
286,

PHYSICAL REVIEW A, VOLUME 61, 022304
Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps
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We theoretically study specific schemes for performing a fundamental two-qubit quantum gate via controlled
atomic collisions by switching microscopic potentials. In particular we calculate the fidelity of a gate operation
for a configuration where a potential barrier between two atoms is instantaneously removed and restored after
a certain time. Possible implementations could be based on microtraps created by magnetic and electric fields,
or potentials induced by laser light.

PACS number~s!: 03.67.Lx, 32.80.Pj, 34.90.1q
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I. INTRODUCTION

The creation and manipulation of many-particle entang
states offers new perspectives for the investigation of fun
mental questions of quantum mechanics, and is the bas
applications such as quantum information processing. S
eral proposals to implement quantum logic@1# have been
made including ion-traps@2#, cavity QED and photons@3#,
and molecules in the context of NMR@4#. Very recently, we
identified a way of entangling neutral atoms by usingcold
controlled collisions@5# ~see also Ref.@6#!. Neutral atoms
are good candidates for quantum information process
since they suffer a comparatively weak dissipative coupl
to the environment. Techniques to cool and trap atoms
means of magnetic and optical potentials have been de
oped in the context of laser cooling and trapping, and Bo
Einstein condensation@7#. In particular the ongoing develop
ment of magnetic microtraps@8# offers an interesting
perspective for storing and manipulating arrays of ato
@9,10# and possible applications in quantum informati
@11#.

Motivated by these experimental possibilities, in this p
per we will study specific configurations of atoms stored
time-dependent microtraps. We will assume that two inter
states of the atomsua& andub& represent the logical statesu0&
and u1& of a qubit, respectively. The aim is to implement
fundamental two-qubit quantum gate between two ato
with the truth table

u0&u0&→u0&u0&,

u0&u1&→u0&u1&,
~1!

u1&u0&→u1&u0&,

u1&u1&→2u1&u1&,

by switching the trapping parameters. Equations~1! repre-
sent a so-called phase gate. To realize this transforma
we will consider state-selective switching of the trapping p
tential, such that the atoms pick up a phase due to collisio
1050-2947/2000/61~2!/022304~11!/$15.00 61 0223
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interaction @12# only if they are in stateub&. This can be
achieved by raising and lowering a potential barrier betwe
the two atoms, as shown in Fig. 1. According to Fig. 1~a!, the
potential is initially composed of two separated wells. Id
ally, the atoms have been cooled to the vibrational grou
states of the two wells. At timet50, the shape of the trap
ping potential is changed for particles in stateub& @the dashed
line in Fig. 1~b!#, while the potentials for the atoms in th
stateua& remain unchanged@the solid line in Fig. 1~b!#. By
removing the barrier, the particles in stateub& start to oscil-
late and will collide. The ‘‘cold’’ collision represents a co
herent interaction described by a pseudopotential with
strength proportional to thes-wave scattering length@5#.
This results in a phase shift of the wave function for bo
atoms in the internal stateub&. The size of the phase shift ca
be controlled by the number of oscillations and the effect
collisional interaction strength~see Sec. II A!. As a last step,
the atoms have to be restored to the motional ground sta
the trapping potential of Fig. 1~a!. This whole process of
switching the potentials can be performed either as~i!
switching the shape of the potentialinstantaneouslyat times
t50 andt5t, wheret is a multiple of the oscillation period
in the well of Fig. 1~b! ~dashed line!; or ~ii ! deforming the
shape of the potential between Figs. 1~a! and 1~b! adiabati-
cally. The aim of the present paper is to investigate the g
dynamics for scenario~i! when the switching is instanta

FIG. 1. Configuration at timest,0 andt.t ~a!, and during the
gate operation~b!. The solid~dashed! curves show the potentials fo
particles in the internal stateua& (ub&).
©2000 The American Physical Society04-1
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neous. In particular, we are interested in the required ph
cal parameters and the corresponding fidelities characteri
the quality of the phase gate. We will also study the dep
dence of the fidelity on the temperature of the atoms. T
paper is organized as follows. Section II describes the mo
and derives an expression for the collisional phase shift
Sec. III we study the gate dynamics for the case of insta
neous switching, while in Sec. IV we present numerical
sults for the fidelity.

II. MODEL

In the present section, we will write down the Ham
tonian for two interacting particles trapped in conservat
time-dependent potentials, and derive an expression for
collisional phase shift.

A. Hamiltonian

The dynamics of atoms in a time-varying, state-depend
trapping potentialVa(x,t) @wheret is time andx[(x,y,z) is
the three-dimensional coordinate# can be described by th
Hamiltonian operator@13#

H5 (
aP$a,b%

E d3xĈa
†~x!F2

\2

2m
“

21Va~x,t !GĈa~x!

1 (
a,bP$a,b%

1

2E d3xd3x8Ĉa
†~x!Ĉb

†~x8!

3Uab~x,x8!Ĉb~x8!Ĉa~x!, ~2!

wherem is the mass of the atoms,Ĉa(x) is a field operator
for atoms in internal stateua&, andUab(x,x8) is the potential
for the interaction between two atoms in statesua& and ub&,
wherea,bP$a,b%. We take a trapping potential of the form

Va~x,t !5va~x,t !1v'~y!1v'~z!, ~3!

i.e., we assume the same shape alongy andz, which is inde-
pendent of time and the internal state.

