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Fidelity for multimode thermal squeezed states
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In the theory of quantum transmission of information the concept of fidelity plays a fundamental role. An
important class of channels, which can be experimentally realized in quantum optics, is that of Gaussian
guantum channels. In this work we present a general formula for fidelity in the case of two arbitrary Gaussian
states. From this formula one can get a previous r¢sulScutaru, J. Phys. 81, 3659(1998], for the case
of a single mode. The concept of fidelity used in this paper is the standarfDoBures, Trans. Am. Math.
Soc.135 199(1969; A. Uhlmann, Rep. Math. Phy®, 273(1976; R. Josza, J. Mod. Op#1, 2314(19949].

It can be defined b (py,p2) ©®Max,, 1, (¥l y2)?, where| ¢;), i=1,2 are purifications of the density matrices
Pi -

PACS numbdps): 03.67—a, 03.65.Bz, 42.50.Dv, 89.76¢c

I. INTRODUCTION Let p; and p, two density operators that describe

- . . two mixed states. The transition probabiliB(p,,p,) has
Within recent years, the quantum theory of |nformat|0n,t0 satisfy the following natural axiomsi) P(py.p,)<1

an extension of the classical theory of information to the : - -
- -and P(py,p2)=1 if and only if p;=py; (i) P(p1,p2)
guantum realm, has emerged as a fascinating research fm@?P(pz’pl); (i) If p, is a pure state,p;=|¢) (|

A great deal of effort has been devoted to the issue of trangy o, P(p1.p2)={tlpal ) (V) P(p1,p,) is invariant

mitting a state through noisy quantum channels despite thg,qar unitary transformations on the state space:
guantum-mechanical uncertainties in our knowledge abOU(tV) P(p1]4.p2l )=P(p1.,p,) for any complete subalge-
that state. This is a different problem from the classical situyrg  of = observables A; (Vi)  P(p1®0q,p2® 0y)
ation, where the states are mutually exclusive and the input p(,,. ,.)P(0,0,).

system may remain in its initial state; in the quantum case yhimann’s transition probability for mixed statfa]
the states are density operators on a Hilbert space and the

noncloning theorenil] precludes the input system, in gen- P(pl,pz):[Tr(\/E,)Z\/Z)U?]2 (1)

eral, to retain its original state. Moreover, for a noisy quan-

tum channel the state is subject to a decoherence processitisfies properties(i)—(vi). The fidelity is defined by
due to the interaction with an external environment, whichF(p1.p2)=P(p1,p2). A detailed analysis for the structure
further decreases the reliability of information processing©f the transition probability was hampered by the factors
Thus, a fundamental problem is to extend the classical erfontaining square roots in E€L). Due to technical difficul-
coding and decoding procedures to quantum channels and #§s in the computation of fidelities, few concrete examples
define an upper limitthe channel capacityto the amount of ~ 0f analytic calculations are known. Until recently, all the
quantum information that can be transmitted with an arbiresults were obtained only for finite-dimensional Hilbert
trary high fidelity. Recently, work2] has been focused on spaceq12—14. The first results in an infinite-dimensional
quantum channels which use Gaussian quasifree[3,4])  Hilbert space were recently obtained by Twam|@yfor the
states for the transmission of information. In this case, a firsfidelity of two thermal squeezed states and by Paraoanu and
issue to be raised is how to calculate the fiddliy-7] given ~ Scutaru[10] for the case of two displaced thermal states. In
two mixed Gaussian states; partial answers, depending on th8] Scutaru has developed another calculation method that
particular type of mixtures under consideration, have alreadf!lowed getting the result for the case of two displaced ther-
been given in the literaturB8—10. In this paper, we will mal squeezed states in a coordinate-independent form.

