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Problem of equilibration and the computation of correlation functions on a quantum computer
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We address the question of how a quantum computer can be used to simulate experiments on quantum
systems in thermal equilibrium. We present two approaches for the preparation of the equilibrium state on a
quantum computer. For both approaches, we show that the output state of the algorithm, after long enough
time, is the desired equilibrium. We present a numerical analysis of one of these approaches for small systems.
We show how equilibrium~time-!correlation functions can be efficiently estimated on a quantum computer,
given a preparation of the equilibrium state. The quantum algorithms that we present are hard to simulate on
a classical computer. This indicates that they could provide an exponential speedup over what can be achieved
with a classical device.

PACS number~s!: 03.67.Lx, 05.30.2d, 89.80.1h, 02.70.Lq
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I. LIMITS OF CLASSICAL COMPUTATION

The power of quantum computers has been demonstr
in several algorithms, of which the most striking have be
Shor’s factoring algorithm@1,2# and Grover’s search algo
rithm @3#. From the very start, however, the quantum co
puter has also held the promise of being a simulator of ph
cal systems. This is the content of the physical version of
Church-Turing principle proposed by Deutsch@4#, which
says that every finitely realizable physical system can be
fectly simulated by a universal model computing mach
operating by finite means. Thus we might expect that a u
versal quantum computer can be used to simulate any ex
ment that we could do on a real physical system. If suc
simulation can be done efficiently~that is, without exponen-
tial slowdown!, it is clear that this could be one of the maj
applications of a quantum computer. This promise seem
have been only partly fulfilled until now; it has been show
by several researchers@5,6# that a simulation of the unitary
time evolution of a physical system that possesses some
gree of locality~which realistic physical systems do! can be
accomplished efficiently on a quantum computer. Howev
many quantities of interest that are determined by exp
ment, or by the use of classical simulation techniques, re
to open quantum systems, in particular to systems in ther
equilibrium. The thermal equilibrium~Gibbs! state ~in the
canonical ensemble! of a HamiltonianH is given by

rb5 (
m51

N
e2bEm

Z
um&^mu, ~1.1!

whereum& (Em) are the eigenvectors~eigenvalues! of H. Z is
the partition function,

Z5 (
m51

N

e2bEm, ~1.2!

and b51/kT where k is Boltzmann’s constant andT the
absolute temperature in degrees Kelvin. The physical s
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tems that concern us in this paper will have a fini
dimensional Hilbert spaceH that can be decomposed as

H5H1^ H2^ •••^ Hn , ~1.3!

where eachHi represents a small, constant Hilbert spa
typically associated with some~generalized! spin or other
local degree of freedom. The Hamiltonian couples these
cal Hilbert spaces, for example in correspondence with
d-dimensional spatial lattice, so that there is only coupli
between adjacent ‘‘spins’’ on this lattice. The quantities
interest, computed in experiment or in a classical compu
tion, are of the form

Tr O1~ t1!O2~ t2!•••Ok~ tk!rb , ~1.4!

where Oi(t i) are ~possibly time-dependent! observables.
Both for classical systems as well as for quantum syste
computational Monte Carlo methods have been develope
estimate correlation functions as in Eq.~1.4! @7–9#. The
quantum Monte Carlo method for systems at finite tempe
ture relies on a transformation introduced by Suzuki@10# that
maps an initial quantum system on ad-dimensional lattice
onto a (d11)-dimensional classical system. This conversi
then makes it possible to use classical computational s
pling techniques to estimate correlation functions as in
~1.4!. There seem to be~at least! two situations when this
approach runs into trouble and no good computational al
natives are available@9#: ~1! the correlation functions depen
explicitly on time t, and ~2! the quantum system is of
fermionic nature. We will give a short explanation of wh
these problems are encountered.

The transformation from a classical to a quantum syst
is based on the generalized Trotter formula. LetH
5( i 51

k Hi where eachHi is a Hamiltonian on a small con
stant Hilbert space. The Trotter formula reads

esH5 lim
n→`

~esH1 /nesH2 /n
•••esHk /n!n. ~1.5!
©2000 The American Physical Society01-1
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The partition function, Eq.~1.2! @and similarly correlation
functions as in Eq.~1.4!#, can be rewritten, using the Trotte
formula and the identity(muai , j

m &^ai , j
m u51, where the pair of

indices (i , j ) labels a choice of basis, as

Z5Tr e2bH5 (
$ai , j %

p$ai , j %
, ~1.6!

wherep$ai , j %
is a distribution over the values of the collectio

of variables$ai , j% and j indexes the repetitions of the facto
of Eq. ~1.5! from 1 to n. If the distribution is non-negative
we can writep$ai , j %

5eHe f f($ai , j %) whereHe f f is now a classi-
cal Hamiltonian given by

He f f~$ai , j%!5 lim
n→`

(
j 51

n

(
i 51

k

H̃ i~ai , j ,ai 11,j !, ~1.7!

with ak11,j5a1,j 11 , ak11,n5a1,1 and

H̃ i~a,b!5 ln@^auexp~2bHi /n!ub&#. ~1.8!

The distributionp$ai , j %
will only be non-negative when the

matrix elementŝ auexp(2bHi /n)ub& are positive. Thus it is
important to choose the right sets of basis statesuai j

m& to
make the conversion to a classical sampling problem wit
non-negative distribution. There are fermionic systems s
as certain Hubbard models@9# in which it does not seem to
be possible to choose such a good basis. For these syste
has turned out to be very hard to get good estimates of
relation functions by using classical Monte Carlo techniqu
This problem is usually referred to as the ‘‘sign’’ problem

When we are to compute time-dependent quantities,
example the functionf ( i t )5Tr eiHtO1e2 iHtO2rb , we need
to use an imaginary timet5 i t to perform the conversion o
Eq. ~1.5! to a classical system~we expandeiHt with the
Trotter formula!. From the classical Monte Carlo samplin
of the functionf (t) for realt, we estimatef (t) and then we
could in principle analytically continue this function. How
ever, we only have a finite number of samples of the funct
and each sample point has some inaccuracy. The errors
are introduced in estimating the Fourier componentsf̃ (v)
from this data give rise to large fluctuations when we rec
struct f ( i t ) with the Laplace transform,

f ~ i t !5E
2`

`

dv e2vt f̃ ~v!, ~1.9!

resulting in a bad approximation for the time correlati
function f ( i t ).

The relevance of estimating a simple time correlat
function @an example of Eq.~1.4!# such as

Tr @At ,Bt8#rb5^@At ,Bt8#&s , ~1.10!

whereAt andBt8 are some Hermitian Heisenberg operato
of the system, cannot be overestimated. Let us recall
02230
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many contexts in which Eq.~1.10! is used in describing ex
perimental properties of many-particle quantum syste
@11#.

When A5B5u, whereu is the displacement field of a
crystal, Eq.~1.10! describes the phonon dynamics of soli
as probed by inelastic neutron scattering. WhenA andB are
the number-density operator, the dielectric susceptibility
represented; this correlation function describes a variety
other experiments, including x-ray photoemission and the
called x-ray edge singularity. When we study the curre
current response function, we obtain the electrical conduc
ity as described by the Kubo formula.~The density-density
and current-current response functions are intimately rela
via the continuity equation.! Spin-dependent quantities ar
also of interest: with the spin-spin correlation function, i
formation is obtained about the magnetic susceptibility a
thus, the magnon dynamics of ferromagnets and antife
magnets, the Kondo effect, and the magnetic-dipole chan
in neutron scattering. And finally, ifA andB involve anoma-
lous pair amplitudes which involve Fermion operators li
a↓(k)a↑(2k), the presence and dynamics of a supercondu
ing phase can be probed.

In short, the dynamic pair correlation functions provide
window on many of the interesting quantities in experime
tal physics, and it would be highly desirable to have
method of obtaining estimates for these quantities by sim
lation on a quantum computer.

In this paper we develop an approach to tackle these p
lems on a quantum computer. We break the problem into
parts: First, we present an approach to prepare our quan
computer in the equilibrium staterb of a given Hamiltonian
~Secs. II and III!. We will give two alternative routes to
prepare an equilibrium state. For the first quantum algorit
we can prove that in the limit of large space and time,
algorithm will successfully produce the equilibrium state
its output. In any realistic situation we are faced with fin
resources in space and time. In Secs. II G and II H we the
fore present some numerical studies of the performance
the algorithm for small systems. In Sec. III we present
alternative quantum equilibration algorithm that is based
eigenvalue estimation. For this algorithm we prove as w
that in the limit of large space and time equilibrium
achieved. In Sec. IV we describe a procedure for efficien
estimating quantities as in Eq.~1.4!, given that the equilib-
rium state has been prepared.

We will not attempt to prove that our algorithms run
polynomial time even for a restricted class of quantum s
temsH and/or for restricted ranges ofb. The equilibration
problem, in its full generality, is expected to be a compu
tionally hard problem. Even classically there is a large cl
of systems that exhibit a feature called frustration, for wh
calculating the partition functionZ as in Eq. ~1.2! is a
P]-complete problem@12#. Also, for these systems, decidin
whether the energy of the ground state is lower than so
constantK is an NP-complete problem@13#. The quantum
problem has an added difficulty: We cannot assume that
know the eigenvectors~and eigenvalues! of the Hamiltonian
of the system that we would like to equilibrate. There is
evidence~yet! that a quantum computer can exponentia
1-2
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PROBLEM OF EQUILIBRATION AND THE . . . PHYSICAL REVIEW A61 022301
outperform a classical computer in estimating the partit
function for certainclassicalsystems, which would enable u
to sample efficiently from the classical Gibbs distributi
@14#.

