PHYSICAL REVIEW A, VOLUME 61, 022304
Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps
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We theoretically study specific schemes for performing a fundamental two-qubit quantum gate via controlled
atomic collisions by switching microscopic potentials. In particular we calculate the fidelity of a gate operation
for a configuration where a potential barrier between two atoms is instantaneously removed and restored after
a certain time. Possible implementations could be based on microtraps created by magnetic and electric fields,
or potentials induced by laser light.

PACS numbse(s): 03.67.Lx, 32.80.Pj, 34.96.q

[. INTRODUCTION interaction[12] only if they are in statgb). This can be
achieved by raising and lowering a potential barrier between
The creation and manipulation of many-particle entangledhe two atoms, as shown in Fig. 1. According to Fig)lthe
states offers new perspectives for the investigation of fundapotential is initially composed of two separated wells. Ide-
mental questions of quantum mechanics, and is the basis afly, the atoms have been cooled to the vibrational ground
applications such as quantum information processing. Sestates of the two wells. At time=0, the shape of the trap-
eral proposals to implement quantum logit] have been ping potential is changed for particles in stgté [the dashed
made including ion-trap§2], cavity QED and photon§3], line in Fig. 1(b)], while the potentials for the atoms in the
and molecules in the context of NMR]. Very recently, we  state|a) remain unchangefthe solid line in Fig. 1b)]. By
identified a way of entangling neutral atoms by ust@id  removing the barrier, the particles in stgke start to oscil-
controlled collisions[5] (see also Ref[6]). Neutral atoms late and will collide. The “cold” collision represents a co-
are good candidates for quantum information processingherent interaction described by a pseudopotential with a
since they suffer a comparatively weak dissipative couplingstrength proportional to the-wave scattering length5].
to the environment. Techniques to cool and trap atoms b¥his results in a phase shift of the wave function for both
means of magnetic and optical potentials have been deve&toms in the internal statb). The size of the phase shift can
oped in the context of laser cooling and trapping, and Bose-be controlled by the number of oscillations and the effective
Einstein condensatiofY]. In particular the ongoing develop- collisional interaction strengttsee Sec. Il A As a last step,
ment of magnetic microtrapg8] offers an interesting the atoms have to be restored to the motional ground state of
perspective for storing and manipulating arrays of atomshe trapping potential of Fig.(&). This whole process of
[9,10] and possible applications in quantum informationswitching the potentials can be performed either (Bs
[11]. switching the shape of the potentiaktantaneouslat times
Motivated by these experimental possibilities, in this pa-t=0 andt= 7, wherer is a multiple of the oscillation period
per we will study specific configurations of atoms stored inin the well of Fig. 1b) (dashed ling or (ii) deforming the
time-dependent microtraps. We will assume that two internashape of the potential between Figga)land Xb) adiabati-
states of the aton{g) and|b) represent the logical staté®)  cally. The aim of the present paper is to investigate the gate
and|1) of a qubit, respectively. The aim is to implement a dynamics for scenari¢i) when the switching is instanta-
fundamental two-qubit quantum gate between two atoms,
with the truth table

|0)[0)—10)[0),
0)[1)—0)[1),

&y
1)[0)—11)[0),

[ DI1)—~D)[1),

by switching the trapping parameters. Equatidhs repre-
sent a so-called phase gate. To realize this transformation, FIG. 1. Configuration at times<0 andt> 7 (a), and during the
we will consider state-selective switching of the trapping po-gate operatiottb). The solid(dashedi curves show the potentials for
tential, such that the atoms pick up a phase due to collisiongarticles in the internal stata) (|b)).
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neous. In particular, we are interested in the required physithe corresponding degrees of freedom can be integrated out.
cal parameters and the corresponding fidelities characterizing this case, the dynamics becomes effectively one—
the quality of the phase gate. We will also study the dependimensional and is described by the Hamiltonian operator
dence of the fidelity on the temperature of the atoms. The

paper is organized as follows. Section Il describes the model ~ 2 d? N
and derives an expression for the collisional phase shift. In  Hx= > AXho(X)| = 5 5 FVa(X) [ a(X)

. . ae{a,b} dx
Sec. lll we study the gate dynamics for the case of instanta-
neous switching, while in Sec. IV we present numerical re- 1 fp o md
sults for the fidelity. + > §J dxdX ¢,(X) fra(x")

a,Be{a,b}
Il MODEL X Uqp(X=X") rp(X") 1 X). ®)

In the present section, we will write down the Hamil- - is th di . | log d
tonian for two interacting particles trapped in conservative1€re ¥(x) is the one—dimensional analog ¥f,(x), an
time-dependent potentials, and derive an expression for the

collisional phase shift. uaﬁ(x—x’):f dydy dzdZU ,z(x,x")
A. Hamiltonian X[ (N (Y ) (2 (2)]
The dynamics of atoms in a time-varying, state-dependent 4math? 2
trapping potentiaV ,(x,t) [wheret is time andx=(X,y,z) is = ms S(x—x") f dylg, (y)|*]  (6)

the three-dimensional coordindtean be described by the
Hamiltonian operatof13]

