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The main objective of this paper is to investigate the applicability of the subspace density-functional theory
(SDFT) for the calculation of excited-state energies. The exchange and correlation energy density functionals,
E,«(p), used in the present calculation are local and depend on the polarizability pardm&8fN. The
deviations of the calculated excited-state energies from their corresponding experimental values range from
0.1% to 0.8% for systems with more than two electrons, while for the helium isoelectronic series the corre-
sponding range is from 0.1% to 1.9%. Thus the SDFT accuracy compares well in most cases with that of the
ground-state local-density approximation calculations. Virial theorem and other relations concerning atoms are
verified in the context of SDFT calculations. In this paper we also present a new formulation of the SDFT. Our
new formulation alleviates the initial Kohn and Sh&ks) theory from the constraint of densities representable
by single Slater determinants. This is an essential development as there are eigenstates of spin and other
guantum operators, not representable by single Slater determinants.

PACS numbes): 31.15-p

I. INTRODUCTION determined by solving a differential equatip®l. Thus, the
universality of the ground-state functionals of the initial KS
Although the excited-state Kohn and Shals) theory  theory does not imply universality of the functional forms. In
was establish_ed _Iong a@—3], its applications are very lim- fact, for some cases it is not possible to express the nonin-
ited. Kohn, Oliveira, and Grog&OG) [2] used the subspace teracting state of definite spin with a single Slater determi-
(equiensembleexchange and correlation functiona)(p) nant(SLD) [9].
derived by Kohr{4] to calculate the energies of light atoms.  The most difficult task in density-functional theoi®FT)
Most of their results compare well with experiment, indicat- s the determination of the functional form & (p). Al-
ing that theE,(p) used has sufficient accuracy. However, ihoygh hundreds of papers have been written on this prob-
the nonlocal dependence of this functional makes the calcygy, “the effort is essentially on the ground-state theory.
lations practically difficult. This is one of the reasons, in O“rOIdér work in this field can be found in DFT text books
\I:IeW'I tgat th]'cf’ TﬁthOd I?'C:c I?ort{n%ecolmz pop[)g]lzir_. (]-(t) Our[10,11,3,12_ The methods employed to derive approxima-
nowledge, after the work of 1o onlyNagylol tned o ¢ for E,.(p) are based on three overlapping methodolo-
determine explicit forms ofg,.(p) and do applications. .~ . i
21gles. (a) scale transformations, sum rules, and variational

However, her efforts were on the general ensemble theo rinciples[13-16; (b) the electron gas and other model sys-

[2], and thus the advantages derived from the geometric fe ) . d
tures of the subspace degnsity—functional theCﬁgDFT) 6] tems[17-20; and(c) the hierarchy equations for the density

were not taken into account. matrices[8,21,22. _ _

One of these advantages is that in the SDFT the subspace All these methods are also applicable in the SDFT. For
density has the symmetry of the external potential, wherealis reason, in the present paper we propose a Bg#éb,{),
in the KOG theory this is not the case. The consequence dlarametrized by the spin polarizability=2S/N, which can
this asymmetry is catastrophic in the case of degeneracy, &#¢ viewed as a subspace generalization of the von Barth and
no solutions of the KS equations exist, transforming accordHedin functional, which was based on a random-phase ap-
ing to the irreducible representatiofigeps of the symme-  proximation(RPA) of the spin-polarized electron g3,23].
try group of the exact Hamiltonialv]. In the present paper, The existence of accurate experimental and theoretical re-
we do not deal with universal functionals but attention issults for atoms and atomic ions was the reason that we at-
focused on the more moderate problem of functionals appraempted to apply our theory initially to these systems. An-
priate for subspaces having definite s@iand total angular other reason for this choice is that the Hartree &jdp)
momentumL. The role of the spin parameter is apparent inpotentials are spherically symmetric, as in this case one can
the kinetic-energy functional of a two-particle noninteractingprove that the spherical part of the density is sufficient to
system, where the kinetic-energy functional for t8eO determine uniquely the exchange and correlation potential

states is [24]. This property of the KS potential leads to an additional
advantage as one needs to determine only the radial part of

