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Problem of equilibration and the computation of correlation functions on a quantum computer
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We address the question of how a quantum computer can be used to simulate experiments on quantum
systems in thermal equilibrium. We present two approaches for the preparation of the equilibrium state on a
guantum computer. For both approaches, we show that the output state of the algorithm, after long enough
time, is the desired equilibrium. We present a numerical analysis of one of these approaches for small systems.
We show how equilibriunttime-)correlation functions can be efficiently estimated on a quantum computer,
given a preparation of the equilibrium state. The quantum algorithms that we present are hard to simulate on
a classical computer. This indicates that they could provide an exponential speedup over what can be achieved
with a classical device.

PACS numbgs): 03.67.Lx, 05.30-d, 89.80+h, 02.70.Lq

[. LIMITS OF CLASSICAL COMPUTATION tems that concern us in this paper will have a finite-
dimensional Hilbert spac#l that can be decomposed as
The power of quantum computers has been demonstrated
in several algorithms, of which the most striking have been H=H,@H,® - ®H,,, (1.3
Shor’s factoring algorithni1,2] and Grover’'s search algo-
gfﬂgﬂr %3635 er;)?hg:g t\r/]eer)ér(s)tririgehcc)}vxt/)i\i/ﬁ;, ;hs? nﬂj:?;?g} ;ﬁ;nsi\-'\/h.ere each; represents a small, constant Hilbert space,
cal systems. This is the content of the physical version of '[ht pically associated with som(:gen(_arah_zeﬁj spin or other
Church-Turihg principle proposed by Deutsgh], which ocal Qegree of freedom. The Hamlltoman couples thes.e lo-
says that every finitely realizable physical systen; can be peran.H”be.rt spaces, for ex ample in Correspondence W't.h a
fectly simulated by a universal model computing machined'd'menS'on.aI spatial _Iattlce, so.that ?here is only cguplmg
operating by finite means. Thus we might expect that a unipetween adjacent “_spms” on this Iat_tlce. The quantities of
: . interest, computed in experiment or in a classical computa-
versal quantum computer can be used to simulate any expell. - ore of the form
ment that we could do on a real physical system. If such a ™~
simulation can be done efficientlyhat is, without exponen-
tial slowdown, it is clear that this could be one of the major TrO4(t1)Oa(t2) - - - Okt pg. (14
applications of a quantum computer. This promise seems to
have been only partly fulfilled until now; it has been shownwhere O;(t;) are (possibly time-dependentobservables.
by several researchef5,6] that a simulation of the unitary Both for classical systems as well as for quantum systems,
time evolution of a physical system that possesses some deemputational Monte Carlo methods have been developed to
gree of locality(which realistic physical systems Xoan be estimate correlation functions as in E(L.4) [7-9]. The
accomplished efficiently on a quantum computer. Howeverguantum Monte Carlo method for systems at finite tempera-
many quantities of interest that are determined by experiture relies on a transformation introduced by SuZaKi| that
ment, or by the use of classical simulation techniques, relatsaps an initial quantum system ondadimensional lattice
to open quantum systems, in particular to systems in thermainto a d+ 1)-dimensional classical system. This conversion

equilibrium. The thermal equilibriuniGibbg state (in the  then makes it possible to use classical computational sam-

canonical ensembleof a HamiltonianH is given by pling techniques to estimate correlation functions as in Eq.
(1.4). There seem to béat least two situations when this

N o= BEnm approach runs into trouble and no good computational alter-
pPp= le Z [m)(m|, (1.1 natives are availablg9]: (1) the correlation functions depend

explicitly on time t, and (2) the quantum system is of a
fermionic nature. We will give a short explanation of why
these problems are encountered.
The transformation from a classical to a quantum system
N is based on the generalized Trotter formula. Lt
7= e FEm, (1.2 =3K_,H; where eactH; is a Hamiltonian on a small con-
m=1 stant Hilbert space. The Trotter formula reads

where|m) (E,,) are the eigenvectokgigenvaluesof H. Z is
the partition function,

and 8=1KT wherek is Boltzmann’s constant and the e’ = lim (e"H1/ngeH2/n. .. goHi/mn, (1.5
absolute temperature in degrees Kelvin. The physical sys- n—o
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The partition function, Eq(1.2) [and similarly correlation
functions as in Eq(1.4)], can be rewritten, using the Trotter
formula and the identitg a";)(a/"}| = 1, where the pair of
indices (,]j) labels a choice of basis, as

many contexts in which Eq1.10 is used in describing ex-
perimental properties of many-particle quantum systems
[11].

When A=B=u, whereu is the displacement field of a
crystal, Eq.(1.10 describes the phonon dynamics of solids
as probed by inelastic neutron scattering. WiheandB are
the number-density operator, the dielectric susceptibility is
represented; this correlation function describes a variety of
other experiments, including x-ray photoemission and the so-
called x-ray edge singularity. When we study the current-
current response function, we obtain the electrical conductiv-
ity as described by the Kubo formuléThe density-density
and current-current response functions are intimately related
via the continuity equatioh.Spin-dependent quantities are
also of interest: with the spin-spin correlation function, in-
formation is obtained about the magnetic susceptibility and,
thus, the magnon dynamics of ferromagnets and antiferro-
magnets, the Kondo effect, and the magnetic-dipole channel
in neutron scattering. And finally, /& andB involve anoma-
lous pair amplitudes which involve Fermion operators like
a;(k)a;(—k), the presence and dynamics of a superconduct-
ing phase can be probed.

In short, the dynamic pair correlation functions provide a
, window on many of the interesting quantities in experimen-
matrix elementgalexp(—BH;/n)|b) are positive. Thus it is tal physics, and it would be highly desirable to have a
important to choose the right sets of basis std method of obtaining estimates for these quantities by simu-
make the conversion to a classical sampling problem with dation on a quantum computer.
non-negative distribution. There are fermionic systems such In this paper we develop an approach to tackle these prob-
as certain Hubbard mode]8] in which it does not seem to lems on a quantum computer. We break the problem into two
be possible to choose such a good basis. For these systemgé@rts: First, we present an approach to prepare our quantum
has turned out to be very hard to get good estimates of cocomputer in the equilibrium staje; of a given Hamiltonian
relation functions by using classical Monte Carlo techniques(Secs. Il and Il). We will give two alternative routes to
This problem is usually referred to as the “sign” problem. prepare an equilibrium state. For the first quantum algorithm

When we are to compute time-dependent quantities, fowe can prove that in the limit of large space and time, the

Z=Tre AH= E Pa, ) (1.6)

{a i}
wherep{a 3} is a distribution over the values of the collection

of varlables{aI j} andj indexes the repetitions of the factors
of Eq. (1.5 from 1 ton. If the distribution is non-negative,
we can writep,, J,}zeHeff({é‘i,i}) whereH ¢ is now a classi-

cal Hamiltonian given by
n k
Heff({ai,j}): lim J_Z Z (a| J 1a|+1j) (17)
n—oo J ™ -

with ay1j=a3j+1, &1p=2as1and

Hi(a,b)=In[(a|exp — BH; /n)|b)]. (1.9

The distributionp{Eli 3 will only be non-negative when the

example the functiori(it) =Tre'"'0,e M'0,p 4, we need
to use an imaginary time=it to perform the conversion of
Eq. (1.5 to a classical systeniwe expande't't with the
Trotter formula. From the classical Monte Carlo sampling
of the functionf (7) for real 7, we estimatd (7) and then we

algorithm will successfully produce the equilibrium state as
its output. In any realistic situation we are faced with finite
resources in space and time. In Secs. 11 G and Il H we there-
fore present some numerical studies of the performance of
the algorithm for small systems. In Sec. lll we present an

could in principle analytically continue this function. How- alternative quantum equilibration algorithm that is based on
ever, we only have a finite number of samples of the functiorgigenvalue estimation. For this algorithm we prove as well

and each sample point has some inaccuracy. The errors thi&@t in the limit of large space and time equilibrium is
are introduced in estimating the Fourier componéis) achieved. In Sec. IV we describe a procedure for efficiently
from this data give rise to large fluctuations when we recon€Stimating quantities as in E{L.4), given that the equilib-
structf(it) with the Laplace transform, rium state has been prepared. _ _
We will not attempt to prove that our algorithms run in
- polynomial time even for a restricted class of quantum sys-
f(it)=J dwe “F(w), (1.9 temsH and/or for restricted ranges @f. The equilibration
— problem, in its full generality, is expected to be a computa-
tionally hard problem. Even classically there is a large class
resulting in a bad approximation for the time correlation of systems that exhibit a feature called frustration, for which
function f(it). calculating the partition functiorz as in Eq. (1.2 is a
The relevance of estimating a simple time correlationp#-complete probleni12]. Also, for these systems, deciding
function [an example of Eq(1.4)] such as whether the energy of the ground state is lower than some
constantK is an NP-complete problenj13]. The quantum
Tr[A:, By lps=([At,Bi ])s, (1.10  problem has an added difficulty: We cannot assume that we
know the eigenvector&@nd eigenvalugof the Hamiltonian
whereA; and B, are some Hermitian Heisenberg operatorsof the system that we would like to equilibrate. There is no
of the system, cannot be overestimated. Let us recall thevidence(yet) that a quantum computer can exponentially
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outperform a classical computer in estimating the partitionputer. We will call a trace-preserving completely positive
function for certairclassicalsystems, which would enable us linear mapS a TCP map. The algorithms that we present are
to sample efficiently from the classical Gibbs distribution described as the repeated application of a TCP Sam
[14]. some initial state. Such a TCP map can be viewed as a gen-
The quantum algorithms that we present are hard to simuweralization of a Markov matrix to the quantum domain. A
late on a classical computer. In both of our equilibrationclassical Markov chain corresponds to the following process
algorithms we use the fact that one can implement the uni¢cf. [7]). Leti=1, ... k be a set of states. We take time to
tary time evolution of a local Hamiltonian om qubits in a be a discrete variable, taking the values0,1,.... At
polynomial number of steps imon a quantum computéb]. some point in time =0, we start with a probability distribu-
A direct simulation of this procedure on a classical computetion {pizo}:‘:1 over the states such thatt;p;=1. Through
would cost exponentidin n) space and time and is therefore a stochastic process, which we describe with a Markov ma-
unrealistic. As we will show in Sec. IV, given a preparation trix M, this probability distribution is mapped onto a new
of an equilibrium state, there exists an efficient procedure ofprobability distribution{pi’}!‘:l at timet=1; i.e.,
a quantum computer to calculat@me-dependentcorrela-
tion functions. As we discussed above, there is no general p'M=p'T, (1.11
efficient classical algorithm with which one can estimate )
time-dependent correlation functions. Our quantum algoWherep is the vector of probabilities &t=0. A homoge-
rithm provides such an algorithm for a quantum computerN€ous Markov chain corresponds to a chain in wiitts the
Abrams and Lloyd16] have shown that the unitary simula- Same matrix during all time steps. In the theory of Markov
tion of a fermionic system such as the Hubbard model, eithefhains we study the properties of the matkixdetermined
in first or second quantization, can be performed efficientlyPY its eigenvalues and eigenvectors. Such a Markov process
on a quantum computer. The quantum algorithms that we&haracterized by a ma'_[rM can be viewed as a special kind
will present will use this unitary evolution as a building ©f TCP map. The statés=1, ... k now correspond to a set
block. Therefore these algorithms can be used to comput@f orthonormal stateg): (i|j)= g;; . At t=0 we start with a
correlation functions for the Hubbard model on a quanturrdensity matrixp=X;p;[i){i|. The TCP map corresponding
computer. This is a task for which we do not have a good© a classical Markov process maps
classical algorithm, due to the “sign” problem, as we o,
pointed out above. Sulp)=p’, (1.13
We fo.cus'our effort; on quan_tum equilibration.algorithmswherep,:Eip”iw|_ To give a full specification ofS in
for Hamiltonians of which the eigenvalues and eigenvector erms ofM we write
are not known beforehand. These are the Hamiltonians of,

for example, Heisenberg moddlim more than two dimen- k

siong, Hubbard modelst-J models,XY models, or many- SuliXiD=2 MyliXil,

electron Hamiltonians in quantum chemistry. On the other =1

hand, knowing the eigenvectors and eigenvalues of a Hamil- L (113
tonian, such as in the Ising model, is no guarantee that there Sw(liXih=0.