give a general formula for the fidelity of two quasifree states, Let (E,o) be a phase space, i.e., a vector space with a
and show that the previous results can be obtained as pagymplectic structurer. Then the commutation relations on
ticular cases. The formula can be applied to some interestingF, ) acting in a Hilbert spacé{ are defined by a continu-

cases, such as two-mode systdrhs). ous family of unitary operator§V(u),ue E} on H that sat-
isfy the Weyl relationg 3,4]:
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Then by the Stone theorem Il. MULTIMODE THERMAL SQUEEZED STATES

The multimode thermal squeezed states are defined by the
density operatorp whose characteristic functions are Gaus-

i . sians[3,4,8,
whereR(u) is a self-adjoint operator. From the Weyl rela- [ )

tions we have

V(u)=expR(u), 3

CFy(p)= exp{ - %UTAU] , (6)
exptR(u)expsR(v)=exptso(u,v)expsR(v)exptR(u).

whereA is a 2nX 2n positive definite matrix, called the cor-
By differentiation and taking=s=0, one obtains relation matrix. From the last property of the characterisic

function, enumerated above, it follows that

[R(u),R(v)]=—io(u,v)l. (4)
Au(s)pu(s)T:STApS. (7)

The operator§R(u),ue E} are called the cannonical ob-
servables. The phase spdedas of even real dimensionr2
and there exist inE symplectic bases of vectors

Because the correlation matrix is positive definite, it
follows [4,15] that there exist$e Sp(E, o), such that

{e.fi}j=1, ... n, i.e., reference systems such thete; ,gk) A=STDS, @®)
=0'(fj,fk)=O and 0'(ej,f_k):__0'(fk,ej):5jk, ],k
=1,...n. The coordinates{,7') of a vectorueE ina  whereD=(} %) andD=1 is a diagonahxn matrix. The

symplectic basifu=3{_,(&'e;+ 7'f;)] are called symplec- most general real symplectic transformatiGe Sp(E, o)
tic coordinates. The well-known coordinate and momentunhas[4,16] the following structure:
operators are defined b®,=R(f,) and P,=R(e,) for k

=1,2, ... n. Then the canonical observablRéu) are linear S=0MO’, 9
combinations of the above defined coordinate and momen-
tum operatorsR(u)=={"_,[ &P+ 7'Q))]. where
There is a one-to-one correspondence between the sym- M 0
plectic bases and the linear operatdrsn E defined byJe, _
=—f,andJf,=¢e,, k=1, ... n. The essential properties of M=|o Ml) (10
these operators arer(Ju,u)=0, o(Ju,v)+o(u,Jv)=0
(u,veE andJ?=—1, | denotes the identity operator &).  and0, O’ are symplectic and orthogonaD{O=1) opera-

Such operators are called complex structures. In the foIIowtorS, and whereM is a diagonanxn matrix. Various par-

ing we shall use the matricial notations wille E as column  ticylar kinds of such matrices are obtained takidgO’, D,
vectors. Therr(u,v) =u'Jv and the scalar product is given or A1 to be equal or proportional to the corresponding iden-
by o(Ju,v)=u'v,u,v e E. Alinear operatoSonEis called ity operator. A pure squeezed state is obtained wierl.

a symplectic operator i5'JS=J. WhenSis a symplectic |t this condition is not satisfied, the state is a mixed state
operator, thers’ andS_Tl are also symplectic operators. The cajled the thermal squeezed stft&]. When M =1 there is
group of all symplectic operatoSp(E, o) is called the sym-  ng squeezing and the correspondig states are pure coherent
plectic group of E,0). The Lie algebra oSp(E, o) is de-  states or thermal coherent states. All these states have corre-
noted bysp(E, o) and its elements are operat®t®nEwith  |ations between the different modes produced by the or-
the property §R)"=JR. Hence an operatd® on E belongs  thogonal symplectic operatof andO’. As a consequence

to SE, o) Nsp(E, o) iff R?=—1. If JandK are two com-  the most general form of a correlation matfixs given by
plex structures, there exists a symplectic transformagon
such that)=S"!KS. For any symplectic operat@we can A=0"TMO™POMO". (11)

define a new system of Weyl operatdk&(Su);u e E}. Then

from a well-known result on the unicity of the the systems ofFrom the propertyiii ) of the characteristic function we have
Weyl operator up to a unitary equivalence it follows thatfor two density operatorp; andp,,

there exists a unitary operatbr(S) on H such thatV(Su)