The quantum algorithms that we present are hard to si
late on a classical computer. In both of our equilibrati
algorithms we use the fact that one can implement the
tary time evolution of a local Hamiltonian onn qubits in a
polynomial number of steps inn on a quantum computer@5#.
A direct simulation of this procedure on a classical compu
would cost exponential~in n) space and time and is therefo
unrealistic. As we will show in Sec. IV, given a preparatio
of an equilibrium state, there exists an efficient procedure
a quantum computer to calculate~time-dependent! correla-
tion functions. As we discussed above, there is no gen
efficient classical algorithm with which one can estima
time-dependent correlation functions. Our quantum al
rithm provides such an algorithm for a quantum compu
Abrams and Lloyd@16# have shown that the unitary simula
tion of a fermionic system such as the Hubbard model, eit
in first or second quantization, can be performed efficien
on a quantum computer. The quantum algorithms that
will present will use this unitary evolution as a buildin
block. Therefore these algorithms can be used to comp
correlation functions for the Hubbard model on a quant
computer. This is a task for which we do not have a go
classical algorithm, due to the ‘‘sign’’ problem, as w
pointed out above.

We focus our efforts on quantum equilibration algorithm
for Hamiltonians of which the eigenvalues and eigenvect
are not known beforehand. These are the Hamiltonians
for example, Heisenberg models~in more than two dimen-
sions!, Hubbard models,t-J models,XY models, or many-
electron Hamiltonians in quantum chemistry. On the ot
hand, knowing the eigenvectors and eigenvalues of a Ha
tonian, such as in the Ising model, is no guarantee that t
exists an efficient~polynomial time! classical algorithm tha
produces the equilibrium distribution. The situation is simi
for quantum algorithms; we do not know in what cases
equilibration algorithms presented in Secs. II and III gi
rise to a polynomial time algorithm~see also@15# for quan-
tum algorithms for Ising-type models!.

The process of equilibration is also essential in the ac
realization of a quantum computer. One of the assumpti
underlying the construction of a quantum computer@17# is
the ability to put a physical system initially into a know
state~or a thermal equilibrium state in a NMR quantum com
puter@18#!, the computationalu00 . . . 0&^00 . . . 0u state. The
way this is done in an experimental setup is to let this s
be the ground state of a natural Hamiltonian and sub
quently to cool to low temperature such that the probabi
of being in this ground state is some constant. This nat
Hamiltonian must be sufficiently simple for this equilibratio
to be achievable efficiently and also be sufficiently weak
tunable not to disturb the computation later on.

Markov chains in the quantum domain

Our two quantum equilibration algorithms are examp
of the use of quantum Markov chains on a quantum co
02230
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puter. We will call a trace-preserving completely positi
linear mapS a TCP map. The algorithms that we present a
described as the repeated application of a TCP mapS on
some initial state. Such a TCP map can be viewed as a
eralization of a Markov matrix to the quantum domain.
classical Markov chain corresponds to the following proc
~cf. @7#!. Let i 51, . . . ,k be a set of states. We take time
be a discrete variable, taking the valuest50,1, . . . . At
some point in timet50, we start with a probability distribu-
tion $pi>0% i 51

k over the statesi such that( i pi51. Through
a stochastic process, which we describe with a Markov m
trix M, this probability distribution is mapped onto a ne
probability distribution$pi8% i 51

k at time t51; i.e.,

pTM5p8T, ~1.11!

where p is the vector of probabilities att50. A homoge-
neous Markov chain corresponds to a chain in whichM is the
same matrix during all time steps. In the theory of Mark
chains we study the properties of the matrixM determined
by its eigenvalues and eigenvectors. Such a Markov proc
characterized by a matrixM can be viewed as a special kin
of TCP map. The statesi 51, . . . ,k now correspond to a se
of orthonormal statesu i &: ^ i u j &5d i j . At t50 we start with a
density matrixr5( i pi u i &^ i u. The TCP map correspondin
to a classical Markov process maps

SM~r!5r8, ~1.12!

where r85( i pi8u i &^ i u. To give a full specification ofS in
terms ofM we write

SM~ u i &^ i u!5(
j 51

k

M i j u j &^ j u,

~1.13!
SM~ u i &^ j u!50.

In this classical chain the density matrices that result fr
this stochastic process are all diagonal in the same b
$u i &} i 51

k . For a general quantum Markov chain this will n
be the case. In Sec. II C we establish several basic prope
of TCP maps that can form the starting point for develop
a theory of quantum Markov chains in a quantum compu
tional setting.

II. EQUILIBRATION I

A. Introduction

The canonical ensemble is the ensemble of sta
$pi ,uc i&% or a density matrixr5( i pi uc i&^c i u, such thatr
has a given energy-expectation value

Tr Hr5^E&. ~2.1!

The equilibrium state in this ensemble@Eq. ~1.1!# can be
obtained by maximizing the von Neumann entropy ofr un-
der this energy constraint. Another way in which the cano
cal ensemble is defined is by considering the possible st
of a system that is in contact with an infinite heat bath a
certain temperatureT. The total energy of system and bath
1-3
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BARBARA M. TERHAL AND DAVID P. DiVINCENZO PHYSICAL REVIEW A 61 022301
constant, but bath and system exchange energy, so tha
system equilibrates. This directly suggests that the way
prepare the equilibrium state on a quantum computer is
mimic this process. In considering the computational co
plexity of such a procedure in a straightforward simulati
without optimization or shortcuts, we will have to includ
the space and time cost of the bath, which may be la
Also, the intuitive picture of equilibration between a weak
coupled large bath and system does not tell us anyth
about the rate at which this equilibration occurs. Furth
more, the equilibration process assumes a bath that is alr
in its equilibrium state. Can we make the bath simple eno
that this bath state can be prepared efficiently? In this sec
we study this process of equilibration. We present an al
rithm and we derive expressions that completely characte
the equilibration process in an idealized case: the coup
between the bath and the system is very small, the bat
very large, and the time of interaction is large. In order
treat this problem analytically we develop a perturbat
theory in the strength of the coupling between bath and s
tem in Sec. II D. In this perturbative regime we will see th
the dynamics of our quantum Markov chain can be descri
by a classical Markov chain plus an additional ‘‘dephasin
process. Only in the idealized regime, using the perturba
theory approach, are we able to show that the algorit
gives the equilibrium state as output. We then proceed b
numerical study of the algorithm in realistic cases where
bath is of finite dimension, the strength of the interaction
nonzero, and the interaction time is limited.

B. Algorithm

Definition 1.Equilibration algorithm I.

Input parameters.

Hs Hamiltonian of a N52n-dimensional quantum
system

b Inverse temperature
Hb Hamiltonian of a K52k-dimensional ‘‘bath’’

quantum system
lHsb Hsb is the NK-dimensional ‘‘bath-system’’ inter-

action Hamiltonian;l is the parameter that mea
sures the strength of the interaction between b
and system

t Interaction time between bath and system
r Number of times the bath is refreshed in the alg

rithm

Define the total Hamiltonian of system and bath as

H5Hs^ 1K11N^ Hb1lHsb , ~2.2!

and the trace-preserving completely positive~TCP! mapSl,t
as

Sl,t~r![Trb eiHtr ^ rb,b e2 iHt. ~2.3!

~1! Prepare system. We prepare then qubits in the state
u000 . . . 00&^000 . . . 00u.
02230
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~2! Prepare bath. We prepare thek qubits of the bath in
their equilibrium staterb,b of Hb .

~3! Evolvesystem and bath for timet and discard bath,
that is, perform the superoperatorSl,t of Eq. ~2.3!.

~4! Repeatsteps 2 and 3r times such that

iS l,t
r 11~ u000 . . . 00&^000 . . . 00u!

2S l,t
r ~ u000 . . . 00&^000 . . . 00u!i tr<e, ~2.4!

for all r>r 0 ; e is some accuracy. See Appendix A for th
definition of i•i tr . j

We put several constraints onHs ,Hb , andHsb . We will
use local Hilbert spaces as in Eq.~1.3! of dimension 2~qu-
bits!. Hs must be a ‘‘local’’ Hamiltonian. We define ad-local
Hamiltonian onn qubits as one that can be expressed as

Hs5 (
i 51

poly(n)

1N/d^ hi , ~2.5!

where eachhi operates on a tensor product of several sm
qubit Hilbert spaces, whose total dimension isd. We will
also assume that the eigenvalues ofHs are all distinct; the
spectrum is nondegenerate. This will simplify the upcomi
analysis. In order to treat Hamiltonians with degenerate sp
tra a change in the perturbation theory of Sec. II D will ha
to be made. We expect, however, that with that change
main result of Sec. II E, namely successful equilibration
the idealized case, will still hold.Hsb has the linear coupling
form

Hsb5S^ B, ~2.6!

where bothSPB(Hs) and BPB(Hb) are local Hamilto-
nians.Hb is the Hamiltonian of a system of noninteractin
qubits; i.e., it is a sum of single-qubit Hamiltonians:

Hb5(
i 51

k

1K/2^ hi . ~2.7!

The bath’s equilibrium state factorizes into a tensor prod
of qubit equilibrium states associated with eachhi :

rb,b5rb,b
1

^ •••^ rb,b
k . ~2.8!

This enables us to prepare the bath~step 2! efficiently. Ap-
pendix B shows that it will cost 2k elementary qubit opera
tions to perform step 2. The locality ofHs , Hb , andHsb is
required in order to be able to simulate the unitary time e
lution eiHt in time O(t2/d) where d is the accuracy with
which the evolution is implemented@5,19#.

