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Quantum cryptography with squeezed states

Mark Hillery
Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue,
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~Received 2 September 1999; published 14 January 2000!

A quantum key distribution scheme based on the use of squeezed states is presented. The states are squeezed
in one of two field quadrature components, and the value of the squeezed component is used to encode a
character from an alphabet. The uncertainty relation between quadrature components prevents an eavesdropper
from determining both with enough precision to determine the character being sent. Losses degrade the
performance of this scheme, but it is possible to use phase sensitive amplifiers to boost the signal and partially
compensate for their effect.

PACS number~s!: 03.67.2a
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I. INTRODUCTION

Quantum cryptography provides a means of sending a
cure message, and it does this by allowing one to establi
secure key. In all but the simplest codes, what is sent is
only the coded message, but also a key that tells the rece
how to decode the message. The coded message can b
through a public channel, but the key must be sent throug
secure one. Quantum mechanics allows one to constru
channel in which the presence of an eavesdropper ca
detected@1–3#. The key can be sent through this chann
and if no eavesdropping is found, the key will be secu
Working quantum cryptographic systems have been c
structed in several laboratories@4–8#.

The quantum cryptographic schemes proposed so far h
all involved the transmission of single particles. For e
ample, in one scheme, single photons are sent down an
tical fiber, and information is carried by the polarization
the photons. Experimental implementations of this meth
use weak coherent pulses rather than single photons. Lo
limit the distances over which this method can be used; if
fiber is too long, the probability of the photon emerging fro
the fiber without being absorbed is small. Amplifiers cann
be used to boost the signal, because they destroy the q
tum coherence, which is essential for the method to work
second approach, which also suffers from this limitatio
uses weak, overlapping coherent states@9–11#. In this case,
the information is encoded in the phase of the coherent s

One possible way around the limitation imposed by los
is to use pulses consisting of more than one photon. C
however, is required, because the eavesdropper may si
off enough of the pulse to learn what information it is carr
ing, but send the rest of the pulse on its way. It has b
shown by Ralph that multiphoton pulses in coherent sta
are vulnerable to this kind of attack@12#. It is necessary to
use pulses for which this kind of eavesdropping will n
work.

Recently Ralph has presented a method of using sque
states for quantum cryptography@12#. In this scheme se
quences of symbols are impressed on two squeezed b
by Alice. The beams are then mixed at a beam splitter,
the mixed beams, along with a local oscillator for each
sent to Bob. A random-phase delay is introduced into one
1050-2947/2000/61~2!/022309~8!/$15.00 61 0223
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the beams and its local oscillator in order to destroy
phase coherence between the two beams. Bob, by using
beams and their local oscillator signals, can, by using hom
dyne detection, recover one of the two sequences but
both. An eavesdropper is in the same position as Bob,
she does not know which sequence Bob will read, and if
uses a capture-resend strategy, every time she guesses
rectly, she will introduce detectable errors. The squeez
prevents her from gaining useful information by splitting o
parts of the beams.

Here we shall investigate a different scheme based
squeezed light. Alice sends displaced squeezed vac
states to Bob, which are squeezed in one of two orthogo
field quadrature components. Bob chooses at random w
of the components to measure. The security of this metho
transmission is a result of the uncertainty relation for fie
quadrature components. The effect of loss is examined,
it is found that its effect can be partially compensated
using degenerate parametric amplifiers to boost the sig
This method should be secure against the capture-re
strategy and a strategy that employs a beam splitter
sample part of the signal. In the latter case, it is the vacu
noise that presents a major problem for the eavesdroppe

II. PROCEDURE

A single-mode classical field is characterized by a co
plex amplitude, or equivalently, by its real and imagina
parts, which we shall designate byx1 and x2, respectively.
Quantum mechanically, the complex amplitude correspo
to the mode annihilation operatora and the real and imagi
nary parts to the operatorsX1 andX2, respectively, where

X15
1

2
~a†1a!, X25

i

2
~a†2a!. ~1!

These operators do not commute and obey the uncerta
relation (\51)

DX1DX2>
1

4
. ~2!
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This uncertainty relation implies thatX1 andX2 cannot both
be defined to arbitrarily high accuracy for a given quant
state. It is this fact that will form the basis of our quantu
cryptography system.