exists an efficientpolynomial time classical algorithm that In this classical chain the density matrices that result from

produces the equilibrium distribution. The situation is similarthis stochastic process are all diagonal in the same basis
for quantum algorithms; we do not know in what cases the{|i>} =(=1- For a general quantum Markov chain this will not

equilibration algorithms presented in Secs. Il and Ili giVebe the case. In Sec. Il C we establish several basic properties
rise to a polynomial time algorithr(see alsd 15] for quan- ' ' . . .
I poly a gorithrfs d15] au of TCP maps that can form the starting point for developing

tum algorithms for Ising-type models S
The process of equilibration is also essential in the actu { theory of quantum Markov chains in a quantum computa-

realization of a quantum computer. One of the assumptionf°"al Setting.

underlying the construction of a quantum computer] is

the ability to put a physical system initially into a known Il. EQUILIBRATION |
state(or a thermal equilibrium state in a NMR quantum com- A, Introduction

puter[18]), the computationd00 . . . (00 . . . g state. The , ,

way this is done in an experimental setup is to let this state "€ canonical ensemble is the ensemble of states

be the ground state of a natural Hamiltonian and subsetPi i)} or a density matrixo=X;p;|¢;){4:], such thatp

quently to cool to low temperature such that the probability"@S @ given energy-expectation value

of being in this ground state is some constant. This natural TrHp=(E) 2.1)

Hamiltonian must be sufficiently simple for this equilibration ' '

to be achievable efficiently and also be sufficiently weak orrpe equilibrium state in this ensembl&q. (1.1)] can be

tunable not to disturb the computation later on. obtained by maximizing the von Neumann entropypafin-

der this energy constraint. Another way in which the canoni-

cal ensemble is defined is by considering the possible states
Our two quantum equilibration algorithms are examplesof a system that is in contact with an infinite heat bath at a

of the use of quantum Markov chains on a quantum comeertain temperatur@. The total energy of system and bath is

Markov chains in the quantum domain
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constant, but bath and system exchange energy, so that the (2) Prepare bath We prepare thé qubits of the bath in
system equilibrates. This directly suggests that the way teheir equilibrium statepy, 5 of Hy, .

prepare the equilibrium state on a quantum computer is to (3) Evolvesystem and bath for timeand discard bath,
mimic this process. In considering the computational com+hat is, perform the superoperaiy ; of Eq. (2.3).

plexity of such a procedure in a straightforward simulation (4) Repeatsteps 2 and 3 times such that

without optimization or shortcuts, we will have to include

the space and time cost of the bath, which may be large. I855*(/000 . .. 00000 . . . 00)

Also, the intuitive picture of equilibration between a weakly ;

coupled large bath and system does not tell us anything —8,4(/000 ... 00(000...00),<e, (2.4
about the rate at which this equilibration occurs. Further-f rall r=r,: € is some accuracy. See Appendix A for the
more, the equilibration process assumes a bath that is alrea finition O‘%’H Jl -

in its equilibrium state. Can we make the bath simple enough We put sevet;a.ll constraints ¢ty ,H, , andH.,. We will
that this bath state can be prepared efficiently? In this sectionSe local Hilbert spaces as in E(q_’ 3)bc;f dime;bs.ion 2(qu-
we study this process of equilibration. We present an algobits) H. must be a “local” Hamiltoﬁian We defineclocal
rithm and we derive expressions that completely characterizp'an'mtgnian onn qubits as one that ca.n be expressed as
the equilibration process in an idealized case: the coupling
between the bath and the system is very small, the bath is poly(n)

very large, and the time of interaction is large. In order to Hs= E Lya®hy, (2.5
treat this problem analytically we develop a perturbation =1
theory in the strength of the coupling between bath and SYSihere eacth, operates on a tensor product of several small
tem in Sec. II D. In this perturbative regime we will see that i op b

the dynamics of our quantum Markov chain can be describegggta';'slgzé Stﬁgf?ﬁé v(;/ih(;sneva:?J:I dl;?aergsgl)lng:zyi\r{\ityvtlﬂe
by a classical Markov chain plus an additional “dephasing” 9 sy '

process. Only in the idealized regime, using the perturbatioﬁpecm.Jm is nondegenerate. Th|s \.N'" S'”.‘p"fy the upcoming
theory approach, are we able to show that the algorith nalysis. In order to treat Hamiltonians with degenerate spec-

- " a a change in the perturbation theory of Sec. 1l D will have
gives the equilibrium state as output. We then proceed byf ;
numerical study of the algorithm in realistic cases where th 0 be made. We expect, however, that with that change the

bath is of finite dimension, the strength of the interaction istmhal?d re‘T‘izltdOf SeCIV\iiIIIE’tiﬂimledl—)I/ SL;]ccetshsful:neql:lhbrat:ionn n
nonzero, and the interaction time is limited. € Idealized case, St NoldHsp has the finear coupling

form

B. Algorithm Hgp,=S®B, (2.6

Definition 1. Equilibration algorithm I. where bothSe B(Hs) and Be B(H,,) are local Hamilto-

nians.H, is the Hamiltonian of a system of noninteracting

Input parameters. o . . ; L
putp qubits; i.e., it is a sum of single-qubit Hamiltonians:

Hg Hamiltonian of a N=2"-dimensional quantum p
system
Hp= 2, L,p®h;. 2.
B Inverse temperature b Z‘l k2= @7
Hy Hamiltonian of a K=2*-dimensional “bath” o ) ]
quantum system The bath’s equilibrium state factorizes into a tensor product

AHep Hep is the NK-dimensional “bath-system” inter- of qubit equilibrium states associated with edgh

action Hamiltonian)\ is the parameter that mea-

1 k
sures the strength of the interaction between bath Pop=Po % EPp 28

and system This enables us to prepare the bétep 2 efficiently. Ap-
t Interaction time between bath and system pendix B shows that it will cost R elementary qubit opera-
r Number of times the bath is refreshed in the algo-tions to perform step 2. The locality &f;, H,, andHg is
rithm required in order to be able to simulate the unitary time evo-
lution €Mt in time O(t% 8) where & is the accuracy with
Define the total Hamiltonian of system and bath as which the evolution is implemented,19].
We also choose
H=H®1+1y®@Hp+AHgp, (2.2
) ) <B>bETr pr'BZO. (29)
and the trace-preserving completely positit€P) mapsS, ;
as To understand the effect of a nonz€®),, we rewriteH as
Sui(p)=TryeMp@p, g~ (2.3 H=(Hs+A(B)pS)® 1+ 1y®H,+AS®B’, (2.10

(1) Prepare systemWe prepare then qubits in the state with B’=B—(B),1x=0, and thus choosing a nonzg[B),
[000 . .. 00(000. .. 00. effectively corresponds to a change in the Hamiltonian of the
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system. We now discuss the last step of the algorithm, step 4epetitionsr, the size of the batlk, the Hamiltonian of the
When the superoperatsy ; has the equilibrium states ; as  bathH,,, the interaction Hamiltonia®® B, and the interac-
its unique fixed point, then E@2.4) for all r=r, implies that  tion strength\. In an actual realization of the quantum algo-
rithm on a quantum computer with finite resources of space
[|S3.¢(]000 ... 00(000...00)— ps gl =<Cnf(e,x), and time, we should try to choose the optimal set of values
(2.1)  for these parameters. In Secs. Il G and Il H we present results
from numerical simulations for small systems that tell us
for all r=rq, wherek is the absolute value of the second how the algorithm depends on this set of parameters. In these
largest eigenvalue af, ;. Cy is some constant polynomial sections the following questions will be addressed:
in N. The functionf(e,x)—0 for e—0 and«#1. The func- (1) What is the influence of different choices fbl,, S
tional dependence df on « is such that whenc increases andB [Egs.(2.6) and (2.7)]?
(the equilibration slows down f increases. For sufficiently (2) How do the parametens \, andt required for suc-
small e the equilibration process will lead to successful con-cessful equilibration depend angenerically? How doek,
vergence to the equilibrium state. the number of bath qubits, depend mnthe number of sys-
There does not, however, exist a straightforward impletem qubits, for successful equilibration? Are they polynomi-
mentation of step 4. The first problem is that we would haveally related?
to check the closeness of thén and the ( + 1)th iteration of The dynamics of open quantum systems, like the system
Syt for all r=r,. In practice this has to be replaced with in our algorithm that interacts with a bath, is most often
choosing a finite set of iterationsfor which the invariance studied with the use of a generalized master equation; see
of S"(J00...0(00...Q) is tested. This problem is also Fick et al. [21]. The exact master equation in integral form
encountered in classical Monte Carlo simulations. The sedadescribes the time evolution oi(t) =S, ((p) of Eq. (2.3):
ond problem, which is a purely quantum phenomenon, is that

by measuringp, =S} ((p) we might disturbp,. Thus to p(t)=e""“<p(0)

comparep, with p,,; we would have to rurS again forr ¢ v _

+1 times. To assemble some statistics on the difference be- —)\ZJ' dt’f dt’e LM () p(t"),
tweenp, andp,,,; we have to rurr iterations ofS several 0 0

times. These considerations about the verification of the con- (2.13

vergence of the equilibration process are of course not spe-

cial to the use of a quantum computer; they are the same aghere ., the Liouvillian, is defined as

in the equilibration of a quantum physical system in an ex-

perimental setup. Furthermore, it would be an impractical L(p)=[H.p]. (2.14
task to try to measure all the matrix elements ©f, p,
contains an exponential amount of data of which we carf
extract only a polynomial amount by measurement in poly-
nomial time. The best way to proceed is the same as what o S py Tr) £t — )
one does in classical Monte Carlo simulati¢g} If the goal MU, 1) =Tr, Lspe b Lsopo-