=U(9)V(u)U(9). CF (pupy)=]| de Art+Ay| 12
For any nuclear operat@® on H one defines the charac- ulP1P2 2
teristic function LT i
Xexp{—zu'[A,—(A,—id)
CF,(O)=TrOV(u), ueE. (5) X (Ar+Ay) YA, +id)]ul.

We give the properties of the characteristic function that ar&Vhenp,=p, we have
important in the following [3]: (i) CFyo(O)=TrO; (ii)

CF [V(v)*OV(v)]=CF[Oexpio(v,u)]; (i) CF,(0,0,) - _ 1 [A-JA™Y
1(2m) [ CF,(01)CF, (O exd (/2 o(v.u) ]dv: (V) CFu(p®) = (detA) mex"{_Z“T( B NE
CFs(O)=CF,(U(S)ou(S)Mh. (12)
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A state p is pure if p?=p. Then from the equality As we have see in Sec. ll, the characteristic function of a
CF,(p?) =CF(p), it follows that a Gaussian state is pure if product of operators whose characteristic functions are Gaus-
sians is also a Gaussian. In Sec. lll we have obtained a
A=-JA"1, (13)  simple formula for the characteristic function of the square
root of a density operator whose characteristic function is a
Gaussian. Hence we can find a simple formula for the char-
acteristic function of the operatafp,p,vp:

i.e., a Gaussian state is pureJifhe Sp(E, o). Analogously,
for a mixed statgp?<p. ThenCF,(p?)<CF(p) and, as a
consequence, A—JA 1J)/2>A. Hence for any Gaussian

state the correlation matri& must satisfy the following re- 1
striction: CF,(Vpip2vp1) = \/EGXD[ - ZZTOZ} : (22)
_ -1
A<-JA 1. 19 here
Ill. CHARACTERISTIC FUNCTION OF THE SQUARE o 1 P(AD)+A, At ®(A)—U
ROOT FROM A DENSITY MATRIX L™"=detb(A,) “de > e >

Let us suppose that the characteristic function of the (23

Hilbert-Schmidt operatok/p of a Gaussian state is, up t0 a \wherez/= (A,—id)(P(A)+A,) (A, +id), and
numerical factor, also a Gaussian function with the correla-
tion matrix ®(A), O=d(A)—(P(A)—i1DH{A+D(A)

1 — (A= id)[D(A)+A] (A +id)} I D(A)+iJ].
CFy(Vp)=Kex —ZuTe(Au. (15
Then applying the result of the preceding section we can
Then from the equality=/p+\/p, we obtain obtain the characteristic function aff \/sz \/z,
1/ DA)—IDA) 1
2 —1/2 = 1
A exp{ 4( 2 - cF(WoipaVbn=IL detb(@]““exp{ - ZZT‘D(O)Z]'

24
=exp|’ - 1uTAu] . (16) 9

4 From this formula and the property) of the characteristic
function, we obtain

Hence
K2=\/detd(A), (17) F(p1,p2) =L detd(0). (29
and We remark that
D(A)—ID(A) 1J=2A. (18) det(O)=detOdefl + I +(JO)?]. (26)
The last equation has the solution In order to simplify the formula for fidelity we observe that
O (A)=A(+\1+(IA)3?). 19 AitA
(A)=A(+\1+(A) ) (19 ti,-k=Trpip,-pk=de( A
This is an alternative proof of a result obtained[8]. The _ . _
advantage of this proof is given by the fact that it does not <d Aj+ A= (A1) (A +A) (A +i1d)
require the choice of a special basisEnIf we take a sym- € 2 '

plectic basis in E such that=(%, ), thenJD=DJ, and

from this equation and from the equatioAs=S'DS, JS'  and thatt;,3=ty3=t3;,. If we take in this last identity
=S 1 it follows that (JA) ?>=S D 2S. Hence |  ®(A,) instead ofA;, then we obtain