5 [Vo(D]? the wave function, i.e., one has to solve one variable KS

f dr 8p(r) equations for which simple numerical procedures can be

used. Hence, one has to deal with differential equations of a
whereas thé&s=1 state has a complicated expression whichsingle variable, making it easier to have control over the
includes a phase factor, the explicit form of which can becomputer programs and the accuracy of the computations.
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In Sec. Il, we derive the SDFT single-particle equations, Note that the above functional does not depend on the
without using the one-to-one correspondence between derhoice of basis ilM as the tracgTr) of an operator in a
sity and subspace, i.e., without using a Hohenberg and Kohsubspace does not depend on the basis. Let us find the
(HK) theorem for subspaces. The advantage of the new fominima of this functional for all subspaces of the Hilbert
mulation is that there is no restriction of the KS states tospace of dimensiop We take into account that by varying a
single Slater determinants, nor to any noninteracting statesingle staté¥;) to | W)+ €|u), where|u) is a state with zero
This is an essential feature which makes the present theogyrojection in the subspadd, one produces a different sub-
different from the initial KS theory, where one insists on aspaceM’. Then, ifM is the minimizing subspace of dimen-
single SLD. We emphasize here that the HK theof@®l,  sionj, one gets for the first-order variations
although not necessary, is valuable for deriving general prop-
erties of the density functionals. Another feature of the (UH|¥;)=0, |¥)eM,
present formulation is that it does not use functional differ-
entiation. This is a big advantage as the functional derivaand thereforeH|¥;) has only a projection ifi¥;), i.e.,
tives of the energy with respect to the density may not exist
[26]. H|Wi)=E|¥)) 2

In Sec. Ill we formulate our subspace local-density ap-
proximation (SLDA) scheme. The proposed functional and
E,(p,¢) is justified through an alternative treatment of the
homogeneous electron gddEG). In this treatment, we deal
with states of the HEG having not only well-defined total
spin (S but also well-defined angular momentuin.

Finally, in Sec. IV we apply our method to the excited j e, E(M) is the sum of thg lowest-energy eigenvalues of
states of atoms and compare our results with those derived. Then ifM; andM_; are minimizing subspaces, over the

through the KOG met_hod and draw some concl_usions. Weet of subspaces of dimensipandj— 1, thejth eigenvalue
also compare them with those of von Barth, which refer tojn ascending order is

the lower-energy states of each symmé¢gy].

j
E(M>=§1 Ei, Ei<Ei.q, 3)

Il. DERIVATION OF THE SUBSPACE KS EQUATIONS
Thus, by using an indirect method, one can calculate the
energy eigenvalues and eigenstates by applying a minimum

The initial DFT for excited state€SDFT) [1] was based principle. The space of eigenstates will be referred to as the
on the one-to-one correspondence between the minimizingigenspaceTo calculate the expectation value of an operator
subspace and the subspace density. This is the subspagecorresponding to the energy eigenstake), we need the
equivalent of the Hohenberg and Kohn theorem for thesybspace functional
ground statd25], on which the initial KS theory was based
[28]. As was shown in a previous pade4], this theorem is i
not necessary for the ground-state formulation, and a more QA(M):TrM(A)zE (Wi|AW;), |[PieM (4
elegant rigorous formulation is possible. In this paper, we =1
show that a derivation of the KS equations for the subspace . . . .
theory of excited states is also possible. This formulation haf0f Subspaces of dimensiopand dimensionj —1. Thus,
certain advantages over the previous rigorous formulatio§'Ven the minimizing subspacés; andM_,, the expecta-
[29] as no problem of representability of densities by Slatefion value ofA can be determined by the relation
determinants arises. In fact, in the new formulation there is
no need for the constraint of densities representable by single <\P1|A|\Pi>:QA(MJ) —Qa(Mj-_1). ®)
determinants. o .

Before proceeding to the derivation of the excited-statd! e Hamiltonian is invariant under a group of transforma-
KS equations, we make a brief review of the subspace theor§fons G, one can choose subspaces transforming according to
minimum principle, as it is essential for understanding the? definite irrep ofG and find the minima in this class of
rest. By means of this theofi] one can reduce the excited- subspace_s. In this way there is no problem of degenerac_y as
state problem to a minimum principle problem, although the®"€ considers the whole space of degeneracy and not a single
retrieval of information about the excited state corresponding &€
to the energy eigenvalug; is not direct, but through sub-
spaces of dimensiopandj—1 to be defined below: Letl B. The new SDFT formulation
be a Hamiltonian and/ any linear subspace of the Hilbert
space of dimension

Then one can define the functional

J_ Hy=T+Hp+V, (6)
E(M)=Try(H)=2, (WilH[W¥), [¥i)eM. (D)

A. The subspace minimum principle

The Hamiltonian considered here is the many-electron
Hamiltonian

whereT is the kinetic-energy operator,
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LOCAL SPIN-DENSITY APPROXIMATION FOR SPIN . ..