We also choose

^B&b[Tr Brb,b50. ~2.9!

To understand the effect of a nonzero^B&b we rewriteH as

H5~Hs1l^B&bS! ^ 1K11N^ Hb1lS^ B8, ~2.10!

with B85B2^B&b1K50, and thus choosing a nonzero^B&b
effectively corresponds to a change in the Hamiltonian of
1-4
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system. We now discuss the last step of the algorithm, ste
When the superoperatorSl,t has the equilibrium staters,b as
its unique fixed point, then Eq.~2.4! for all r>r 0 implies that

iS l,t
r ~ u000 . . . 00&^000 . . . 00u!2rs,bi tr<CNf ~e,k!,

~2.11!

for all r>r 0 , wherek is the absolute value of the secon
largest eigenvalue ofSl,t . CN is some constant polynomia
in N. The functionf (e,k)→0 for e→0 andkÞ1. The func-
tional dependence off on k is such that whenk increases
~the equilibration slows down!, f increases. For sufficiently
small e the equilibration process will lead to successful co
vergence to the equilibrium state.

There does not, however, exist a straightforward imp
mentation of step 4. The first problem is that we would ha
to check the closeness of ther th and the (r 11)th iteration of
Sl,t for all r>r 0. In practice this has to be replaced wi
choosing a finite set of iterationsr for which the invariance
of S r(u00 . . . 0&^00 . . . 0u) is tested. This problem is als
encountered in classical Monte Carlo simulations. The s
ond problem, which is a purely quantum phenomenon, is
by measuringr r[S l,t

r (r) we might disturbr r . Thus to
comparer r with r r 11 we would have to runS again forr
11 times. To assemble some statistics on the difference
tweenr r andr r 11 we have to runr iterations ofS several
times. These considerations about the verification of the c
vergence of the equilibration process are of course not
cial to the use of a quantum computer; they are the sam
in the equilibration of a quantum physical system in an
perimental setup. Furthermore, it would be an impracti
task to try to measure all the matrix elements ofr r ; r r
contains an exponential amount of data of which we c
extract only a polynomial amount by measurement in po
nomial time. The best way to proceed is the same as w
one does in classical Monte Carlo simulations@9#. If the goal
of the computation is to estimate TrOrs,b , then one com-
putes the data points

Or5Tr Or r , ~2.12!

until uOr2Or 11u<e for a sufficiently large set of iteration
r>r 0. The same procedure can be carried out when the
of the equilibration is to compute a time-dependent corre
tion function such as Eq.~1.4!.

In the remainder of this section we will analyze this alg
rithm. In Sec. II C we give some general properties of T
maps. In Sec. II D we discuss the non-Hermitian perturba
theory that will be the basis of the analysis ofSl,t in the
idealized case. In Sec. II E we derive explicit expressions
the idealized case. The idealized case is the case obtaine
taking the limits l→0, k→` and t→`, but l2t as
constant.1 Then we can show that in this idealized case
process has a unique fixed point which is the equilibri
state. Many parameters in the quantum equilibration al
rithm are not yet fixed. These are the timet, the number of

1This limit is sometimes referred to as the van Hove limit@20#.
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repetitionsr, the size of the bathk, the Hamiltonian of the
bathHb , the interaction HamiltonianS^ B, and the interac-
tion strengthl. In an actual realization of the quantum alg
rithm on a quantum computer with finite resources of sp
and time, we should try to choose the optimal set of valu
for these parameters. In Secs. II G and II H we present res
from numerical simulations for small systems that tell
how the algorithm depends on this set of parameters. In th
sections the following questions will be addressed:

~1! What is the influence of different choices forHb , S,
andB @Eqs.~2.6! and ~2.7!#?

~2! How do the parametersr, l, and t required for suc-
cessful equilibration depend onn generically? How doesk,
the number of bath qubits, depend onn, the number of sys-
tem qubits, for successful equilibration? Are they polynom
ally related?

The dynamics of open quantum systems, like the sys
in our algorithm that interacts with a bath, is most oft
studied with the use of a generalized master equation;
Fick et al. @21#. The exact master equation in integral for
describes the time evolution ofr(t)5Sl,t(r) of Eq. ~2.3!:

r~ t !5e2 iLstr~0!

2l2E
0

t

dt8E
0

t8
dt9e2 iLs(t2t8)M~ t8,t9!r~ t9!,

~2.13!

whereL, the Liouvillian, is defined as

L~r!5@H,r#. ~2.14!

so thatLs(r)5@Hs ,r#, etc. The operatorM(t8,t9) is the
‘‘memory kernel,’’

M~ t8,t9!5Trb Lsb e2 i (12rb Trb)L(t82t9)Lsb rb .
~2.15!

The form in which the master equation is most often us
however, is one in which two simplifying approximations a
made:~1! the Born approximation~this relates to the weak
ness of the interaction parameterl) and~2! the Markov ap-
proximation. The process described bySl,t is Markovian if
we can write

Sl,t„Sl,s~r!…5Sl,t1s~r!, ~2.16!

for all t>0 ands>0. Note that the difference between th
left- and right-hand sides of this equation is the followin
On the left-hand side the environmentrb,b @see the definition
of Sl,t in Eq. ~2.3!# is refreshed after timet, whereas on the
right-hand side the environment is kept for the whole evo
tion time t1s. Markovian behavior typically occurs whe
the rate at which the effect of the system on the bath
erased in the bath~in the sense of being spread througho
the bath! is much faster than the rate at which the syst
evolves; the system sees a ‘‘fresh’’ bath every time. In o
algorithm this loss of correlations in the bath is enforc
when after some timet the bath is replaced by a new ba
~step 4). We would not be able to truly equilibrate a fin
1-5
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system with a finite-dimensional bath if we would not ke
refreshing it. Since the global evolution of bath and system
unitary, eventually we will get back to the initial unentangl
state and, after tracing over the bath, to the initial state of
system~a so-called Poincare´ recurrence!. Whether Markov-
ian dynamics is justified will depend on the size of the ba
the strength of the interaction, and the length of the inter
tion time. There are ways to make a simple but naive M
kov approximation in Eq.~2.13! that lead to a master equa
tion that fails to describe TCP dynamics@21,22#. The form of
the master equation that does incorporate both the app
mations and yields a physical completely positive map is
master equation in Lindblad form@23#:

]r

]t
52 i @Hs ,r~ t !#1Lr~ t !, ~2.17!

whereL @24,22# can be expressed with a basis of operat
Fi as

Lr~ t !5
1

2 (
k,l 51

N221

akl$@Fkr~ t !,Fl
†#1@Fk ,r~ t !Fl

†#%,

~2.18!

where akl is a positive semidefinite matrix. In a Lindbla
equation describing the equilibration process, we expectL to
depend on the system HamiltonianHs . The equilibrium state
rs,b — if the algorithm is successful — should be a statio
ary state of the process, which implies that, sin
@Hs ,rs,b#50, we must have that

Lrs,b50. ~2.19!

Davies@24–26# has demonstrated that a process described
Sl,t where the bath is an infinite-dimensional quantum s
tem ~for example, a quantum field! does equilibrate any
quantum system in the limit wherel→0, t→`, but l2t
stays constant. By carefully taking a Born and Markov a
proximation, he derives a Lindblad equation of the form su
that Eq.~2.19! is obeyed. We will perform a similar analys
here. The main point of difference is that we use a pertur
tive analysis of the dynamics which is only valid for sma
l2t, but coincides in this regime with Davies’ result. W
furthermore obtain more explicit expressions for the dyna
ics in this limit.

One can write down the most general form of an opera
L that obeys a quantum detailed balance condition@27#, a
stronger requirement that the stationarity of Eq.~2.19!. Now,
one might ask the following question: Could we impleme
this corresponding superoperator directly, without the use
a weakly coupled large bath, so as to save us time and sp
We believe the answer is no, asL will depend on the eigen
vectors and eigenvalues ofHs , which we do not know be-
forehand.

C. Some useful properties of TCP maps

In this section, we study some essential properties of
superoperatorSl,t defined as in Eq.~2.3!. This superoperato
is a TCP map,
02230
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Sl,t : B~HN!→B~HN!, ~2.20!

where B is the algebra of linear operators on the Hilbe
spaceHN . The setTCP@N,N# is the set of TCP maps
S: B(HN)→B(HN).

The elements ofB(HN) can be represented asN3N ma-
trices. An alternative and convenient way to repres
B(HN) is as aN2-dimensional complex vector spaceCN2

:

I : xPB~HN!→~x! i j PCN2
. ~2.21!

This representation leads to a matrix representation of a T
mapS on CN2

. Let Ai be the operation elements ofS, i.e.,

S~x!5(
i

AixAi
† , (

i
Ai

†Ai51N . ~2.22!

Then

~x8!mn5„S~x!…mn5(
i

(
k,l

~Ai !mk~x!kl~Ai
†! ln

5(
k,l

Smn,kl~x!kl , ~2.23!

with

Smn,kl5(
i

~Ai !mk~Ai
†! ln . ~2.24!

One can then study the eigenvectors and eigenvalue
the matrix representation of a TCP map. First, we will gi
three useful properties of TCP maps that follow directly fro
their definition.

