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Fidelity for multimode thermal squeezed states
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In the theory of quantum transmission of information the concept of fidelity plays a fundamental role. An
important class of channels, which can be experimentally realized in quantum optics, is that of Gaussian
quantum channels. In this work we present a general formula for fidelity in the case of two arbitrary Gaussian
states. From this formula one can get a previous result@H. Scutaru, J. Phys. A31, 3659~1998!#, for the case
of a single mode. The concept of fidelity used in this paper is the standard one@D. Bures, Trans. Am. Math.
Soc.135, 199 ~1969!; A. Uhlmann, Rep. Math. Phys.9, 273 ~1976!; R. Josza, J. Mod. Opt.41, 2314~1994!#.
It can be defined byF(r1 ,r2)def

5 maxuc1&,uc2&
u^c1uc2&u2, whereuc i&, i 51,2 are purifications of the density matrices

r i .

PACS number~s!: 03.67.2a, 03.65.Bz, 42.50.Dv, 89.70.1c
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I. INTRODUCTION

Within recent years, the quantum theory of informatio
an extension of the classical theory of information to t
quantum realm, has emerged as a fascinating research
A great deal of effort has been devoted to the issue of tra
mitting a state through noisy quantum channels despite
quantum-mechanical uncertainties in our knowledge ab
that state. This is a different problem from the classical s
ation, where the states are mutually exclusive and the in
system may remain in its initial state; in the quantum c
the states are density operators on a Hilbert space and
noncloning theorem@1# precludes the input system, in ge
eral, to retain its original state. Moreover, for a noisy qua
tum channel the state is subject to a decoherence pro
due to the interaction with an external environment, wh
further decreases the reliability of information processi
Thus, a fundamental problem is to extend the classical
coding and decoding procedures to quantum channels an
define an upper limit~the channel capacity! to the amount of
quantum information that can be transmitted with an ar
trary high fidelity. Recently, work@2# has been focused o
quantum channels which use Gaussian~or quasifree@3,4#!
states for the transmission of information. In this case, a
issue to be raised is how to calculate the fidelity@5–7# given
two mixed Gaussian states; partial answers, depending o
particular type of mixtures under consideration, have alre
been given in the literature@8–10#. In this paper, we will
give a general formula for the fidelity of two quasifree stat
and show that the previous results can be obtained as
ticular cases. The formula can be applied to some interes
cases, such as two-mode systems@11#.
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Let r1 and r2 two density operators that describ
two mixed states. The transition probabilityP(r1 ,r2) has
to satisfy the following natural axioms:~i! P(r1 ,r2)<1
and P(r1 ,r2)51 if and only if r15r2; ~ii ! P(r1 ,r2)
5P(r2 ,r1); ~iii ! If r1 is a pure state,r15uc1&^c1u
then P(r1 ,r2)5^c1ur2uc1&; ~iv! P(r1 ,r2) is invariant
under unitary transformations on the state spa
~v! P(r1uA ,r2uA)>P(r1 ,r2) for any complete subalge
bra of observables A; ~vi! P(r1^ s1 ,r2^ s2)
5P(r1 ,r2)P(s1 ,s2).

Uhlmann’s transition probability for mixed states@6#

P~r1 ,r2!5@Tr~Ar1r2Ar1!1/2#2 ~1!

satisfies properties~i!–~vi!. The fidelity is defined by
F(r1 ,r2)5P(r1 ,r2). A detailed analysis for the structur
of the transition probability was hampered by the facto
containing square roots in Eq.~1!. Due to technical difficul-
ties in the computation of fidelities, few concrete examp
of analytic calculations are known. Until recently, all th
results were obtained only for finite-dimensional Hilbe
spaces@12–14#. The first results in an infinite-dimensiona
Hilbert space were recently obtained by Twamley@9# for the
fidelity of two thermal squeezed states and by Paraoanu
Scutaru@10# for the case of two displaced thermal states.
@8# Scutaru has developed another calculation method
allowed getting the result for the case of two displaced th
mal squeezed states in a coordinate-independent form.