of the computation is to estimate Opg 5, then one com- (2.19

putes the data points The form in which the master equation is most often used,
however, is one in which two simplifying approximations are
Or=TrOp;, (2.12 made:(1) the Born approximatiorithis relates to the weak-
ness of the interaction parameter and(2) the Markov ap-
roximation. The process described 8y, is Markovian if
e can write

o thatLy(p)=[Hs,p], etc. The operatoM(t’,t") is the
memory kernel,”

until |0, — O, 4| < € for a sufficiently large set of iterations
r=ry. The same procedure can be carried out when the gog|
of the equilibration is to compute a time-dependent correla-
tion function such as Edq1.4). Sy (S, «(p)=8) 115(p), (2.16
In the remainder of this section we will analyze this algo- B '
rithm. In Sec. Il C we give some general properties of TCPfor all t=0 ands=0. Note that the difference between the
maps. In Sec. Il D we discuss the non-Hermitian perturbatiorteft- and right-hand sides of this equation is the following.
theory that will be the basis of the analysis 8f in the  On the left-hand side the environmen ; [see the definition
idealized case. In Sec. Il E we derive explicit expressions foof S, ; in Eq. (2.3)] is refreshed after timg whereas on the
the idealized case. The idealized case is the case obtained kight-hand side the environment is kept for the whole evolu-
taking the limits \—0, k—% and t—, but At as tion time t+s. Markovian behavior typically occurs when
constant. Then we can show that in this idealized case thethe rate at which the effect of the system on the bath is
process has a unique fixed point which is the equilibriumerased in the batkin the sense of being spread throughout
state. Many parameters in the quantum equilibration algothe bath is much faster than the rate at which the system
rithm are not yet fixed. These are the timehe number of  evolves; the system sees a “fresh” bath every time. In our
algorithm this loss of correlations in the bath is enforced
when after some timeé the bath is replaced by a new bath
This limit is sometimes referred to as the van Hove lifaif]. (step 4). We would not be able to truly equilibrate a finite
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system with a finite-dimensional bath if we would not keep Syt B(Hn)—B(Hy), (2.20
refreshing it. Since the global evolution of bath and system is

unitary, eventually we will get back to the initial unentangledwhere B is the algebra of linear operators on the Hilbert
state and, after tracing over the bath, to the initial state of thepacey. The setTCP[N,N] is the set of TCP maps
system(a so-called Poincareecurrencg Whether Markov-  S: B(Hy)—B(Hy)-

ian dynamics is justified will depend on the size of the bath, The elements oB(Hy) can be represented &8<N ma-

the strength of the interaction, and the length of the interactrices. An alternative and convenient way to represent
tion time. There are ways to make a simple but naive MarB(#,) is as aN?-dimensional complex vector spacﬁlz;

kov approximation in Eq(2.13 that lead to a master equa-

tion that fails to describe TCP dynamii&l,22. The form of I: xeB(Hn)—(X)ij € cV, (2.21

the master equation that does incorporate both the approxi-

mations and yields a physical completely positive map is thel'his representation leads to a matrix representation of a TCP

master equation in Lindblad forf23]: mapS on CV°. Let A, be the operation elements &F i.e.,

ap .

—r = "1Hsp(O]+Lp(b), (2.17 3()()=2i AixAl, Z ATA=1y. (2.22
whereL [24,22] can be expressed with a basis of operatorsrpen,
F; as

N , ) (X )mn= (SOOmn= 20 25 (A X)ia(ADin
Lp)=3 2 au{[Fuo(V),F1+[Fip(OF[ T L
(218 :; Smnki(X)ki (2.23

where a,, is a positive semidefinite matrix. In a Lindblad
equation describing the equilibration process, we expdot  with
depend on the system Hamiltonibiy. The equilibrium state
ps g — if the algorithm is successful — should be a station- _ ¥
aryﬁ state of the process, which implies that, since Sm“’k'_Ei (ADmid ADin - (229
[Hs,ps,s]=0, we must have that
One can then study the eigenvectors and eigenvalues of
Lpsp=0. (2.19  the matrix representation of a TCP map. First, we will give

_ ) three useful properties of TCP maps that follow directly from
Davies[24—26 has demonstrated that a process described P¥eir definition.

S\t Where the bath is an infinite-dimensional quantum sys- Property 1 Let By, B be the set of positive semi-

tem (for example, a quantum fielddoes equilibrate any  jafinite matrices. LeSe TCP[N,N]. Then

quantum system in the limit where—0, t—o, but A%t '

stays constant. By carefully taking a Born and Markov ap- p€Bpo=S(p) € Bpos, (2.25
proximation, he derives a Lindblad equation of the form such

that Eq.(2.19 is obeyed. We will perform a similar analysis asS is (completely positive. Lety be an eigenvector of
here. The main point of difference is that we use a perturbawith eigenvaluew, S(x)=uyx. We have

tive analysis of the dynamics which is only valid for small

\?t, but coincides in this regime with Davies’ result. We Trx#0=u=1, (2.26
furthermore obtain more explicit expressions for the dynam- . . . :
ics in this limit. asS is trace preserving. LeA; be the operation elements in

One can write down the most general form of an operatoFhe decompogltlon of as in Eq-(%?z)- If x is an eigenvec-
L that obeys a quantum detailed balance condifi®r], a tor quywth elgeanluw: theny " is also an eigenvector of
stronger requirement that the stationarity of E2j19. Now, S With eigenvalueu®. This follows from
one might ask the following question: Could we implement
this corresponding superoperator directly, without the use of SH))T=2 (AxAHT=8(x". (2.27)
a weakly coupled large bath, so as to save us time and space? !
We believe the answer is no, hswill depend on the eigen-
vectors and eigenvalues bf;, which we do not know be-
forehand.

Let Byos,1 be the set of positive semidefinite matrices that

have trace 1, i.e., the density matrices. Thus property 1 im-

plies that if adensity matrixp is an eigenvector of the su-

peroperator, it must have eigenvalue 1; that is, it is a fixed

point of the map. On the basis of the TCP property of a map
In this section, we study some essential properties of the, we can also show the following.

superoperato$, ; defined as in Eq(2.3). This superoperator Proposition 1 Let Se TCP[N,N]. All eigenvaluesu of

is a TCP map, S have|u|<1.

C. Some useful properties of TCP maps
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Proof (by contradiction. Assumey is an eigenvector of Proof. Let u; be the eigenvalues &. Letsbe the number
with eigenvalud u|>1. Note that property 1 implies that  of distinct eigenvalues. We can bring any matsbinto Jor-
has Try=0. If y is Hermitian,u will be real. Asy is trace- dan formJ by a similarity transformatiot [31]:
less, it must have at least one negative eigenvalue. One can .
always find a density matriy and a small enougla such S=MIM ", (2.32
that p’=p+eyx is still a density matrix. LetS operater
times on this density matrix. For large enouglhe result
S'(p+ex)=S"(p)+eu"x wil no longer be a positive s
semidefinite matrix: take the eigenvectop) of x corre- J=> (wiPi+N)). (2.33
sponding to the loweshegative eigenvalue ;. Then =1

where

P; are orthogonal projectors amd| is a matrix of 1s above
r r r . i
(S (P + en(PX[)=1+epNmn (228 diagonal in théth block orN; is the 0 matrix. When the
. . eigenvalueu; is nondegeneratd; is the 0 matrix. We there-
will become negative for large enough But property 1 fore haveN;N; =0 for i#] andP;N,=0 for i#]. Call the

implies thatS'(p’) is_ a density m.?t”x? thusu| canr_m'F be unigue largest eigenvalyg,=1 and the corresponding pro-
larger than 1. Whely is non-Hermitian, we reason similarly. jection Po. As in Eq.(2.32 one can write

One can find a density matrix and a small enougl such
that p’=p+e(x+x") is a density matrix. LetS(x)=puyx S'=MJML (2.34)
=|u|€'?x. Let A pin, be the smallestand negative eigen-

value of the traceless Hermitian matred? y+e '¢"yT.  whereJ" equals

Then s
, J'= 'P;+N/), 2.3
WIS ()= (WS (D)) 2 (HPEND (239
+elul (e x+e XNy whereN/ is a nilpotent matrix in théth block. Note thafN,
<1+ €|l Nminy (2.29 s 0, asuq is unique. LetS® beMPyM 1 or S°(p) = po. We

use|Ally=< VNJ|/A|,. Note that||A||, refers to the Euclidean

will become negative for some large(\ ., is a quasiperi- nokm of,ZA reprNesent;:‘d as a vector. This follows from
odic function ofr so it cannot be small for all large). B (Zi=a/Xi[)*<NZiZ,[x|* for complex numbers; . We have
Another property about the existence of fixed points carfirst of all
be derived.
Proposition 2 Let Se TCP[N,N]. S has a fixed point [S7() = polle= VNI(ST=S)(p)]|2- (2.39
(which is a density matrix
Proof. The set of density matriceBy,s 1€ B(Hy) is con-
vex and compactS is a linear continuous map anf(p

This expression can be bounded with the use of the similarity
transformationM to

€Bpos) €Bpos1.  Then the Markov-Kakutani theorem r / r_ 3o\t
pos, pos,1 S'(p) <+N|||[M(J"=J")M
V.10.6 of[28] applies. | 15°Ce) = poll ime ) Iz
The existence of a fixed point does not by itself guarantee <Cynll[3"=Polll2, (2.37)

that the process described Wy is ‘“relaxing,” that is, ) ] ) )
lim, ... S"(p) = p, for all p wherepy is the fixed point. The where2|||-|||2 is defined in Appendix A and we usp||
existence of such a limit depends on whether the fixed point 17 p“<1 for density matrices. Using the expressionJar
is unique. This following proposition proves that when thereEd- (2.39, we can also bound

is a unique fixed point, relaxation will occur and the relax- . N r

ation rate is determined by the second largest eigenvalSe of [1137=Polll=r"Capx". (239

[29]. Combining Eq.(2.37 and Eq.(2.38 gives us the desired

Proposition 3 Let poe Bpos {Hy) be the unique fixed oqit Eq.(2.30. Equation(2.3) then follows ask<1 by
point of a TCP magS. Let x=maXxy,, +1 |un|, the absolute proposition 1. IfS is diagonalizable, the nilpotent; in

value of the second largest eigenvalue&fThen for all  expression Eq(2.35 are not present. By going through the

density matricep we have same steps, a bound as in E8.30 can be derived without
the factor poly(). |
1S (p)— pollir=<Cypoly(r)«", (2.30 We refer the reader tf22] for discussions and references

concerning the existence of a unique fixed point and other
whereC, is a constant depending on the dimensibof the  properties of relaxation for a process that is described by a
system and poly() denotes some polynomial in Thus for  Lindblad equation, Eg(2.17).

all density matricep Finally we give a result which relates members of
TCP[N,N] to the stochastic matrices. A real matix is
lim || S"(p) — polly =0. (2.30) stochastic when the entries of its columns add up to 1, i.e.,
r—oo EIMI] :1.
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Proposition 4 Let Se TCP[N,N]. SpmnmneR", and,
V n, 2:8mmnn=1; that is, the elements,,,, form an
N X N stochastic matrix in the indices m and n. Alsb,n,Kk,
N#K, ZnSmmnk=0-

Proof. Spmnne R™ follows directly from Eq.(2.24. For
the rest, we impose the unit trace condition on Eg23:

1= SmmkIPki - (2.39
m,k,I

This must be true for all density matrices representeg by
Taking py = dk 6k k, gives the desired result

1:§ Smmrkoko' (24@

We now separate Eq2.39 into diagonal and off-diagonal
parts, using the Hermiticity of the density matpx

k>
1= % SmmkkPrkt n%l (Smmki T Smmi) RE(pi)

k>1

+i$§l<smmkr—smmmnnwpm>. (2.49)

The first term of Eq(2.41) is always 1 because of E(.40.
If we require Eq(2.42) when the off-diagonal terms jm are
PkI= 5k,k06|,|0 (k>|), we obtain

% (Smmkolo+3mmlok0):0: (2.42

and setting the off-diagonal terms im to pk|=i5k’ko5|’|o
(k>1) gives

% (Smmkolo_smmloko)zo- (2-43)

Adding these equations, we obtain the desired result

(2.44)
n

% Smmkg,=0:  ko*lo.