Property 1. Let BposPB be the set of positive semi
definite matrices. LetSPTCP@N,N#. Then

rPBpos⇒S~r!PBpos, ~2.25!

asS is ~completely! positive. Letx be an eigenvector ofS
with eigenvaluem, S(x)5mx. We have

Tr xÞ0⇒m51, ~2.26!

asS is trace preserving. LetAi be the operation elements i
the decomposition ofS as in Eq.~2.22!. If x is an eigenvec-
tor of S with eigenvaluem, thenx† is also an eigenvector o
S with eigenvaluem* . This follows from

„S~x!…†5(
i

~AixAi
†!†5S~x†!. ~2.27!

Let Bpos,1 be the set of positive semidefinite matrices th
have trace 1, i.e., the density matrices. Thus property 1
plies that if adensity matrixr is an eigenvector of the su
peroperator, it must have eigenvalue 1; that is, it is a fix
point of the map. On the basis of the TCP property of a m
S, we can also show the following.

Proposition 1. Let SPTCP@N,N#. All eigenvaluesm of
S haveumu<1.
1-6
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Proof ~by contradiction!. Assumex is an eigenvector ofS
with eigenvalueumu.1. Note that property 1 implies thatx
has Trx50. If x is Hermitian,m will be real. Asx is trace-
less, it must have at least one negative eigenvalue. One
always find a density matrixr and a small enoughe such
that r85r1ex is still a density matrix. LetS operater
times on this density matrix. For large enoughr the result
S r(r1ex)5S r(r)1em rx will no longer be a positive
semidefinite matrix: take the eigenvectoruc& of x corre-
sponding to the lowest~negative! eigenvaluelmin . Then

^cuS r~r!uc&1em r^cuxuc&<11em rlmin ~2.28!

will become negative for large enoughr. But property 1
implies thatS r(r8) is a density matrix; thusumu cannot be
larger than 1. Whenx is non-Hermitian, we reason similarly
One can find a density matrixr and a small enoughe such
that r85r1e(x1x†) is a density matrix. LetS(x)5mx
5umueifx. Let lmin,r be the smallest~and negative! eigen-
value of the traceless Hermitian matrixeifrx1e2 ifrx†.
Then

^cuS r~r8!uc&5^cuS r~r!uc&

1eumur^cu~eifrx1e2 ifrx†!uc&

<11eumurlmin,r ~2.29!

will become negative for some larger (lmin,r is a quasiperi-
odic function ofr so it cannot be small for all larger ). j

Another property about the existence of fixed points c
be derived.

Proposition 2. Let SPTCP@N,N#. S has a fixed point
~which is a density matrix!.

Proof. The set of density matricesBpos,1PB(HN) is con-
vex and compact.S is a linear continuous map andS(r
PBpos,1)PBpos,1. Then the Markov-Kakutani theorem
V.10.6 of @28# applies. j

The existence of a fixed point does not by itself guaran
that the process described byS is ‘‘relaxing,’’ that is,
limr→` S r(r)5r0 for all r wherer0 is the fixed point. The
existence of such a limit depends on whether the fixed p
is unique. This following proposition proves that when the
is a unique fixed point, relaxation will occur and the rela
ation rate is determined by the second largest eigenvalueS
@29#.

Proposition 3. Let r0PBpos,1(HN) be the unique fixed
point of a TCP mapS. Let k5maxmummÞ1 ummu, the absolute

value of the second largest eigenvalue ofS. Then for all
density matricesr we have

iS r~r!2r0i tr<CNpoly~r !k r , ~2.30!

whereCN is a constant depending on the dimensionN of the
system and poly(r ) denotes some polynomial inr. Thus for
all density matricesr

lim
r→`

iS r~r!2r0i tr50. ~2.31!
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Proof. Let m i be the eigenvalues ofS. Let s be the number
of distinct eigenvalues. We can bring any matrixS into Jor-
dan formJ by a similarity transformationM @31#:

S5MJM21, ~2.32!

where

J5(
i 51

s

~m i Pi1Ni !. ~2.33!

Pi are orthogonal projectors andNi is a matrix of 1s above
the diagonal in thei th block orNi is the 0 matrix. When the
eigenvaluem i is nondegenerateNi is the 0 matrix. We there-
fore haveNiNj50 for iÞ j and PiNj50 for iÞ j . Call the
unique largest eigenvaluem051 and the corresponding pro
jection P0. As in Eq. ~2.32! one can write

S r5MJrM 21, ~2.34!

whereJr equals

Jr5(
i 51

s

~m i
r Pi1Ni8!, ~2.35!

whereNi8 is a nilpotent matrix in thei th block. Note thatN08
is 0, asm0 is unique. LetS 0 beM P0M 21 or S 0(r)5r0. We
use iAi tr<ANiAi2. Note thatiAi2 refers to the Euclidean
norm of A represented as a vector. This follows fro
(( i 51

N uxi u)2<N( i 51
N uxi u2 for complex numbersxi . We have

first of all

iS r~r!2r0i tr<ANi~S r2S 0!~r!i2 . ~2.36!

This expression can be bounded with the use of the simila
transformationM to

iS r~r!2r0i tr<ANuuuM ~J r2J 0!M 21uuu2

<C1,NuuuJr2P0uuu2 , ~2.37!

where uuu•uuu2 is defined in Appendix A and we useiri2
5Tr r2<1 for density matrices. Using the expression forJr ,
Eq. ~2.35!, we can also bound

uuuJr2P0uuu2<r NC2,Nk r . ~2.38!

Combining Eq.~2.37! and Eq.~2.38! gives us the desired
result, Eq.~2.30!. Equation~2.31! then follows ask,1 by
proposition 1. If S is diagonalizable, the nilpotentsNi in
expression Eq.~2.35! are not present. By going through th
same steps, a bound as in Eq.~2.30! can be derived without
the factor poly(r ). j

We refer the reader to@22# for discussions and reference
concerning the existence of a unique fixed point and ot
properties of relaxation for a process that is described b
Lindblad equation, Eq.~2.17!.

Finally we give a result which relates members
TCP@N,N# to the stochastic matrices. A real matrixM is
stochastic when the entries of its columns add up to 1,
( iM i j 51.
1-7
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Proposition 4. Let SPTCP@N,N#. Smm,nnPR1, and,
; n, (mSmm,nn51; that is, the elementsSmm,nn form an
N3N stochastic matrix in the indices m and n. Also,; n,k,
nÞk, (mSmm,nk50.

Proof. Smm,nnPR1 follows directly from Eq.~2.24!. For
the rest, we impose the unit trace condition on Eq.~2.23!:

15 (
m,k,l

Smm,klrkl . ~2.39!

This must be true for all density matrices represented byr.
Taking rkl5dk,ldk,k0

gives the desired result

15(
m

Smm,k0k0
. ~2.40!

We now separate Eq.~2.39! into diagonal and off-diagona
parts, using the Hermiticity of the density matrixr:

15(
m,k

Smm,kkrkk1 (
m,k,l

k. l

~Smm,kl1Smm,lk!Re~rkl!

1 i (
m,k,l

k. l

~Smm,kl2Smm,lk!Im~rkl!. ~2.41!

The first term of Eq.~2.41! is always 1 because of Eq.~2.40!.
If we require Eq.~2.41! when the off-diagonal terms inr are
rkl5dk,k0

d l ,l 0
(k. l ), we obtain

(
m

~Smm,k0l 0
1Smm,l 0k0

!50, ~2.42!

and setting the off-diagonal terms inr to rkl5 idk,k0
d l ,l 0

(k. l ) gives

(
m

~Smm,k0l 0
2Smm,l 0k0

!50. ~2.43!

Adding these equations, we obtain the desired result

(
m

Smm,k0l 0
50, k0Þ l 0 . ~2.44!

j

D. Perturbation theory

In this section we develop a perturbation thoery in t
coupling l for the superoperatorSl,t . The calculation will
assume the diagonalizability ofSl,t . If all the eigenvalues of
a matrixM are distinct,M is diagonalizable@31#. Therefore
in many cases of interest for equilibration, this assumpt
for Sl,t will be correct. An example of a simple superoper
tor that is nondiagonalizable is the following. The supero
eratorS operates onB(H3) and is given by

S~ u i &^ j u!50, for iÞ j , S~ u1&^1u!5u2&^2u,

S~ u2&^2u!5u2&^2u, S~ u3&^3u!5u1&^1u. ~2.45!
02230
n
-
-

The eigenvectors ofS areu i &^ j u for all iÞ j , the stateu2&^2u
andu1&^1u2u2&^2u. This example shows that nondiagonali
ability is not a property particular to superoperators desc
ing quantum operations but is also found in classical Mark
processes.

One can formally expand the superoperatorSl,t as a
power series in the coupling parameterl,

Sl,t5S t
(0)1lS t

(1)1l2S t
(2)1l3S t

(3)1•••. ~2.46!

In Sec. II E we will explicitly calculate the expressions fo
these expansion operators. We will show@Eqs. ~2.69!–
~2.72!# that condition equation~2.9! implies thatS t

(1) is zero
for all t. On the basis of this expansion, we will make
perturbative expansion of the eigenvalues and eigenvec
of Sl,t :

m5m (0)1lm (1)1l2m (2)1•••, ~2.47!

x5x (0)1lx (1)1l2x (2)1•••. ~2.48!

Assuming that the perturbation expansion exists for this n
Hermitian operator, it will have the same structure as in
well-established procedures familiar in quantum theory
bounded Hermitian operators~see textbooks on quantum me
chanics such as@30# or @31# for a more mathematical back
ground!.

In the representation of Eq.~2.24!, S t
(0) reads

~S t
(0)!mn,kl5~Ut!mk~Ut†! ln , ~2.49!

whereU5eiH s. Unitarity of S t
(0) , as amatrix operator on

vectors inCN2
, follows from

(
k,l

~S t
(0)!mn,kl~S t

(0)†!kl,i j 5(
k,l

~Ut!mk~Ut†! ln~Ut! j l ~Ut†!ki

5dmid jn . ~2.50!