Let (E,s) be a phase space, i.e., a vector space wit
symplectic structures. Then the commutation relations o
(E,s) acting in a Hilbert spaceH are defined by a continu
ous family of unitary operators$V(u),uPE% on H that sat-
isfy the Weyl relations@3,4#:

V~u!V~v !5exp
i

2
s~u,v ! V~u1v !. ~2!

Hence the family$V(tu),2`,t,`% for a fixeduPE is a
group of unitary operators.

e
,
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Then by the Stone theorem

V~u!5expiR~u!, ~3!

whereR(u) is a self-adjoint operator. From the Weyl rel
tions we have

expi tR~u!expisR~v !5expi tss~u,v !expisR~v !expi tR~u!.

By differentiation and takingt5s50, one obtains

@R~u!,R~v !#52 is~u,v !I . ~4!

The operators$R(u),uPE% are called the cannonical ob
servables. The phase spaceE is of even real dimension 2n
and there exist in E symplectic bases of vector
$ej , f j% j 51, . . . ,n , i.e., reference systems such thats(ej ,ek)
5s( f j , f k)50 and s(ej , f k)52s( f k ,ej )5d jk , j ,k
51, . . . ,n. The coordinates (j j ,h j ) of a vectoruPE in a
symplectic basis@u5( j 51

n (j jej1h j f j )# are called symplec-
tic coordinates. The well-known coordinate and moment
operators are defined byQk5R( f k) and Pk5R(ek) for k
51,2, . . . ,n. Then the canonical observablesR(u) are linear
combinations of the above defined coordinate and mom
tum operators:R(u)5( j 51

n @j j Pj1h jQj )].
There is a one-to-one correspondence between the s

plectic bases and the linear operatorsJ on E defined byJek
52 f k andJ fk5ek , k51, . . . ,n. The essential properties o
these operators ares(Ju,u)>0, s(Ju,v)1s(u,Jv)50
(u,vPE andJ252I , I denotes the identity operator onE).
Such operators are called complex structures. In the foll
ing we shall use the matricial notations withuPE as column
vectors. Thens(u,v)5uTJv and the scalar product is give
by s(Ju,v)5uTv,u,vPE. A linear operatorSon E is called
a symplectic operator ifSTJS5J. When S is a symplectic
operator, thenST andS21 are also symplectic operators. Th
group of all symplectic operatorsSp(E,s) is called the sym-
plectic group of (E,s). The Lie algebra ofSp(E,s) is de-
noted bysp(E,s) and its elements are operatorsR on E with
the property (JR)T5JR. Hence an operatorR on E belongs
to Sp(E,s)ùsp(E,s) iff R252I . If J andK are two com-
plex structures, there exists a symplectic transformatioS
such thatJ5S21KS. For any symplectic operatorS we can
define a new system of Weyl operators$V(Su);uPE%. Then
from a well-known result on the unicity of the the systems
Weyl operator up to a unitary equivalence it follows th
there exists a unitary operatorU(S) on H such thatV(Su)
5U(S)†V(u)U(S).

For any nuclear operatorO on H one defines the charac
teristic function

CFu~O!5TrOV~u!, uPE. ~5!

We give the properties of the characteristic function that
important in the following @3#: ~i! CF0(O)5TrO; ~ii !
CFu@V(v)* OV(v)#5CFu@Oexpis(v,u)#; ~iii ! CFu(O1O2)
51/(2p)n*CFv(O1)CFu2v(O2)exp@(i/2)s(v,u)#dv; ~iv!
CFSu(O)5CFu„U(S)OU(S)†

….
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II. MULTIMODE THERMAL SQUEEZED STATES

The multimode thermal squeezed states are defined by
density operatorsr whose characteristic functions are Gau
sians@3,4,8#,

CFu~r!5expH 2
1

4
uTAuJ , ~6!

whereA is a 2n32n positive definite matrix, called the cor
relation matrix. From the last property of the characteri
function, enumerated above, it follows that

AU(S)rU(S)†5STArS. ~7!