It is often useful to represent quantum states in a ph
space whose axes arex1 and x2. The state is pictured as
point surrounded by an error box. The point is located
x15^X1& and x25^X2&, and the error box represents th
fluctuations of the amplitude about its mean value. Fo
coherent state, the error box is a circle of radius 1/2, wh
for a minimum uncertainty squeezed state, it is an ellip
whose minor axis is parallel to the direction of the squeezi
The area of the ellipse is the same as that of the circle
shape, however, allows us to have one of the variables,
X1, very precisely defined, while the other,X2, is very poorly
defined.

In explaining how this can be used to send a message
invoke the usual cast of characters that appear in discuss
of quantum cryptography, Alice, Bob, and Eve. Alice wan
to establish a key with Bob, and Eve wants to intercep
without being detected. Alice and Bob use the followi
method to set up a shared key. Thex1 and x2 axes are di-
vided up into bins of sized, whered,1/2. Each bin corre-
sponds, by previous agreement, to a symbol in an alpha
The key will consist of a sequence of symbols from th
alphabet. For example, an inefficient choice of alpha
would be the symbols 0 and 1, and every other bin co
represent 0, while the intervening ones represent 1. A m
efficient choice would be to use a larger alphabet.

Alice now sends to Bob one of two kinds of squeez
states. The first kind can be represented by an ellipse th
centered on thex1 axis and is squeezed in thex1 direction to
a width considerably less thand. This type of state has ver
well-defined x1 value but a poorly definedx2 value. The
second kind is represented by an ellipse that is centere
the x2 axis and is squeezed in thex2 direction, also to a
width considerably less thand. This state has a well-define
x2 value but a poorly definedx1 value. We shall call the firs
kind of state anx1 state and the second kind anx2 state.

The number of bins on each axis depends on the lengt
the ellipses. Letdxma j be the length of the major axis of th
ellipses representing thex1 andx2 states~it is assumed to be
the same for both!. On the x1 axis, the bins run from
2dxma j/2 to dxma j/2, and have the same range on thex2
axis. This means that the collection of allx1 states, each
centered in a particular bin on thex1 axis, covers the sam
region of phase space as does the collection ofx2 states.
Therefore, an eavesdropper cannot determine whether a
is an x1 or an x2 state from the result of a single measur
ment ofX1 or X2.

Alice now decides at random whether to send anx1 or an
x2 state, and Bob decides, also at random, whether to m
sureX1 or X2. This measurement can be performed by us
homodyne detection. Alice and Bob then communicate w
each other via a public channel. For each state that A
sent, she tells Bob what kind of state,x1 or x2, it was, and
Bob tells Alice what kind of measurement he made. Ali
does not tell Bob theX1 or X2 values of the states she sen
and Bob does not tell Alice the results of his measureme
02230
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After this public communication, Alice and Bob keep th
results for which Bob made a measurement correspondin
the state that Alice sent, e.g., when Alice sent anx1 state and
Bob measuredX1, and discard the others. For each of the
transmissions, Bob knows the value of the variable,x1 or x2,
that Alice sent so they both know which bin the state falls
They then assign to this transmission the alphabet sym
corresponding to this bin. The result is a sequence of s
bols that can be used as a key.

Why is this key secure? In order to know which bin
given state falls into, Eve must be able to determine eithex1
or x2 to an accuracy of at leastd. The problem is, she doe
not know which measurement to make, and she is forbid
by the uncertainty principle from measuring both to the n
essary accuracy. She must choose to measureX1 or X2 if she
wishes to determine the key symbol, and if she chooses
wrong one, she gains no information and disturbs the m
sage. This disturbance can be detected by Alice and B
They can compare a subset of the transmissions for wh
they should agree. If they find errors, i.e., if they find they
not agree on some of these symbols, they can conclude t
was an eavesdropper present.

