the exact Hamiltonian@7#. In the present paper
we do not deal with universal functionals but attention
focused on the more moderate problem of functionals ap
priate for subspaces having definite spinS and total angular
momentumL. The role of the spin parameter is apparent
the kinetic-energy functional of a two-particle noninteracti
system, where the kinetic-energy functional for theS5O
states is

E d3r
@“r~r !#2

8r~r !
,

whereas theS51 state has a complicated expression wh
includes a phase factor, the explicit form of which can
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determined by solving a differential equation@8#. Thus, the
universality of the ground-state functionals of the initial K
theory does not imply universality of the functional forms.
fact, for some cases it is not possible to express the no
teracting state of definite spin with a single Slater deter
nant ~SLD! @9#.

The most difficult task in density-functional theory~DFT!
is the determination of the functional form ofExc(r). Al-
though hundreds of papers have been written on this p
lem, the effort is essentially on the ground-state theo
Older work in this field can be found in DFT text book
@10,11,3,12#. The methods employed to derive approxim
tions for Exc(r) are based on three overlapping methodo
gies: ~a! scale transformations, sum rules, and variatio
principles@13–16#; ~b! the electron gas and other model sy
tems@17–20#; and~c! the hierarchy equations for the densi
matrices@8,21,22#.

All these methods are also applicable in the SDFT. F
this reason, in the present paper we propose a localExc(r,z),
parametrized by the spin polarizabilityz52S/N, which can
be viewed as a subspace generalization of the von Barth
Hedin functional, which was based on a random-phase
proximation~RPA! of the spin-polarized electron gas@3,23#.

The existence of accurate experimental and theoretica
sults for atoms and atomic ions was the reason that we
tempted to apply our theory initially to these systems. A
other reason for this choice is that the Hartree andExc(r)
potentials are spherically symmetric, as in this case one
prove that the spherical part of the density is sufficient
determine uniquely the exchange and correlation poten
@24#. This property of the KS potential leads to an addition
advantage as one needs to determine only the radial pa
the wave function, i.e., one has to solve one variable
equations for which simple numerical procedures can
used. Hence, one has to deal with differential equations
single variable, making it easier to have control over t
computer programs and the accuracy of the computation
©2000 The American Physical Society02-1
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THEOPHILOU AND PAPACONSTANTINOU PHYSICAL REVIEW A61 022502
In Sec. II, we derive the SDFT single-particle equatio
without using the one-to-one correspondence between
sity and subspace, i.e., without using a Hohenberg and K
~HK! theorem for subspaces. The advantage of the new
mulation is that there is no restriction of the KS states
single Slater determinants, nor to any noninteracting st
This is an essential feature which makes the present th
different from the initial KS theory, where one insists on
single SLD. We emphasize here that the HK theorem@25#,
although not necessary, is valuable for deriving general pr
erties of the density functionals. Another feature of t
present formulation is that it does not use functional diff
entiation. This is a big advantage as the functional deri
tives of the energy with respect to the density may not e
@26#.

In Sec. III we formulate our subspace local-density a
proximation ~SLDA! scheme. The proposed function
Exc(r,z) is justified through an alternative treatment of t
homogeneous electron gas~HEG!. In this treatment, we dea
with states of the HEG having not only well-defined to
spin ~S! but also well-defined angular momentum~L!.

Finally, in Sec. IV we apply our method to the excite
states of atoms and compare our results with those der
through the KOG method and draw some conclusions.
also compare them with those of von Barth, which refer
the lower-energy states of each symmetry@27#.

II. DERIVATION OF THE SUBSPACE KS EQUATIONS

A. The subspace minimum principle

The initial DFT for excited states~SDFT! @1# was based
on the one-to-one correspondence between the minimi
subspace and the subspace density. This is the subs
equivalent of the Hohenberg and Kohn theorem for
ground state@25#, on which the initial KS theory was base
@28#. As was shown in a previous paper@24#, this theorem is
not necessary for the ground-state formulation, and a m
elegant rigorous formulation is possible. In this paper,
show that a derivation of the KS equations for the subsp
theory of excited states is also possible. This formulation
certain advantages over the previous rigorous formula
@29# as no problem of representability of densities by Sla
determinants arises. In fact, in the new formulation there
no need for the constraint of densities representable by si
determinants.