H= >, fd:‘x\ifl(x)

ae{a,b}

is an effective interaction potential, taking into account the

22 transverse confinement of the atongs. are the ground-state
— =—V2+V, (1) [ ¥ () wave functions in the transverse directioffgving energy

2m hw, /2 each. Their time evolution will just contribute an
1 overall phase factojwith a phase proportional te | ), irrel-

+ > —f dxaPx T ()P (x") evant for the quantities we are going to compute. We see that
a,f=lab} 2 the effective interaction strength can be adjusted by changing
the trapping parameters.

Equation(5) holds for an arbitrary number of atoms. We
now consider the case of two bosonic atoms 1 and 2, with
internal state$a); , and|b); ,. Their evolution is governed
by the first-quantized Hamiltonian

XU g(x, X)W 5(x ) 4(X), (2)

wherem is the mass of the atom¥, ,(x) is a field operator
for atoms in internal statier), andU ,4(x,x") is the potential
for the interaction between two atoms in stdte$ and|3),
wherea, B e{a,b}. We take a trapping potential of the form

H= > Hupo|a)(al®|B)A(Al, (7)
Vo (X, 1) =V (X,t) +Vv (y)+V,(2), 3 apetab)
i.e., we assume the same shape alpagdz which is inde- Where o
pendent of time and the internal state. Hap=HaptUap, (8a)
For cold atoms, the dominant collisional interaction is the 0
swave scattering term, described by a contact potential of H ap=Ha(P1,X1,1) + Hp(P2,X2,1), (8b)
the form
p;
Wag'Bﬁz Ha(pi 1 Xj 7t)= ﬁ—i_va(xi vt) (8C)
Up(X,X")= Tﬁ(x—x'), (4)

Herex; andp; are the position and momentum operator for
wherea?” is thes-wave scattering length for the correspond- particlesi=1 and 2 respectively.
ing internal states. Note that, for identical atoms in the same
internal states-wave scattering is only possible for bosonic B. Phase shift due to interaction
atoms|[cf. the b-b collision in Fig. 1b)]. We therefore re-
quire, in the following, the field operatorf;a(x) to describe
bosonic atoms and to obey the usual bosonic commutati

~ We call ) and|y,(t)) the two-particle states at
time t, evolved from the same initial state,z(0)) in the
OBbsence and presence of interaction, respectively:

relations.

Furthermore, we assume much stronger confinement i1 Q0) =14 w0, (9a)
along they andz directions than irx, so that the probability
of transverse excitations can be neglected. If each atom is iﬁ(91|%B(t)):Ha,BWas(t))- (9b)

initially in the ground statéy, ) of the transverse potentials,
it will then remain in that state to a good approximation andWe also define the overlaps
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- 0) 1
OO(wa,th) <waﬁ(t)|¢aﬁ(t)>l (103) ¢aﬁ(t)~%J;dt,AEaﬁ(t,) (20)
O(‘/’aﬁ !t)E<{r/,aB(t)| l//aﬁ(o)> (10b)

The condition that both atoms end up at titrer with the [ll. GATE OPERATION

same spatial distribution they had at the beginning will not
be exactly fulfilled in realistic situations. However, in order
for our scheme to work, it is required that this is true at leas
approximately:

To proceed further, we have to specify the functional
{orm of the potential ,(x,t) in Eq. (3). The two atoms are
initially trapped alongx in two separate harmonic wells of
frequencywg, centered at-x,. In order to simplify the ana-
|O(ap,T|=1, Va,B, (11)  Iytic calculations, the confinement in the transverse direc-
tions is also assumed to be harmonic. tAtO, the barrier
i.e., the two-atom final state should differ from the initial one between the wells is suddenly removed in a selective way for

just by a phase factob ,45(7)=ard O(i,5,7)]: atoms in internal stat¢b): an atom in statda) feels no
- change, whereas one in stat® finds itself in a new har-
[hap( 7))~ Pas 4, 4(0)). (12 monic potential, centered on=0 with frequencyw< w.