The eigenbasis ofS t
(0) is formed by the set of matrice

un&^mu whereun& are the eigenvectors ofHs . These eigen-
vectors come with eigenvaluesmnm,t

(0) :

$un&^mu ,mnm,t
(0) 5eit (En2Em)%n,m51

N,N , ~2.51!

whereEn are the eigenvalues ofHs . Thus all density matri-
ces of the formun&^nu, and mixtures of these, have dege
erate eigenvaluesmnn,t

(0) 51. If the spectrum ofHs is nonde-
generate~we assumed this in Sec. II B!, then all other
eigenvectorsun&^mu for nÞm have nondegenerate eigenva
ues. These eigenvectorsun&^mu form an orthonormal set with
the vector inner product onCN2

:

Tr ~ un&^mu!†uk&^ l u5dnkdml . ~2.52!

To carry out the perturbation theory, we switch to a k
notation for the density operators and a matrix notation
the superoperators. This will make it easier for us to perfo
the necessary manipulations of degenerate perturba
1-8
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theory, in which the degenerate sector is isolated and a
agonalization performed within it.

We first organize the diagonal, degenerate part of
vector space to be indexed. To be specific, we introduce
orthogonal basis in this vector space such that

uf i
(0)&5u i &^ i u , 1< i<N, ~2.53!

uf i (m,n)
(0) &5um&^nu, 1<m,n<N, mÞn. ~2.54!

In the second equation the indexingi can be made consecu
tive by choosing

i ~m,n!5nN1m2
1

2
n~n11!, m.n,

i ~m,n!5
1

2
N~N21!1mN1n2

1

2
m~m11!, n.m.

~2.55!

This organizes this new vector space into a direct-sum fo
CN2

5CD% CND , where ‘‘D’’ and ‘‘ND’’ stand for diagonal
and nondiagonal~or degenerate and nondegenerate!. CD has
dimensionN andCND has dimensionN22N.

From the discussion above, we note that the degenera
lifted in lowest order by the second-order part of the sup
operatorS in the D sector, which we will denoteS D,D

(2) . As-
sume thatS D,D

(2) is diagonalizable via the similarity transfo
mation

MS D,D
(2) M 215S̃ D,D

(2) , ~2.56!

whereS̃ D,D
(2) is a diagonal matrix~the tilde will denote quan-

tities expressed in the new basisMD% 1NDuf (0)&, which is in
general nonorthogonal!. In this new basis, the degeneracy
the diagonal terms ofS is lifted to second order inl ~the
diagonal terms can be written to second order asm i51
1l2S̃ i i

(2)), and since the largest off-diagonal terms in the
sector are now third order, given by

l3MS D,D
(3) M 215l3S̃ D,D

(3) , ~2.57!

the condition for the successful application of nondegene
perturbation theory is now satisfied, assuming that no a
tional, accidental degeneracy occurs.~The condition is satis-
fied from the start in the ND sector.! Its form is essentially
no different from the conventional perturbation expans
@30# for Hermitian operators. This expansion for the eige
values is

m i5m i
(0)1l2S̃ i i

(2)1O~l3!. ~2.58!

The form of this expansion is different depending on whet
i PD or i PND, but only atO(l4). The perturbation expan
sions for the eigenvectors are

uf i&5uf̃ i
(0)&1l (

j PD, j Þ i
uf̃ j

(0)&
S̃ j i

(3)

S̃ i i
(2)2S̃ j j

(2)
1O~l2!, i PD,

~2.59!
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uf i&5uf i
(0)&1l2(

j Þ i
uf̃ j

(0)&
S̃ j i

(2)

m i
(0)2m j

(0)
1O~l3!, i PND.

~2.60!

This expansion indicates that there is no mixing between
D and ND sectors until second order inl. This expansion
strategy will be taken up again in the numerical simulatio
Sec. II G@Eq. ~2.116!#.

This perturbation analysis shows that the superoperato
Eq. ~2.46! can be approximated by a simple one, for whi
the approximate eignevectors are correct to zeroth order il,
and the eigenvalues are correct to the next nonvanishing
der (l2). In this approximation theD and ND sectors are
completely decoupled. In theD sector the superoperator
written as

„Sl,t~r!…nn'(
m

Pnm,t rmm, ~2.61!

Pnm,t5dnm1l2~S t
(2)!nn,mm. ~2.62!

Note from proposition 4 thatPnm,t is exactly a stochastic
matrix; therefore the approximate dynamics in theD sector is
that of a classical Markov process. The approximate dyna
ics in theND sector is diagonal in the eigenbasis:

@Sl,t~r!#nm'mnm,trnm5mnm,t
~0! rnm1l2~St

~2!!nm,nmrnm ,

nÞm. ~2.63!

So, the full expression for the approximation superoperato

~Sl,t!nm,kl'Pnk,tdnmdkl1mnm,t~12dnm!dnkdml .
~2.64!

The simplications of Eqs.~2.61! and ~2.63! make it pos-
sible to answer questions about the uniqueness of the fi
point and, in principle, the mixing properties of a repeat
application ofSl,t , using techniques from classical Marko
processes@32#. The splitting in two sectors, each having i
own relaxation times, is similar to the phenomenological d
scription of a relaxation process by means of Bloch eq
tions or the Redfield equation@33#. This description in terms
of the longitudinal relaxation timeT1 ~D sector! and trans-
versal relaxation timeT2 ~ND sector! is, for example, used in
NMR @33#.

Of course, the ‘‘smallness’’ of the operator
l2S (2),l3S (3), . . . compared toS (0) will determine how
fast the perturbation series converges. We will calculate
eigenvectors ofSl,t to zeroth order inl and the eigenvalues
to second order inl. The stochastic matrixPnm,t is deter-
mined in this approximation. The justification of this a
proximation will be given when we explicitly determine th
expressions forSl,t in Sec. II E, where we set bounds onl
and t such that indeedl2 and higher-order corrections ar
small within some norm~for example, thei•iL norm given
in @34,35#!.
1-9
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E. Calculation of expressions

Here we will calculate the elements of the superopera
described in the last section to lowest nontrivial order
l (l2). Taking the second-order expression forP in Eq.
~2.62!, Qnm,t is defined by the expression

Pnm,t5dnm1l2Qnm,t . ~2.65!

And takingm of Eqs.~2.63! and using Eq.~2.51!, we define
nnm,t by

mnm,t5eit (En2Em)~11l2nnm,t!. ~2.66!

In this section we will find expressions forQnm,t and nnm,t
and exhibit the regime in which they give a valid descripti
of Sl,t . We also show that for a large enough bath,
equilibrium state is the fixed point of the mapSl,t . We
discuss under what conditions this fixed point is unique.

We will use operators in the Heisenberg representat
We denote such operators~for example on the system! as

At5eiH stA e2 iH st. ~2.67!

The total LiouvillianL is defined as

e2 iLt~r ^ rb,b!5Ut~r ^ rb,b!Ut†. ~2.68!

One can expand the operatore2 iLt in a perturbation series in
l @21#, take a partial trace over the bath, and identify t
operatorsS t

(0)5e2 iLst, S t
(1) andS t

(2) in Eq. ~2.46!:

S t
(1)52 i TrbE

0

t

dt8e2 i (Ls1Lb)(t2t8)Lsb e2 i (Ls1Lb)t8

~2.69!

and

S t
(2)52TrbE

0

t

dt8 E
0

t8
dt9 e2 i (Ls1Lb)(t2t8)

3Lsb e2 i (Ls1Lb)(t82t9)Lsb e2 i (Ls1Lb)t9. ~2.70!

First we considerS t
(1) . We use Eq.~2.68! and Eq.~2.14! to

rewrite S t
(1) acting onr ^ rb,b as

S t
(1)~r ^ rb,b!52 ilTrbE

0

t

dt8eiH s(t2t8)

^ eiH b(t2t8) @Hsb ,r t8^ rb,b t8
# e2 iH s(t2t8)

^ e2 iH b(t2t8), ~2.71!

wherer t8 is the time-evolved~with Hs) r andrb,b t8
is the

time-evolved~with Hb) rb,b . The equilibrium staterb,b is
invariant under unitary evolution witheiH bt8 and thusrb,b t8
5rb,b . We then use the cyclic permutation invariance of t
trace andHsb5S^ B to rewrite Eq.~2.71! as a simpler sum
of two terms:
02230
r

e

n.

e

S t
(1)~r ^ rb,b!52 ilE

0

t

dt8@eiH s(t2t8)Sr t8e
2 iH s(t2t8)

2eiH s(t2t8)r t8Se2 iH s(t2t8)#Trb Brb,b .

~2.72!

Then the condition equation~2.9! implies that S t
(1)(r

^ rb,b) is 0 for anyr.
Let us consider the second-order term. The expression

S t
(2) reads

S t
(2)52e2 iLstE

0

t

dt8 E
0

t8
dt9 @h~ t82t9!S2t8S2t9r

2h~ t92t8!S2t8rS2t92h~ t82t9!S2t9rS2t8

1h~ t92t8!rS2t9S2t8#, ~2.73!

whereh(t) is defined aŝBBt&b . We write

h~ t !5E
2`

`

dveitvh̃~v!. ~2.74!