Before proceeding to the derivation of the excited-st
KS equations, we make a brief review of the subspace the
minimum principle, as it is essential for understanding
rest. By means of this theory@1# one can reduce the excited
state problem to a minimum principle problem, although
retrieval of information about the excited state correspond
to the energy eigenvalueEj is not direct, but through sub
spaces of dimensionj and j 21 to be defined below: LetH
be a Hamiltonian andM any linear subspace of the Hilbe
space of dimensionj.

Then one can define the functional

E~M !5TrM~H !5(
i 51

j

^C i uHuC i&, uC i&PM . ~1!
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Note that the above functional does not depend on
choice of basis inM as the trace~Tr! of an operator in a
subspace does not depend on the basis. Let us find
minima of this functional for all subspaces of the Hilbe
space of dimensionj. We take into account that by varying
single stateuC i& to uC i&1euu&, whereuu& is a state with zero
projection in the subspaceM, one produces a different sub
spaceM 8. Then, if M is the minimizing subspace of dimen
sion j, one gets for the first-order variations

^uuHuC i&50, uC i&PM ,

and thereforeHuC i& has only a projection inuC i&, i.e.,

HuC i&5Ei uC i& ~2!

and

E~M !5(
i 51

j

Ei , Ei<Ei 11 , ~3!

i.e., E(M ) is the sum of thej lowest-energy eigenvalues o
H. Then if M j andM j 21 are minimizing subspaces, over th
set of subspaces of dimensionj and j 21, the j th eigenvalue
in ascending order is

Ej5E~M j !2E~M j 21!.

Thus, by using an indirect method, one can calculate
energy eigenvalues and eigenstates by applying a minim
principle. The space of eigenstates will be referred to as
eigenspace. To calculate the expectation value of an opera
A, corresponding to the energy eigenstateuC j&, we need the
subspace functional

QA~M !5TrM~A!5(
i 51

j

^C i uAuC i&, uC i&PM ~4!

for subspaces of dimensionj and dimensionj 21. Thus,
given the minimizing subspacesM j andM j 21 , the expecta-
tion value ofA can be determined by the relation

^C j uAuC j&5QA~M j !2QA~M j 21!. ~5!

If the Hamiltonian is invariant under a group of transform
tionsG, one can choose subspaces transforming accordin
a definite irrep ofG and find the minima in this class o
subspaces. In this way there is no problem of degenerac
one considers the whole space of degeneracy and not a s
state.

B. The new SDFT formulation

The Hamiltonian considered here is the many-elect
Hamiltonian

HV5T1H int1V̂, ~6!

whereT is the kinetic-energy operator,
2-2
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LOCAL SPIN-DENSITY APPROXIMATION FOR SPIN . . . PHYSICAL REVIEW A61 022502
T5 1
2 E d3r(

s
“cs†~r !“cs~r !, ~7!

H int is the interaction energy,

H int5
1
2 E d3r E d3r 8(

st

cs†~r !c t†~r 8!c t~r 8!cs~r !

ur2r 8u
,

~8!

V̂5E d3r r̂~r !V~r !, ~9!

and r̂(r ) is the density operator,

r̂~r !5(
s

cs†~r !cs~r !. ~10!

The summation overs and t indicates summation with re
spect to the spin indices.

We next define the functionalsK andL in the same way
as in the case of the ground-state formulation@24#, the dif-
ference being that the arguments of the new functionals
j-dimensional subspaces. In the case of degeneracy, th
mensionalityj must be an integral multiple of the dimensio
of the irrep of the symmetry group of the Hamiltonian a
will be denoted by a superfix, e.g., for the case of spin sy
metry by MS we denote the subspaces of the 2S11 eigen-
states ofS2. The upper index will be omitted in the following
as subspacesMS of definite spin will be considered, i.e., ou
Hamiltonian will not involve any spin-orbit interaction. I
this way the energy eigenstates are simultaneously ei
states ofS2 and the variational principle can be limited
variations in this space, as variations to other subspace
spin S8 satisfy the relation

^us8uHuC i
s&5cdss8

and thus variations out of the subspace under considera
vanish identically as they are orthogonal to any state of
form HuC i

s&.
The minimum kinetic-energy functional is

K~M !5 inf$QT~M 8!:rM8~r !5rM~r !%, ~11!

where

rM~r !5Qr~r !~M !5(
i 51

j

^C i ur̂~r !uC i&,

uC i&PM , ^C i uC j&5d i j . ~12!