T=%fd3r2 Vs (N Vys(r), (7

H,. is the interaction energy,

st thre Nt v’y ,/S
o) [ [ s, LSO,

=]
8
\“/=J d3r p(r)V(r), 9
andp(r) is the density operator,
p(N=2 ¢ (N)YA(r). (10

The summation oves andt indicates summation with re-

spect to the spin indices.

We next define the functionals andL in the same way

as in the case of the ground-state formulatiad], the dif-
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as our definitions here do not demand details about the space
of densities, i.e., in this formulation only subspace represent-
able densities are involved. In the same way as above, one
can define for every subspadé the minimum internal en-
ergy functional for the operatdtl =T+ H:,

L(M)=inf{Qu (M):pw (N=pu(r)}, (13

which is the equivalent of the minimum kinetic-energy func-
tional K. Here, one can show that the infima of these func-
tionals are minima, i.e., minimizing subspaces of the Hilbert
space belonging to the irrep of the symmetry groupHof
exist[30]. The procedure followed is similar to that of Lieb
[26] and Hadjisavvaset al. [29]. Thus one can use the
minima under the constraint in place of the infima. Finally,
we define the functional

G(M):L(M)+QT(M)_K(M)+f d®r pm(r)V(r),
(14)

where Q+(M)=Try(T), according to the notation intro-

ference being that the arguments of the new functionals arguced by Eq/(4).

j-dimensional subspaces. In the case of degeneracy, the di- Since Q+(M)—K(M)=0, one concludes that the mini-
mensionalityj must be an integral multiple of the dimension mum of G(M) is obtained when equality holds. Further, one
of the irrep of the symmetry group of the Hamiltonian and can show, following the same proving procedure used for the
will be denoted by a superfix, e.g., for the case of spin symsingle statg24], that
metry by MS we denote the subspaces of th&+21 eigen- _
states of5?. The upper index will be omitted in the following _ ) !
as subspace¥ S of definite spin will be considered, i.e., our mlnG(M)=mln{TrM,(HV):pM,(r)=pM(r)}=iZl Ei.
Hamiltonian will not involve any spin-orbit interaction. In - (15)
this way the energy eigenstates are simultaneously eigen-
states ofS? and the variational principle can be limited to Thus, the minimum value of the function@(M) is equal to
variations in this space, as variations to other subspaces @ie sum of thej lowest-energy eigenvalues of the initial
spin S’ satisfy the relation HamiltonianH,,, whereas the minimizing subspace is not
the subspac& which minimizes the initial Hamiltonian, i.e.,
the one for which the equality ¥Hy)=min{Try.(Hy)}
holds, but a noninteracting systepdimensional subspace
and thus variations out of the subspace under consideratiaghich minimizes the kinetic energy under the density con-
vanish identically as they are orthogonal to any state of thetraint sinceQ+(M)=K(M). Thus, the following equation is
form H|¥?). satisfied:

The minimum kinetic-energy functional is

K(M)=inf{Q+(M"):pm/(r)=pm(r)}, (11

<us,|H|\P?>:C5ss’

j j
Qr(M)=miny >, (Wil T[W;): 2, (Wi[p(r)| W)
where
i = Ps(r)1|‘1’i>eM,<\I’i|‘1’j>:5ij],
pM<r>=Qp<r><M>=i§1 (W] ()W), (16)

where pg(r) is the density corresponding to the subsp&ce

defined above.

L As is well known, minimization of the kinetic energy un-
The above definition implies that for each subspiic®@e  ger the density constraint leads to the following equation

consider the set of subspadés, having the same density as [1g 2g;

M. To each such subspace we assign a kinetic energy
Qr(M")=Try/(T). Then the functionaK(M) is the mini-
mum of the kinetic energy in this set of subspaces. Note that
the value of the functionaK(M) is the same for all sub-
spaces having the same density. This is an essential diffewith the potentialV4 entering as a Lagrange multiplier, to
ence with respect to our previous rigorous formulatif2e be determined by the density constraint. These are equations

[Ti)eM, (¥|V)=4;. (12

T|®i>+f d3r p(r)Ver(r)| D) =E/|D;) (17)
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FIG. 1. Occupied spin orbitals for the ground state of a jellium  FIG. 2. Occupied spin orbitals of a high angular momentum
model confined by a spherical surface. Note that the valuésacé  excited state for the jellium model confined by a spherical surface.
limited on the right because of the relatibR<I. The triangles correspond to spin orbitals with positiyewhile the

circles havem positive or 0.
of a noninteracting system and for this reason the eigenstates
|@;) will be referred to asioninteracting statesThus for a  In varying the subspac®l by variations of|®;), we can
given external potentia¥, there is a noninteracting Hamil- write
tonian with an effective potential., with the same density 5. (pu)
as that of the minimizing subspace of the initial Hamiltonian _ oExdpm -
Hy. As no constraint was imposed, the stdi®s) need not SExcpm) = Som (Wi p(r)| )
be single Slater determinants but a linear combination of
them. Thus, one can choose states which transform accordnd in this way retrieve Eq.17), whereVqg=V+Vy+V,c,
ing to the irreps of a group and not representable by singlevith exchange and correlation potential
SLD.