Let us now see how smalld needs to be, and how muc
squeezing we need. For a squeezed vacuum state, squ
in thex1 direction, the probability distribution for the observ
ableX1 is given by~see Appendix A!

p~x1!5^x1ursqvacux1&5
1

Apv
e2x1

2/v, ~3!

where rsqvac is the density matrix corresponding to th
squeezed vacuum state,v5(1/2)e22r , and r>0 is the
squeezing parameter (r 50 corresponds to the vacuum sta
that is not squeezed!. The probabilitypd that x1 lies in the
interval @2d/2,d/2# is

pd5
2

Apv
E

0

d/2

dx1e2x1
2/v5erfS d

2Av
D , ~4!

where erf(x) is the error function and is given by

erf~x!5
2

Ap
E

0

x

dte2t2. ~5!

Suppose we want the probability of making an error, i.e.,
probability of findingx1 outside the interval@2d/2,d/2#, to
be less than 1023. We find that 12erf(2.51)53.931024

@13#, so that if

d>5.02Av, ~6!

then the error probability will be less than 1023. If we
choosed to be 1/8, then we can choosev56.231024, which
implies that the squeezing parameter is 3.3. Because
number of photons in a squeezed vacuum is^a†a&5sinh2r,
the number of photons in this state is 200. The width of
state in thex2 direction is juster /2, which is, with our
choices, 14, and this implies that in that direction the st
9-2
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QUANTUM CRYPTOGRAPHY WITH SQUEEZED STATES PHYSICAL REVIEW A61 022309
has substantial overlap with approximately 110 bins. T
means that if we measure the state in thex1 direction we can
determine with very good probability which bin it lies in, bu
if it is measured in thex2 direction, the result is essentiall
random.

III. EFFECT OF LOSSES

As the light travels down a fiber it will experience loss
and this will degrade the squeezing. These losses ca
described by the master equation

dr

dt
5

g

2
~2ara†2a†ar2ra†a!. ~7!

Herer is the density matrix of the field andg is the loss rate.
In order to find the density matrix at the end of the fiber, o
solves this equation forr(t) and setst5T5L/c, whereL is
the length of the fiber. There are a number of ways to so
this equation, one of which is discussed in Appendix B. T
result for p(x1) at the output of the fiber is again given b
Eq. ~3!, but now

v5
1

2
@~12e2gT!1e2gTe22r #. ~8!

The probability of findingx1 within a bin of sized is still
given by Eq.~4!, but with the new value ofv. For a given
value of pd , or, equivalently, a given error probability, th
relation gives a bound on the size of the loss which can
tolerated. Note that even if the initial squeezing were infin
~a physical impossibility, because this would require infin
energy!, the size of the acceptable loss is finite, and, in fa
quite small. For example, for an error probability of less th
1023, with the same value ofd as above, we can agai
choosev56.231024, which gives us thatgT,1.231023,
or for a fiber of length 1 km, a maximum loss of 1
31026/m.

It is possible to use a degenerate parametric amplifie
partially compensate for the effect of losses. In order to
how this works, we shall compare the action of a fiber
lengthL5Tc to that of two fibers of lengthL/2 with a de-
generate parametric amplifier, with gainG.1, between
them to boost the signal. We shall consider what happen
an x1 state, the effect on anx2 state is similar.

In the case of the fiber of lengthL we have that

^X1~T!&5e2gT/2^X1~0!&,
~9!

DX1~T!25e2gTDX1~0!21
1

4
~12e2gT!.

Because we wish to find which bin the initial state is in, w
define a variablej5egT/2X1(T) that has the property that

^j&5^X1~0!&,
~10!

Dj5@DX1~0!21 1
4 ~egT21!#1/2.
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A measurement ofj will tell us with high probability which
bin the original state was in ifDj is considerably smaller
thand, or

Dj,sd, ~11!

wheres,1, and its actual size is determined by the pro
ability of error that we can tolerate. In order to satisfy th
condition the loss must be such that

egT21>gT,4@~sd!22DX1~0!2#. ~12!

Now let us look at the case with the amplifier. After th
first fiber we have

^X1~T/2!&5e2gT/4^X1~0!&,
~13!

DX1~T/2!25e2gT/2DX1~0!21
1

4
~12e2gT/2!.

The amplifier can be set to amplify eitherX1 or X2; if it
amplifiesX1, thenX1→GX1 andX2→(1/G)X2, while if it is
set to amplifyX2, thenX1→(1/G)X1 andX2→GX2. Let us
suppose that it is set to amplifyX1, which has the effect of
multiplying the right-hand side of the first of Eqs.~13! by G
and the second byG2. Finally, after the second fiber we hav

^X1~T!&5Ge2gT/2^X1~0!&,

DX1~T!25G2e2gTDX1~0!21
1

4
G2e2gT/2~12e2gT/2!

1
1

4
~12e2gT/2!. ~14!