For cold atoms, the dominant collisional interaction is t
s-wave scattering term, described by a contact potentia
the form

Uab~x,x8!5
4pas

ab\2

m
d3~x2x8!, ~4!

whereas
ab is thes-wave scattering length for the correspon

ing internal states. Note that, for identical atoms in the sa
internal state,s-wave scattering is only possible for boson
atoms@cf. the b-b collision in Fig. 1~b!#. We therefore re-
quire, in the following, the field operatorsĈa(x) to describe
bosonic atoms and to obey the usual bosonic commuta
relations.

Furthermore, we assume much stronger confinem
along they andz directions than inx, so that the probability
of transverse excitations can be neglected. If each atom
initially in the ground stateuc'& of the transverse potentials
it will then remain in that state to a good approximation a
02230
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the corresponding degrees of freedom can be integrated
In this case, the dynamics becomes effectively on
dimensional and is described by the Hamiltonian operato

Hx5 (
aP$a,b%

E dxĉa
†~x!F2

\2

2m

d2

dx2
1va~x,t !G ĉa~x!

1 (
a,bP$a,b%

1

2E dxdx8ĉa
†~x!ĉb

†~x8!

3uab~x2x8!ĉb~x8!ĉa~x!. ~5!

Here ĉa(x) is the one–dimensional analog ofĈa(x), and

uab~x2x8!5E dydy8dzdz8Uab~x,x8!

3uc'~y!c'~y8!c'~z!c'~z8!u2

5
4pas\

2

m
d~x2x8!F E dyuc'~y!u4G2

~6!

is an effective interaction potential, taking into account t
transverse confinement of the atoms.c' are the ground-state
wave functions in the transverse directions~having energy
\v'/2 each!. Their time evolution will just contribute an
overall phase factor~with a phase proportional tov'), irrel-
evant for the quantities we are going to compute. We see
the effective interaction strength can be adjusted by chang
the trapping parameters.

Equation~5! holds for an arbitrary number of atoms. W
now consider the case of two bosonic atoms 1 and 2, w
internal statesua&1,2 and ub&1,2. Their evolution is governed
by the first-quantized Hamiltonian

H5 (
a,bP$a,b%

Hab ^ ua&1^au ^ ub&2^bu, ~7!

where
Hab[H ab

0 1uab , ~8a!

H ab
0 5Ha~p1 ,x1 ,t !1Hb~p2 ,x2 ,t !, ~8b!

Ha~pi ,xi ,t !5
pi

2

2m
1va~xi ,t !. ~8c!

Herexi andpi are the position and momentum operator f
particlesi 51 and 2 respectively.

B. Phase shift due to interaction

We call ucab
(0)(t)& and ucab(t)& the two-particle states a

time t, evolved from the same initial stateucab(0)& in the
absence and presence of interaction, respectively:

i\] tucab
(0)~ t !&5H ab

0 ucab
(0)~ t !&, ~9a!

i\] tucab~ t !&5Habucab~ t !&. ~9b!

We also define the overlaps
4-2
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O0~cab ,t ![^cab~ t !ucab
(0)~ t !&, ~10a!

O~cab ,t ![^cab~ t !ucab~0!&. ~10b!

The condition that both atoms end up at timet5t with the
same spatial distribution they had at the beginning will n
be exactly fulfilled in realistic situations. However, in ord
for our scheme to work, it is required that this is true at le
approximately:

uO~cab ,t!u'1, ;a,b, ~11!

i.e., the two-atom final state should differ from the initial o
just by a phase factorFab(t)[arg@O(cab ,t)#:

ucab~t!&'e2 iFab(t)ucab~0!&. ~12!

We also assume that the interaction between atoms doe
induce any significant alteration in the shape of the wa
functions, i.e.,

uO0~cab ,t !u'1, ;a,b,t. ~13!

Hence

ucab~ t !&'e2 ifab(t)ucab
(0)~ t !&, ~14!

having defined thecollisional phase

fab~ t ![arg@O0~cab ,t !#, ~15!

accounting for the contribution of the interaction to the to
phaseFab(t). The rest of the phase comes from the moti
of the particles in the time-dependent trapping potent
From Eqs.~11! and ~13! it follows that

uO~cab
(0) ,t!u'1, ;a,b, ~16!

which implies, by analogy with Eq.~12!,

ucab
(0)~t!&'e2 i [fa(t)1fb(t)] ucab~0!&. ~17!

Here thekinematic phasefa(t)@fb(t)# is defined as the
phase that one atom would acquire after evolving for a ti
t in the potentialva@vb# in the absence of the other particl
By substituting Eq.~17! into Eq. ~14! evaluated att5t, and
comparing it with Eq.~12!, the collisional phase can be re
expressed as

fab~t!'Fab~t!2@fa~t!1fb~t!#. ~18!