The above definition implies that for each subspaceM we
consider the set of subspacesM 8, having the same density a
M. To each such subspace we assign a kinetic ene
QT(M 8)5TrM8(T). Then the functionalK(M ) is the mini-
mum of the kinetic energy in this set of subspaces. Note
the value of the functionalK(M ) is the same for all sub
spaces having the same density. This is an essential di
ence with respect to our previous rigorous formulations@29#
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as our definitions here do not demand details about the s
of densities, i.e., in this formulation only subspace represe
able densities are involved. In the same way as above,
can define for every subspaceM the minimum internal en-
ergy functional for the operatorH05T1H int ,

L~M !5 inf$QH0
~M !:rM8~r !5rM~r !%, ~13!

which is the equivalent of the minimum kinetic-energy fun
tional K. Here, one can show that the infima of these fun
tionals are minima, i.e., minimizing subspaces of the Hilb
space belonging to the irrep of the symmetry group ofH
exist @30#. The procedure followed is similar to that of Lie
@26# and Hadjisavvaset al. @29#. Thus one can use th
minima under the constraint in place of the infima. Final
we define the functional

G~M !5L~M !1QT~M !2K~M !1E d3r rM~r !V~r !,

~14!

where QT(M )5TrM(T), according to the notation intro
duced by Eq.~4!.

Since QT(M )2K(M )>0, one concludes that the min
mum ofG(M ) is obtained when equality holds. Further, o
can show, following the same proving procedure used for
single state@24#, that

minG~M !5min$TrM8~HV!:rM8~r !5rM~r !%5(
i 51

j

Ei .

~15!

Thus, the minimum value of the functionalG(M ) is equal to
the sum of thej lowest-energy eigenvalues of the initia
Hamiltonian HV , whereas the minimizing subspace is n
the subspaceSwhich minimizes the initial Hamiltonian, i.e.
the one for which the equality TrS(HV)5min$TrM8(HV)%
holds, but a noninteracting systemj-dimensional subspac
which minimizes the kinetic energy under the density co
straint sinceQT(M )5K(M ). Thus, the following equation is
satisfied:

QT~M !5minH (
i 51

j

^C i uTuC i&:(
i 51

j

^C i ur̂~r !uC i&

5 rs~r !,uC i&PM ,^C i uC j&5d i j J ,

~16!

whererS(r ) is the density corresponding to the subspacS
defined above.

As is well known, minimization of the kinetic energy un
der the density constraint leads to the following equat
@18,29#:

TuF i&1E d3r r̂~r !Veff~r !uF i&5Ei8uF i& ~17!

with the potentialVeff entering as a Lagrange multiplier, t
be determined by the density constraint. These are equa
2-3
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THEOPHILOU AND PAPACONSTANTINOU PHYSICAL REVIEW A61 022502
of a noninteracting system and for this reason the eigens
uF i& will be referred to asnoninteracting states. Thus for a
given external potentialV, there is a noninteracting Hamil
tonian with an effective potentialVeff , with the same density
as that of the minimizing subspace of the initial Hamiltoni
HV . As no constraint was imposed, the statesuF i& need not
be single Slater determinants but a linear combination
them. Thus, one can choose states which transform acc
ing to the irreps of a group and not representable by sin
SLD.

We next proceed in a more conventional way to defi
Exc ,

Exc~M !5L~M !2K~M !2EH~M !, ~18!

where

EH~M !5
j

2 E d3r E d3r 8
rM~r !rM~r 8!

ur 82r u
~19!

is the Hartree energy and the density normalization here
in the following is to the particle numberN.

We note that all quantities on the right are determin
uniquely by the subspace density, because of their de
tions. Thus since all subspaces with the same density h
the same minimum internal energy and kinetic energy,
can writeL(M )5U(rM), K(M )5T(rM), and in this way
the exchange and correlation energy can be expresse
terms of the subspace density. Then

G~M !5QM~M !1EH~rM !1Exc~rM !1 j E d3r rM~r !V~r !.

~20!

FIG. 1. Occupied spin orbitals for the ground state of a jelliu
model confined by a spherical surface. Note that the values ofk are
limited on the right because of the relationkR< l .
02250
tes

f
rd-
le

e

nd

d
i-
ve
e

in

In varying the subspaceM by variations ofuF i&, we can
write

dExc~rM !5
dExc~rM !

drM
^dC i ur̂~r !uC i&

and in this way retrieve Eq.~17!, whereVeff5V1VH1Vxc ,
with exchange and correlation potential

Vxc~rM !5
dExc~rM !

drM~r !
~21!

and Hartree potential

VH~rM !5E d3r 8
rM~r 8!

ur 82r u
. ~22!