Again we are interested in the value ofX1 at the beginning of
the first fiber, so we define

j15
1

G
egT/2X1~T!, ~15!

which implies that

^j1&5^X1~0!&,

Dj15FDX1~0!21 1
4 ~egT/221!1

1

4G2
egT~12e2gT/2!G 1/2

.

~16!

In the limit of large gain, the requirement on the loss so t
Dj1,sd is that ~for gT!1)

gT,8@~sd!22DX1~0!2#, ~17!

a less stringent requirement by a factor of 2 over the sin
long fiber. Therefore, the amplifier, by boosting the sign
has reduced the effect of the losses.

It remains to be seen what happens if the amplifier is
to amplify X2, and anx1 state is sent. In that case we defin
the variable
9-3
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MARK HILLERY PHYSICAL REVIEW A 61 022309
j25GegT/2X1~T!, ~18!

which has the following properties:

^j2&5^X1~0!&,

Dj25@DX1~0!21 1
4 ~egT/221!1 1

4 G2egT~12e2gT/2!#1/2.
~19!

In the high-gain limit the requirement on the losses is

gT,8
~sd!2

G2
. ~20!

This is a much more stringent requirement on the losses
that imposed by the single long fiber.

This analysis suggests that Alice and Bob should use
following protocol if a fiber with amplifiers is to be used
Alice decides at random whether to send anx1 or anx2 state
and independently decides, also at random, whether the
plifiers should amplifyX1 or X2. She then sends the stat
and Bob measures eitherX1 or X2, with this choice being
again random. If Alice and Bob make the same choice,
the amplifiers are set the same way, e.g., both decide to m
sureX1 and the amplifiers also amplifyX1, then they can use
that transmission, otherwise they discard it.

If the amplifier settings are secure, then this procedure
be simplified and Alice can set the amplifiers in accord w
the state she sends. On the other hand, if they are not,
Eve knows which quadrature component is being amplifi
then the random setting is necessary. There is, in additio
limit on the gain of the amplifiers that follows from the fa
that Alice and Bob must be able to use the cases in wh
Alice’s preparation and Bob’s measurement agree, but
amplifier is set incorrectly, to detect the presence of
eavesdropper.

If Alice and Bob can only use the cases in which eve
thing agrees, preparation, amplifier setting, and meas
ment, to detect Eve, then she has a successful eavesdro
strategy that cannot be detected. Eve simply determ
which quadrature is being amplified, measures that qua
ture, and sends a state that agrees with the result of
measurement on to Bob. Using this strategy Eve will o
make incorrect measurements when the amplifier is se
amplify the wrong quadrature component, in which case t
transmission will be discarded anyway. Thus, it is essen
that Alice and Bob be able to examine the transmissions
which their preparation and measurement agree, but the
plifier is set incorrectly, and see the effect of Eve’s measu
ment.

Let us now see what kinds of restrictions this requirem
imposes. In the case in which the amplifier is set prope
we want the third term in the brackets in the second of E
~16! to be much smaller than the other two. This implies th
we need

DX1~0!2@
gT

G2
, gT@

gT

G2
. ~21!
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The second of these inequalities implies that we simply n
G2@1, and if we assume thatDX1(0);sd, and in addition
assume that the requirement in Eq.~17! is obeyed, then the
first of the above inequalities also reduces toG2@1. Now let
us see what happens when the amplifier is set incorrec
With no intervention by Eve, we have thatDj2;G. If, how-
ever, Eve makes an incorrect measurement, then the un
tainty in the result of her measurement will be of ord
1/(sd). This uncertainty will be reflected in the state s
sends to Bob, and consequently he will findDj2;1/(sd). If
G is chosen so that

G2@1, G!
1

sd
, ~22!

then even by examining the cases in which the amplifie
set incorrectly, Alice and Bob can, by comparing their r
sults, tell whether an eavesdropper was present.