By combining Eqs.~9!, ~13!, and~14!, we find

\] tfab~ t !'^cab
(0)~ t !uuabucab

(0)~ t !&[DEab~ t !, ~19!

which is precisely the result one would expect from pert
bation theory. In order for Eq.~13! to hold, the time-
dependent energy shift defined in Eq.~19! has to satisfy the
conditionDEab(t)!\v, with \v the first excitation energy
of the system. Integration of Eq.~19! gives a perturbative
expression for the collisional phase:
02230
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fab~ t !'
1

\E0

t

dt8DEab~ t8!. ~20!

III. GATE OPERATION

To proceed further, we have to specify the function
form of the potentialva(x,t) in Eq. ~3!. The two atoms are
initially trapped alongx in two separate harmonic wells o
frequencyv0, centered at6x0. In order to simplify the ana-
lytic calculations, the confinement in the transverse dir
tions is also assumed to be harmonic. Att50, the barrier
between the wells is suddenly removed in a selective way
atoms in internal stateub&: an atom in stateua& feels no
change, whereas one in stateub& finds itself in a new har-
monic potential, centered onx50 with frequencyv,v0.
The atoms are allowed to oscillate for some time, and the
t5t the barrier is suddenly raised again to trap them at
original positions. During this process the atoms acquir
kinematic phase due to their oscillations within the wel
and also – if they collide – an interaction phase due to
collision. Here we calculate these phases and consider
appropriate switching timet for a quantum gate. In Sec. IV
we make a quantitative estimate of the gate fidelity.

A. Switching potential

We take the potential in Eq.~3! to be explicitly

va~x,t !5
mv0

2

2
@u~x!~x2x0!21u~2x!~x1x0!2#,

~21a!

vb~x,t !5H va~x,t !, t,0, t.t,

mv2

2
x2, 0<t<t,

~21b!

v'~y!5
mv'

2

2
y2, ~21c!

as shown in Fig. 1. As long as the single-well ground-st
width a05A\/mv0 satisfiesa0

2!x0
2 and there are no signifi

cant excitations to higher levels ofva(x,t), the actual behav-
ior of that potential around the origin does not really matt
and we can use Eq.~21a! regardless of the experimenta
shape of the barrier aroundx50. The ground-state wave
functions c6(x) of the right and left well of the potentia
va(x,t) are given by

c6~x!5S mv0

2p\ D 1/4

e(2mv0/2\)(x07x)2
, ~22!

while the ground-state wave function in the transverse dir
tions is given by

c'~y!5S mv'

2p\ D 1/4

e2(mv'/2\)y2
. ~23!
4-3
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By assumption, the overlap between the two wavefuncti
c1(x) and c2(x) is negligible, since the two particles ar
kept separated from each other in the potentialva(x,t). At
t50, the central barrier between the two wells is selectiv
switched off for stateub&. A particle in this state will start
moving toward the other atom alongx, and an interaction
will take place. We shall separately study the evolution
the system att>0 for each combination of internal state
(a,b). For operation of the quantum gate analyzed here,
important thatvb(x,t) be accurately harmonic while 0<t
<t.

B. Particles in the same internal state

1. Initial state

If both particles are in the same internal stateua&, this
factorizes from the motional degrees of freedom, and
initial state is

ucaa~0!&5
uc2&uc1&1uc1&uc2&

A2
^ ua&ua&. ~24!

The calculation can be simplified by introducing the cen
of mass~CM! and relative coordinates for thex–motion,
thus rewriting

caa~x1 ,x2,0![
1

A2
@c2~x1!c1~x2!1c1~x1!c2~x2!#

5cCM~R,0!c rel~r ,0!, ~25!

where

cCM~R,0!5S Mv0

p\ D 1/4

e2(Mv0/2\)R2
, ~26a!

c rel~r ,0!5S mv0

4p\ D 1/4

(
§521,11

e2(mv0/2\)(2x01§r )2
,

~26b!

with M52m, m5m/2, R5(x11x2)/2, andr 5x22x1.

2. Time evolution

For t<0, the particles are stored in the displaced we
and no interaction takes place. If both particles are in s
ua&, the potential remains unchanged also fort>0; there is
no collision and thus the collisional phasefaa50. The state
simply picks up the phase due to the free evolution:

ucaa~ t !&5e2 iv0tucaa~0!&. ~27!

We shall now consider the situation in which both partic
are in stateub&. In this case, after the barrier is switched o
the particles start oscillating in the harmonic trapping pot
tial. In the absence of interaction, they would come back
the initial state after an oscillation periodTosc52p/v, hav-
ing acquired a phase 4pv' /v because of the transvers
confining potential. The interaction causes an additio
phase to be accumulated by the wave function as the num
02230
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of oscillations increases, and a slight decrease in the osc
tion frequency, because the atoms acquire a small dela
their motion inside the trap as they come out from a co
sion. If the latter feature is not too strong, by choosing
switching timet'2Np/v it should be possible to get bac
the original state plus an interaction phase, that is adjuste
6p by a proper choice of the trap parameters and of
number of collisions occurring during the actual gate ope
tion, i.e., for 0,t,t. We shall therefore focus on the dy
namics in this time interval.