However, this derivation is at the expense of mathemat
rigor as we used the functional derivative of the exchan
and correlation energy with respect to the density and
has to prove the existence of this derivative, after defin
the space of densities@26#.

III. THE SPIN-INDEXED SUBSPACE FUNCTIONALS

When no magnetic field and spin-orbit interactions a
present, the total spin operatorS commutes with the Hamil-
tonian. Therefore, one can restrict the search of the ene
eigenstates in the subspace of the Hilbert space spanne
eigenstates ofS2 andSz , having fixedS andMS . Thus one
can develop a SDFT theory with fixed quantum numbersS.
As usual, in order to get an approximation forExc(r), we
derive some conclusions for systems with a large numbe

FIG. 2. Occupied spin orbitals of a high angular momentu
excited state for the jellium model confined by a spherical surfa
The triangles correspond to spin orbitals with positiveLz while the
circles havem positive or 0.
2-4



LOCAL SPIN-DENSITY APPROXIMATION FOR SPIN . . . PHYSICAL REVIEW A61 022502
TABLE I. Subspaces with the expressions of their densities, their dimension~dim!, particle number~N!,
spin ~S!, and total angular momentum~L!.

Subspace dim N S L Subspace density

M15$1s2 1S% 1 2 0 0 2f10
2

M25$1s2s; 1S%1M1 2 2 0 0 3
2 f10

2 1
1
2 f20

2

M35$1s2s; 3S% 3 2 1 0 f10
2 1f20

2

M45$1s2p; 1P% 3 2 0 1 f10
2 1f21

2

M55$1s2p; 3P% 9 2 1 1 f10
2 1f21

2

M65$1s3s; 1S%1M2 3 2 0 0 4
3 f10

2 1
1
3 f20

2 1
1
3 f30

2

M75$1s3s; 3S%1M3 6 2 1 0 f10
2 1

1
2 f20

2 1
1
2 f30

2

M85$1s3p; 3P%1M5 18 2 1 1 f10
2 1

1
2 f21

2 1
1
2 f31

2

M95$1s3d; 3D% 15 2 1 2 f10
2 1f32

2

M105$1s22s; 2S% 2 3 1
2 0 2f10

2 1f20
2

M115$1s22p; 2P% 6 3 1
2 1 2f10

2 1f21
2

M125$1s22s2; 1S% 1 4 0 0 2f10
2 12f20

2

M135$1s22s,2p; 3P% 9 4 1 1 2f10
2 1f20

2 1f21
2

M145$1s22s,2p; 1P% 3 5 0 1 2f10
2 1f20

2 1f21
2

M155$1s22s22p; 2P% 6 5 1
2 1 2f10

2 12f20
2 1f21

2

M165$1s22s,2p2; 4P% 12 5 3
2 1 2f10

2 1f20
2 12f21

2

M175$1s22s22p2; 1D% 5 6 0 2 2f10
2 12f20

2 12f21
2

M185$1s22s22p2; 3P% 9 6 1 1 2f10
2 12f20

2 12f21
2

M195$1s22s2p3; 5S% 5 6 2 0 2f10
2 1f20

2 13f21
2

M205$1s22s22p4; 3P% 9 8 1 1 2f10
2 12f20

2 14f21
2

M215$1s22s2p5; 3P%1M20 18 8 1 1 2f10
2 1

3
2 f20

2 1
9
2 f21

2

M225$1s22s2p5; 1P% 3 8 0 1 2f10
2 1f20

2 15f21
2

M235M21M4 5 2 0 6
5 f10

2 1
1
5 f20

2 1
3
5 f21

2

TABLE II. Total energies for atoms and ions for two electrons~helium isoelectronic series!.