D. Perturbation theory

In this section we develop a perturbation thoery in the€rate eigenvaluegn, =

coupling A for the superoperata$, ;. The calculation will
assume the diagonalizability &f ;. If all the eigenvalues of
a matrixM are distinct,M is diagonalizabld31]. Therefore

PHYSICAL REVIEW A 61022301

The eigenvectors af areli)(j| for all i #j, the statd2)(2|

and|1)(1|—|2)(2|. This example shows that nondiagonaliz-

ability is not a property particular to superoperators describ-

ing quantum operations but is also found in classical Markov

processes.

One can formally expand the superoperaf§r, as a

power series in the coupling parameker
Sui=SOHASHHNZSP 40383+ ... (2.48

In Sec. Il E we will explicitly calculate the expressions for

these expansion operators. We will shq&qgs. (2.69—

(2.72] that condition equatiof2.9) implies thatS{") is zero

for all t. On the basis of this expansion, we will make a

perturbative expansion of the eigenvalues and eigenvectors

of S :

M:M(O)+ )\ﬂ(l)+)\zﬂ(2)+ - (2.47

(2.48

Assuming that the perturbation expansion exists for this non-
Hermitian operator, it will have the same structure as in the
well-established procedures familiar in quantum theory for
bounded Hermitian operatofsee textbooks on quantum me-
chanics such ag30] or [31] for a more mathematical back-
ground.

In the representation of E@2.24), Sﬁo) reads

(SO = (UYH U, (2.49

where U =¢'"'s. Unitarity of S§O), as amatrix operator on
vectors inC’, follows from

; (SEO))mn,kI(S'EO)T)kI,ij = ; (UYm U (UY; (U

= 5mi5jn . (25@
The eigenbasis of5{?) is formed by the set of matrices
In){m| where|n) are the eigenvectors ¢15. These eigen-
vectors come with eigenvalugsg ), :

{In)(ml, u{h =" En"Em R o, (259
whereE,, are the eigenvalues ¢f;. Thus all density matri-
ces of the form|n>§n|, and mixtures of these, have degen-

0 =1. If the spectrum oHg is nonde-
generate(we assumed this in Sec. I)Bthen all other
eigenvectorgn){m| for n#m have nondegenerate eigenval-
ues. These eigenvectdrs(m| form an orthonormal set with

. 2
in many cases of interest for equilibration, this assumptiorthe vector inner product o6\

for S, ; will be correct. An example of a simple superopera-
tor that is nondiagonalizable is the following. The superop-

eratorS operates oB(H3) and is given by
S([ixih=0, S(11)(1)=[2)(2],

S(12)(2)=[2)(2],

for i#]j,

S(I13)(3)=[1)1].  (2.45

Tr(|n><m|)f|k><||:5nk5ml- (2-52

To carry out the perturbation theory, we switch to a ket
notation for the density operators and a matrix notation for
the superoperators. This will make it easier for us to perform
the necessary manipulations of degenerate perturbation
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theory, in which the degenerate sector is isolated and a di- 2(2)

_ St
agonalization performed within it. [60)=16)+ N2 [$(?) —5"—5 +O(\?), ieND.
We first organize the diagonal, degenerate part of this j#i i T
vector space to be indexed. To be specific, we introduce an (2.60

orthogonal basis in this vector space such that . o _ o
This expansion indicates that there is no mixing between the

lpy=li)(i|, 1<i=<N, (253 D and ND sectors until second order in This expansion
strategy will be taken up again in the numerical simulations,
lpommy=Im)n|, 1<=mn<N, m#n. (254 Sec. Il G[Eq.(2.116].
This perturbation analysis shows that the superoperator of
In the second equation the indexingan be made consecu- Eq. (2.46) can be approximated by a simple one, for which

tive by choosing the approximate eignevectors are correct to zeroth order in
1 and the eigenvalues are correct to the next nonvanishing or-
i(mn)=nN+m—=n(n+1), m>n, der (\?). In this approximation thé® and ND sectors are
2 completely decoupled. In thB sector the superoperator is
1 1 written as
i(m,n)=5N(N—1)+mN+n—§m(m+1), n>m.
(2.55 (S)\,t(P))nn%§ an,tpmm’ (2.61)
This organizes this new vector space into a direct-sum form
CV=Cp® Cyp, where “D” and “ND” stand for diagonal Prmt= am T ANA(S ) nnmm- (2.62
and nondiagonalor degenerate and nondegeneraty, has
dimensionN and Cyp has dimensiomN2— N. Note from proposition 4 thaP, .. is exactly a stochastic

From the discussion above, we note that the degeneracy isatrix; therefore the approximate dynamics in Eheector is
lifted in lowest order by the second-order part of the superthat of a classical Markov process. The approximate dynam-

operatorS in the D sector, which we will denotﬁ(Dz}D. As- ics in theND sector is diagonal in the eigenbasis:

sume thatSE), is diagonalizable via the similarity transfor- . )

mation [S)\,t(P)]nm%:U’nm,tan::U“E\r%,tpnm"'7\ (Sg ))nm,nmpnm’
MSEPM =5, (256 n+#m. (2.63

v_vhereS(D,)D is a d_|agonal matm(_the tilde will denqte quan- - go, the full expression for the approximation superoperator is
tities expressed in the new basik,® 1yp| ¢(®), which is in

general nonorthogonalin this new basis, the degeneracy of ~P.oy S St 1= 8- ) Sndt.
the diagonal terms of is lifted to second order in (the (Su.dhnmia™Pricenmbia T snmel o) Gk (2.64)
diagonal terms can be written to second orderias 1

+125(?), and since the largest off-diagonal terms in the D The simplications of Eqs2.61) and (2.63 make it pos-

sector are now third order, given by sible to answer questions about the uniqueness of the fixed
_ point and, in principle, the mixing properties of a repeated
AMMSELM ~1=A3SE), (257 application ofS, ;, using techniques from classical Markov

processe$32]. The splitting in two sectors, each having its
the condition for the successful application of nondegeneratgyn relaxation times, is similar to the phenomenological de-
perturbation theory is now satisfied, assuming that no addiscription of a relaxation process by means of Bloch equa-
tional, accidental degeneracy occuiBhe condition is satis-  tions or the Redfield equatid@3]. This description in terms
fied from the start in the ND sectorits form is essentially  of the longitudinal relaxation tim&; (D sectoy and trans-

no different from the conventional perturbation expansion,ersal relaxation tim@, (ND secto is, for example, used in
[30] for Hermitian operators. This expansion for the eigen-NvR [33].

values is Of course, the “smallness” of the operators
(0) L+ 25(2) . A2S8@N\38®) . compared taS(® will determine how
mi = pi H NS O(N). (2.58 fast the perturbation series converges. We will calculate the

eigenvectors of, ; to zeroth order inn and the eigenvalues
to second order inv. The stochastic matri®,, is deter-
mined in this approximation. The justification of this ap-
proximation will be given when we explicitly determine the
3@ expressions fo6, ; in Sec. Il E, where we set bounds an
|py=[d)+x > )T+ 0D, ieD andt such that indeed? and higher-order corrections are
jeoj#i TSRS small within some norntfor example, thé-||, norm given
(2.59 in[34,35).

The form of this expansion is different depending on whethe
i eD orieND, but only atO(A%). The perturbation expan-
sions for the eigenvectors are
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E. Calculation of expressions

t
(1) _ 1T aiHg(t—t") ,e~iH (t—t")
Here we will calculate the elements of the superoperator St (p®pu.p) ”\JO dr'fe™ Spye T

described in the last section to lowest nontrivial order in

A (\?). Taking the second-order expression frin Eq. — st p, Se Mt By, 4.
(2.62, Qnm; is defined by the expression 272
an|t: 8nm+)\2Qnm,t- (2.69

Then the condition equation(2.9) implies that Sﬁl)(p
®pyp,p) is O for anyp.

Let us consider the second-order term. The expression for
S?) reads

And taking u of Egs.(2.63 and using Eq(2.51), we define
Vnmt by

Mnm,t:eit(EniEm)(l"')\ZVnm,t)- (2.66 t "

_ . o _ 5§2>:—e-‘ﬁstf dt’f dt" [h(t'—t")S_yS_pp
In this section we will find expressions @, and vy 0 0
and exhibit the regime in which they give a valid description v R
of S,;. We also show that for a large enough bath, the ~h(t"=t)S_¢pS_p=h(t' =t")S_ppS_y
equilibrium state is the fixed point of the maf ;. We +h(t"—t")pS_pS_y1, (2.73
discuss under what conditions this fixed point is unique.