IV. EAVESDROPPING

Let us now consider two possible methods of eavesdr
ping on this system. The first is just the capture-resend s
egy, and the second involves using a beam splitter to split
part of the signal, and performing measurements on that
to gain information about the signal. In both cases, we s
find that the intervention of the eavesdropper is detectab

In the capture-resend strategy, Eve measures the e
signal, and then, on the basis of her measurement re
prepares a second state that she sends on to Bob. Her
lem is that she does not know whether she should mea
X1 or X2, and, if d is chosen small enough, she will intro
duce errors if she chooses incorrectly.

If d is chosen too large, in particular, larger than 1/2, E
has a straightforward eavesdropping strategy. She can m
sure bothX1 and X2 to an accuracy of approximately 1/2
This can be accomplished either by splitting the signal i
two parts using a 50-50 beam splitter and measuringX1 at
one output andX2 at the other@14#, or by amplifying the
signal, so that it becomes essentially classical, and perfo
ing measurements on it@15#. After performing these mea
surements, she sends a coherent state to Bob that is cen
on the results of her measurement. That is, if she obtai
resultsx1

(m) and x2
(m) , the coherent state she sends can

visualized as a circle of radius 1/2 in thex1-x2 plane with its
center at the point (x1

(m) ,x2
(m)). When Alice announces the

kind of state she sent, Eve knows which of her results,x1
(m)

or x2
(m) , to use, and Alice and Bob will not be able to dete

the eavesdropping. This is because the coherent state
Eve sent to Bob will have the correct value ofx1 for an x1
state and the correct value ofx2 for anx2 state, and both with
sufficiently high accuracy that Bob will assign the result
his measurement to the correct bin. Therefore, it is neces
to choosed smaller than 1/2 in order to foil this strategy.

If d has been chosen considerably smaller than 1/2
above strategy no longer works, because Eve can no lo
determine bothX1 and X2 to the desired accuracy, i.e.,d.
She will have to choose which one to measure, and a
making the measurement, will send to Bob a state squee
9-4
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in the direction that she chose centered on the result of
measurement. If, however, she made the wrong choice,
state she sends to Bob will be squeezed in the wrong di
tion and centered on the wrong point. This will introdu
errors, which, by comparing a subset of the results on wh
they agree, i.e., Bob’s measurement corresponded to the
of state that Alice sent, Alice and Bob can detect the eav
dropping.

Let us now suppose thatd has been chosen sufficient
small, and that instead of measuring the entire signal,
uses a beam splitter to sample a part of it. She sends o
Bob the part of the signal that is transmitted through
beam splitter and performs measurements on the part th
reflected. We would like to see how much she can learn,
how much she disturbs the signal state. We shall call the
modes that the beam splitter couples modes 1 and 2, an
signal will go into the input port for mode 1 and the vacuu
into the input for mode 2. The relation between the input a
output operators is@16#

S a1
(out)

a2
(out)D 5U21S a1

( in)

a2
( in)D U5S AT AR

2AR AT
D S a1

( in)

a2
( in)D ,

~23!

whereU is the unitary operator that implements the bea
splitter transformation, andR and T are the reflection and
transmission coefficients, respectively. These have to be
sen in such a way that we minimize the disturbance to
signal state, but, nevertheless, gain some information a
it. We shall suppose that Alice has sent anx1 state, and see
what happens both in the case where Eve makes anX1 mea-
surement and in the case where she makes anX2 measure-
ment.

Now suppose that Alice has sent anx1 state centered on
x15s with squeezing parameterr, and lets5e2r . Eve in-
serts the beam splitter and measuresX1 at the mode-2 outpu
port. We shall denote byXjk the operatorXj for the kth
mode, where bothj andk can be either 1 or 2. We shall als
drop the superscript(in) on all in operators with the under
standing that operators without a superscript arein operators.
From Eq.~23! we have that for initially uncorrelated mode

^X12
(out)&5AT^X12&2AR^X11&,

~24!
~DX12

(out)!25T~DX12!
21R~DX11!

2,

or for our input state,

^X12
(out)&52ARs,

~25!

~DX12
(out)!25

1

4
~T1Rs2!.