Let Snm be the matrix elements of the interactionS in this
eigenbasis ofHs , Snm5^nuSum&. Now we can find the ex-
pression forQmn,t5(S t

(2))mm,nn . From Eq.~2.73! after inte-
gration over the variablest8 and t9 and with the use of Eq.
~2.74!, we find

Qnm,t52E
2`

`

dvh̃~v!F uSmnu2@12cost~v2En1Em!#

~v2En1Em!2

2(
l

dnmuSnlu2@12cost~v2En1El !#

~v2En1El !
2 G . ~2.75!

For the ‘‘decay factor’’nnm,t in the ND sector we find

nnm,t5E
2`

`

dvh̃~v!F2SnnSmm~12costv!

v2
2 f ~ t,v,En!

2 f * ~ t,v,Em!G , ~2.76!

with f * the complex conjugate off. The functionf is given
by

Ref ~ t,v,En!5(
l

uSlnu2@12cost~v2En1El !#

~v2En1El !
2

~2.77!

and

Im f ~ t,v,En!5(
l

uSlnu2

v2En1El
F12

sint~v2En1El !

t~v2En1El !
G .

~2.78!

We will now look at the idealized case; i.e., we take t
limits ~rememberk is the number of qubits in the bath!
1-10
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Pnm
l2t[ lim

t→`,l→0
constantl2t

lim
k→`

Pnm,t ,

mnm
l2t[eit (En2Em) lim

t→`,l→0
constantl2t

lim
k→`

~11l2nnm,t!. ~2.79!

When the bath is infinitely large, it will have a continuou
spectrum;h̃(v) will be a smooth function. The rate of inter
action vanishes, but as we take the limitt→`, there is an
effective nonzero interaction that is proportional tol2t. Re-
call that

d~x!5 lim
t→`

12cos~ tx!

tpx2
, ~2.80!

whered(x) is the Dirac delta function, which is defined a
*2`

` dx d(x)51 and,; xÞ0, d(x)50. With the use of the
d function we find

Pmn
l2t5dnmS 12l2t2p(

l
uSnlu2h̃~En2El ! D

1l2t2puSmnu2h̃~En2Em! ~2.81!

and

mnm
l2t5eit (En2Em)@11l2t2pSnnSmmh̃~0!2l2tpg~En!

2l2tpg* ~Em!#, ~2.82!

with

Reg~En!5(
l

uSlnu2h̃~En2El ! ~2.83!
in

th
tic

02230
and

Im g~En!5PE
2`

`

dvh̃~v!(
l

uSlnu2

v2En1El
, ~2.84!

where P is the principal value of the integral. In order to s
in what regime the perturbation theory is correct, we che
whether the process described by Eq.~2.81! and Eq.~2.82!
corresponds to that of a TCP map. First we verify propert
in Eq. ~2.82!; the eigenvalues ofun&^mu and um&^nu are re-

lated by complex conjugation ormnm
l2t* 5mmn

l2t . The trace-
preserving property~also in property 1! is also obeyed:

(
m

Pmn
l2t51. ~2.85!

Complete positivity of the map implies thatPmn
l2t must be a

matrix of probabilities; that is, we must havePmn
l2t>0. Thus

the first necessary condition for the validity of the perturb
tive approximation is

Condition 1: ; n: l2t!
1

2p(
l

uSlnu2h̃~En2El !

. ~2.86!

Equations~2.85! and ~2.86! together ensure thatPmn
l2t is a

stochastic matrix. Complete positivity also implies v

proposition 1 thatumnm
l2tu<1. In order thatu11l2tau<1,

wherea is some complex number, we must have that Ra
<0 andl2t<2/uReau. This real part in Eq.~2.82! is indeed
negative ash̃(v) is positive, and we obtain a new condition
Condition2: ; m,n: l2t!
1

pU2SnnSmmh̃~0!1
1

2 (
l

uSlnu2h̃~En2El !1
1

2 (
l

uSlmu2h̃~Em2El !U . ~2.87!
e

2
r is

ese
ro-
n of

nal
nd
Note that this condition is quite similar to the condition
Eq. ~2.86!.

It is not hard to see that the stochastic matrixPmn
l2t obeys

detailed balance for the equilibrium distribution:

Pmn
l2te2bEn5Pnm

l2te2bEm, ~2.88!

as the equilibrium condition of the bath implies that

h̃~2v!5e2bvh̃~v!. ~2.89!

Thus the equilibrium density matrixrs,b is a fixed point of
the idealized equilibration process. To consider whether
fixed point is unique, we note the following: If a stochas
is

matrix M is such that all its matrix elementsMi j .0, thenM
has a unique eigenvalue equal to 1@7#. If condition 1 is
obeyed, we indeed havePmn

l2t.0 and therefore the absolut
value of the second largest eigenvalue~in the diagonal sec-
tor! is smaller than 1. For the off-diagonal sector, condition
says that the largest eigenvalue in the off-diagonal secto
strictly smaller than 1 in absolute value. Thus under th
conditions, with proposition 3, we can conclude that the p
cess converges to the equilibrium state. The expressio
Pmn

l2t coincides with the derivation given by Davies@25# for
small l2t.

One can help to speed up the process in the off-diago
sector by ‘‘dephasing’’; that is, after having the system a
the bath interact for some timet, we perform the operation
1-11
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D v~rs!5
1

v (
u50

v21

eiH surse
2 iH su, ~2.90!

which can be implemented with the assistance of an e
register in the state (1/Av)(u50

v21uu& which is used to condi-
tion the evolutionU5eiH ss and subsequently traced out. Th
dephasing has the effect of canceling off-diagonal terms
the eigenbasis of the system, i.e.,

lim
v→`

D vS (
k,l 51

N

akluk&^ l u D 5 (
k51

N

akkuk&^ku . ~2.91!

A complete dephasing can in general not be achieved
polynomial time inn ~see Sec. III!, and thus must be under
stood as an extra aid but not a solution to the equilibrat
problem.

From the expressions forPmn
l2t and mnm

l2t we can under-
stand the physical picture of the interaction between bath
system. The system can make a transition from~eigen!level

n to level m (nÞm); i.e., Pmn
l2t is nonzero, whenSnm is

nonzero andh̃(En2Em) is nonzero. The functionh̃ that oc-
curs in Eq.~2.81! can be expressed as

h̃~DE!5 lim
K→`

(
l , j

K

d„~DE!2~v l2v j !…uBl j u2e2bv l/Z.

~2.92!

Therefore in order thath̃(DE5En2Em) is nonzero, there
must be at least one matching energy difference in the b
i.e., there is anl and anj such thatuv l2v j u5DE andBl j is
nonzero. Furthermore, the more such transitions there
the faster the off-diagonal matrix elements decay. This c
firms the intuitive picture that one might have of equilibr
tion. Note also the similarity with the Fermi golden ru
@22,36# that describes the transition probability from eige
level n to m in a unitary evolution that is perturbed by
time-dependent Hamiltonian.

For a finite-dimensional bath, we can expressh(t)
[^BBt& as

h~ t !5(
k,l

eit (vk2v l )uBklu2e2bvk/Zb , ~2.93!

whereBkl5^kbuBu l b& with u l b& being the eigenstates of th
bath HamiltonianHb and Zb the partition function of the
bath. Taking the limitst→` and l→0 before letting the

bath grow large leads to divergent expressions forPmn
l2t and

mnm
l2t , suggesting that the perturbation theory fails in th

regime. This is not surprising, as the finiteness of the b
together with the limitt→` will lead to Poincare´ recur-
rences~only the interaction cycle time is long due tol
→0).

F. Inverse quantum Zeno effect

In our numerical studies~Secs. II G and II H! we have
observed a phenomenon that one might call the inverse q
02230
ra

in

in

n

nd

h;

re,
-

-

th

n-

tum Zeno effect. It is a way of mapping an arbitrary initi
state onto the completely mixed state1N by interacting re-
peatedly and strongly with the state for a very short tim
Here we will give a theoretical analysis that explains th
observation. Consider the weak coupling expansionSl,t

5S t
(0)1l2S t

(2)1O(l3) with S t
(2) given as in Eq.~2.70!.

We expand these operators aroundt50:

Sl,t~r!5r2 i t @Hs ,r#1
t2l2

2
~@Sr,S#1@S,rS# ! ^B2&b

1O~ t2,l3t3!. ~2.94!

In the limit l→`, but t→0, andconstantl2t, the higher-
order termsO(t2,l3t3) will vanish. Thus we see that th
fixed point of Sl,t in this limit ~assuming nonzerôB2&b)
must obey

@Hs ,r#50 and †@S,r#,S‡50. ~2.95!

Notice that if we take the differential form of Eq.~2.94! and
the prescribed limit, the equation is of the Lindblad form, E
~2.17!. The state1N certainly meets the requirements of E
~2.95!, but is it unique? IfS andHs are such that they hav
no eigenspaces~except for the full space! in common, and
both have a nondegenerate spectrum, we can show that1N is
the unique eigenvector. Equation~2.95! requires that either
@S,r#50 or @S,r# be diagonal in the same basis asS. If
@S,r#50 but also@Hs ,r#50, thenr can only be the state
1N . What happens if@S,r# is just diagonal in the same bas
asS? Let un& be an eigenvector ofSwith eigenvalueln . We
have fornÞm

^nu @S,r# um&50. ~2.96!

Rewriting this expression gives

; n, m, nÞm, ^nu r um&~ln2lm!50. ~2.97!

Now, becauser is diagonal in the basis ofHs as @Hs ,r#
50 andHs and S have no eigenvectors in common, the
existn andm such that̂ nurum&Þ0. But the eigenvalues ofS
were nondegenerate, thus we obtain a contradiction.j

When1N is the unique eigenvector of this process, the
with the use of proposition 3, the repeated application as
step 4 of theequilibration algorithmI will eventually bring
the system to the state1N .