The atoms are allowed to oscillate for some time, and then at

We also assume that the interaction between atoms does nat ; the barrier is suddenly raised again to trap them at the
induce any significant alteration in the shape of the waveyiginal positions. During this process the atoms acquire a
functions, i.e., kinematic phase due to their oscillations within the wells,
and also — if they collide — an interaction phase due to the

|Oof "baﬁ’t”%l’ Va,p.t. (13 collision. Here we calculate these phases and consider the
Hence appropriate switching time for a quantum gate. In Sec. IV
we make a quantitative estimate of the gate fidelity.
| Wap(t)) =€~ O]y 1)), (14)

A. Switching potential

having defined theoliisional phase We take the potential in Eq3) to be explicitly

bap(t)=ard Og(up 1)1, (15 o2
Va8 = [ 9(X) (X —Xo)2+ B(—X) (X+Xo)2]
accounting for the contribution of the interaction to the total am 2 0 or
phased ,4(7). The rest of the phase comes from the motion (219
of the particles in the time-dependent trapping potential.
From Egs.(11) and(13) it follows that Va(x,t), t<O, t>r,
2
09, 1|~1, Va,B, (16) Vo(X,D)= mT“’XZ, o<t<r, (21
which implies, by analogy with Eq12),
|40 7)) ~ e~ i[8al)+ B5(0)] _met
Yop())~e 0T R 6 0)). 17 vi(y)=—5-Y5 (219

Here thekinematic phasep,(7)[ ¢4(7)] is defined as the N .
phase that one atom would acquire after evolving for a timS Shown in Fig. 1. As I-ongzas ghe single-well ground-state
7 in the potential [ v 5] in the absence of the other particle. width ap= y#i/mw, satisfiesag<xj and there are no signifi-
By substituting Eq(17) into Eq.(14) evaluated at=r, and ~ C@nt excitations to higher levels of(x,t), the actual behav-
comparing it with Eq.(12), the collisional phase can be re- ior of that potential around the origin does not really matter,

expressed as and we can use Eq21a regardless of the experimental
shape of the barrier around=0. The ground-state wave
Gap(T) =D o5(T) [ o)+ P p(7)]. (18 functions - (x) of the right and left well of the potential

Va(x,t) are given by
By combining Eqgs(9), (13), and(14), we find

19 Bap(D) ~ (P A0 U WUy = AE 15(1),  (19) Pa(x)=

which is precisely the result one would expect from pertur- o )
bation theory. In order for Eq(13) to hold, the time- vyhlle 'the'ground—state wave function in the transverse direc-
dependent energy shift defined in E49) has to satisfy the (1ONS IS given by
conditionAE ,4(t) <fiw, with fiw the first excitation energy

of the system. Integration of E¢19) gives a perturbative _
expression for the collisional phase: %(Y)—( 27h

1/4

Mawo e~ Mog/2h) (x 72, 22)

2mh

1/4

Mo, e—(me/Zh)yz. (23)
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By assumption, the overlap between the two wavefunctionsf oscillations increases, and a slight decrease in the oscilla-
¥ (x) and ¢_(x) is negligible, since the two particles are tion frequency, because the atoms acquire a small delay in
kept separated from each other in the potentiglx,t). At  their motion inside the trap as they come out from a colli-
t=0, the central barrier between the two wells is selectivelysion. If the latter feature is not too strong, by choosing a
switched off for statgb). A particle in this state will start switching timer~2Nmx/w it should be possible to get back
moving toward the other atom along and an interaction the original state plus an interaction phase, that is adjusted to
will take place. We shall separately study the evolution of= 7 by a proper choice of the trap parameters and of the
the system at=0 for each combination of internal states number of collisions occurring during the actual gate opera-
(a,B). For operation of the quantum gate analyzed here, it igion, i.e., for 0<t<7. We shall therefore focus on the dy-

important thatv,(x,t) be accurately harmonic while<0t
<7
B. Particles in the same internal state
1. Initial state

If both particles are in the same internal state), this

namics in this time interval.
In the center of mass—relative coordinate system we ob-
tain

P2 Mow? p?  uow?
- 2 2
Hep oM + 5 R +2M+ 5 r“+upp(r),

(28)

factorizes from the motional degrees of freedom, and the

initial state is

[N+ ly-)
V2

la)|a). (24

[¥00(0))=

where P=p;+p, and p=(p;—p,)/2. If the interaction is
neglected we can solve the two-particle Schinger equa-
tion for Hamiltonian equatiori28) analytically, as shown in
Appendix A 1. It can be seen from Eq#1)—(A7) that the
unperturbed two-atom motion has a periodTgf/2 instead

The calculation can be simplified by introducing the centerof Tosc. This happens because the initial state, symmetric

of mass(CM) and relative coordinates for the-motion,
thus rewriting

1
waa(xl 7X210)E E[lp*(xl) ¢+(X2) + $+(X1) l/lf(XZ)]

= Yem(R,0) ¢re(1,0), (25
where
Ma)o 1/4 - )
wCM(R,0>=( — ) e MeoORE (269
1/4
MWq _ 2
=279 (wgl2h)(2%g+sT)

l/II‘e|(r10) (47Th) =1 e 0 0 )

(26b)

with M=2m, u=m/2, R=(x;+X,)/2, andr =X,—X;.