We next proceed in a more conventional way to define OExc(pm)
E Vielom) = ——— (21)
xcs opm(r)
Ex(M)=L(M)=K(M)—Eyx(M), (18 and Hartree potential
, pm(r’)
where V(o) = f & (22)

j pm(N)pm(r’)
En(M)= EJ dsrf oM (199 However, this derivation is at the expense of mathematical

r'=rl rigor as we used the functional derivative of the exchange

and correlation energy with respect to the density and one

is the Hartree energy and the density normalization here ang,s ¢ prove the existence of this derivative, after defining
in the following is to the particle numbei. the space of densitid26].

We note that all quantities on the right are determined
uniquely by the subspace density, because of their defini-
tions. Thus since all subspaces with the same density have
the same minimum internal energy and kinetic energy, one \when no magnetic field and spin-orbit interactions are
can writeL(M)=U(py), K(M)=T(pw), and in this way present, the total spin operatSrcommutes with the Hamil-
the exchange and correlation energy can be expressed {Bnjan. Therefore, one can restrict the search of the energy
terms of the subspace density. Then eigenstates in the subspace of the Hilbert space spanned by

eigenstates 08? andS,, having fixedSandMg. Thus one
. can develop a SDFT theory with fixed quantum numtrs
G(M)=Qu(M)+En(pm) + Exc(pm) +] f dr pu(NV(N). g usual, in order to get an approximation fég.(p), we
(20 derive some conclusions for systems with a large number of

Ill. THE SPIN-INDEXED SUBSPACE FUNCTIONALS
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TABLE |. Subspaces with the expressions of their densities, their dimexdiomn, particle numberN),
spin (S), and total angular momentuth).

Subspace dim N S L Subspace density
M,={1s?1S} 1 2 0 0 242,

M,={1s2s; 'S} + M, 2 2 0 0 3¢3+3 9%
Ms={1s2s; 3S! 3 2 1 0 it bk
M,={1s2p; P} 3 2 0 AT
Ms={1s2p; 3P} 9 2 1 1 it os
Mg={1s3s; 'S}+M 3 2 0 0 §¢iot3 it 3 bk
M;={1s3s; °S}+ M, 6 2 1 0 ¢it3s 50tz b5
Mg={1s3p; *P}+Ms 18 2 1 1 plots ¢t dh
Mgo={1s3d; 3D} 15 2 1 2 Pl ok,

M 0={1s%2s; ?S} 2 3 1 0 242+ B2,

M, ={1s%2p; 2P} 6 3 3 1 230+ 5y

M ,={1s°2s?% 1S} 1 4 0 0 2¢3+2¢5

M 3={15?2s,2p; 3P} 9 4 1 1 2¢2 .+ pdo+ b3y

M 1,={1s%2s,2p; 1P} 3 5 0 1 225+ g+ 3y
Ms={1s?2s%2p; 2P} 6 5 3 1 2¢f5+ 2450+ ¢

M 16={15?2s,2p?; “P} 12 5 3 1 2¢2,+ p2ot 22,
M,={1s%2s%2p?; D} 5 6 0 2 243t 2¢5,+ 245,
M 1g={1s?2s%2p?; 3P} 9 6 1 1 243+ 2p5+ 25,
M 1o={15%252p%; °S} 5 6 2 0 22+ 3t 303,

M o= {1s%25?2p*; P} 9 8 1 1 243 +2¢3.+ 43,
M ,;={15°252p%; 3P} + M 18 8 1 1 2¢%+3 ot 3 ¢3,
M ,={1s%2s2p"; 1P} 3 8 0 1 22+ g+ 53,
Moz=M,+ My 5 2 0 g¢§0+%¢§0+g¢§1