Ion Configuration M Exc Ecalc Eexpt. % error

He $1s2 1S% M1 21.003 22.871 22.904 1.1
C ~V! $1s2 1S% M1 23.186 232.087 232.406 1.4
O ~VII ! $1s2 1S% M1 24.254 258.690 259.156 0.8
He $1s2s 1S% M2 20.772 22.182 22.147 1.6
C ~V! $1s2s 1S% M2 22.431 221.253 221.232 0.1
O ~VII ! $1s2s 1S% M2 23.232 238.284 238.232 0.1
He $1s2s 3S% M3 20.700 22.156 22.176 0.9
C ~V! $1s2s 3S% M3 22.165 221.235 221.431 0.9
O ~VII ! $1s2s 3S% M3 22.882 238.275 238.522 0.6
He $1s2p 1P% M4 20.674 22.082 22.124 1.9
He $1s2p 3P% M5 20.687 22.115 22.134 0.8
C ~V! $1s2p 1P% M4 21.807 220.762 221.103 1.6
C ~V! $1s2p 1P% M23 22.042 220.742 221.231 1.7
O ~VII ! $1s3s 1S% M6 22.806 234.519 234.736 0.6
O ~VII ! $1s3s 3S% M7 22.647 234.613 234.812 0.6
C ~V! $1s3p 3P% M8 22.013 219.286 219.428 0.7
C ~V! $1s3d 3D% M9 21.875 219.207 219.401 1.0
He $1s2p% 3P M24 20.689 22.111 22.134 1.0
C ~V! $1s2p% 3P M5 22.196 221.140 221.231 0.4
C ~V! $1s2p% 3P M24 22.185 221.109 221.231 0.6
022502-5
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THEOPHILOU AND PAPACONSTANTINOU PHYSICAL REVIEW A61 022502
electrons and try to extend their validity to systems with
small number of electrons.

A well-known property of a solid is the dependence of
intensive properties on the magnetizationz52S/N. Thus if
we consider another piece of the same material with volu
V85qV, number of electronsN85qN, and spinS85qS, its
intensive properties such as, e.g., its bulk density, will
change. The same holds for the surface density. Hence
main dependence ofExc(r) is on the parameterz. Thus by
using the new set of parametersz andn5NS, the new func-
tional of the exchange and correlation energyExc(r;z,n)
will have a strong dependence onz and a weak one onn,
which in the first-order approximation can be neglected
we consider now the spectroscopic properties of the ab
two pieces of solid, we find that they are also the same.
therefore conclude that in a subspace local-density appr
mation, the functional of the exchange and correlation
ergy must not have a strong explicit dependence onS andN
independently, but onz.

Similarly, in a metal with a spherical shape, where t
total angular momentumL is a good quantum number, th
main dependence of its properties is onzL5L/N. We also
claim that our functionals must not depend strongly on
subspace dimensionj, since, should such a dependence ex
then a finite excitation energy would result for metals e
closed in spherical surfaces, which is in contradiction to
well-known fact that the spectrum of the low-lying excit
tions is continuous. Symmetry breaking does not change
essential features of the energy spectrum either. Thus,
by enclosing the same metal volume in a cube instead
sphere, where the new many-particle wave functions bec
linear combinations of the older ones, involving differe
total angular momenta, we have the same excitation s
trum. In the next paragraph we derive quantitative relatio
on this matter. The procedure usually followed for the de
vation of the local-density approximation ofExc is to extend
the validity of the jellium model and write

Exc~r;z,zL!5E r~r !«xc
HOM~r;z,zL!d3r , ~23!

TABLE III. Total energies for atoms and ions forN53.

Ion Configuration M Exc Ecalc Eexpt. % error

Li ~I! $1s22s; 2S% M10 21.720 27.418 27.478 0.8
C ~IV ! $1s22s; 2S% M10 23.646 234.516 234.745 0.6
Li ~I! $1s22p; 2P% M11 21.691 27.352 27.410 0.8
C ~IV ! $1s22p; 2P% M11 23.643 234.451 234.451 0.6

TABLE IV. Total energies for atoms and ions forN54.

Ion Configuration M Exc Ecalc Eexpt. %
error

C ~III ! $1s22s2; 1S% M12 23.993 236.230 236.535 0.8
C ~III ! $1s22s2p; 3P% M13 24.167 236.107 236.295 0.5
C ~III ! $1s22s2p; 1P% M14 23.974 235.923 236.068 0.4
C ~III ! $1s22s2p; 1P% M25 23.978 235.923 236.068 0.4
02250
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where«xc
HOM(r;z,zL) is the exchange and correlation ener

per particle of a homogeneous electron gas of densityr.
Under these considerations, the ground state of an unpo
ized (z50) HEG enclosed in a sphere of radiusR, with zero
angular momentum (zL50), is not described by the familia
Fermi sphere but by a Fermi prism whose cross section w
the M50 plane,M being the quantum number correspon
ing to LZ , is given in Fig. 1. Each dot of the graph represe
a KS state with degeneracy 2(2l 11). It is straightforward to
verify the validity of the following relations, known from the
traditional treatment of the jellium model:

kfR5~9p/4!1/3N1/3, t5T/N5~3/10!~3p2!2/3r2/3,
~24!