2. Time evolution

For t<0, the particles are stored in the displaced wells

with respect to the origin, has nonzero projection only on the
even eigenstates, having energief {2/2)h w: therefore,
after a timew/w, each component of the wave function has
the same constant phase g@n+1/2)7]=exp(n/2). This
has a simple physical interpretation: if the atoms do not in-
teract, after half an oscillation period each particle is at its
turning point, coinciding with the other atom’s starting loca-
tion; so at that time the two atoms have interchanged their
positions, but since they are indistinguishable this has to be
regarded as exactly the same motional state they had at the
beginning(apart from a phase factor

When we take into account the interaction between par-
ticles, the center-of-mass motion is unaffected, but the rela-
tive motion can no longer be treated analytically. The nu-
merical method we use to carry out this calculation is
outlined in Appendix A 2 a. It is, however, possible to take
the interaction into account perturbatively, as shown in Sec.
1B 3.

3. Perturbative calculation of the phase shift

Equations(6) and(23) combine to yield

and no interaction takes place. If both particles are in state

|a), the potential remains unchanged also tfe10; there is
no collision and thus the collisional phagg,=0. The state

Uap(X1—Xp) =2a¢Phw, 8(X;—Xy). (29

simply picks up the phase due to the free evolution:
| Paa() =€ 0 0(0)). (27)

We shall now consider the situation in which both particles
are in statgb). In this case, after the barrier is switched off,
the particles start oscillating in the harmonic trapping poten-
tial. In the absence of interaction, they would come back to
the initial state after an oscillation peridq,s—=2m/w, hav- _ _bb
ing acquired a phase7w, /o because of the transverse ~as
confining potential. The interaction causes an additional
phase to be accumulated by the wave function as the number

When both particles are in stalie), the time-dependent en-
ergy shift defined in Eq(19) can be calculated analytically:

AEpy(t) = f dRdH drea( RO BT 1) [2Ups(1)

8mo(t)
how, s

X @~ (2mag /ﬁ)x(z)[l—sinz(wt)[wOQ(t)/wZ]],

(30
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where Q(t) is defined in Eq.(A2). The corresponding D. Particles at finite temperature
interaction-induced phase shift accumulated after an oscilla- Up to now we have assumed the particles to be in a well-

tion period is known motional state. In realistic experimental situations

" this may not be the case. The temperaflref the particles

4ag w,; in the trap will be different from 0, and thus the initial state
boo(Tosd ™~ 55—~ 2_.2 2,4 31 of the system with particles in internal states3 is given by
the density operator
which has been evaluated by means of the well-known pap(T,t=07)xe Hap® kT, (35)

saddle-point approximation.

This takes the average over different initial excited states,
with a thermal probability distribution corresponding To

As shown in Appendix B, the collisional phase accumulated
1. Initial state is independent of the shape of the wave function if the par-

When the internal states of the atoms are different, theJiCleéS move at a constant velocity with respect to each other
no longer factorize as in Eq24), and the initial state is and the shape of the one-particle wave function does not
given by change during the interaction. This is a good approximation

for the interaction between particles in the same internal state
1 |b). The particles interact in the vicinity of the center of the
0= —[lu_ ®@la)|b),+ (1-2)], well, where their velocityw ~Xyw is almost constant and the
[#a1(0)) \/E[W Nl )28[a)lb)o+( )] shape of the one particle wavefunction does not change sub-
(32 stantially as long as the conditions

C. Particles in different internal states

where without loss of generality we assumed that the particle ac<Xp, and a<xo (36)

in the left (right) well is in internal stat¢a) (|b)). hold, wherea is the width of the one-particle wave function

when the particles cross the center of the trap, agd
=+h/mw. Therefore, the collisional phasg,,(T.sd is al-

The relevant quantities can again be expressed in terms ofiost independent of the temperatufeas long as mainly
the projection of the evolved state on the initial one. Byexcitations fulfilling the conditions stated {iEq. (36)] are
virtue of symmetry under particle interchange, this turns oupopulated. Note that we are neglecting transverse excitations.
to be If all three motional degrees of freedom are characterized by

the same temperatufg this is realistic as long as the con-
O(wab,t):<¢_|<¢+|e_(i/h)Habt|¢_>|¢+>_ (33) dition kgT<%w, is satisfied. However, in principle it is also
possible to cool the transverse motion separately, allowing a
Therefore, we can restrict our analysis, as in the previouSigher temperature along Of course, this would require
case, to one-dimensional motion, starting from the nonsymthat the r_ethermallzatlo_n time is much I_a_rger than the experi-
metrized wave functioms_(x) ¢, (x,). The Hamiltonian for mental time scale. This lack of sensitivity to temperature