This last equation tells us about the information gain fro
Eve’s measurement. In order to learn about Alice’s state w
some degree of accuracy,DX12

(out) cannot be too large, which
in turn, implies that the reflection coefficient cannot be t
small. If it is, the noise from the vacuum state obscures
02230
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information carried by the signal state. In particular, if w
definej1252X12

(out)/AR, then we have

^j12&5s, ~Dj12!
25

1

4 S T

R
1s2D . ~26!

From this equation it is clear that if we want to determinex11

with an accuracy of orderd, then we must haveAT/R of
orderd.

Let us now see what is the effect of Eve’s measurem
on the transmitted signal state. In thex1 representation the
initial wave function of the system is~see Appendix A!

uC&5cx1
~x11!fvac~x12!, ~27!

where

cx1
~x11!5S 2

ps2D 1/4

e2[(x112s)/s] 2
, ~28!

is the wave function of thex1 state,

fvac~x12!5S 2

p D 1/4

e2x12
2

, ~29!

is the wave function of the vacuum state, andx11 is the x1
coordinate for mode 1 andx12 is thex1 coordinate for mode
2. After the beam splitter the wave function is~see Appendix
A!

UuC&5S 2

ps D 1/2

e2[(ATx112ARx122s)/s] 2
e2(ARx111ATx12)

2
.

~30!

If Eve now measuresX12 and obtains the resulty, the wave
function becomes a product of a wave function in mode
and an ‘‘eigenstate’’ ofX12 with eigenvaluey in mode 2. The
mode-1 wave functioncy(x11) is then

cy~x11!5N expF2S T

s2
1RD

3S x112
AT@s1AR~12s2!y#

T1Rs2 D G , ~31!

whereN is a normalization constant. This is the wave fun
tion that will be sent on to Bob. Comparing Eqs.~28! and
~31! we see that there are two effects of the measuremen
the wave function. First, the center of the Gaussian
shifted, and, second, its width has changed. We want bot
these changes to be small.

As a result of the beam splitter and measurement,
width has changed as follows:

s→ s

~T1s2R!1/2
. ~32!
9-5
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In order for this change to be small, it is necessary thatT be
of order one. The shift in the center of the Gaussian is gi
by

s→
AT@s1AR~12s2!y#

T1s2R
. ~33!

Note that ifT51 the center suffers no shift, while ifT50 it
is shifted all the way to zero. This clearly implies that
order to produce a small change we wantT to be close to
one. Assuming this to be the case, which means thatR!1,
and also thats is small, we find that the shiftDs is given by

Ds52
1

2
sR1yAR. ~34!

Now y is random, but will typically be of order2ARs @see
Eq. ~25!# so that if the shift is to be less thand in magnitude,
we must have

sR,d. ~35!

However,s can be anywhere between21/s and 1/s, so that
we need to require that

R,sd, ~36!

which is a very stringent requirement.
Comparing the requirements for information gain a

small disturbance, we see that they are incompatible. In
mation gain requires a small transmission coefficient, whi
small disturbance requires a transmission coefficient clos
one, and there is no overlap in the permitted ranges. Th
fore, using this method, if Eve diverts enough light to ga
useful information, she will also produce a detectable dis
bance. The real problem for Eve is the vacuum noise. If
samples only a small part of the signal, in order to minim
the disturbance, what little signal she sees is swamped
vacuum noise.

V. CONCLUSION

A method for using squeezed states to perform quan
key distribution has been presented. It relies on the un
tainty relation for field quadrature components for its se
rity. As with other methods, it is adversely affected
losses, but it is possible in this case to use amplifiers
reduce their effect. We have shown that this method is se
against several eavesdropping strategies, but have not
sented a general proof of its security.

Squeezed states are an example of a nonclassical
state, that is, a state whose photodetection properties ca
be simulated by a classical stochastic field. They h
proven to be useful for teleportation@17–19# and now for
quantum cryptography as well. This leads one to ask whe
other kinds of nonclassical states could prove useful in qu
tum information, and suggests that this should be a frui
line of research.
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APPENDIX A

Here we present several facts about squeezed states
beam splitters that are needed in the rest of the pa
Squeezed states are discussed in several recent textboo
quantum optics, and these provide a good background for
subject@20,21#.

A squeezed vacuum state is obtained from the vacuum
applying the squeeze operator

uF&5S~z!u0&, ~A1!

where

S~z!5exp$@z~a†!22z* a2#/2%. ~A2!