TABLE Il. Total energies for atoms and ions for two electrghslium isoelectronic serig¢s

lon Configuration M Eyc Ecarc Eexpt. % error
He {12 1S} M, —1.003 -2.871 —2.904 1.1
C (V) {12 1S} M, —3.186 —32.087 —32.406 1.4
O (VII) {1s? 15} M, —4.254 —58.690 —59.156 0.8
He {1s2s 'S} M, —-0.772 —2.182 —2.147 1.6
C (V) {1s2s 'S} M, —2.431 —21.253 —21.232 0.1
O (VIl) {1s2s 'S} M, —3.232 —38.284 —38.232 0.1
He {1s2s 33} Mg —-0.700 —2.156 -2.176 0.9
C (V) {1s2s 33} Mg —2.165 —21.235 —21.431 0.9
O (VIl) {1s2s 33} Mg —2.882 —38.275 —38.522 0.6
He {1s2p P} M, —0.674 —2.082 —2.124 1.9
He {1s2p 3P} Ms —0.687 —2.115 —2.134 0.8
C (V) {1s2p P} M, —1.807 —20.762 —21.103 1.6
C (V) {1s2p P} M 3 —2.042 —20.742 —21.231 1.7
O (VII) {1s3s !s} Mg —2.806 —34.519 —34.736 0.6
O (VIl) {1s3s3S} M, —2.647 —34.613 —34.812 0.6
C (V) {1s3p %P} Mg —2.013 —19.286 —19.428 0.7
C (V) {1s3d °D} Mg —1.875 —19.207 —19.401 1.0
He {1s2p} 3P Mo, —0.689 —2.111 —2.134 1.0
C (V) {1s2p} 3P Ms —2.196 —21.140 —21.231 0.4
C (V) {1s2p} 3P Mo, —2.185 —21.109 —21.231 0.6
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TABLE lll. Total energies for atoms and ions foi= 3. TABLE V. Total energies for atoms and ions fir=5.

lon Configuration M Eyc Ecarc Eexpr. % error lon Configuration M Eyc Ecarc Eexpt. %
error

Li (I) {1s?2s; %S} My, —1.720 —7.418 -7.478 0.8
C(IV) {1s?2s; %S} M, —3.646 —34.516 —34.745 0.6 O (IV) {1s?2s?2p; 2P} M5 —6.264 —70.788 —71.208 0.6
Li (1) {1s’2p; 2P} M, —1.691 —7.352 —-7.410 0.8 O (IV) {1s?2s2p?; *P} M,; —6.652 —70.648 —70.883 0.3
C (V) {1s?2p; 2P} M,; —3.643 —34.451 —34.451 0.6

wheresHoM(p: £,¢,) is the exchange and correlation energy

electrons and try to extend their validity to systems with @per particle of a homogeneous electron gas of density
small number of electrons. . __Under these considerations, the ground state of an unpolar-
_ A well-known property of a solid is the dependence (_)f itSizeq (¢=0) HEG enclosed in a sphere of radRswith zero
Intensive properties on the magnetizatipn ZSI.N' T_hus if angular momentum¢( =0), is not described by the familiar
we consider another piece of the same material with voluMggm; sphere but by a Fermi prism whose cross section with
V'=qV, number of electrondl’=qN, and spinS'=qS, itS 5 \j =0 plane,M being the quantum number correspond-

intensive properties such as, e.g., its bulk density, will ”O'ing toL,, is given in Fig. 1. Each dot of the graph represents

change. The same holds for the surface density. Hence, thaeKS state with degeneracy 2(21). It is straightforward to

mgin dependence d,(p) is on the parametef. Thus by verify the validity of the following relations, known from the
using the new set of parametefandn=NS, the new func- .. itional treatment of the jellium model:

tional of the exchange and correlation enelgy.(p;Z,n)

will have a strong dependence gnand a weak one on,

which in the first-order approximation can be neglected. If ~ kfR=(9m/4)"*N'3  t=T/N=(3/10/(37%)?3p??,

we consider now the spectroscopic properties of the above (24
two pieces of solid, we find that they are also the same. We

therefore conclude that in a subspace local-density approxiyhereT stands for the jellium kinetic energy.

mation, the functional of the exchange and correlation en- \ye claim that, unlike the strong dependence gfon the
ergy must not have a strong explicit dependenc&amdN  spin polarization/, the dependence on the angular momen-
independently, but og. _ tum polarization{, is negligible in a first-order approxima-
Similarly, in a metal with a spherical shape, where thetion, This is because in the second case, unlike the first, it is
total angular momenturh is a good quantum number, the possible to create high angular momentum excited states
main dependence of its properties is §n=L/N. We also  jith small excitation energies. For example, by annihilating

claim that our functionals must not depend strongly on they electron at the Fermi levek£k;, 1=0, m=0) and cre-
subspace dimensignsince, should such a dependence exist‘aﬁng one at k'=k;+Ak, I1=1I;, m=I;), we can form a
then a finite excitation energy would result for metals en-many-electron jellium state with=1;~ p*3R, which is very