2. Time evolution

0<t<r reads applies quite generally, for example, to atoms interacting in
an optical lattice as discussed in RE3], provided that the
02 P2 me? Mo velocity at which the atoms are made to inter@ctthat case
1 2 i i q i
Hab:% + o + TO(X1+X0)2+ TX§+ Unp(X1—X2) }Ei;/ae(i(t)igﬁ_/ of lattice movemenptss kept constant during the
L L PP m oo @ IV. A PHYSICAL IMPLEMENTATION
—m-f—ﬂ-l—g( —wO)Rr—F?wOXO 1—§ . - - o
We now consider the implementation of a switching po-
w2 2 1 w2 \? tential by means of static electric and magnetic trapping
+ =2 R+ —=xo| + —Z)Z< r——2xo| +uu(r), forces. We first discuss the possibility of obtaining the de-
2 20? 2 w? sired state dependence by means of devices which are ex-

(34) perimentally availabl§9,11], when the present magnetic de-
vices can be combined with nanofabricated electrodes. Then

~ we compute the performance of a quantum gate for realistic
where={w?+ wZ)/2. Only the left well ofv(x, t) has  yo i e e B q J

been considered, since the wave function remains negligible
in the regionx,;>0 fort>0, as it is att=0. It can be seen
from Eq. (34) that the center of mass no longer decouples
from the relative motion, unlike in the previous symmetrical The interaction between the magnetic dipole moment of
case. A numerical calculation is needed to evaluate the phas@ atom in some hyperfine statE,mg) and an external
shift ¢4, This is done in Appendix A 2 b. static magnetic field B entails an energy Upagn

A. Microscopic electromagnetic trapping potential
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~grusMe|B|, depending on the atomic internal state via the a=8=b a3
quantum numbemg (hereug is the Bohr magneton angi

is the Landefacton. The Stark shift induced on an atom by
an electric fieldE gives an energyindependent on the hy-
perfine sublevelU  ~ 3 a|E|?, whereay, is the atomic po-
larizability. The interplay between these two effects can be 0
exploited in order to obtain a trapping potential whose shape ,
depends on the internal state of the atoms. As an example =
we consider an atomic mirror like the one recently realized
[9] from a conventional video tape with sinusoidal magneti-
zation M = (Mg cogkyx],0,0) along thex—axis. The period =
of the pattern, zr/k,,, can be as small as Am with the

system studied in Ref9], or even close to 100 nm using &
existing magnetic storage technologies. In order to obtain ¢ 5

microscopic trapping potenti@ll1], it is necessary to apply %0'25 /_/_/—F
an external bias field*'=(0,B{,B3*), oriented mainly o

along thez axis, normal to the mirror’s surface, and with a 0 ! 2 0 ! 2
small component alonyg in order to prevent trap losses due Tosc

to spin flips occurring at magnetic field zeros. In this case the _ _ _ o o
magnetic trapping potential is FIG. 2. Dynamics during gate operation: projection of the initial

state on the state evolved withofibp) and with interactioncen-
VmF(X) = gF#BmF{Bge*ZKMZ C0§(kMX) + (B§Xt)2 te_r); interactionfindyced phgse shifiottom). Results are shown for
different combinations of internal statea:=gB=b (left); a# B
+[Boe~ KMz sin( KyX) + Bg"t]Z}l/Z, (37) (right). We choosaw=2717.23 kHz andw, =27150 kHz, corre-
sponding to ground-state widtlegg~82 nm anda, ~28 nm, with
WhereBOZ,quo(l—e’kM‘s)/Z, ands is the tape thickness. the initial wells having a frequency,=2w and displaced by,
The minima ofV,,,_ form a periodic pattern above the tape =5ax- Time is in units of the oscillation periofos..

surface, at a heighty=In(uoMo/Bo)/ky , typically of the or- poth particles in statkb) are shown in Fig. @), while those
der of some fractions gim. The spacing between two near- fo differing internal states appear in Figh2 The harmonic
est minima along is just the period of the magnetization, potential ensures that the system comes periodically back to
2m/ky . With present-day technology, trapping frequenciesits initial state. In the absence of interaction, the frequency of
can range from a few tens of kHz up to some MHz. Micro- recurrencies is twice as high (1)) as it is for| .p(t)),
scopic electrodes can be nanofabricated on the mirror's sugg already discussed at the end of Sec. Ill B 2. The interac-
face[10], thus allowing for the design of a potential with the tjon also makes the two cases substantially different from
characteristics described in Sec. Ill. _ each other. Its effect on the atomic motion is not dramatic if
For the statesa) and|b) we choose the hyperfine struc- poth particles are in stae): actually, the oscillation period
ture states|a)=|F=1, Me = —1) and [b)=|F=2, Mm: iy the presence of interaction is increased by omly
:b%> of the 5Sy, level of “Rb, having scattering 1engths ~1.4x 10" 3T ., with the parameters used here. The colli-
al’~ai"’~5.1 nm. Several schemes for loading atoms intosjonal phaseg,, increases in steps at the timés=(2k
the trap have been envisageee, for example, Reff9,11)).  +1)T /4, when the atoms meet at the center of the well,
Most of them rely on an intermediate step, where atoms cagnd remains constant at intermediate times, while they are
be trapped and cooled without coming into contact with theapart. Note that, since the particles are indistinguishable, the
magnetic mirror. This preloading stage can be either a magamplitude for the particles to bounce back during the collli-
netic trap |n|t|a”y displaced from the SUrface, or a different sion does not harm the performance of our scheme. The con-
kind of trap (for instance an evanescent wave mirror, whereyiputions of the reflected and the nonreflected part to the
different internal states can be trapped by gravity close to th/ave function are indistinguishable. What matters is whether
surface] 14] before the atoms are put in the correct states folr not the two-particle spatial distribution approaches the
magnetic trapping to be replaced by the electromagnetic jnjtial one, and this is satisfied to a high accuracy in our case.
microtrap with a gradual switch—on of the electric and bias  The behavior is quite different if the atoms are in different
magnetic fields in the final stage of loadiftd]. This could internal states. The phase shift increases in larger steps, since
also allow for implementing a controlled filling of the trap the collision is close to the turning point of the particle in
sites by adiabatically turning on the periodic potential, in astate |b), nearx=x,. Here the velocity of the particle is