We showed that for this ‘‘inverse quantum Zeno’’ effe
to occur,S andHs have to be such that they have no part
eigenspace in common and both have a nondegenerate
trum. If we assume thatSandHs ared-local with d larger or
equal to 4, then this does not impose a very strong constr
on S andHs ; the effect will occur for a genericS andHs .

G. Specifications of the numerical simulation

The main purpose of this study is to understand the effe
of bath size and the choice of bath and interaction Hami
nians for a specific system Hamiltonian. In Table I we l
some of the choices that have been made in the nume
analysis. We have randomly generated the elemen
1-12
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TABLE I. Some settings in the numerical simulation.

Hs Hb S B

Dimension N52, . . . ,24 K522, . . . ,26 N K
Locality ds54 db52 4 4
Sampling scalea 1 f (n,k,ds ,db) 1 1
l

he

l
e
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t

a

e
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.

Hamiltonianshi that make upHs ,Hb , andHsb , Eqs.~2.5!,
~2.6!, and~2.7!, with a measureM. We choose the diagona
elements of eachhi uniformly in @2a,a#, wherea is sam-
pling scale in Table I. The absolute value of the above-t
diagonal elements ofhi are chosen uniformly in@0,a# and its
phase is chosen uniformly in@0,2p#. The below-the-
diagonal elements ofhi follow from Hermiticity. This de-
finesM. Note thatM is not a unitarily invariant measure.

We take the HamiltoniansSandB as sums of all possible
local two-qubit interactions (ds54 in Table I!. For the
Hamiltonian of the systemHs we also take a sum of al
possible local two-qubit interactions. Note that this includ
a set of Hamiltonians that exhibit frustration, for which w
do not expect equilibration to be particularly fast.

In Sec. II E we observed that matching energy differen
between bath and system are an important ingredient in
equilibration of the system, which is consistent with the
tuitive picture of equilibration that was sketched in Sec. II
However, as we do not know the eigenvalues of the syst
we can only pick our bath so as to optimize the chance
matching level differences. The sampling scale of the b
f (n,k,ds ,db) is determined by roughly optimizing these c
incidences,DEb5DEs . This is done as follows.

Consider the density of statesps(E,as) of the system~the
distribution of eigenvalues generated by the measureM)
and the density of statespb(E,ab) of the bath. Hereas is the
sampling scale of the system which we set to 1~see Table I!.
The quantity@Tr Hs#M is the mean and@Tr Hs

2#M /N is the
variance of the distributionps(E,as). The choice forM en-
sures that the distributions are symmetric aroundE50:

@Tr Hs#M5@Tr Hb#M50. ~2.98!

To optimize for matching we choose the variances to
equal:

@Tr Hs
2#M

N
5

@Tr Hb
2#M

K
. ~2.99!

For largeK the bath distribution will be Gaussian~central
limit theorem!, whereas the system distribution will be sim
lar to a Gaussian distribution for largeN ~see Fig. 1!. Thus,
setting the variances equal brings the distributions close
gether.

Consider first@Tr Hb
2#M . It is straightforward to calculate

the variance of the eigenvalues of a qubit bath. Given
32 Hermitian matrix mi j , the eigenvaluese65 1

2 @m11

1m226A(m112m22)
214um12u2# have the property
02230
-

s

s
he
-
.

,
r

th

e

o-

2

@e6
2 #M5

1

4ab
3E

2ab

ab
dm11E

2ab

ab
dm22E

0

ab
dum12u e6

2 5
2ab

2

3
.

~2.100!

Let v i be some6 pattern i of length k, corresponding to
selectinge1 or e2 for each qubit bath. LetEv i

be an eigen-

value of the full bath, i.e.,Ev i
5(m51

k ev i [m] where v i@m#

indicates that we select themth bit in v i . Then

@Tr Hb
2#M

K
5

1

K (
i 51

K

@Ev i

2 #M5
2kab

2

3
, ~2.101!

using @ev i @m#ev i @n##M50 for mÞn. We calculate@Tr Hs
2#M

5( i , j@ u(Hs) i j u2#M for n.2. We can write

(
i , j

@ u~Hs! i j u2#M5(
i , j

(
m51

(
n
2)

@ u~hm! i j u2#M , ~2.102!

wherehm is themth local interaction Hamiltonian. We hav
used @(hk* ) i j (hm) i j #M50. Each row ofhm has only four
nonzero entries as the dimension of the local Hamiltoni
ds was set to 4. Using the fact that@ u(hm) i j u2#M5 1

3 for all
interaction termsm, we obtain

@Tr Hs
2#M

N
5

4

3 S n

2D . ~2.103!

For n51, we have @Tr Hs
2#M /N5 2

3 . Comparing Eqs.
~2.101! and ~2.103! gives the expression forab :

FIG. 1. A histogram~500 samples! of the density of states~un-
normalized! for N532 andK564 with sampling scale set as Eq
~2.104!.
1-13
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ab5 f ~n,k,4,2!5A2

k S n

2D . ~2.104!

For n51, f (1,k,4,2)5A1/k. Figure 1 illustrates how this set
ting determines the density of states of bath and system

The numerical work consists of a calculation of the fix
point of Sl,t as a function oft for a fixedl and the second
largest eigenvalue for different baths and different syste
and temperatures. We follow a numerical procedure base
perturbation theory~Sec. II D! to perform a stable numerica
evaluation of these quantities. Also, we expect from
analysis in Sec. II D that the small coupling regime, t
realm where the perturbation theory is valid, is the regime
which we find good equilibration. When the coupling b
tween bath and system is too strong the bath does not
exchange energy with the system, but higher-order~in the
coupling! effects will bias the dynamics of the system in
way that depends on the bath. We will derive an effect
coupling parameterc(t) that depends onl, but also ont, the
strength of the interaction HamiltonianHsb and the energy
spectrum of the bath. We can trust the answers from
numerical procedure only if we are in the regime in whi
perturbation theory is correct. This regime was heralded
the two conditions, Eq.~2.86! and Eq. ~2.87!, in Sec. II.
Whether these conditions are obeyed depends on the sp
choices ofHs , Hb , andS and B. We prefer to reformulate
these conditions here such that they are obeyed for the a
age bath, system and interaction Hamiltonian obtained
sampling usingM and the sampling scale. As the conditio
are very similar, we take the first one, Eq.~2.86!, and refor-
mulate it as

c~ t ![l2t 2p
NK@S2#M@B2#M

Wb
!1, ~2.105!

where@S2#M , the average matrix element, is defined as

@S2#M5
1

N2 (
i , j

@ uSi j u2#M5
1

N2
@Tr sS

2#M , ~2.106!

and similarly for @B2#M . Wb is the spectral width of the
bath, i.e.,

Wb
25

@Tr Hb
2#M

K
. ~2.107!

Here we indicate the approximations made in obtaining
~2.105! from condition 1@Eq. ~2.86!#:

l2t 2p(
l

uSlnu2h̃~En2El !!1. ~2.108!

Using Eq.~2.93! and Eq.~2.74! we write theh̃ function as

h̃~En2El !5(
k,m

d„~En2El !2~vk2vm!…uBkmu2e2bvk/Z.

~2.109!
02230
s
on
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We will approximate the matrix elementsuBkmu2 as constants
and replace them by their average@B2#M . Then we can use
density-of-states arguments to approximate them sum over
the d functions by the inverse of the average spacing
tween thed functions; this spacing is given byWb /K:

(
m

d„~En2El !2~vk2vm!…'
K

Wb
. ~2.110!

With these approximations, the partition-function sum ovek
in Eq. ~2.109! becomes exactly one. So Eq.~2.109! becomes

h̃~En2El !'
K@B2#M

Wb
. ~2.111!

Now Eq. ~2.108! is

l2t 2p
K@B2#M

Wb
(

l
uSlnu2!1. ~2.112!

If we again approximate the matrix elementsuSlnu2 as con-
stants and replace them by their average@S2#M , and note
that the l sum in Eq.~2.112! has N terms, we obtain Eq.
~2.105!.

For the simulations we have performed, we can find
values for@S2#M and @B2#M ~note that these Hamiltonian
have locality parameterd54, as does the system Hami
tonianHs) and obtain the expression

c~ t !5l2t
16p

3A3
S k

2DAS n

2D !1 ~2.113!

for n.1 andk.1. For a qubit system,n51, andk.1 we
obtain

c1~ t ![l2t
8pA2

3A3
S k

2D !1. ~2.114!

The quantityc(t) in Eq. ~2.105! will function as a res-
caled time which depends on the strength ofl and the size of
system and bath. In the regime wherec(t)<1 we expect a
pertubative calculation of the eigenvectors and eigenva
of the superoperator to be fairly accurate. The dimension
parameter associated with the temperature is given by

b85b Ws , ~2.115!

where Ws is the spectral width of the system, Eq.~2.107!
(Ws5Wb). From here on,b will refer to this scaled dimen-
sionless parameter. Instead of expanding the superoperaS
in a series inl as in Eq.~2.46!, we write

l2S̄ t
(2)[Sl,t2S t

(0) , ~2.116!

where all higher-order terms are grouped inS̄ t
(2) . The calcu-

lation of eigenvalues and eigenvectors then follows
analysis of Sec. II D. We find that the choice for the bath a
the interaction Hamiltonian influences whether the equilib
tion will succeed or not. Let
1-14
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D[irs,b2r0i tr , ~2.117!

wherer0 is the unit eigenvector obtained from the numeri
In Figs. 2 and 3 two extrema in dynamics are shown, e
corresponding to a different choice for the system, bath,
interaction. In Fig. 2 the equilibration is successful, where
in Fig. 3 the equilibration fails.RD is defined as

RD5
12kD

c̄~ t !
, ~2.118!

wherekD is the absolute value of the second largest eig
value in the diagonal sector andc̄(t) is the average coupling
strength in the time interval that we consider, which isc(t)
P@0,0.3# here. Similarly, we define

RND5
12kND

c̄~ t !
~2.119!

for the nondiagonal sector. The qualitative difference in
behavior in Figs. 2 and 3 depends on the three requirem
that we also found to be of importance in the idealized c
that was treated in Sec. II E; these were the requirements
energy difference matching between bath and system,
uDnmu5uD i j u for system levelsn andm and bath levelsi and
j and uBi j u2.0 anduSmnu2.0.