closed in spherical surfaces, which is in contradiction to thqarge and forN tending to infinity it goes to infinity, while
well-known fact that the spectrum of the low-lying excita- the corresponding excitation energye tends to zero in the
tions is continuous. Symmetry breaking does not change thgsi.order approximation aAE~k;Ak~ pY3¥R. This is ob-
essential features of the energy spectrum either. Thus, .oy sly notthe case with the spin polarization since the same
by enclosing the same metal volume in a cube instead of @ycitation energy can only give an increment of the total spin
s_phere, whe_re the new many-particle wave func_:tlons_ becomg equal to 1, if we flip a spin-down to a spin-up orbital.
linear combinations of the older ones, mvolvmg chfferent In order to get further insight, we consider an excitation
total angular momenta, we have the same excitation speg 4 whole layer of electrons, reversing the sign of the
trum. In the next paragraph we derive quantitative relat'on%omponent of the total angular momentum of negative
on this matter. The procedure usually followed for the deri-fgm k;— Ak to k;+ Ak, while we keep fixed the values bf
vation of the local-density approximation Bf. is to extend 54 m, (see Fig. 2 (Note that the values d€ are limited on

the validity of the jellium model and write the right because of the relatidR<| [31].) The resulting
jellium state can be represented by a Slater determinant
Exc(p;g,gL)=f p(r)eiMp; ¢, ) d%r, (23)  which can be written in the second quantization representa-
tion as

TABLE IV. Total energies for atoms and ions fdf=4.

TABLE VI. Total energies for atoms and ions fbr=6.

lon Configuration M Eyc Ecarc Eexpt %
error %
lon Configuration M Eyc Ecarc Eexpt.  €rror

C () {1s?2s* 'St M,;, —3.993 —36.230 —36.535 0.8
C () {1s?2s2p; °P} M;3 —4.167 —36.107 —36.295 0.5 O (lll) {1s?2s?2p? D} M,; —6.852 —72.746 —73.132 0.5
C () {1s?2s2p; P} M,;, —3.974 —35.923 —36.068 0.4 O (lll) {1s?2s?2p? 3P} M3 —7.000 —72.885 —73.224 0.5
C () {1s?2s2p; 'P} M,s —3.978 —35.923 —36.068 0.4 O (lll) {1s?2s2p® 5S} Mg —7.441 —72.782 —72.949 0.2
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TABLE VII. Total energies for atoms and ions for=7. and another for the spin-down electrons. This is an advan-
_ : tage of the method proposed, since the involvement of two
lon Configuration M Ey. Ecalc Eexp. % different KS potentials in the familiar ground-state LSD ap-

error  proximation requires higher computational effort, as two po-
F () {1522522p% %S} M,, —8.882 —97.408 —97.801 0.4 tentials mugt be ca_lculgted selfconsistently. F_inally, we note
F(ll) {1s%2522p% 2D} M,, —8.606 —97.147 —97.645 0.5 that our spin polarlzgmon parametef= ZS/N, is a gITobaI

one and not a function of the space varialjle)=p'(r)

—pi(r)1pT(r)+p'(r), the local spin polarization function,
involved in the ground-state LSD approximation. These two
different approaches coincide in the jellium approximation,
but in nonuniform densities they are different.

We conclude this section by noting that the present theory
has certain advantages for systems with definite spin and
spacial angular momentum, but cannot be applied to electron
systems with nonuniform magnetic interactions and systems

P It
L=M*=2> > m=> 1 +1)~13/4~N not having spherically symmetry such as, e.g., molecules.
1 m=1 1

|
|(I’>: 1_[|f:;|_H|rn:1al:—f-%—Ak,I,m,msakf ,I,—m,ms|q)0>v (25

where|®,) stands for the ground state of jellium. One can
easily verify thatL™|®)=0, which means thal®) is an
eigenstate of.? andL, with corresponding eigenvalues

o o A. Application of the method to light atoms
giving a finite {; . ) . )
Then, in order to get jellium excitations withy finite, The SD_FT one—parucje KS equations g:orrespondmg to the
appropriate to extend our results for atoms and molecules, [fany-particle KS equatiofi7) for the particular case we are

is enough to excite a single layer making thus an increase ¢t¢@ling with have the form

the excitation energy of the order of 1 I(1+1)