In the center of mass–relative coordinate system we
tain

Hbb5
P2

2M
1

Mv2

2
R21

p2

2m
1

mv2

2
r 21ubb~r !, ~28!

where P5p11p2 and p5(p12p2)/2. If the interaction is
neglected we can solve the two-particle Schro¨dinger equa-
tion for Hamiltonian equation~28! analytically, as shown in
Appendix A 1. It can be seen from Eqs.~A1!–~A7! that the
unperturbed two-atom motion has a period ofTosc/2 instead
of Tosc. This happens because the initial state, symme
with respect to the origin, has nonzero projection only on
even eigenstates, having energies (2n11/2)\v: therefore,
after a timep/v, each component of the wave function h
the same constant phase exp@i(2n11/2)p#5exp(ip/2). This
has a simple physical interpretation: if the atoms do not
teract, after half an oscillation period each particle is at
turning point, coinciding with the other atom’s starting loc
tion; so at that time the two atoms have interchanged th
positions, but since they are indistinguishable this has to
regarded as exactly the same motional state they had a
beginning~apart from a phase factor!.

When we take into account the interaction between p
ticles, the center-of-mass motion is unaffected, but the r
tive motion can no longer be treated analytically. The n
merical method we use to carry out this calculation
outlined in Appendix A 2 a. It is, however, possible to ta
the interaction into account perturbatively, as shown in S
III B 3.

3. Perturbative calculation of the phase shift

Equations~6! and ~23! combine to yield

uab~x12x2!52as
ab\v'd~x12x2!. ~29!

When both particles are in stateub&, the time-dependent en
ergy shift defined in Eq.~19! can be calculated analytically

DEbb~ t !5E dRdrucCM~R,t !c rel
(0)~r ,t !u2ubb~r !

5as
bb\v'A8mV~ t !

p\

3e2(2mv0 /\)x0
2
†12sin2(vt)[v0V(t)/v2] ‡, ~30!
4-4
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where V(t) is defined in Eq.~A2!. The corresponding
interaction-induced phase shift accumulated after an osc
tion period is

fbb~Tosc!'
4as

bbv'

Ax0
2v22a0

2v0
2/4

, ~31!

which has been evaluated by means of the well-kno
saddle-point approximation.

C. Particles in different internal states

1. Initial state

When the internal states of the atoms are different, t
no longer factorize as in Eq.~24!, and the initial state is
given by

ucab~0!&5
1

A2
@ uc2&1uc1&2^ ua&1ub&21~1↔2!],

~32!

where without loss of generality we assumed that the part
in the left ~right! well is in internal stateua& (ub&).

2. Time evolution

The relevant quantities can again be expressed in term
the projection of the evolved state on the initial one.
virtue of symmetry under particle interchange, this turns
to be

O~cab ,t !5^c2u^c1ue2( i /\)Habtuc2&uc1&. ~33!

Therefore, we can restrict our analysis, as in the previ
case, to one-dimensional motion, starting from the nons
metrized wave functionc2(x1)c1(x2). The Hamiltonian for
0,t,t reads

Hab5
p1

2

2m
1

p2
2

2m
1

mv0
2

2
~x11x0!21

mv2

2
x2

21uab~x12x2!

5
P2

2M
1

p2

2m
1

m

2
~v22v0

2!Rr1
m

2
v0

2x0
2S 12

v0
2

ṽ2D
1

M

2
ṽ2S R1

v0
2

2ṽ2
x0D 2

1
m

2
ṽ2S r 2

v0
2

ṽ2
x0D 2

1uab~r !,

~34!

whereṽ[A(v21v0
2)/2. Only the left well ofva(x1 ,t) has

been considered, since the wave function remains neglig
in the regionx1.0 for t.0, as it is att50. It can be seen
from Eq. ~34! that the center of mass no longer decoup
from the relative motion, unlike in the previous symmetric
case. A numerical calculation is needed to evaluate the p
shift fab . This is done in Appendix A 2 b.
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D. Particles at finite temperature

Up to now we have assumed the particles to be in a w
known motional state. In realistic experimental situatio
this may not be the case. The temperatureT of the particles
in the trap will be different from 0, and thus the initial sta
of the system with particles in internal statesa,b is given by
the density operator

rab~T,t502!}e2Hab(02)/kBT. ~35!

This takes the average over different initial excited stat
with a thermal probability distribution corresponding toT.
As shown in Appendix B, the collisional phase accumula
is independent of the shape of the wave function if the p
ticles move at a constant velocity with respect to each ot
and the shape of the one-particle wave function does
change during the interaction. This is a good approximat
for the interaction between particles in the same internal s
ub&. The particles interact in the vicinity of the center of th
well, where their velocityv'x0v is almost constant and th
shape of the one particle wavefunction does not change
stantially as long as the conditions

ax!x0 , and a!x0 ~36!

hold, wherea is the width of the one-particle wave functio
when the particles cross the center of the trap, andax

5A\/mv. Therefore, the collisional phasefbb(Tosc) is al-
most independent of the temperatureT as long as mainly
excitations fulfilling the conditions stated in@Eq. ~36!# are
populated. Note that we are neglecting transverse excitati
If all three motional degrees of freedom are characterized
the same temperatureT, this is realistic as long as the con
dition kBT!\v' is satisfied. However, in principle it is als
possible to cool the transverse motion separately, allowin
higher temperature alongx. Of course, this would require
that the rethermalization time is much larger than the exp
mental time scale. This lack of sensitivity to temperatu
applies quite generally, for example, to atoms interacting
an optical lattice as discussed in Ref.@5#, provided that the
velocity at which the atoms are made to interact~in that case
the velocity of lattice movements! is kept constant during the
interaction.