whereT stands for the jellium kinetic energy.
We claim that, unlike the strong dependence of«xc on the

spin polarizationz, the dependence on the angular mome
tum polarizationzL is negligible in a first-order approxima
tion. This is because in the second case, unlike the first,
possible to create high angular momentum excited st
with small excitation energies. For example, by annihilati
an electron at the Fermi level (k5kf , l 50, m50) and cre-
ating one at (k85kf1Dk, l 5 l f , m5 l f), we can form a
many-electron jellium state withL5 l f;r1/3R, which is very
large and forN tending to infinity it goes to infinity, while
the corresponding excitation energyDE tends to zero in the
first-order approximation asDE'kfDk;r1/3/R. This is ob-
viously not the case with the spin polarization since the sa
excitation energy can only give an increment of the total s
S equal to 1, if we flip a spin-down to a spin-up orbital.

In order to get further insight, we consider an excitati
of a whole layer of electrons, reversing the sign of thez
component of the total angular momentum of negativem
from kf2Dk to kf1Dk, while we keep fixed the values ofl
andms ~see Fig. 2!. ~Note that the values ofk are limited on
the right because of the relationkR< l @31#.! The resulting
jellium state can be represented by a Slater determin
which can be written in the second quantization represe
tion as

TABLE V. Total energies for atoms and ions forN55.

Ion Configuration M Exc Ecalc Eexpt. %
error

O ~IV ! $1s22s22p; 2P% M15 26.264 270.788 271.208 0.6
O ~IV ! $1s22s2p2; 4P% M16 26.652 270.648 270.883 0.3

TABLE VI. Total energies for atoms and ions forN56.

Ion Configuration M Exc Ecalc Eexpt.

%
error

O ~III ! $1s22s22p2; 1D% M17 26.852 272.746 273.132 0.5
O ~III ! $1s22s22p2; 3P% M18 27.000 272.885 273.224 0.5
O ~III ! $1s22s2p3; 5S% M19 27.441 272.782 272.949 0.2
2-6
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uF&5P l 51
l f Pm51

l akf1Dk,l ,m,ms

1 akf ,l ,2m,ms
uF0&, ~25!

where uF0& stands for the ground state of jellium. One c
easily verify thatL1uF&50, which means thatuF& is an
eigenstate ofL2 andLz with corresponding eigenvalues

L5M* 52(
1

l f

(
m51

l

m5(
1

l f

l ~ l 11!; l f
3/4;N

giving a finitez t .
Then, in order to get jellium excitations withzL finite,

appropriate to extend our results for atoms and molecule
is enough to excite a single layer making thus an increas
the excitation energy of the order of

DT5(
1

l f

(
m51

l

kfDk5 l f~ l f11!kfDk

;N1/3 and DT/N5N22/3.

In contrast, in order to create a jellium excitation with sp
polarizationz;1, we must raise half of the total populatio
of the electrons, thus creating a state with a very high e
tation energy of orderN. Consequently, we can ignore, in
first approximation, the dependence of theExc functional on
zL and keep only the dependence on the global sp
polarization parameter,z. Thus, we write

Exc~r;z!E r~r !«xc
HOM~r;z!d3r . ~26!

The explicit form of«xc
HOM(r;z) can be derived through

the common RPA approximation. In this work, we adopt
the widely used von Barth and Hedin approximation@27#,
with the Hedin and Lundqvist parametrization@32#. The cor-
responding exchange potential is given byVxc(r)
5dExc(r)/dr(r ).

Note that in our global spin local-density approximatio
only a single potential is necessary, contrary to the fami
ground-state local spin-density approximation~LSD! in
which two KS potentials are necessary, one for the spin

TABLE VII. Total energies for atoms and ions forN57.

Ion Configuration M Exc Ecalc Eexpt. %
error

F ~III ! $1s22s22p3; 4S% M26 28.882 297.408 297.801 0.4
F ~III ! $1s22s22p3; 2D% M27 28.606 297.147 297.645 0.5
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and another for the spin-down electrons. This is an adv
tage of the method proposed, since the involvement of
different KS potentials in the familiar ground-state LSD a
proximation requires higher computational effort, as two p
tentials must be calculated selfconsistently. Finally, we n
that our spin polarization parameter,z52S/N, is a global
one and not a function of the space variablez(r )5r†(r )
2r↓(r )/r†(r )1r↓(r ), the local spin polarization function
involved in the ground-state LSD approximation. These t
different approaches coincide in the jellium approximatio
but in nonuniform densities they are different.