T 5( ~Vi+ r—2> &i (1) +Ver(r) i (1) =€ 1,1 (),

AT=2 > kiAk=l¢(l;+1)k;Ak (27)
1 m=1
where
~N¥® and AT/N=N"23
. - - . . 2,4 ,d

In contrast, in order to create a jellium excitation with spin Vi=r 5 g (28

polarization{~ 1, we must raise half of the total population
of the electrons, thus creating a state with a very high exciand the density of the subspace of degeneracy is
tation energy of ordeN. Consequently, we can ignore, in a
first approximation, the dependence of tag functional on 2
£, and keep only the dependence on the global spin- pM(r)Z; ni(21+1) i, (1), (29
polarization parameter, Thus, we write

n; being the occupation numbers, which depend on the con-

figuration and the total spin and angular momentum. We

. HOM, . +\ 43

EXC(p’g)f P(Mexe (prO)dr. (26) emphasize here that in the SDFT the occupation nunters
Hom are fixed and are derived from the subspi8%, whereas in

The explicit form ofe,."(p;{) can be derived through other theories such as, e.g., the general ensemble theory of
the common RPA approximation. In this work, we adoptedGross, Oliveira, and Kohh2], these numbers vary as the
the widely used von Barth and Hedin approximati@7], statistical weights for the states of the ensemble can change.
with the Hedin and Lundqvist parametrizatii82]. The cor-  However, to our knowledge up to the present time calcula-
responding exchange potential is given by,(p) tions have been limited to the equiensemble case.
= 6E,(p)/ Sp(r). We applied our subspace theory, using the widely used

Note that in our global spin local-density approximation, von Barth and Hedin approximatid@7] with the Hedin and
only a single potential is necessary, contrary to the familial.undqvist parametrizatio32] functional, to the excited
ground-state local spin-density approximatidhSD) in states of atoms and ions with nuclear chaZganging from
which two KS potentials are necessary, one for the spin-upwo to ten and the number of electrons two to eight. Calcu-

TABLE VIII. Total energies for atoms and ions fot= 8.

lon Configuration M Eyc Ecalc Eexpt. %
error
Ne (Il {1s?25?2p*; 3P} M o —10.648 -126.111 —126.674 0.4
Ne (llI) {1s?2s2p°®, P} My, —10.615 —125.278 —125.719 0.3
Ne (IlI) {1s?2s2p°; 1P} M, —10.487 —125.155 —125.331 0.1
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TABLE IX. Comparison of SDFT and KOG results, wheké& 140 S
is the excitation energy. 1
1201
State dim E AE E AE E AE
(SDFT) (SDFT) (KOG) (KOG) (Expt) (Expt) 1004
1 1 -2.871 —2.836 —2.904
1s2s 4 —2.163 0.709 -—2.073 0.763 —2.169 0.735 < 80
1s2p 12 -—-2.114 0.757 —1.985 0.851 —2.131 0.773 o
E 60 1
¥

lations for such systems, being highly inhomogeneous, rep- = 40
resent together with metallic surfaces the most harsh test for .
any LDA approximation scheme, both for the ground and the 20
excited states. We used a wide spectrum of configurations
and subspaces in order to test our theory. The results of our 0-
calculations appear in Table Il, where we also give the ex-

perimental values of the energies for comparison. All experi- 0 20 40 60 80 100 120 140
mental data in our tables were taken from the NIST database -E (hartree)

for Atomic SpectroscopyNational Institute of Standards and

Technology, U.S. Department of Commerce, 1998e also FIG. 3. The KS kinetic energy vs the total subspace energy
give the percent deviation of the calculated from the correcalculated by the SDFT theory. The calculated values fit a straight
sponding experimental values. line of slope equal to 1.01.

In Table | we define the subspaces through which the
excited-state energies of atoms have been derived. In the laBvidson[34], more sophisticated approximationssg(p)
column of Table | we give the expression of the subspacgjive better agreement with experiment. One expects that the
density in terms of the occupied orbitals, normalized to thesame holds for the excited-state theory.
number of particleN. The dimensiond of our subspaces In Table IX, one can see a comparison between SDFT and
ranged from 1 to 18, the total spBifrom O to 2, the polar- KOG results, where the calculations concern the helium
izability £ from O to 1, and the total angular momentum atom. One should take into account that, in the KOG ap-
from 0 to 2. The atomic orbitals involved in our calculations proach, the subspacequiensembletheory and not the gen-
are of the type &, 2s, 3s, 2p, 3p, and 3. eral ensemble theory is used. However, this theory uses the