IV. A PHYSICAL IMPLEMENTATION

We now consider the implementation of a switching p
tential by means of static electric and magnetic trapp
forces. We first discuss the possibility of obtaining the d
sired state dependence by means of devices which are
perimentally available@9,11#, when the present magnetic de
vices can be combined with nanofabricated electrodes. T
we compute the performance of a quantum gate for reali
trapping parameters.

A. Microscopic electromagnetic trapping potential

The interaction between the magnetic dipole moment
an atom in some hyperfine stateuF,mF& and an external
static magnetic field B entails an energy Umagn
4-5
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'gFmBmFuBu, depending on the atomic internal state via t
quantum numbermF ~heremB is the Bohr magneton andgF
is the Lande´ factor!. The Stark shift induced on an atom b
an electric fieldE gives an energy~independent on the hy
perfine sublevel! Uel'

1
2 aeluEu2, whereael is the atomic po-

larizability. The interplay between these two effects can
exploited in order to obtain a trapping potential whose sh
depends on the internal state of the atoms. As an exam
we consider an atomic mirror like the one recently realiz
@9# from a conventional video tape with sinusoidal magne
zation M5(M0 cos@kMx#,0,0) along thex–axis. The period
of the pattern, 2p/kM , can be as small as 1mm with the
system studied in Ref.@9#, or even close to 100 nm usin
existing magnetic storage technologies. In order to obta
microscopic trapping potential@11#, it is necessary to apply
an external bias fieldBext[(0,By

ext,Bz
ext), oriented mainly

along thez axis, normal to the mirror’s surface, and with
small component alongy in order to prevent trap losses du
to spin flips occurring at magnetic field zeros. In this case
magnetic trapping potential is

VmF
~x!5gFmBmF$B0

2e22kMz cos2~kMx!1~By
ext!2

1@B0e2kMz sin~kMx!1Bz
ext#2%1/2, ~37!

whereB05m0M0(12e2kMd)/2, andd is the tape thickness
The minima ofVmF

form a periodic pattern above the tap

surface, at a heightz05 ln(m0M0 /B0)/kM , typically of the or-
der of some fractions ofmm. The spacing between two nea
est minima alongx is just the period of the magnetization
2p/kM . With present-day technology, trapping frequenc
can range from a few tens of kHz up to some MHz. Micr
scopic electrodes can be nanofabricated on the mirror’s
face@10#, thus allowing for the design of a potential with th
characteristics described in Sec. III.

For the statesua& and ub& we choose the hyperfine struc
ture states ua&[uF51, mF521& and ub&[uF52, mF
52& of the 5S1/2 level of 87Rb, having scattering length
as

bb'as
ab'5.1 nm. Several schemes for loading atoms i

the trap have been envisaged~see, for example, Refs.@9,11#!.
Most of them rely on an intermediate step, where atoms
be trapped and cooled without coming into contact with
magnetic mirror. This preloading stage can be either a m
netic trap initially displaced from the surface, or a differe
kind of trap ~for instance an evanescent wave mirror, whe
different internal states can be trapped by gravity close to
surface@14# before the atoms are put in the correct states
magnetic trapping!, to be replaced by the electromagne
microtrap with a gradual switch–on of the electric and b
magnetic fields in the final stage of loading@10#. This could
also allow for implementing a controlled filling of the tra
sites by adiabatically turning on the periodic potential, in
similar way to that discussed in Ref.@15#.

B. Results

1. Time evolution during gate operation

If both particles are in stateua&, there is no interaction-
induced phase shift, as expressed in Eq.~27!. The results for
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both particles in stateub& are shown in Fig. 2~a!, while those
for differing internal states appear in Fig. 2~b!. The harmonic
potential ensures that the system comes periodically bac
its initial state. In the absence of interaction, the frequency
recurrencies is twice as high forucbb(t)& as it is forucab(t)&,
as already discussed at the end of Sec. III B 2. The inte
tion also makes the two cases substantially different fr
each other. Its effect on the atomic motion is not dramati
both particles are in stateub&: actually, the oscillation period
in the presence of interaction is increased by onlydt
'1.431023Tosc with the parameters used here. The co
sional phasefbb increases in steps at the timestk[(2k
11)Tosc/4, when the atoms meet at the center of the w
and remains constant at intermediate times, while they
apart. Note that, since the particles are indistinguishable,
amplitude for the particles to bounce back during the col
sion does not harm the performance of our scheme. The
tributions of the reflected and the nonreflected part to
wave function are indistinguishable. What matters is whet
or not the two-particle spatial distribution approaches
initial one, and this is satisfied to a high accuracy in our ca

The behavior is quite different if the atoms are in differe
internal states. The phase shift increases in larger steps,
the collision is close to the turning point of the particle
state ub&, near x5x0. Here the velocity of the particle is
much smaller than at the center of the trap and thus
interaction time is longer, allowing a larger phase to ac
mulate. The collision also excites vibrations of the particle
stateua&. The resulting loss of energy from the particle
stateub& leads to a decreasing oscillation amplitude of th
particle, and the initial state is no longer recovered. T
problem can be avoided if the potential minimum for sta

FIG. 2. Dynamics during gate operation: projection of the init
state on the state evolved without~top! and with interaction~cen-
ter!; interaction-induced phase shift~bottom!. Results are shown for
different combinations of internal states:a5b5b ~left!; aÞb
~right!. We choosev52p17.23 kHz andv'52p150 kHz, corre-
sponding to ground-state widthsax'82 nm anda''28 nm, with
the initial wells having a frequencyv052v and displaced byx0

55ax . Time is in units of the oscillation periodTosc.
4-6
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ua& is displaced along the transverse direction from the
for state ub& by means of an additional electrostatic fie
@11#, so that the atoms interact if and only if they are both
stateub&.