We will use operators in the Heisenberg representationwhereh(t) is defined agBB;),. We write

We denote such operatoffor example on the systenas

AtzeiHstA e*iHst. (ZGD h(t): J_xdweit“’ﬁ(w). (274)

The total Liouvillian £ is defined as Let S, be the matrix elements of the interacti&nin this
. : " eigenbasis oHg, S,,=(n|S|m). Now we can find the ex-

e "“(p®ppp)=U(p@pypUT. (268 pression f0Qmn 1= (S?)mmnn. From Eq.(2.73 after inte-

i . .. gration over the variables andt” and with the use of Eq.
One can expand the opera®r'~* in a perturbation series in (2.74), we find

\ [21], take a partial trace over the bath, and identify the
operatorsS{V=e 4!, S and S in Eq. (2.46:

iLt

|Smn|2[1_COSt(w_ EntEml

Qnm,t: zfo;dw'ﬁ(w){

t ) , ) , (w—Ep+ Em)z
S%l): _| Trbfo dt!efl(ﬁs+£b)(t*t )Esbefl([,s‘*’ﬁb)t 6 |S |2[1 t( E E )]
—COSl(w— + |
2.6 - " . (279
2.69 T (0—E,+E)?
and . '
For the “decay factor’v,, in the ND sector we find
t t’ . ’
S@— _ Ty f dt’ f dt” e 1(Lst L) (t—t") o ~ 2S 1—costw
! *Jo- Jo Vnm,t:j dwh(w) nnSma . )—f(t,w,En)
C o
X Lope (st L)~ £ o it Lt (2 70)
_ £
First we consideS{"). We use Eq(2.68 and Eq.(2.14 to FteEn), &8

rewrite S{*) acting onp® py, 4 as
with f* the complex conjugate df The functionf is given

& i TGRS by
SM(p®pp g)=—iNTr, [ dt’eMs(t=t)
0
|S|n|2[1_COSt(w_En+EI)]
. ' . ’ R f t E =
@ elHp(t-t )[Hsbypt’®pb,ﬁt,] e iHs(t=t") ef(t,w,Ep) EI (w—En+E|)2
, (2.77
®e” Hpt=t"), (2.7
and
wherep, is the time-evolvedwith Hy) p andpb,ﬁt, is the 15,2 sint(w—E,+E)
time-evolved(with Hy,) py, 5. The equilibrium statey, ; is Imf(t,0,E,)= >, —En+E T He—E 1E)| .
invariant under unitary evolution wite'o" and thuspy, PeTETE @ EnTE (278

=pp - We then use the cyclic permutation invariance of the
trace andHg,= S®B to rewrite Eq.(2.71) as a simpler sum We will now look at the idealized case; i.e., we take the
of two terms: limits (remembelk is the number of qubits in the bath
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2 . .
P\i= lim  limP,,, and
t—»w,)\—>§) k— o0 )
constanf\ “t o -
Im g(En)=Pf doh(w)> i, (2.84)
N2t_ Git(Ep—Ep) i ; 2 —o T o—E,tE
Mam=€e"EnTEmim lim (L+ N vy (2,79

t—o N—0 k—w
constant 2t where P is the principal value of the integral. In order to see

L L . in what regime the perturbation theory is correct, we check
When the~bath |§ infinitely large, it vY|II have a contn.wuous whether the process described by E281 and Eq.(2.82
spectrumh(w) will be a smooth function. The rate of inter- corresponds to that of a TCP map. First we verify property 1

action vanishes, but as we take the limit-«, there is an Eq. (2.82); the eigenvalues din)(m| and|m)(n| are re-

: : . ) ) ) . : ! )
g;fltlact:rt:\;te nonzero interaction that is proportional\tt. Re lated by complex conjugation g} '* =M. The trace-

preserving propertyalso in property lis also obeyed:
1—-cogtx)

5(x) = lim——— 2.8
()= lim— (2:80 > priog, (2.89
m

where §(x) is the Dirac delta function, which is defined as ,
JZ.dx8(x)=1 and,V x+0, §(x)=0. With the use of the Complete positivity of the map implies th&) ! must be a

¢ function we find matrix of probabilities; that is, we must ha# '=0. Thus
) the first necessary condition for the validity of the perturba-
PA = Snm 1—)\2t2'n'2 |Snl|?A(E,—E)) tive approximation is
N2 Sl (B~ Er) 28D condition T V n: A2t< ! . (2.86
and 272, |Sul*h(E,—E)

=€ En B[ 14\ 227, Spr(0) — N2t g (E,) )
e 4 Equations(2.85 and (2.86) together ensure tha?i‘mﬁ is a
—Ntmg* (Em)], (2.82 stochastic matrix. Complete positivity also implies via
with proposition 1 that|,u§i§|s1. In order that|1+\%ta|<1,
wherea is some complex number, we must have thaaRe
<0 and\?t<2/|Real. This real part in Eq(2.82 is indeed

Reg(E,)= ?h(E,—E 2.8 -
9(Ey) 2| [Sinl"h(Ea—E) (283 negative a$i(w) is positive, and we obtain a new condition:

1
Condition2: V m,n: A\%t< . (2.87)

~ 1 1
7| = SunSmf(0) + 5 2 [Slh(Ey—E) + 5 2 [Sinl h(Em—E1)

Note that this condition is quite similar to the condition in matrix M is such that all its matrix elements;; >0, thenM

Eq. (2.86. has a unique eigenvalue equal to[Z]. If condition 1 is
. 2,
It is not hard to see that the stochastic ma@{k. obeys obeyed, we indeed hawe),!>0 and therefore the absolute
detailed balance for the equilibrium distribution: value of the second largest eigenvalire the diagonal sec-
tor) is smaller than 1. For the off-diagonal sector, condition 2
pﬁiﬁefﬁEn: pgfrge*BEm, (2.89  says that the largest eigenvalue in the off-diagonal sector is
strictly smaller than 1 in absolute value. Thus under these
as the equilibrium condition of the bath implies that conditions, with proposition 3, we can conclude that the pro-
cegs converges to the equilibrium state. The expression of
h(—w)=e #“h(w). (2.89  P)! coincides with the derivation given by Davig25] for
small \2t.
Thus the equilibrium density matrixs 4 is a fixed point of One can help to speed up the process in the off-diagonal

the idealized equilibration process. To consider whether thisector by “dephasing”; that is, after having the system and
fixed point is unique, we note the following: If a stochastic the bath interact for some timewe perform the operation

022301-11



BARBARA M. TERHAL AND DAVID P. DiVINCENZO

v—1

DY(ps) = ugo elfsip e Msy, (2.90

which can be implemented with the assistance of an extr

register in the state ({)=}_¢|u) which is used to condi-
tion the evolutionU = e'™s® and subsequently traced out. The

dephasing has the effect of canceling off-diagonal terms in

the eigenbasis of the system, i.e.,

N

>

N

= 2 a’kk| k><k| .

k=1

limDV

V—®

. ak||k><||) (2.9

A complete dephasing can in general not be achieved i
polynomial time inn (see Sec. I, and thus must be under-

stood as an extra aid but not a solution to the equilibratiorfixed point of &, ; in this limit (assuming nonzerg

problem.
; N2t A2t
From the expressions fdPy,, and u,,, we can under-

PHYSICAL REVIEW A 61022301

tum Zeno effect. It is a way of mapping an arbitrary initial
state onto the completely mixed stdtg by interacting re-
peatedly and strongly with the state for a very short time.
aHere we will give a theoretical analysis that explains this
observation. Consider the weak coupling expansin
=89+\283+0(1\% with ¥ given as in Eq.(2.70.
e expand these operators arour€0:

2)\2
Siilp)=p=it[Hs,p]+ ——([Sp.SI+[S,pS]) (B

+O(t%,\3t3). (2.99

In the limit \—, butt—0, andconstant\®t, the higher-
order termsO(t?,\3t%) will vanish. Thus we see that the
B?)p)
must obey

[He,p]=0 and [[S,p],S]=0. (2.95

stand the physical picture of the interaction between bath and

system. The system can make a transition fi@myenlevel

. 24 .
n to level m (n#m); ie., Py, is nonzero, wherS,y, is
nonzero and(E,—E,,) is nonzero. The functioh that oc-
curs in Eq.(2.81) can be expressed as

K
h(AE)= lim IE S(AE)— (- w)))|Byj|Ze P21z,
K—o )]
(2.92

Therefore in order thaE(AE=En—Em) is nonzero, there
must be at least one matching energy difference in the bat
i.e., there is ah and anj such thafw,— oj|=AE andBy; is

nonzero. Furthermore, the more such transitions there are,

Notice that if we take the differential form of ER.94) and
the prescribed limit, the equation is of the Lindblad form, Eq.
(2.17. The stately certainly meets the requirements of Eq.
(2.95, but is it unique? IfSandHg are such that they have
no eigenspaceexcept for the full spagein common, and
both have a nondegenerate spectrum, we can show,jHat
the unique eigenvector. Equati@®.95 requires that either
[S,p]=0 or [S,p] be diagonal in the same basis &slf
[S,p]=0 but also[Hg,p]=0, thenp can only be the state
1y . What happens ifS, p] is just diagonal in the same basis
asS? Let|n) be an eigenvector @ with eigenvalue\,. We

rP1ave forn#m

the faster the off-diagonal matrix elements decay. This con-

firms the intuitive picture that one might have of equilibra-
tion. Note also the similarity with the Fermi golden rule
[22,36 that describes the transition probability from eigen-
level n to min a unitary evolution that is perturbed by a
time-dependent Hamiltonian.

For a finite-dimensional bath, we can exprelét)
=(BB,) as

h(t)=>, et(@=)|B, [2e Az, , (2.93
kI

where By, = (ky|B|l,) with [I,) being the eigenstates of the
bath HamiltonianH,, and Z,, the partition function of the
bath. Taking the limits—o> and A—0 before letting the

bath grow large leads to divergent expressionslifhzﬁ1 and

2
At
Mnm s

(n|[S.p]|m)=0. (2.96
Rewriting this expression gives
Vn,mn#m, (np|/mXA,—An=0. (2.99

Now, becausep is diagonal in the basis dflg as[Hg,p]
=0 andHg and S have no eigenvectors in common, there
existn andm such thatn|p|m)+0. But the eigenvalues &
were nondegenerate, thus we obtain a contradiction. l

When 1 is the unique eigenvector of this process, then,
with the use of proposition 3, the repeated application as in
step 4 of theequilibration algorithml will eventually bring
the system to the statk, .

We showed that for this “inverse quantum Zeno” effect
to occur,SandHg have to be such that they have no partial
eigenspace in common and both have a nondegenerate spec-
trum. If we assume th& andHg ared-local with d larger or

suggesting that the perturbation theory fails in thisequal to 4, then this does not impose a very strong constraint

regime. This is not surprising, as the finiteness of the batlon SandH,; the effect will occur for a generi€ andH..

together with the limitt—c will lead to Poincarerecur-
rences(only the interaction cycle time is long due to
—0).

F. Inverse quantum Zeno effect

In our numerical studie$Secs. 11 G and Il Bl we have

G. Specifications of the numerical simulation

The main purpose of this study is to understand the effects
of bath size and the choice of bath and interaction Hamilto-
nians for a specific system Hamiltonian. In Table | we list
some of the choices that have been made in the numerical

observed a phenomenon that one might call the inverse quaanalysis. We have randomly generated the elementary
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TABLE I. Some settings in the numerical simulation.