Settingz5reif we have that

S~z!21aS~z!5a coshr 1a†eifsinhr ,
~A3!

S~z!aS~z!215a coshr 2a†eifsinhr .

We can use these relations to find an explicit express
for uF& in the x1 representation, i.e., the representation
uF& given by ^x1uF&, whereux1& is an eigenstate ofX1. In
this representation

X1→x1 , X2→2
i

2

d

dx1
, ~A4!

which implies that

a→x11
1

2

d

dx1
, a†→x12

1

2

d

dx1
. ~A5!

The stateuF& satisfies the equation

S~z!aS~z!21uF&50, ~A6!

and using Eqs.~A3! and~A5! to put this in thex1 represen-
tation we find

05F ~coshr 2eifsinhr !x11
1

2
~coshr 1eifsinhr !

d

dx1
G

3^x1uF&. ~A7!

This equation is easily solved, and in the casef5p, which
corresponds to squeezing in thex1 direction, we find, after
normalization, that

^x1uF&5S 2

pe22r D 1/4

exp@2~x1 /e2r !2#. ~A8!
9-6
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In order to obtain the wave function of a squeezed vacu
state that has been shifted bys in thex1 direction, we simply
replacex1 by x12s in the above equation.

Next we would like to see how wave functions in thex1
representation are transformed under the action of a b
splitter. Let our initial state bêx11,x12uC&5C in(x11,x12),
then our task is to find

Cout~x11,x12!5^x11,x12uUC&, ~A9!

where U is the beam-splitter transformation given in E
~23!. We first note thatU21ux11,x12& is an eigenstate o
U21X11U with eigenvaluex11, and ofU21X12U with eigen-
valuex12. From Eq.~23! we have

U21X11U5ATX111ARX12,
~A10!

U21X12U52ARX111ATX12,

so that

U21ux11,x12&5uATx112ARx12,ARx111ATx12&.
~A11!

Therefore, we have that

Cout~x11,x12!5C in~ATx112ARx12,ARx111ATx12!.
~A12!

APPENDIX B

We want to find the solution to the master equation~7!.
There are a number of ways of doing this, most of wh
involve turning the operator equation into ac-number equa-
tion. We shall use the master equation to derive an equa
for the symmetrically-ordered field characteristic functio
which for a single-mode field is given by

x~j!5Tr@D~j!r#, ~B1!

whereD(j)5exp(ja†2j*a). Using the relations

]x

]j
2

1

2
j* x5Tr@D~j!a†r#,

~B2!
]x

]j
1

1

2
j* x5Tr@D~j!ra†#,
-
e

et

ry

02230
m

m

on
,

]x

]j*
1

1

2
jx52Tr@D~j!ar#,

]x

]j*
2

1

2
jx52Tr@D~j!ra#,

we can transform the master equation into a partial differ
tial equation forx(j)

]x

]t
52

g

2 S j
]x

]j
1j*

]x

]j*
1uju2x D . ~B3!

Definingx8(j)5exp(uju2/2)x(j), we find thatx8(j) satisfies

]x8

]t
52

g

2 S j
]x8

]j
1j*

]x8

]j*
D , ~B4!

whose solution is given by

x8~j,t !5x8~e2gt/2j,0!. ~B5!

This implies that

x~j,t !5exp@2~12e2gt!uju2/2#x~e2gt/2j,0!. ~B6!

Our next task is to relate the characteristic function to
x1 distribution of the density matrix. If we letq andp be the
real and imaginary parts ofj, j5q1 ip, then

x~j!5e2 iqpTr~e2ipX1e22iqX2r!

5e2 iqpE dx1e2ipx1^x1ue22iqX2rux1&. ~B7!

Settingq50 we see that̂x1urux1& is just the Fourier trans-
form of x(p), so

^x1urux1&5
1

pE dpe22ix1px~p!. ~B8!

In order to find ^x1ur(t)ux1& for an initial squeezed
vacuum state, we first use Eq.~B7! and the results of Appen
dix A to find x(p) at t50. We then use Eq.~B6! to find
x(p,t), and finally, Eq.~B8! to find ^x1ur(t)ux1&.
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