2. Gate fidelity at T50

Ideally, the scheme described above should realize
mapping

ua&ua&→e2 i2faua&ua&,

ua&ub&→e2 i (fa1fb1fab)ua&ub&,
~38!

ub&ua&→e2 i (fb1fa1fab)ub&ua&,

ub&ub&→e2 i (fbb12fb)ub&ub&,

wherefa and fb are the phases due to the time evoluti
without taking into account the interaction. We assume,
b

,

tic

e

,

p

ba
tin
lity
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above, that the trapping potential is designed to prevent
atoms interacting if they are in different internal state
Therefore we setfab50 in Eq. ~38! and consider onlyfbb
in the following. We use the minimum fidelityF @16# to
characterize the quality of the gate.F is defined as

F5min
x

~ trext$^x̃uUS@ ux&^xu ^ r0#S†U †ux̃&%!, ~39!

whereux& is an arbitrary internal state of both atoms, andux̃&
is the state resulting fromux& using mapping~38!. The trace
is taken over properly symmetrized motional states,U is the
evolution operator for the internal states coupled to the
ternal motion~including the collision!, S represents symme
trization under particle interchange, andr0 is the density
operator for the initial two-particle motional ground state.
straightforward calculation gives
F5
1

2

12A22B2@~11A2!B224ABC12C2#cos2~fbb!

~11A!$21B@~12A!B12C#cos~fbb!%2B2~B2C!2 cos2~fbb!
, ~40!
of

per-

rac-
tisfy
where A5uO(cbb
(0) ,t)u1/2, B5uO(cbb ,t)u1/2, and C

5uO0(cbb ,t)u1/2. With the parameters quoted above, we o
tain F'0.99 either by choosing a gate operating timet
57(Tosc1dt) and maximizingB, or choosingt57Tosc and
maximizing insteadA. We prefer this latter choice since
after a timet5NTosc52Np/v, the j th component of thex
wave function of an atom in stateub& in the basis of eigen-
states ofvb(0<t<t) obtains a phase 2N( j 11/2)p ~here
N57). This brings some simplifications: e.g., the kinema
phases can be written as

fa5Np
v012v'

v
, fb5Np

v12v'

v
. ~41!

The general form offb is much more complicated. Figur
3~a! shows that after seven complete oscillations Eq.~15!
yields a phase shiftfbb(7Tosc)'p due to the interaction
whereas the perturbative formula@Eq. ~31!# gives
7fbb(Tosc)'0.97p. The figure also shows that the overla
uO0(cbb ,t)u remains close to 1, satisfying Eq.~13!. The
curve has local minima at the timestk defined in Sec. IV B 1,
signalling that a collision is taking place, and shows a glo
decrease due to the accumulating delay of the interac
motion with respect to the noninteracting one. The fide
turns out to be

F5
1

2
$12uO0~cbb ,t!ucos@fbb~t!#%. ~42!
-

l
g

3. Gate fidelity at TÞ0

In order to compute the temperature dependenceF(T) of
the fidelity, the density matrix for the motional degrees
freedom in Eq.~39! has to be replaced by

rext~T!5(
l ,n

Pln~T!u l &R^ l u ^ un& r^nu, ~43!

FIG. 3. Dynamics for both atoms in stateub&, with relative-
motion excitations:n50 ~left!, n51 ~center!, and n52 ~right!.
Above: interaction-induced phase shift; the crosses refer to the
turbative result from Eq.~20!, explicitly given by Eq.~31! for n
50, and evaluated numerically forn.0. Below: projection of the
evolved state on the corresponding state evolved without inte
tion. Trap parameters have the same values as in Fig. 2 and sa
Eq. ~B5!, sincea0v0 /(4x0v)50.07 in this case.
4-7
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which coincides withr0 at T50. Here we have introduce
the eigenstatesu l &R for the center of mass, andun& r for the
relative motion. The probabilitiesPln(T) for occupation of
the CM and relative motion excited states are calculated
suming, for each atom, a thermal distribution correspond
to temperatureT, as expressed by Eq.~35!. We obtain

F~T!5
1

2 H 12(
l ,n

Pln~T!uO0~c (n) ,t!ucos@f (n)~t!#J ,

~44!

where

c (n)~r !5S mv0

2p\ D 1/4

(
§521,11

e2(mv0/4\)(2x01§r )2

An!2n11

3HnFAmv0

2\
~2x01§r !G . ~45!