Hg Hy S B
Dimension N=2,...,2 K=2%...2 N K
Locality d,=4 dp,=2 4 4
Sampling scala 1 f(n,k,dg,dy) 1 1
Hamiltoniansh; that make uHg,H,, andHgy, Eqs._(2.5), 1 fap a a 2a§
(2.6), and(2.7), with a measure\. We choose the diagonal [ei]M=—3 dmllf dmzzf d|myy| ei:T.
elements of each; uniformly in [ —a,a], wherea is sam- 4ap/ —ap ) 0 (2.100

pling scale in Table I. The absolute value of the above-the-

diagonal elements df; are chosen uniformly if0,a] and its
phase is chosen uniformly if0,27]. The below-the-
diagonal elements ofi; follow from Hermiticity. This de-
fines M. Note thatM is not a unitarily invariant measure.
We take the HamiltonianS andB as sums of all possible

Let v; be some=* patterni of lengthk, corresponding to
selectinge,. or e_ for each qubit bath. LeE, be an eigen-

value of the full bath, i.e.E, =3y_1€,(m Wherev,[m]
indicates that we select threth bit in v;. Then

local two-qubit interactions ds=4 in Table ). For the

Hamiltonian of the systenHg we also take a sum of all [TrHﬁ]M

possible local two-qubit interactions. Note that this includes K

a set of Hamiltonians that exhibit frustration, for which we

do not expect equilibration to be particularly fast. using[ ey €y (] =0 for m#n. We calculate[Ter]M
In Sec. Il E we observed that matching energy differences:E' '[|(|l| )”|2'] for n>2. We can write s

between bath and system are an important ingredient in the = s/ijl M '

equilibration of the system, which is consistent with the in-

tuitive picture of equilibration that was sketched in Sec. Il A.

However, as we do not know the eigenvalues of the system,

we can only pick our bath so as to optimize the chance for

matching level differences. The sampling scale of the batlyheren - is themth local interaction Hamiltonian. We have
f(n,k,dg,dy) is determined by roughly optimizing these co- used[(h*);(h,)ii1,=0. Each row ofh,, has only four
incidencesAE,=AE,. This is done as follows. kA, MM m
Consider the density of statpg(E,a,) of the systenithe
distribution of eigenvalues generated by the measute
and the density of statgs,(E,a,) of the bath. Here is the
sampling scale of the system which we set t@éde Table)l
The quantity[ Tr Hg] , is the mean an@Tng]M/N is the
variance of the distributiopg(E,as). The choice forM en-
sures that the distributions are symmetric aro&l0:

2
b

K
1 2ka
_ z: 2 —
- K = [Evi]/\/l 3 )

(2.102)

()

2 [HPIu=2 2 [l(hn)il?Iu. (2202

ds was set to 4. Using the fact thlt(hy,);;|%].= 3 for all
interaction termsn, we obtain

[Tng]M_f(n)

N ACIE (2.103

For n=1, we have [TrHﬁ]M/Nzé. Comparing Egs.

[TrHe] v =[TrH,]y=0. (2.9  (2.10) and(2.103 gives the expression fa:
To optimize for matching we choose the variances to be 0025 I ' f '
equal: — Bath
0020~ ensdeL Systeni
[TrHZ]y _ [TrHE1u (2.99 0015 -
N K ' u =+
0.010 - E':: - "::: .
For largeK the bath distribution will be Gaussiaecentral 0.005 - :..-:"
limit theoren), whereas the system distribution will be simi- ) i L
lar to a Gaussian distribution for lardé (see Fig. 1 Thus, A | [ |
setting the variances equal brings the distributions close to- 0'00(110" 6 5 5 5 : 10

gether. E
Consider firs{ TrHZ],,. It is straightforward to calculate
the variance of the eigenvalues of a qubit bath. Given a 2 FiG. 1. A histogram(500 samplesof the density of statefun-

nonzero entries as the dimension of the local Hamiltonians

X2 Hermitian matrix m;, the eigenvaluese.=3[my;
+ My, * /(My— Myy) + 4] my,| %] have the property

normalized for N=32 andK=64 with sampling scale set as Eq.
(2.104.
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2/n We will approximate the matrix elemen, > as constants
a,=f(nk,4,2)= Kol (2.109 and replace them by their avera@@?],,. Then we can use
density-of-states arguments to approximate rtheum over

the & functions by the inverse of the average spacing be-
tween theé functions; this spacing is given B/, /K:

Forn=1, f(1k,4,2)=\1k. Figure 1 illustrates how this set-
ting determines the density of states of bath and system.

The numerical work consists of a calculation of the fixed K
point of S, , as a function ot for a fixed\ and the second > 8(Eq—E)—(wx— o)~ W (2.110
largest eigenvalue for different baths and different systems m b

and temperatures. We follow a numerical procedure based Qi these approximations, the partition-function sum dver

perturbation theorySec. Il D to perform a stable numerical in Eq. (2.109 becomes exactly one. So HG.109 becomes
evaluation of these quantities. Also, we expect from the o ' i

analysis in Sec. IID that the small coupling regime, the ~ K[ B2\

realm where the perturbation theory is valid, is the regime in h(En—B)~—py— (2.111
which we find good equilibration. When the coupling be- b

tween bath and system is too strong the bath does not jugfow Eq. (2.109 is

exchange energy with the system, but higher-or@erthe

coupling effects will bias the dynamics of the system in a 5 K[B?] 5

way that depends on the bath. We will derive an effective Nt 2m—p 2| |Sin|?<1. (2.112
coupling parametec(t) that depends oR, but also ort, the b

strength of the interaction Hamiltonigfg, and the energy |t we again approximate the matrix elemef&,|? as con-
spectrum of the bath. We can trust the answers from thgiants and replace them by their avera§g] ., and note
numerical procedure only if we are in the regime in whichhat thel sum in Eq.(2.112 hasN terms, we obtain Eq.
perturbation theory is correct. This regime was heralded byo 105,

the two conditions, 'Eq(2_86) and Eq.(2.87, in Sec. Il. . For the simulations we have performed, we can find the
Whether these conditions are obeyed depends on the specifjg|es for[ $?], and[B?],, (note that these Hamiltonians

choices ofHs, H,, andSandB. We prefer to reformulate  paye |ocality parameted=4, as does the system Hamil-
these conditions here such that they are obeyed for the avegsnian H,) and obtain the expression

age bath, system and interaction Hamiltonian obtained by

sampling usingM and the sampling scale. As the conditions 161 [ k n
are very similar, we take the first one, E§.86), and refor- c(t)z)@t—( 2) (2) <1 (2.113
mulate it as 3.3
NK[S?],[B?] for n>1 andk>1. For a qubit systerm=1, andk>1 we
c(t) =% 27T—V\/\/A M, (2.109  obtain
b
8my2 [k
where[Sz]M, the average matrix element, is defined as Cl(t)E)\zt W\/\[( 2) <1. (2.1149
33
[SZ]M:i > [|Sij|2]M:i[Trssz]Mr (2.106 The quantityc(t) in Eqg. (2.109 will function as a res-
NZ 73 N? caled time which depends on the strength @find the size of

o ) _ _ system and bath. In the regime whex@)<1 we expect a
and similarly for[B“],,. W, is the spectral width of the pertubative calculation of the eigenvectors and eigenvalues
bath, i.e., of the superoperator to be fairly accurate. The dimensionless

) parameter associated with the temperature is given by
> [TrHBIm
W= .

= (2.107 B'=BWs, (2.119

where W; is the spectral width of the system, E@.107%)
(Ws=W,). From here ong will refer to this scaled dimen-
sionless parameter. Instead of expanding the superop&tator
in a series iN\ as in Eq.(2.46), we write

Here we indicate the approximations made in obtaining Eq
(2.109 from condition 1[Eq. (2.86)]:

Nt 27, |Sn?h(E,—E)<1. (2.108 B
! \2SP=s, (-8, (2.116

lation of eigenvalues and eigenvectors then follows the

RE.—E)= SUE-—E)— (wo— B, [2e Bew7. analysis of Sec. Il D. We find that the choice for the bath and

(EnB) % (Bn=E) = (@~ om))[Bnl the interaction Hamiltonian influences whether the equilibra-
(2.109  tion will succeed or not. Let
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FIG. 3. An example of an unsuccesssful equilibration for

FIG. 2. An example of successful equilibration fo= 1, k=3,
n=1, k=3, andB=3.

and 8=3.

(2.117 oscillating functions of the scaled tint) (see Fig. 3 we

will compute time averaged rates over a reasonable interval
wherep, is the unit eigenvector obtained from the numerics.in c(t),
In Figs. 2 and 3 two extrema in dynamics are shown, each

D= ||Ps,,8_ PO”tr )

corresponding to a different choice for the system, bath, and [Cc(tinit) =0, C(tend) =0.9], (2.120
interaction. In Fig. 2 the equilibration is successful, whereas
in Fig. 3 the equilibration failsRp is defined as such that we are in the realm where perturbation theory is
valid, Eqg.(2.105. We denoted these time averagast to be
R :1— Kp (2.118 confused with bath averageas Ry and D for the time av-
D c(t) ' eraged trace distance, E@.117, etc. In Fig. 4 we present

histograms that show how, for a given fixed systend in-
where kp is the absolute value of the second largest eigenteraction, the equilibration process is different for a set of

value in the diagonal sector andt) is the average coupling randomly chosen baths with fixed dimension. The insets
strength in the time interval that we consider, whictefs) ~ Show the distribution for the lowest bin. The vertical axis

€[0,0.3] here. Similarly, we define denotes the percentage of baftise interval[0%,100% is
given as the interval0,1]) for a certain distance and rate.
1— kpnp We observe that the diagonal rate distribution is very broad,
Ryp=—= (2.119  and therefore the mean of the distribution is not a very good
c(t) (or a very stablemeasure of the generic behavior. Further-

for the nondiagonal sector. The qualitative difference in theore, we f".]d that the rate in the diagonal sector Is mucr_l
orse than in the nondiagonal sector and thus is the domi-

behavior in Figs. 2 and 3 depends on the three requirememS nt factor in setting the mixing time. This conforms to the

that we also found to be of importance in the idealized case :
attern in many quantum systems, for example for nuclear

that was treated in Sec. Il E; these were the requirements f(gr ins as observed by NMR. for whicF. is genericall
energy difference matching between bath and system, i.e P y ' 1 9 y

—IA. : larger thanT, [33].
J!Aannn:j||B|--A|l |>f(c)>rasn):js|t§nr1n|lzei/glsw andm and bath levels and To study the dependence ghand on the dimension of
ij n .

the bath versus the dimension of the system, we compute the

following data. We pick a system Hamiltoni&h, of n qubits

that has some well spread out spectrum. We set the dimen-
We are interested in how well a randomly chosen bathsion of the bath and then we randomly pick both the bath

and interaction equilibrate a system and how these averagétamiltonian and the interaction Hamiltonian. Means are de-

are improved by choosing larger baths. As the mixing ratesioted ag - ], . For the rates we look both at the mean and

and the distance to the equilibrium state will in general bethe median. The median is denoted[gs]],,; see Fig. 5.