Our results for the excited-state energies appear in Tableg, (p) derived by Kohn[4] and the difference of energy
lI=VIII. All results are given in a.u(hartree The accuracy splitting due to electronic spin is not taken into account.
of the calculated energies is comparable to that of the grounghstead, the statistical averages betw&sn0 and 1 states
state, as the deviations from the experimental values are ifwith weights 1 and 3, respectivélare calculated. In this
the range of 0.1-0.8 % for a number of electrons larger thagable, we denote b the average of the total energy of each
two, while for the helium isoelectronic series the correspondconfiguration whileAE stands for the excitation energy. The
ing numbers are from 0.2% to 1.9%. As expected, the acClecomparison is in favor of the SDFT scheme as far as the total
racy increases with the number of particles, since when thenergies are concerned, whereas the errors in the excitation
number of particles becomes larger, the deviations from thenergies are practically the same in the case of ts1
HEG, by means of which the density functional was derivedconfiguration and in favor of the SDFT method in the2p
become smaller although still strongly inhomogeneous. Thene. Thus, although the Kohn excharigé goes beyond the
accuracy of the excited energies calculated by our method igcal-density approximation, its advantages are outweighed
in most cases the same with that of the ground state, whentg the symmetry considerations of the present treatment.
local-density approximation is used. As one can conclude

from the recent ground-state calculations of Jarzecki and TABLE XI. Comparison ofE, Txs, andVe.
TABLE X. Comparision of von Barth and SDFT error of ener- lon Conf. Tks E Ve
giesE and excitation energieSE with respect to the corresponding He {1s2s; 1S} 2.348 2527 5.564
experimental values. Be {1s%2s?; 13} 14213 14518  33.250
O (V)  {1s?2s2p?; *P} 69.922  70.648  155.771

Erc:]; (;/") Er(; (;/") Eorfr A("é’) Erz é%) C(v) {1s3d; D} 18.884 19.207  38.831

Li {1s%2s; 28} 7.158 7.418 16.810

State (SDFD)  (Barth (SDFD  (Barth (1%2s; 2P} 7089  7.352  16.585

1s2s3S m=1 0.9 1.2 1.78 3.73 c(n)  {1s?2s2p; 'P}—M,s 34.322 35923  78.088
1s2s3S m=0 0.9 3.6 1.78  10.49 F(l)  {1s?2s?2p3; 2D} 95.608  97.147  221.495
1s2s s 1.6 2.2 892 6.21 Ne (Ill)  {1s?2s2p°; 1P} 122.720 125.155 288.319
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It is also worth noting that the calculated excited-state

300 1 energies preserve almost in all cases the order relation of the
1 experimental ones. The only exception is the one of the
250 {1s2s, 1S} and{1s2s, 3S} states.

To test the accuracy of our results, we plotted in Fig. 3 the
KS kinetic energy versus the total subspace endspe

1.?200 Table Xl) and found an almost straight line with slope equal
g to 1.01. This is in accordance to the virial theoréwhich
E 150+ holds in the framework of subspace theory as Jyeltcord-
S ing to which the interacting kinetic energy is equal to the
:3100— absolute value of the total energy. The difference between
' ] real (interacting and KS(noninteracting kinetic energies is
504 systematically equal to 1% of the total energy. As shown in
an earlier papefl], Txs<T, their difference usually being
0 called KS correlation energl.. This is of the order of the

usual correlation energy defined as the difference between
the Hartree-Fock energy and the exact one.
As a second test we plotted in Fig. 4 the relation between
-E (hartree) the nucle_us-electr_on energyne,_and 'ghe total subspace en-
ergy. This graph is a straight line with slope equal to 2.31,
FIG. 4. Relation between the nucleus-electron enetgys the ~ Which is very close to the value #3.333 given by the
total energy. The calculated values fit a straight line with slope 2.38caling relation of the statistical Thomas-Fermi thef@}

which is very near to 7/3 2.33, derived by the statistical Thomas- N
Fermi model. Eint=—7 Fnes (30)

T — T — T 1
0 20 40 60 80 100 120 140

by means of which the relatioE,.=— % E can be easily
In Table X we compare our SDFT results with those ofderived after using the relatiofi=—E. Numerical values
von Barth[27], noting that the latter refers to the lowest- are given in Table XI.
energy state of each symmetry. Although the numbers avail- we found that in all our calculations, Hunds rule was
able for comparison are limited, we can conclude that thebeyed. This is not only due to the lower-energy occupation

comparison is in favor of SDFT. by spin orbitals but also to the deepening\gf. due to the
An important feature of our results is that excited-stateincrease of;.

energies calculated by using different subspaces gave almost

identical results, with deviations ranging from 0% _to 0.09% ACKNOWLEDGMENT

(compareM ,— M3, Ms—My,, andM,—Myg). This ob-

servation is in favor of the validity of the proposed func-  The authors would like to thank Dr. J. Komninos for dis-

tional. cussions and supplying them with atomic spectroscopy data.
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