We conclude this section by noting that the present the
has certain advantages for systems with definite spin
spacial angular momentum, but cannot be applied to elec
systems with nonuniform magnetic interactions and syste
not having spherically symmetry such as, e.g., molecules

A. Application of the method to light atoms

The SDFT one-particle KS equations corresponding to
many-particle KS equation~17! for the particular case we ar
dealing with have the form

1

2 S 2¹ r
21

l ~ l 11!

r 2 Df i ,l~r !1Veff~r !f i ,l~r !5e i ,lf i ,l~r !,

~27!

where

¹ r
25r 22

d

dr S r 2
d

dr D ~28!

and the density of the subspace of degeneracy is

rM~r !5(
i l

ni~2l 11!f i ,l
2 ~r !, ~29!

ni being the occupation numbers, which depend on the c
figuration and the total spin and angular momentum. W
emphasize here that in the SDFT the occupation numberni
are fixed and are derived from the subspace@33#, whereas in
other theories such as, e.g., the general ensemble theo
Gross, Oliveira, and Kohn@2#, these numbers vary as th
statistical weights for the states of the ensemble can cha
However, to our knowledge up to the present time calcu
tions have been limited to the equiensemble case.

We applied our subspace theory, using the widely u
von Barth and Hedin approximation@27# with the Hedin and
Lundqvist parametrization@32# functional, to the excited
states of atoms and ions with nuclear chargeZ ranging from
two to ten and the number of electrons two to eight. Cal
TABLE VIII. Total energies for atoms and ions forN58.

Ion Configuration M Exc Ecalc Eexpt. %
error

Ne ~III ! $1s22s22p4; 3P% M20 210.648 2126.111 2126.674 0.4
Ne ~III ! $1s22s2p5, 3P% M21 210.615 2125.278 2125.719 0.3
Ne ~III ! $1s22s2p5; 1P% M22 210.487 2125.155 2125.331 0.1
2-7
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lations for such systems, being highly inhomogeneous,
resent together with metallic surfaces the most harsh tes
any LDA approximation scheme, both for the ground and
excited states. We used a wide spectrum of configurat
and subspaces in order to test our theory. The results of
calculations appear in Table II, where we also give the
perimental values of the energies for comparison. All exp
mental data in our tables were taken from the NIST datab
for Atomic Spectroscopy~National Institute of Standards an
Technology, U.S. Department of Commerce, 1995!. We also
give the percent deviation of the calculated from the cor
sponding experimental values.

In Table I we define the subspaces through which
excited-state energies of atoms have been derived. In the
column of Table I we give the expression of the subsp
density in terms of the occupied orbitals, normalized to
number of particlesN. The dimensionsM of our subspaces
ranged from 1 to 18, the total spinS from 0 to 2, the polar-
izability z from 0 to 1, and the total angular momentumL
from 0 to 2. The atomic orbitals involved in our calculatio
are of the type 1s, 2s, 3s, 2p, 3p, and 3d.

Our results for the excited-state energies appear in Ta
II–VIII. All results are given in a.u.~hartrees!. The accuracy
of the calculated energies is comparable to that of the gro
state, as the deviations from the experimental values ar
the range of 0.1–0.8 % for a number of electrons larger t
two, while for the helium isoelectronic series the correspo
ing numbers are from 0.2% to 1.9%. As expected, the ac
racy increases with the number of particles, since when
number of particles becomes larger, the deviations from
HEG, by means of which the density functional was deriv
become smaller although still strongly inhomogeneous. T
accuracy of the excited energies calculated by our metho
in most cases the same with that of the ground state, wh
local-density approximation is used. As one can conclu
from the recent ground-state calculations of Jarzecki

TABLE IX. Comparison of SDFT and KOG results, whereDE
is the excitation energy.

State dim E
~SDFT!

DE
~SDFT!

E
~KOG!

DE
~KOG!

E
~Expt.!

DE
~Expt.!

1s2 1 22.871 22.836 22.904
1s2s 4 22.163 0.709 22.073 0.763 22.169 0.735
1s2p 12 22.114 0.757 21.985 0.851 22.131 0.773

TABLE X. Comparision of von Barth and SDFT error of ene
giesE and excitation energiesDE with respect to the correspondin
experimental values.

State

Err. ~%!
of E

~SDFT!