H. Numerical results for equilibration

1.0 T T T T 1.0 T T T 1.0 T T T
0.20 ———————
o8| 025 — 4 087 020 ————— 0slL 01sf 1]
gfg . ] 0.5} ] 010} ]
08010t 1 06 |o10f i 06F 005} ]

0.00

0.05 4.0000.0050.0100.0150.020 |

% of baths
% of baths
% of baths

oal |00 _|—JI‘_‘—\_.——, 14
0 A L 1

04 0.00 N ) ! e 04
: 00 :
0.0000.0250.0500.0750.100 55 02 02 05 08 10
02+ . 02| x107 02} =
0.0 el 0.0 LT ' . ‘ —'—_\_L‘_
00 02 04 08 08 10 0000 0025 0050 0075 0.100 0000 0025 0050 0075 0.100
D Rp Ryp

FIG. 4. An example of the distribution of batl800 samplesfor n=2, k=3, andg=2.
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FIG. 5. Means and median for=1 (500 samples

The results fon=1, 2, 3, and 4 are shown in Figs. 5—-8. We ally related in size to the system, both the rates are polyno-
have given the median when the mean does not give a goodially related to the number of system qubits and the trace
representation of the distribution. distance is a small constant.

These data clearly indicate that larger baths improve the Now, if we extrapolate the data to large systems we can
process of equilibration, both in the rat@and ND as well ~ see that if we pick a bath sizén number of qubitsthat is
as in the closeness to the equilibrium state. The effects argolynomially related to the system siaeote that the number
the most pronounced at low temperature, where equilibratioRf €igenvalues is theaxponentiallyrelated, the rates of re-
is in general harder as the system must relax to a single put@xation are polynomially related to the system sizequ-

ground state. To understand the closeness scale, we showJfS); in fact, we find that the scaled rates are constant. This
Appendix A how far apart two arbitrarily chosen density behavior we do not find for the scaling of the trace distance.

matrices are; this number lies around 1 for the dimension hen_we choose a polynomial relation between system _and
. ; th size, the data suggest that the relaxed state could still be
that were considered. For these estimates, we see a trep

o X . rly far away from the true equilibrium state for large sys-
towards approximations getting worse for larger system Sizegn sizes

for low temperature. The scaled rafé2p]q, and[Rnplu, In choosing the Hamiltoniarid,,, S, andB one should try
seem to be fairly constant; thus we see behavior that suggests optimize for energy matching. The numerical data show
that the rates are polynomially related to both system anghat choosing a large bath is beneficial for equilibration. The
bath number of qubits. We also observe that the nondiagongonstraint that the bath consists of a set of uncoupled qubits
rate (ND) is always higher than the diagonal r&@®). The doe; not seem to impose a serious restriction on the equili-
data show a system Hamiltonian dependence; that is, tHration process. We believe, however, that, whigncorre-
average equilibration fon=4 seems to be more successful SPONds to a set of uncoupled qubits and the HamiltoBian
than forn=3. We also observe that the difference betweerfl0€S not couple these qubits, igs-2;B; where eact®; acts

T, and T, becomes smaller with increasing (lower tem-  ON @ single qubit, then the equilibration process might be
peraturg¢. Now we can try to give some answers to the ques_somew_hat impaired. The.reasog IS that the pairs of energy
tion that were posed in Sec. Il above Eq.(2.13]. The Iev_els in the bath for WhchBijl is nonzero are then re-
parameters and\ are grouped together in a single effective stricted to the energy levels for eac_h qubit sep_arately_. The
couplingc(t). This effective coupling(t) should be small number of matching energy-leyel pairs .“Of?*“‘“b't batp IS
such that the perturbative approach is valid. How should on usn. For a gener_al Interaction terrB_lt will be O(2").
choose the value of parameterthe number of iterations? his can lead to quite different dynamics.

This depends on the three quantities plotted in the figures,
the trace distance, and the rate in the diagonal and the off-
diagonal sector. An efficient equilibration would correspond We present an alternative to the algorithm in Sec. II. This
to the process in which, while using a bath that is polynomi-algorithm relies on the technique for the estimation of eigen-

IIl. EQUILIBRATION lI
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FIG. 6. Means fon=2 (200-500 samplgs
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FIG. 7. Means fom=3 (50—100 samples
values, originally given in2] (see[37,38). This eigenvalue (3) Preparean additionaN-dimensional quantum system,
estimation routine has also been used as a building block ithe bath, also irly. Add a m-qubit register and one qubit
an interesting quantum algorithm 9] and[39]. register set tg00 . .. 0000 . .. 0Q.
Let Hg be ad-local Hamiltonian with nondegenerate ei-  (4) Compute eigenvaluesf the bath as for the system in
genvalues as in Sec. Il. step 2.
Definition 2 Equilibration algorithm 11. (5) Interactthe system and bath according the following
. rul “partial swap”):
(1) Initialize the system in théinfinite temperaturecom- ule R (“partial swap”)
pletely mixed stately,. Also add onan-qubit register set to Urln,m)|0)|s,t)
[00...00(00...0Q. This last register will be used to com-
pute anm-bit estimate of an eigenvalue. |m,n)|0)]|s,t) if t<s,
2) Compute eigenvaluesith the use of the Fourier trans- = :
(2) Compute eig (pEEm,n)|0)+ VI=pEInm1))s,t) if t=s,

form anddephasen the computational eigenvalue basis.

. . L 3.4
Let U be the eigenvalue computation routine, i.e., 34

where pf=e #(=9_ Here|n) and|s) are registers of the
Uln) ®|00...0) = |n} ® |(00...0) & sn), system andm) and|t) are registers of the bath.
m ™ 3.1 (6) Traceover the single-qubit register, all bath registers,
and the eigenvalue register of the system. The system will be
where|s,) is anm-bit estimate of the eigenvalug, defined in some state
by H|n)=E,|n). The dephasing is a simple superoperaor
on the eigenvalue register that operates as
’ ° i ps=3 anlm)(n. (35
D(|si)(si)=IsiX{sil,  D(|si){s;|)=0. 3.2

The steps 2—-6 define a TCP m&pS(1y) = ps-

The total transformation maps )
P (7) Repeatsteps 2-6r times such that

D(U(14@[00 ... 000.... AhUT) |S74(]000 . . . 00(000 . . . 00)

N—12M-1
- —-8'(]000...00(000...0 <e (3.6
=3 I posinmlelss, @3 ( 4 Pl=e. (38
n=0 s=
for all r=ry and e is some accuracy. |
where p(n,s) is a probability distribution, peaked &t The advantage of this algorithm is its simplicity and its
~2"ME, for largem. similarity to a classical algorithm; we create a Markov chain
04 T T T T T 0.08 T T T T T 0.15 T T T T T
ST a a k= ° L a—a k=5
g 03+ ,;;:_~__—‘_--: g 0.06 ;\\\ v—v k=6 7 ’_§‘ 0.10 B. y—-uv k= i
’, ~a ~
— 2 o 3 S~ RO
02| Z . ! 2 0.04 Pu oL . ‘ Z “
l.&. ,/ a a k=5 E S R T U S‘ \\\\ \\
A Nao T T 0.05 - N SO -
01 v—v k=6 0.02| ROt ~~ L S
. RS P
00 ! 1 i I l | 000 L 1 1 L ! 000 1 1 1 L 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12 0 2 4 6 8 10 12
B B p

FIG. 8. Means fon=4 (15-20 samplés
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in the eigenbasis of the system. The disadavantage of the 1 2
algorithm is that it is very likely to be slow; the computation p(n,s)= —
of the eigenvalues to high accuracy with the use of the Fou- N
rier transform can take exponential time in the number of

qubits of the system. This routine has to be performed twiceWhenp(n,s) is not aé function on the eigenvalue, the Mar-
for the system and bath, in each round of the chain. First, |¢0V chain will still be in the eigenbasis of the system; it will
us show that in the case when the eigenvalues are comput®§ @ concatenation of chains. The transition probability of
exactly in steps 2 and 4, i.¢(s,n)=dme_/N, the Mar-  this new chain is

kov chain equilibrates the system. Reddl] that the rou-

tines of steps 2 and 4 compute rescaled eigenvalues Pr’lﬁng p(s| NP p(m|t), (3.13

(3.12

1 2m—1
- 2 e27riI(En—S/2m)
2m =0

En=fiBnt 12, B7  where p(s|n) is a conditional probability, defined by
with f; and f, depending on the maximum and minimum p(n,s)ig(s|n)p(rl1\l),ta|:r(]i Ptzsﬂt IS th_elexactth cuhaa}lr[when
eigenvalueqof which we assume that we can find an esti-p(s|n)__ ZmEn,s].- ote that¥sp(s|n)=1, so thatP; . is a
mate such thatE! e[0,1). In the following we will drop ~Stochastic matrix. Let us make a few remarks about the be-
these primes. The chain that is created can be represented'};%"'or of such an approximate equilibration process. If this
new Markov chain is close to the exact Markov chain, we
can bound the deviation from the exact fixed point with per-
> a®in)(n|, (3.8) turbation theory{40]. Let
n

wherea,’ = 2 n—m- VVé nave

whereE,,, is a deviation matrix defined by E¢3.14). Let

pPa=ps g~ Ps,p Wherepg g is the fixed point of the Markov
chain P,,,. Assume thaf is diagonalizable. LeY be the
matrix defined as

(1 .
N if En<E,,

1 .
Poom={ g/ 1+ 2. (1=pR0| if En=En,

EE, Y=(1-P+P™)~1-p) (3.19
ipﬁ if E,>E,. whereP™) is the infinite iteration of". We can writeP(*)
(N =diag(1,0 . . .,0) in thebasis where the stationary statg,

(3.9 is an eigenvector. In this basis, with diagonalizabilRyis of

. . the form diag(1y,, ... \y). We can then write
Note that>,P,_.,=1 as required. The equilibrium state,

Eq. (1.2), obeys the detailed balance condition 1

) 1
Y=d|a40,1_K, TN (3.16

Y nm P,_ e =P, e FEm (3.10
where « is the the absolute value of second largest eigen-
All the matrix elements of the Markov matriR,_.,, are  value. For later use we note that the norm
nonzero. Therefore the chain will have a unique fixed poin||y|||,=1/1— «|. It is possible to write the deviatiop, in
which is equal to the equilibrium state due to detailed balterms ofY andE:
ance. Thus for all probability distributions, we have
e pa=(1-YE) " 'YEp,, (3.17
e m
lim > a,P, = 7 (3.1)  whenE is small enough such that- Y E is invertible. This
koo 1 expression can be derived froR{*)p,=0, which follows
rom the uniqueness of the stationary statéNe now use

Notice that it is not hard to prepare the initial states of thef
system and bath. One way to make the completely mixed ”PAHtrs\/N”PA”L (3.18
state 1y is to make a maximally entangled state

(LWN)=Jiyliy and trace over the second register. Thisas in proposition 3. Then using the expression YorEq.
takesO(n) steps. The partial swap in step 5 can be imple<3.17 and Eq.(3.18 [see also below Eq2.37] we can
mented withO(n) elementary qubit steps. The dephasing inbound

step 2 is introduced to keep the form of the algorithm clean,

but it does not affect its output. This dephasing is imple- 2 IEN\ ~HIEN 2
mented by measuring the eigenvalue register in the compu- lpalle=CnTrps g 1= |1—«] |1— x|

tational basis and discarding its answer. When usinignoit .

eigenvalue register the joint probabilify(n,s) in the first <C (1_ IIEN2\ ~HIE]2 (3.19
round (after step 2) is equal to — N [1-«|] |1—«|" :
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Thus the size of the correctigr, will be determined by the
strength of the perturbatiopi|E|||, and the rate of conver-
gence of the original Markov chaip.