Because the correlation matrixA is positive definite, it
follows @4,15# that there existsSPSp(E,s), such that

A5STDS, ~8!

whereD5(0
D

D
0 ) and D>I is a diagonaln3n matrix. The

most general real symplectic transformationSPSp(E,s)
has@4,16# the following structure:

S5OMO8, ~9!

where

M5S M 0

0 M 21D ~10!

andO, O8 are symplectic and orthogonal (OTO5I ) opera-
tors, and whereM is a diagonaln3n matrix. Various par-
ticular kinds of such matrices are obtained takingO, O8, D,
or M to be equal or proportional to the corresponding ide
tity operator. A pure squeezed state is obtained whenD5I .
If this condition is not satisfied, the state is a mixed st
called the thermal squeezed state@17#. WhenM5I there is
no squeezing and the correspondig states are pure coh
states or thermal coherent states. All these states have c
lations between the different modes produced by the
thogonal symplectic operatorsO andO8. As a consequence
the most general form of a correlation matrixA is given by

A5O8TMOTDOMO8. ~11!

From the property~iii ! of the characteristic function we hav
for two density operatorsr1 andr2,

CFu~r1r2!5FdetS A11A2

2 D 21/2G
3exp$2 1

4 uT@A22~A22 iJ !

3~A11A2!21~A21 iJ !#u%.

Whenr15r2 we have

CFu~r2!5~detA!21/2expH 2
1

4
uTS A2JA21J

2 DuJ .

~12!
6-2
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A state r is pure if r25r. Then from the equality
CFu(r2)5CFu(r), it follows that a Gaussian state is pure

A52JA21J, ~13!

i.e., a Gaussian state is pure ifJAPSp(E,s). Analogously,
for a mixed stater2,r. ThenCFu(r2),CFu(r) and, as a
consequence, (A2JA21J)/2.A. Hence for any Gaussia
state the correlation matrixA must satisfy the following re-
striction:

A<2JA21J. ~14!

III. CHARACTERISTIC FUNCTION OF THE SQUARE
ROOT FROM A DENSITY MATRIX

Let us suppose that the characteristic function of
Hilbert-Schmidt operatorAr of a Gaussian state is, up to
numerical factor, also a Gaussian function with the corre
tion matrix F(A),

CFu~Ar!5KexpH 2
1

4
uTF~A!uJ . ~15!

Then from the equalityr5ArAr, we obtain

K2
„det@F~A!#…21/2expH 2

1

4S F~A!2JF~A!21J

2 DuJ
5expH 2

1

4
uTAuJ . ~16!

Hence

K25AdetF~A!, ~17!

and

F~A!2JF~A!21J52A. ~18!

The last equation has the solution

F~A!5A„I 1AI 1~JA!22
…. ~19!

This is an alternative proof of a result obtained in@3#. The
advantage of this proof is given by the fact that it does
require the choice of a special basis inE. If we take a sym-
plectic basis in E such thatJ5(2I

0
0
I ), then JD5DJ, and

from this equation and from the equationsA5STDS, JST

5S21J it follows that (JA)225S21D 22S. Hence I
1(JA)225S21(I 2D 22)S and

AAI 1~JA!225ST~AD 22I !S. ~20!

IV. GENERAL FORMULA FOR THE FIDELITY OF
GAUSSIAN STATES

The fidelityF(r1 ,r2) for two density operatorsr1 andr2
is defined by

F~r1 ,r2!5@Tr~Ar1r2Ar1!1/2#2. ~21!
02230
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As we have see in Sec. II, the characteristic function o
product of operators whose characteristic functions are G
sians is also a Gaussian. In Sec. III we have obtaine
simple formula for the characteristic function of the squa
root of a density operator whose characteristic function i
Gaussian. Hence we can find a simple formula for the ch
acteristic function of the operatorAr1r2Ar1:

CFz~Ar1r2Ar1!5ALexpH 2
1

4
zTOzJ , ~22!

where

L215detF~A1!21detS F~A1!1A2

2 DdetS A21F~A1!2U
2 D

~23!

whereU5(A22 iJ)(F(A1)1A2)21(A21 iJ), and

O5F~A1!2~F~A1!2 iJ !$A21F~A1!