Err. ~%!
of E

~Barth!

Err. ~%!
of DE
~SDFT!

Err. ~%!
DE

~Barth!

1s2s 3S ms51 0.9 1.2 1.78 3.73
1s2s 3S ms50 0.9 3.6 1.78 10.49
1s2s 1S 1.6 2.2 8.92 6.21
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Davidson@34#, more sophisticated approximations to«xc(r)
give better agreement with experiment. One expects that
same holds for the excited-state theory.

In Table IX, one can see a comparison between SDFT
KOG results, where the calculations concern the heli
atom. One should take into account that, in the KOG
proach, the subspace~equiensemble! theory and not the gen
eral ensemble theory is used. However, this theory uses
Exc(r) derived by Kohn@4# and the difference of energ
splitting due to electronic spin is not taken into accou
Instead, the statistical averages betweenS50 and 1 states
~with weights 1 and 3, respectively! are calculated. In this
table, we denote byE the average of the total energy of ea
configuration whileDE stands for the excitation energy. Th
comparison is in favor of the SDFT scheme as far as the t
energies are concerned, whereas the errors in the excita
energies are practically the same in the case of the 1s2s
configuration and in favor of the SDFT method in the 1s2p
one. Thus, although the Kohn exchange@4# goes beyond the
local-density approximation, its advantages are outweig
by the symmetry considerations of the present treatment

FIG. 3. The KS kinetic energy vs the total subspace ene
calculated by the SDFT theory. The calculated values fit a stra
line of slope equal to 1.01.

TABLE XI. Comparison ofE, TKS , andVne.

Ion Conf. TKS 2E 2Vne

He $1s2s; 1S% 2.348 2.527 5.564
Be $1s22s2; 1S% 14.213 14.518 33.250
O ~IV ! $1s22s2p2; 4P% 69.922 70.648 155.771
C ~V! $1s3d; 3D% 18.884 19.207 38.831
Li $1s22s; 2S% 7.158 7.418 16.810
Li $1s22s; 2P% 7.089 7.352 16.585
C ~III ! $1s22s2p; 1P%2M25 34.322 35.923 78.088
F ~III ! $1s22s22p3; 2D% 95.608 97.147 221.495
Ne ~III ! $1s22s2p5; 1P% 122.720 125.155 288.319
2-8
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In Table X we compare our SDFT results with those
von Barth @27#, noting that the latter refers to the lowes
energy state of each symmetry. Although the numbers av
able for comparison are limited, we can conclude that
comparison is in favor of SDFT.

An important feature of our results is that excited-st
energies calculated by using different subspaces gave al
identical results, with deviations ranging from 0% to 0.09
~compareM42M23, M52M24, andM142M25). This ob-
servation is in favor of the validity of the proposed fun
tional.

FIG. 4. Relation between the nucleus-electron energyUne vs the
total energy. The calculated values fit a straight line with slope 2
which is very near to 7/352.33, derived by the statistical Thoma
Fermi model.
at
an

m
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It is also worth noting that the calculated excited-sta
energies preserve almost in all cases the order relation o
experimental ones. The only exception is the one of
$1s2s, 1S% and$1s2s, 3S% states.

To test the accuracy of our results, we plotted in Fig. 3
KS kinetic energy versus the total subspace energy~see
Table XI! and found an almost straight line with slope equ
to 1.01. This is in accordance to the virial theorem~which
holds in the framework of subspace theory as well!, accord-
ing to which the interacting kinetic energy is equal to t
absolute value of the total energy. The difference betw
real ~interacting! and KS~noninteracting! kinetic energies is
systematically equal to 1% of the total energy. As shown
an earlier paper@1#, TKS,T, their difference usually being
called KS correlation energyEc . This is of the order of the
usual correlation energy defined as the difference betw
the Hartree-Fock energy and the exact one.

As a second test we plotted in Fig. 4 the relation betwe
the nucleus-electron energy,Une, and the total subspace en
ergy. This graph is a straight line with slope equal to 2.3
which is very close to the value 7/352.333 given by the
scaling relation of the statistical Thomas-Fermi theory@8#,

Eint52 1
7 Fne, ~30!

by means of which the relationEne52 7
3 E can be easily

derived after using the relationT52E. Numerical values
are given in Table XI.

We found that in all our calculations, Hunds rule w
obeyed. This is not only due to the lower-energy occupat
by spin orbitals but also to the deepening ofVxc due to the
increase ofz.
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