For a generaHg, the computation of am-bit approxi-
mation of the eigenvalues can cost an exponergtralm)
number of elementary gates. As there afeegenvalues,
knowing them=log, poly(n) bits of the values oE,, still

leaves groups of Zpoly(n) eigenvalues indistinguishable.

Thus only in very special cases, if the galégm can be
implemented with a polynomigin m) number of elemen-
tary stepgas in Shor’s factoring algorithiri)), is it possible
to compute the eigenvalues to high accuracy efficiently.

We have demonstrated a way to set up a Markov chain o

a quantum computer that will converge to the equilibriu

state for long enough time. For special Hamiltonians, ther
might be more efficient ways to tune and modify this kind of
algorithm. The ruleR might be chosen to depend on other

features of the eigenstatés) and |m) as in the classical

Metropolis algorithm where transitions are made betwee
states that are related by local spin flips. There might be
Hamiltonians for which the calculation of an eigenvalue,

given the eigenvector, is efficient.

IV. (TIME-DEPENDENT ) OBSERVABLES

Given that we have preparedqubits in the equilibrium
state corresponding to a certain Hamiltonidly, we can

PHYSICAL REVIEW A61 022301

A= Ui(diaqor)l’zufr and

Agi=U;(1-diago+)"?U], (4.5

where diag,r is the diagonal form oD;" andU; the diago-

nalizing matrix. We summarize these results in a proposition.
Proposition 5 The estimation of TpO where O is a
d-local observable with precisiod and error probabilitye
and p € Byos { Hy) (N=2") takesTO(In(1/e)/ 5%)poly(n,c)
operations wherd is the time to prepare the stae
Proof. All commuting observable®; can be measured
Bnee for a single preparation pf To estimate a probability
with precision 6 and error probabilitye we need

%(In(lle)/&z) sampleg42]. [

More interesting is an algorithm to estimate time-
dependent expectation values. I andO, be twod-local
observables. We consider how to estimate a time-dependent

r21uantity[identica| to Eq.(1.10]

Trpg[O1,02], (4.6
where O,; is in the Heisenberg representation. Notice that
O, the time-evolved operator, will for generalnot be
local. Thus we cannot use proposition 5. The way these
guantities come about in linear response thé¢aty} provides

then proceed by experimenting and measuring. The simplesie key for how to estimate them on a quantum computer.
measurement that we could try to perform is the estimatiorDne considers a system that is perturbed at some initial time

of the expectation value of @local (Hermitian observable
O:

(0)s=Trpg 5O. 4.1

As O'is local, we writeO=3P*Y™Q; where each operator

O; operates on a Hilbert space of constant dimensgiowe

can calculate the eigenvectors and eigenvalues of €ach
rapidly on a (possibly classical computer, which takes

poly(n,c) operations. IfO; has eigenvalueg,; that are both
smaller as well as larger than zero, we defdé as

L -
L maxget [min (O|+|mk|”lbk|1)
k k

4.2

such thatO;" is positive semidefinite and has eigenvalues

smaller than or equal than 1. @; has only positive or zero

t=0: its time evolution is generated by the perturbed Hamil-
tonian Hg+AO4(t) [O41(t<0)=0] and A is small. After
time t we consider the response of the system to the pertur-
bation by measuring another observaBlg Notice that with
proposition 5, it is simple to perform this experiment. Linear
response means that we take into account corrections of or-
der\, but no higher order, in the estimation of

8O2)s=TrO,p;—TrOypy, 4.7

where p; is the time-evolved system density matrix. This
first-order correction takes the forf86]

t
5(02>s~i)\f0 dt’ Trpg[O4(t"), 05—/ ]. 4.9

eigenvalues, we just “normalize” the operator by dividing If the disturbanceD,(t)=0,5(t=0), we find on the right-
by max u,, and similarly if O has only negative eigenval- hand side t'he' correlgtlon function F)f E@.6). The quantity
ues. Let| be a positive operator valued measuremenof Eq.(4.6) is interesting, because it can be used to compute

(POVM [41]) with operation element8,; andA,; and cor-
responding outcomes 1 and 2 such that

El,i:AI,iAl,i:Oi+ , Ez,i:A;,iAz,izl_ o. (43
This measurement will give outcome 1 with probability
p,;=TrO; p, etc. (4.4)

The operator\;; andA,; are given by

the simplest reponse of the system, the linear response of Eq.
(4.8), which we can directly estimate on our quantum com-
puter, provided that bot, andO, are local. But we are of
course not restricted to a linear response regime a pa-
rameter that we can tune freely. A sequence of measurements
could determine higher response functions that will involve
quantities such as

(01,04, 03¢, - - Oky)s- (4.9
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V. CONCLUSION ducibility and ergodicity for these quantum Markov chains.

It that b king th " f how fast real One of the essential question is then, can we find quantum
seems that by asking the question of how tast real quang,, 4. o chains that are rapidly mixing for interesting com-

tum systems equilibrate, we have opened a Pandora’s box gf iational problems for which no good classical algorithms
hard-to-answer questions. If there are many simple quantungre gyailable? Such a problem could for example be a prob-
systems in nature that equilibrate slowthat is,notin poly-  |em of equilibration for a specific HamiltoniaH. In this

nomial timg by any dynamics that does not require exten-stdy we have laid the ground work for this future research.
sive preknowledge of the system, then it would be unreason-
able to ask our quantum computer to perform this task
efficiently. By relaxation in polynomial time we mean the

following: in polynomial time inn and 1£ we obtain a state We would like to thank Charles Bennett, Daniel Loss,
that is within e trace distance of the equilibrium state where John Smolin, Ashish Thapliyal, Reinhard Werner, and
€ is a small constant. It might be the case that leaving asidRonald de Wolf for stimulating discussions. D.P.D. thanks
the classical phenomenon of frustration, relaxation du#s the U.S. Army Research Office for support under Contract
take place in polynomial time. The idea here is that for aNo. DAAG55-98-C-0041.

guantum system, the eigenbasis is not known beforehand,
but must be singled out on the basis of an estimation of the
eigenvalues, which is generically a hard problem.

This, however, is not in contradiction with physical and In this appendix we give the definitions of several norms
experimental reality as we know it, as the quantities that arand inner products. The inner product between vectors in
measured in an experimental setup usually involve operatorgN® can pe represented @(H,) as
on a small number of qubits; these are the experiments that

ACKNOWLEDGMENTS

APPENDIX A: NORMS

can be done efficientlyin polynomial timg and thus do not <X1|Xz>:TfXTX2- (A1)
necessarily probe the system’s complete state. For example, !

the outcomes .of the set of m.easur-emerrt?@ oi,®- - The trace normj34,35 is defined as

®0i Wherezrij is one of the Pauli matrices dr completely

determines the state, but there afereasurements in this Al =TryATA. (A2)

set. In an experimental setup, we might randomly select a
polynomial subset of them and there is some small chance af/hat makes this norm attractive is that it captures a measur-

order poly)/4" that these are the measurements that distinable closeness of two density matrigesand p, [35]:
guish the equilibrated state from the present state in the labo-

ratiry that is supposed to approximate it. The estimates of
time-dependent correlations could possibly be more sensitive lp1—palle=max> |PL()—P5()I, (A3)
to distance from equilibrium, as these involve time-evolved, A
nonlocal operations. The numerical study suggests that prod- A A S
uct baths whose size is polynomially related to the systenyvhereP7 andP; are the probability distributions over out-
can function as adequate baths in the sense of providing réomesj that are obtained by measuring observablen p,
laxation in polynomial time. The relaxed state could still be aand p,. The matrix norml||- |||, is defined as
rather rough approximation to the true equilibrium state, but
as we argued above, it might be a good starting point for [l|A]||,= max |AX],. (A4)
subsequent measurements. xi[x2=1

We have taken the bath to be part of ttemst o) the
quantum computer. In any experimental setup, there is ahere|-|, is the Euclidean norm ogN’: V{v|v) for |v)
natural bath that is used to equilibrate and cool the quantumz cN* we have
computer. Can we use this bath for a computational problem
such as equilibration? Consider for_ example the NMR quan- IAX] =< || All] 211Xl (A5)
tum computer{ 18] where computation takes place at room

temperature. In the regime in which the heat bath has a nony, o ger tg aid in the interpretation of the numerical resuits of
Markovian character it has been shown to be possible to alt%ec. Il G, we present some numerical estimates for the aver-

the Hamiltonian of the system and the coupling to the batt}i ; ; ;

: ge|- | distance of two randomly chosen density matrices.
dynamically (see [4.3]’ but also stand_ard bo_oks on _NMR We firsttr have to choose a measure oBgg ;. All density
[33]). These techniques could make it possible to simulate ... 21 be written as=S || with SN\ =1

i= .

the time evolution of a “designer” Hamiltonian and also to The eigenvalues, lie on a (N—1)-dimensional simples

equilibrate the system to the equilibrium state of this de- . i
signer Hamiltonian., in RN, We use the Euclidean metrc||, induced on the

) . : fsimplex. The Haar measure on the group of unitary matrices
Finally, we have taken steps in developing a theory o U(N) induces a uniform measure on the set of projectors
guantum Markov chains for quantum computational pur- Pro)

. . K . . -\ /i A N? B :
poses. It will be interesting to bring this theory to the next{li)(i[}i=1. Together this defines a measuteg . [44].
level. For example, we can try to define the notions of irre-Within this measure, one can express the average distance
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TABLE Il. The average distance between two randomly se- APPENDIX B: PREPARATION OF THE BATH

lected density matrices.
To prepare the state

dim Mean Standard error \var/(n—1), n=1000
4 0.90388 0.00740588 Pb.s=Pb®  ®pp g (B1)
8 0.96190 0.00514057
16 1.00294 0.00341226
32 1.01452 0.00220363 given Hb=2!‘:11K,2® h;, we first calculate the eigenvalues
64 1.02617 0.00132233 and eigenvectors of each qubit Hamiltonian We prepare
the state
between two density matricgs; and p,, using the unitary
invariance of|- ||, as K
[ (e~#do)(0]+e Pul1)(1))z;.  (B2)
i=1
[”pl_PZHtr]MB I
pos,1
_ 1 j deld)\ dh with {eo; ,ey,} the eigenvalues of qubit Hamiltonidm. This
Vol(S)2V(U(N)) o 1 k can be done by changing an initial std@(0| with prob-
ability e #®.yZ; into state|1)(1]| for eachi. We then rotate
1 ; e A . A\
XJ Ay 'd,uk5(2 )\i_1> 5<2 Mi_1> each qubit to its eigenbasfb;o),|b;1)}:
0 i i
®_1Up =@ ([bio)(0]+[bin)(1)). (B3

><Tr§ A,—|j><1|—u; wil iUl (AB)

The values obtained by a numerical calculation of &f) In total we perform K elementary qubit operations plus

are tabulated in Table 1. some constant classical overhead.
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