0.5

O("/}aﬂv

10@S, )
> >
> >
> >

)

similar way to that discussed in R¢fL5]. much smaller than at the center of the trap and thus the
interaction time is longer, allowing a larger phase to accu-
B. Results mulate. The collision also excites vibrations of the particle in

state|a). The resulting loss of energy from the particle in
state|b) leads to a decreasing oscillation amplitude of that

If both particles are in statg), there is no interaction- particle, and the initial state is no longer recovered. This
induced phase shift, as expressed in €3). The results for  problem can be avoided if the potential minimum for state

1. Time evolution during gate operation
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|a) is displaced along the transverse direction from the on@bove, that the trapping potential is designed to prevent the
for state|b) by means of an additional electrostatic field atoms interacting if they are in different internal states.
[11], so that the atoms interact if and only if they are both inTherefore we set,,=0 in Eq. (38) and consider onlypy,,
state|b). in the following. We use the minimum fidelitf [16] to

characterize the quality of the gate.is defined as
2. Gate fidelity at =0

Ideally, the scheme described above should realize the . ~ ~
mappingy F=min(tre. { (XIUSL ) (X|®polSUT[X)}),  (39)
X

|a)|a)—e”?’4[a)|a),

|a)|b)— e i(#a* ¢n* dan)| )| b) yvhere|X> is an arl_)itrary interna}l state of _both atoms, &Rl

' is the state resulting frofy) using mappindg38). The trace
(38) is taken over properly symmetrized motional staléss the
evolution operator for the internal states coupled to the ex-

|b)|b)— e~ (#oo™240)| b) | b), ternal motion(including the collision, Srepresents symme-
trization under particle interchange, apg is the density

where ¢, and ¢, are the phases due to the time evolutionoperator for the initial two-particle motional ground state. A
without taking into account the interaction. We assume, astraightforward calculation gives

|b>|a>_>efi(¢b+¢’a+¢ab)|b>|a>’

1—A?—B?[(1+A?)B2—4ABC+2C?]coS( dpp)
(1+A){2+B[(1—A)B+2C]cog ppp)} —B2(B—C)2 co(ebpp) |

1
5 (40)

where A=|0(4{9, 1|2  B=|0(¢py.n|Y% and C 3. Gate fidelity at =0
=[O0(#pp,7)| "% With the parameters quoted above, we ob- | order to compute the temperature dependeéfnCe) of

tain F~0.99 either by choosing a gate operating time the fidelity, the density matrix for the motional degrees of
=7(Tosct 6t) and maximizingB, or choosingr="7Tos.and  freedom in Eq(39) has to be replaced by
maximizing insteadA. We prefer this latter choice since,

after a timer=NT, = 2N7/w, the jth component of the

wave function of an atom in state) in the basis of eigen- Ped T)=2 Pin(T)[Dr(|@|n) (N, (43
states ofv,(0<t=<7) obtains a phaseN)j+1/2)7 (here hn

N=7). This brings some simplifications: e.g., the kinematic

phases can be written as n=0 n=1 n=2

—_

wot2w; 0t+t2w,
d)a:Nﬂ'T, ¢b=NTrT. (47

Py (1) /0

<

The general form ofp, is much more complicated. Figure

3(a) shows that after seven complete oscillations Edp)

yields a phase shifth,,(7Tosd~ due to the interaction,

whereas the perturbative formuldEq. (31)] gives

7 dpp(Tosd =0.97m. The figure also shows that the overlap 0 2 4 6 0 2 4 6 0 2 4 6
|Oo(#pp,t)| remains close to 1, satisfying Eql3). The t
curve has local minima at the timgsdefined in Sec. IV B 1, Tose
signalling that a collision is taking place, and shows a global
decrease due to the accumulating delay of the interactinﬁ10
motion with respect to the noninteracting one. The fidelityAb
turns out to be