+(JA) ?=s H{I-D ?Sand

AVl +(JA) 2=ST(yD?*-1)S. (20

A+A
IV. GENERAL FORMULA FOR THE FIDELITY OF =de< ! 2)delﬂD(Al).
GAUSSIAN STATES 2

d(A)+A
de{ (12) 2ld

{A2+(I)(Al)—u}
€ 2

The fidelity F(p4,p,) for two density operators, andp,  Hence we get
is defined by

F(p1,p2)=[Tr(\p1p2vp1) ¥2)2. (21)

A+A
L=[de( 12 2

-1
} . (27)
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It is not evident from this general formula that the prop-which gives the result of8]
erties (i)—(vi) of the fidelity are valid. Let us consider the

most lsi_mple one, namely the propei®(p,p)=1. In this 2

case it is necessary to prove th(O)=A. We can choose F(p1,p2)= . (32

the complex structur@ to commute with the correlation ma- JdetA,+Ay) +P— P

trix A: JA=AJ. Then all operations in the formula that gives

O as a function ofA andJ can be performed, and the result V1. MULTIMODE THERMAL STATES CASE

is O=(A+A"1)/2 and® (O)=A. The next property that we

shall discuss is the propertii ), which in the case of Gauss- In the case of two thermal states with correlation matrices

ian states becomef8] F(p;,p,)=[(A;+A,)/2] Y2 We A=D; withi=172, we haveA J=JA;, (i=1,2) andA;A,
shall prove thatO=A; when p; is a pure state. First we =A,A;. Then®(A)=A;+ \/Ai2+l (i=1,2). Hence
remark that® (A;)=A; and that there is a symplectic trans-

formation such thatA;=S'S. Then O=S™{I-2P_[2I O=(A1+A;) HAA+]) (32)
—4P, . X"P_]2P.}S, where P .=(1+iJ)/2, P_=(I

—iJ)/2, and X=(S") "!A,S 1+1. Evidently P, andP_  and

are an orthogonal decomposition of the unit opera?dr

=P,,P?=P_,P,P_=P_P,=0andP.+P_=I|.Asa (Ag+A,)

consequence of the orthogonality we obtad=STS=A,. d(0)= 5 .

Then ®(O)=®(A)=A,=S'S and  deftd(O)] (AsAg+1) = (A= 1)(Az=1)
=det(S")det(S)=1.

(33

Finally
V. THE ONE-MODE CASE

. . e 2
In [8] we have obtained an expression for the fidelity in - F(p;,p,)= \/de< 5 > ,
the one-mode case. This formula can be reobtained as a con- (AlA+1) = V(AT-1)(AZ-1)

sequence of the above general formula. In the one-mode case (34
all matrices are X2 matrices. For a & 2 matrix© we have
which is the product of the fidelities of the corresponding

D(0)= €0, (28 one-mode thermal stat¢3,4,8]
where e=1+ 1-1/de) and de®(O)=(\delO
+/det0—1)2. From these considerations it follows that VIl. CONCLUSIONS

In this paper we have provided a general formula for the
2 . (29 calculation of the fidelity of two Gaussian states. The for-
Jdet A, +A,)(VdetO— \delO—1) mula can be applied to multimode thermal squeezed states,
and it is shown that, in the particular case of a single mode,
Thus it is sufficient to compute dBt We shall denote b it reproduces the results already known in the literature.
the product (det;—1)(detA,—1). After simple but long
computations we obtain

F(p1.p2)=
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