2~A22 iJ !@F~A1!1A2#21~A21 iJ !%21@F~A1!1 iJ#.

Then applying the result of the preceding section we c

obtain the characteristic function ofAAr1r2Ar1,

CFz~AAr1r2Ar1!5@L detF~O!#1/4expH 2
1

4
zTF~O!zJ .

~24!

From this formula and the property~i! of the characteristic
function, we obtain

F~r1 ,r2!5AL detF~O!. ~25!

We remark that

detF~O!5detO det@ I 1AI 1~JO!22#. ~26!

In order to simplify the formula for fidelity we observe tha

t i jk5Trr ir jrk5detS Ai1Aj

2 D
3detFAj1Ak2~Aj2 iJ !~Ai1Aj !

21~Aj1 iJ !

2 G ,
and that t1235t2315t312. If we take in this last identity
F(A1) instead ofA1, then we obtain

detFF~A1!1A2

2 GdetFA21F~A1!2U
2 G

5detS A11A2

2 DdetF~A1!.

Hence we get

L5FdetS A11A2

2 D G21

. ~27!
6-3
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It is not evident from this general formula that the pro
erties ~i!–~vi! of the fidelity are valid. Let us consider th
most simple one, namely the propertyF(r,r)51. In this
case it is necessary to prove thatF(O)5A. We can choose
the complex structureJ to commute with the correlation ma
trix A: JA5AJ. Then all operations in the formula that give
O as a function ofA andJ can be performed, and the resu
is O5(A1A21)/2 andF(O)5A. The next property that we
shall discuss is the property~iii !, which in the case of Gauss
ian states becomes@8# F(r1 ,r2)5@(A11A2)/2#21/2. We
shall prove thatO5A1 when r1 is a pure state. First we
remark thatF(A1)5A1 and that there is a symplectic tran
formation such thatA15STS. Then O5ST$I 22P2@2I
24P1X 21P2#2P1%S, where P15(I 1 iJ)/2, P25(I
2 iJ)/2, and X5(ST)21A2S211I . Evidently P1 and P2

are an orthogonal decomposition of the unit operatorP1
2

5P1 , P2
2 5P2 , P1P25P2P150 andP11P25I . As a

consequence of the orthogonality we obtainO5STS5A1.
Then F(O)5F(A1)5A15STS and det@F(O)#
5det(ST)det(S)51.

V. THE ONE-MODE CASE

In @8# we have obtained an expression for the fidelity
the one-mode case. This formula can be reobtained as a
sequence of the above general formula. In the one-mode
all matrices are 232 matrices. For a 232 matrixO we have

F~O!5eO, ~28!

where e511A121/detO and detF(O)5(AdetO
1AdetO21)2. From these considerations it follows that

F~r1 ,r2!5
2

Adet~A11A2!~AdetO2AdetO21!
. ~29!

Thus it is sufficient to compute detO. We shall denote byP
the product (detA121)(detA221). After simple but long
computations we obtain

detO511
P

det~A11A2!
, ~30!
S.

ry
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which gives the result of@8#

F~r1 ,r2!5
2

Adet~A11A2!1P2AP . ~31!

VI. MULTIMODE THERMAL STATES CASE

In the case of two thermal states with correlation matric
Ai5Di with i 51,2, we haveAiJ5JAi , (i 51,2) andA1A2

5A2A1. ThenF(Ai)5Ai1AAi
21I ( i 51,2). Hence

O5~A11A2!21~A1A21I ! ~32!

and

F~O!5
~A11A2!

~A1A21I !2A~A1
22I !~A2

22I !
. ~33!

Finally

F~r1 ,r2!5AdetS 2

~A1A21I !2A~A1
22I !~A2

22I !
D ,

~34!

which is the product of the fidelities of the correspondi
one-mode thermal states@3,4,8#

VII. CONCLUSIONS

In this paper we have provided a general formula for
calculation of the fidelity of two Gaussian states. The fo
mula can be applied to multimode thermal squeezed sta
and it is shown that, in the particular case of a single mo
it reproduces the results already known in the literature.
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