0.9

|00 (%), )]

FIG. 3. Dynamics for both atoms in statp), with relative-
tion excitationsn=0 (left), n=1 (centej, and n=2 (right).
ove: interaction-induced phase shift; the crosses refer to the per-
turbative result from Eq(20), explicitly given by Eq.(31) for n
=0, and evaluated numerically for>0. Below: projection of the
1 evolved state on the corresponding state evolved without interac-
_ 1 tion. Trap parameters have the same values as in Fig. 2 and satisfy
F= 2{1 |O0( b, 7)[cOF bpp(7)1}- (42 Eqg. (B5), sinceagwq/(4xqw)=0.07 in this case.
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which coincides withpy at T=0. Here we have introduced Some problems remain to be addressed. To perform even
the eigenstatefl ) for the center of mass, arjd), for the  a single gate operation, the trap should be loaded with ex-
relative motion. The probabilitieB,,(T) for occupation of actly one atom per well. Readout should be done possibly
the CM and relative motion excited states are calculated aswvithout removing atoms from the trap. In order to build up
suming, for each atom, a thermal distribution correspondingnore complex operations, gates should be arranged in a pe-
to temperaturdl, as expressed by E(35). We obtain riodic structure where coherent atom transport may take
place between different locations. This would permit gate
1 operations either on one pair of atoms at a time, or on several
F(T)= E{ 1- |§:1 Pin(T)[Oo( () , )| cO4 ¢(”)(7)]]’ pairs in parallel, a fact which could be exploited for efficient
' (44)  implementation of quantum-error-correcting schemes and
fault—tolerant quantum computirid7]. This will be the sub-

where ject of future work.
Note added in proofRecently, loading, trapping, and ma-
Mg | Y4 g (Mog/dn) (2xg+s1)? nipulation of neutral atoms in fabricated magnetic traps with
Py (r)= (m) F_Em Izt ground state sizec100 nm and trap frequencies100 kHz,

of the same orders of magnitude as considered here, were
achieved using a nanofabricated atom dHif].

XH, . (45

ma)o 2
7( x0+§r)
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1 6
F(H~F0)~3 21 Y100(#(ny - 7)|cO$ by (7)] APPENDIX A: TIME EVOLUTION
_ |Oo( Y1) ,T)|C0i ¢(n—1)(7')]}- (46) 1. Analytical calculation

If both particles are in staté), we start from the Hamil-
This still gives a high fidelityF(T)~0.96 even atkgT  tonian equatior(28), neglect the interaction term, and solve
= 2fiwo, for which y’~0.03. We note that, in order to reach the Schidinger equation. We fintbmitting the internal state
such a high fidelity, the timing has to be quite precise, with gndicesbb)
resolution better than 16T, corresponding to tens of ns

in this case. 1/a

eiqSCM(R,t)—[MQ(t)/Zﬁ]RZ, (A1)

MQ(t)
yem(Rt) = [7

V. CONCLUSIONS

We have shown that entanglement among ultracold neuv_vhere

tral atoms can be controlled by means of microscopic switch- )
ing potentials. The fidelity for a fundamental two-qubit quan- W wg

tum gate turns out to be quite robust with respect to Q(t) [w? cos’-(wt)+w§ sir(wt)]’ (A2)
temperature: in fact, with the parameters quoted below Fig.

2, we findF(T)=0.96 for T~3 uK in the x motion, while 2

assuming ground-state cooling in the transverse directions. R.t)= MQ(t) wg— R? t)sin( wt) — w_t
We find a gate operation time af~0.4 ms, over which co- Pem(R, 2h  wow coswt)sin(w 2
herence can probably be preserved with presently available

experimental systems. Static microtraps based on available 1 (wo— w)coq wt)sin(wt)
atomic mirrors[9,11] provide a good opportunity for a first — parcta 0 CoZ(wh)+ wo S (wh) |
implementation of our scheme. Here nanofabrication tech-

nologies allow steep potentials to be achieved with small (A3)
charges and/or currents. Trapping fields can be controlled

electronically in a fast and accurate wigh0]. From Eqgs.(26a and(A1l) it follows that
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—-1/2

(wg—w?)?

|O(bem )|?=| 1+ Tsmz(wt)
dwsw

(Ad) lwre.<t>>=§ e (12t (1)), (A8)

If the particles did not interact, the relative motion would be@nd approximate the potential by a truncated sum

Nmax
0.0= o i —r.0 0= 3 KA
Q(t) Nmax
- e+ 2xpcos ot =S pOwOL )

Q(t
+ exr{ i ref(r,t)— 'usz ) [r—2x,coq wt)]z) } , wherey,(x) =(x|n). We have checked that the final result is

independent ofN, .4, with N, Of the order of some tens.
(A5)  The Schrdinger equation fofi(t)) gives

where ' Nmax _
cn<t>=—i2a2bwlw:<0)l_20 (0)e' (M Nete (1),

(A10)