In particular,c (0)[cbb and f (0)[fbb . The corresponding
interaction-induced phase shiftsf (n)(t) are shown in Figs.
3~b! and 3~c!. The discrepancy between the interacting a
noninteracting motion increases withn, but nevertheless the
phase shiftf (n) remains still close top @Figs. 3~b! and 3~c!#,
as already discussed in Sec. III B 3. Consequently the fide
is not rapidly suppressed with temperature.

For example, one might well be interested in the values
F(T) for temperatures up tokBT'\v0. Let us therefore
defineg[exp(2\v0 /kBT) and neglect terms ofo(g7) in the
evaluation of Eq.~44! to obtain

F~T!'F~0!2
1

2 (
n51

6

gn$uO0~c (n) ,t!ucos@f (n)~t!#

2uO0~c (n21) ,t!ucos@f (n21)~t!#%. ~46!

This still gives a high fidelityF(T)'0.96 even atkBT
52\v0, for which g7'0.03. We note that, in order to reac
such a high fidelity, the timing has to be quite precise, wit
resolution better than 1023Tosc, corresponding to tens of n
in this case.

V. CONCLUSIONS

We have shown that entanglement among ultracold n
tral atoms can be controlled by means of microscopic swit
ing potentials. The fidelity for a fundamental two-qubit qua
tum gate turns out to be quite robust with respect
temperature: in fact, with the parameters quoted below
2, we findF(T)'0.96 for T'3 mK in the x motion, while
assuming ground-state cooling in the transverse directi
We find a gate operation time oft'0.4 ms, over which co-
herence can probably be preserved with presently avail
experimental systems. Static microtraps based on avail
atomic mirrors@9,11# provide a good opportunity for a firs
implementation of our scheme. Here nanofabrication te
nologies allow steep potentials to be achieved with sm
charges and/or currents. Trapping fields can be contro
electronically in a fast and accurate way@10#.
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Some problems remain to be addressed. To perform e
a single gate operation, the trap should be loaded with
actly one atom per well. Readout should be done poss
without removing atoms from the trap. In order to build u
more complex operations, gates should be arranged in a
riodic structure where coherent atom transport may t
place between different locations. This would permit ga
operations either on one pair of atoms at a time, or on sev
pairs in parallel, a fact which could be exploited for efficie
implementation of quantum-error-correcting schemes
fault–tolerant quantum computing@17#. This will be the sub-
ject of future work.

Note added in proof.Recently, loading, trapping, and ma
nipulation of neutral atoms in fabricated magnetic traps w
ground state size,100 nm and trap frequencies.100 kHz,
of the same orders of magnitude as considered here, w
achieved using a nanofabricated atom chip@18#.
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APPENDIX A: TIME EVOLUTION

1. Analytical calculation

If both particles are in stateub&, we start from the Hamil-
tonian equation~28!, neglect the interaction term, and solv
the Schro¨dinger equation. We find~omitting the internal state
indicesbb)

cCM~R,t !5FMV~ t !

p\ G1/4

eifCM(R,t)2[ MV(t)/2\]R2
, ~A1!

where

V~ t !5
v2v0

@v2 cos2~vt !1v0
2 sin2~vt !#

, ~A2!

fCM~R,t !5
MV~ t !

2\

v0
22v2

v0v
R2 cos~vt !sin~vt !2

vt

2

2
1

2
arctanF ~v02v!cos~vt !sin~vt !

v cos2~vt !1v0 sin2~vt !
G .

~A3!

From Eqs.~26a! and ~A1! it follows that
4-8
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uO~cCM ,t !u25F11
~v0

22v2!2

4v0
2v2

sin2~vt !G21/2

. ~A4!

If the particles did not interact, the relative motion would

c rel
(0)~r ,t !5AmV~ t !

4p\ FexpS if rel~2r ,t !

2
mV~ t !

2\
@r 12x0 cos~vt !#2D

1expS if rel~r ,t !2
mV~ t !

2\
@r 22x0 cos~vt !#2D G ,

~A5!

where

f rel~r ,t !52
vt

2
2

1

2
arctanF ~v02v!cos~vt !sin~vt !

v cos2~vt !1v0 sin2~vt !
G

1
2mV~ t !

\vv0
sin~vt !F S v0

22v2

4
r 21v0

2x0
2D

3cos~vt !1v0
2x0r G . ~A6!

The overlap between the states Eqs.~26b! and ~A5! is

uO~c rel
(0) ,t !u25F expS 2

8mv0v2x0
2 cos2~vt !

\v1
2 ~ t !

D
1expS 2

8mv0v2x0
2 sin2~vt !

\v2
2 ~ t !

D
1

2 cosF4mv

\

v0
2~v0

21v2!

v1
2 ~ t !v2

2 ~ t !
x0

2G
e4mv0/\[cos2(vt)/v1

2 (t) 1 sin2(vt)/v2
2 (t)]v2x0

2
G

3F11
~v0

22v2!2

4v0
2v2

sin2~vt !G21/2

~A7!

with v6(t)5Av21v0
26(v22v0

2 cos(vt).
This result for the relative motion should be compared

the actual evolution in the presence of interaction, wh
cannot be computed analytically. If the particles are in d
ferent internal states, we also have to resort to numer
methods.

2. Numerical calculation

a. Particles in the same internal state

We write the state vector as a sum over the eigenstatesun&
of a harmonic oscillator of massm and frequencyv,
02230
o
h
-
al

uc rel~ t !&5(
n

e2 i (n11/2)vtcn~ t !un&, ~A8!

and approximate the potential by a truncated sum

d~r !' (
k,l

Nmax

uk&^kud~r !u l &^ l u

5 (
k,l

Nmax

ck* ~0!c l~0!uk&^ l u, ~A9!

wherecn(x)5^xun&. We have checked that the final result
independent ofNmax, with Nmax of the order of some tens
The Schro¨dinger equation foruc rel(t)& gives

ċn~ t !52 i2as
bbv'cn* ~0! (

l 50

Nmax

c l~0!ei (n2 l )vtcl~ t !,

~A10!

which we solve numerically forcn(t) with 0<n<Nmax. The
initial conditions, from Eq.~26b!, read

cn~0!5
e2[mv0v/\(v01v)]x0

2

An!2n

~v0v!1/4

Av01v
S v02v

v01v D n/2

3FHnSA 2mvv0
2x0

2

\~v0
22v2!

D 1HnSA 2mvv0
2x0

2

\~v22v0
2!
D G .

~A11!

b. Particles in different internal states

In order to solve the Schro¨dinger equation for the Hamil-
tonian equation~34! we decompose the state vector

ucab~ t !&5(
j ,k

e2 i ( j 1k11)ṽtcjk~ t !u j̃ &Ruk̃& r , ~A12!

@where nowc̃ j (x)5^xu j̃ & are the eigenfunctions of a ha
monic oscillator with frequencyṽ and massm#, and obtain,
for the coefficients,

ċ jk~ t !5 i
ṽ~v0

22v2!

2~v0
21v2!

H cj 11,k11~ t !e2 i2ṽtA~ j 11!~k11!

1cj 21,k11~ t !Aj ~k11!1cj 21,k21~ t !ei2ṽtAjk

1cj 11,k21~ t !A~ j 11!k1
mṽ

\

v22v0
2

v0
2

j2cjk~ t !

1A2mṽ

\
j@ei ṽt

„cj 21,k~ t !Aj 2cj ,k21~ t !Ak…

1e2 i ṽt
„cj 11,k~ t !Aj 112cj ,k11~ t !Ak11…#J
4-9
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2 iA2as
abv'c̃k* ~2j!(

l
c̃ l* ~2j!ei (k2 l )ṽtcj l ~ t !,

~A13!

wherej5x0v0
2/A2ṽ2.

This can again be solved numerically, starting from t
initial conditions, derived from Eqs.~26a! and ~26b!:

cjk~0!5

expS 2
mv0v~j21x0

22A2x0j!

\~v01v!
D

Aj !k!2 j 1k22

3
Av0v

v01v S v02v

v01v D ( j 1k)/2

3FH jSAmvv0
2~A2x02j!2

\~v0
22v2!

D
1HkSA mvv0

2j2

\~v0
22v2!

D G . ~A14!

APPENDIX B: INTERACTION PHASE SHIFT
FOR EXCITED INITIAL STATES

Let us consider two bosonic atoms in the same inter
stateua&, but in two different single-particle motional state
uw2& and uw1& with vanishing overlap. The initial motiona
state has the form

uw~0!&5
uw2&uw1&1uw1&uw2&

A2
. ~B1!

We assume that~i! the particles move against each oth
come in contact during a certain time interval@ t i ,t f # and
then separate again; and~ii ! the velocity of each particle an
the shape of its wave function do not vary during the int
action. Thus, fort i<t<t f , we write
ex

.

d,

.J

ai-

d

02230
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,
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^x1uw2~ t !&5w8~x12vt !, ~B2a!

^x2uw1~ t !&5w9~x21vt !, ~B2b!

wherev is a positive constant. It follows that

faa~Tosc!'
1

\Et i

t f
dt^w~ t !uuaa~x1 ,x2!uw~ t !&

54as
aav'E

t i

t f
dtE

2`

1`

dx1

3uw8~x12vt !u2uw9~x11vt !u2

'
2as

bbv'

v E
2`

1`

dxdyuw8~x!u2uw9~y!u2

5
2as

bbv'

v
, ~B3!

where a change of variablesx5x12vt, y5x11vt has been
introduced, and the limits of integration int have been ex-
tended to6` since the single–particle wave functions@Eqs.
~B2a! and ~B2b!# overlap just for a finite time. The resu
turns out to be independent of the initial state. We can co
pare it to Eq.~31!, which was obtained in the harmonic po
tential @Eq. ~21b!# starting from the single–particle state
uc6& instead ofuw6&. In this case

v[u] t^c6ue( i /\)Hbtxe2( i /\)Hbtuc6&u t5tk
u5x0v, ~B4!

and the atoms collide twice during one oscillation perio
Therefore the collisional phase Eq.~31! should be twice as
large as Eq.~B3!. This is true provided that the maximum
velocity for the atomic motion in the wellvb(x,0<t<t) is
large with respect to the analogous quantity for the grou
state motion in the wellsva(x,t), i.e., if

x0v@a0v0/4. ~B5!
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