- ot 1 Cta{ (wo— w)cog wt)sin wt)
rt)=———zar
Prel 2 2 o coS(wt) + wq Sirt( wt)

which we solve numerically foc,(t) with 0O=n=<N,,. The

2 2
n ZMQ(t)sin(wt) Wo— @ (24 w22 initial conditions, from Eq(26b), read
hwwg 4 070
. o~ [Mmagoli(wg+ w)1x) (@00) ™[ wo— w2
X cog wt) + i | (e) O T aeta lwot w
. 2,,2 2,2
The overlap between the states E(6b) and (A5) is 2MwwpXy 2MwwyXy
“Hel Voo on TP Viwz—wr | |
h(wy— %) h(w”— wg)
242 0oL (A11)
8Mwyw“Xg5cos (wt)
|O("/1§g') ’t)|2: eXp( - : 20 ) b. Particles in different internal states
how? (1) :
02 In order to solve the Schdinger equation for the Hamil-
texd — 8Mawow’xg SiF(wt) tonian equatior(34) we decompose the state vector
hw? (1)
4mow 0d(wi+ w?) |'//ab(t)>:_2k e kol ([rK),  (AL2)
2co %o I
T W% (H)w? (1)
e4mw0/ﬁ[co32(wt)/w§(t)+sinZ(wt)/a,{(t)]wzxg [where now://,-(x)=<x|j> are the eigenfunctions of a har-
monic oscillator with frequency and massn], and obtain,
(05— 0?)? e for the coefficients,
x| 1+ —223|n2(wt) (A7)
dwjw ~
ci(t)=i a)(a)o——wz) c (e 2t (j+1)(k+1)
With @ (t) = Jo?+ 02+ (0?— w3 cost). Ik 2(02+0?) | TH J
This result for the relative motion should be compared to .
the actual evolution in the presence of interaction, which +¢j_1pr1(DVi (k1) + ¢ gy 112N jk
cannot be computed analytically. If the particles are in dif- - 5,
ferent internal states, we also have to resort to numerical . Mo ©0"—wq ,
methods. +Cj+l,k*1(t) (J +1)k+ 7 wz g Cjk(t)
0
2. Numerical calculation 2mo - _
_ | +\ e 1 DVT € 10K
a. Particles in the same internal state
We write the state vector as a sum over the eigensjajes -
of a harmonic oscillator of mags and frequencyw, +e N Ci k(D) V] +1=Cj 1 (t) Vk+1)]
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, ~ ~ (k- 1ya (X1l (1))=¢" (xg— V), (B2a)
—iN2a3 0, i (— 62 U (- e tTNuiey (), ' '
(A13) <X2|¢+(t)>: @"(XpF Vi), (B2b)
where é=xow/ 202, wherev is a positive constant. It follows that
This can again be solved numerically, starting from the 14
initial conditions, derived from Eqg26a and (26b): G oo Tosd ~ th. dt(@(t)[Upa(X1,X0)| (1))
Mwow (24 X5~ V2Xoé)
ex - ts + o0
0)= h(wo+ o) :4a§““wlf dtf dx,
Cjk( )_ \/Wk_—z 1§ -
: X|@' (xg=vt)[?[@" (X +V)[?
wow [ wo— | 172
i el |
wot oot -2 [ axdye 0 le )l
Mwwd(y2x,— &)? bb
X H] 2 2as (OF}
(g~ w®) =y (B3)
mwwéfz .
+H, — (A14) where a change of variables= x; —vt, y=x;+vt has been
(w5~ »?) introduced, and the limits of integration tnhave been ex-
tended to* 0 since the single—particle wave functigri&gs.
APPENDIX B: INTERACTION PHASE SHIFT (B2a) and (B2b)] overlap just for a finite time. The result
FOR EXCITED INITIAL STATES turns out to be independent of the initial state. We can com-

pare it to Eq.(31), which was obtained in the harmonic po-
Let us consider two bosonic atoms in the same internajential [Eq. (21b)] starting from the single—particle states
state|a), but in two different single-particle motional states |.) instead of| ¢..). In this case
|¢_) and|@ ) with vanishing overlap. The initial motional

state has the form v=|a( | Texe” ety )] [=xow, (B4)
0(0)) = le Mo +le)le-) (B1) and the atoms collide twice during one oscillation period.
V2 ' Therefore the collisional phase E@1) should be twice as

large as Eq(B3). This is true provided that the maximum
We assume thati) the particles move against each other,velocity for the atomic motion in the well,(x,0st<7) is
come in contact during a certain time interal,t;] and large with respect to the analogous quantity for the ground-
then separate again; afid) the velocity of each particle and state motion in the wellg ,(x,t), i.e., if
the shape of its wave function do not vary during the inter-

action. Thus, foit;<t<t;, we write Xow=>agwol4. (B5)
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