H. Numerical results for equilibration

We are interested in how well a randomly chosen b
and interaction equilibrate a system and how these aver
are improved by choosing larger baths. As the mixing ra
and the distance to the equilibrium state will in general

FIG. 2. An example of successful equilibration forn51, k53,
andb53.
02230
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oscillating functions of the scaled timec(t) ~see Fig. 3! we
will compute time averaged rates over a reasonable inte
in c(t),

@c~ t init !50, c~ tend!50.5#, ~2.120!

such that we are in the realm where perturbation theor
valid, Eq.~2.105!. We denoted these time averages~not to be
confused with bath averages! as R̄D and D̄ for the time av-
eraged trace distance, Eq.~2.117!, etc. In Fig. 4 we presen
histograms that show how, for a given fixed systemand in-
teraction, the equilibration process is different for a set
randomly chosen baths with fixed dimension. The ins
show the distribution for the lowest bin. The vertical ax
denotes the percentage of baths~the interval@0%,100%# is
given as the interval@0,1#) for a certain distance and rate
We observe that the diagonal rate distribution is very bro
and therefore the mean of the distribution is not a very go
~or a very stable! measure of the generic behavior. Furthe
more, we find that the rate in the diagonal sector is mu
worse than in the nondiagonal sector and thus is the do
nant factor in setting the mixing time. This conforms to t
pattern in many quantum systems, for example for nucl
spins as observed by NMR, for whichT1 is generically
larger thanT2 @33#.

To study the dependence onb and on the dimension o
the bath versus the dimension of the system, we compute
following data. We pick a system HamiltonianHs of n qubits
that has some well spread out spectrum. We set the dim
sion of the bath and then we randomly pick both the b
Hamiltonian and the interaction Hamiltonian. Means are
noted as@•#Mb . For the rates we look both at the mean a
the median. The median is denoted as@@•##Mb ; see Fig. 5.

FIG. 3. An example of an unsuccesssful equilibration
n51, k53, andb53.
FIG. 4. An example of the distribution of baths~500 samples! for n52, k53, andb52.
1-15
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FIG. 5. Means and median forn51 ~500 samples!.
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The results forn51, 2, 3, and 4 are shown in Figs. 5–8. W
have given the median when the mean does not give a g
representation of the distribution.

These data clearly indicate that larger baths improve
process of equilibration, both in the rates~D and ND! as well
as in the closeness to the equilibrium state. The effects
the most pronounced at low temperature, where equilibra
is in general harder as the system must relax to a single
ground state. To understand the closeness scale, we sho
Appendix A how far apart two arbitrarily chosen dens
matrices are; this number lies around 1 for the dimensi
that were considered. For these estimates, we see a
towards approximations getting worse for larger system s
for low temperature. The scaled rates@RD̄#Mb

and@RND̄#Mb

seem to be fairly constant; thus we see behavior that sugg
that the rates are polynomially related to both system
bath number of qubits. We also observe that the nondiag
rate ~ND! is always higher than the diagonal rate~D!. The
data show a system Hamiltonian dependence; that is,
average equilibration forn54 seems to be more success
than forn53. We also observe that the difference betwe
T1 and T2 becomes smaller with increasingb ~lower tem-
perature!. Now we can try to give some answers to the qu
tion that were posed in Sec. II B@above Eq.~2.13!#. The
parameterst andl are grouped together in a single effecti
couplingc(t). This effective couplingc(t) should be small
such that the perturbative approach is valid. How should
choose the value of parameterr, the number of iterations?
This depends on the three quantities plotted in the figu
the trace distance, and the rate in the diagonal and the
diagonal sector. An efficient equilibration would correspo
to the process in which, while using a bath that is polynom
02230
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ally related in size to the system, both the rates are poly
mially related to the number of system qubits and the tr
distance is a small constant.

Now, if we extrapolate the data to large systems we c
see that if we pick a bath size~in number of qubits! that is
polynomially related to the system size~note that the numbe
of eigenvalues is thenexponentiallyrelated!, the rates of re-
laxation are polynomially related to the system size~in qu-
bits!; in fact, we find that the scaled rates are constant. T
behavior we do not find for the scaling of the trace distan
When we choose a polynomial relation between system
bath size, the data suggest that the relaxed state could st
fairly far away from the true equilibrium state for large sy
tem sizes.

In choosing the HamiltoniansHb , S, andB one should try
to optimize for energy matching. The numerical data sh
that choosing a large bath is beneficial for equilibration. T
constraint that the bath consists of a set of uncoupled qu
does not seem to impose a serious restriction on the eq
bration process. We believe, however, that, whenHb corre-
sponds to a set of uncoupled qubits and the HamiltoniaB
does not couple these qubits, i.e.B5( iBi where eachBi acts
on a single qubit, then the equilibration process might
somewhat impaired. The reason is that the pairs of ene
levels in the bath for whichuBi j u2 is nonzero are then re
stricted to the energy levels for each qubit separately. T
number of matching energy-level pairs for ann-qubit bath is
thus n. For a general interaction termB it will be O(2n).
This can lead to quite different dynamics.

III. EQUILIBRATION II

We present an alternative to the algorithm in Sec. II. T
algorithm relies on the technique for the estimation of eig
FIG. 6. Means forn52 ~200–500 samples!.
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FIG. 7. Means forn53 ~50–100 samples!.
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values, originally given in@2# ~see@37,38#!. This eigenvalue
estimation routine has also been used as a building bloc
an interesting quantum algorithm in@19# and @39#.

Let Hs be ad-local Hamiltonian with nondegenerate e
genvalues as in Sec. II.

Definition 2. Equilibration algorithm II.

~1! Initialize the system in the~infinite temperature! com-
pletely mixed state1N . Also add onem-qubit register set to
u00 . . . 00&^00 . . . 00u. This last register will be used to com
pute anm-bit estimate of an eigenvalue.

~2! Compute eigenvalueswith the use of the Fourier trans
form anddephasein the computational eigenvalue basis.

Let U be the eigenvalue computation routine, i.e.,

~3.1!

whereusn& is anm-bit estimate of the eigenvalueEn defined
by Hun&5Enun&. The dephasing is a simple superoperatorD
on the eigenvalue register that operates as

D~ usi&^si u!5usi&^si u, D~ usi&^sj u!50. ~3.2!

The total transformation maps

D~U~1N^ u00 . . . 0&^00 . . . 0u!U†!

5 (
n50

N21

(
s50

2m21

p~n,s!un&^nu ^ us&^su, ~3.3!

where p(n,s) is a probability distribution, peaked ats
;2mEn for largem.
02230
in
~3! Preparean additionalN-dimensional quantum system

the bath, also in1N . Add a m-qubit register and one qubi
register set tou00 . . . 00&^00 . . . 00u.

~4! Compute eigenvaluesof the bath as for the system i
step 2.

~5! Interact the system and bath according the followin
rule R ~‘‘partial swap’’!:

URun,m&u0&us,t&

5H um,n&u0&us,t& if t,s,

~pst
b/2um,n&u0&1A12pst

b un,m&u1&!us,t& if t>s,

~3.4!

where pst
b 5e2b(t2s). Here un& and us& are registers of the

system andum& and ut& are registers of the bath.
~6! Traceover the single-qubit register, all bath registe

and the eigenvalue register of the system. The system wil
in some state

rs5(
n

anun&^nu. ~3.5!

The steps 2–6 define a TCP mapS, S(1N)5rs .
~7! Repeatsteps 2 –6 r times such that

iS r 11~ u000 . . . 00&^000 . . . 00u!

2S r~ u000 . . . 00&^000 . . . 00u!i tr<e, ~3.6!

for all r>r 0 ande is some accuracy. j
The advantage of this algorithm is its simplicity and

similarity to a classical algorithm; we create a Markov cha
FIG. 8. Means forn54 ~15–20 samples!.
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in the eigenbasis of the system. The disadavantage of
algorithm is that it is very likely to be slow; the computatio
of the eigenvalues to high accuracy with the use of the F
rier transform can take exponential time in the number
qubits of the system. This routine has to be performed tw
for the system and bath, in each round of the chain. First
us show that in the case when the eigenvalues are comp
exactly in steps 2 and 4, i.e,p(s,n)5d2mEn ,s /N, the Mar-
kov chain equilibrates the system. Recall@37# that the rou-
tines of steps 2 and 4 compute rescaled eigenvalues

En85 f 1En1 f 2 , ~3.7!

with f 1 and f 2 depending on the maximum and minimu
eigenvalues~of which we assume that we can find an es
mate! such thatEn8P@0,1). In the following we will drop
these primes. The chain that is created can be represent

(
n

an
(k)un&^nu, ~3.8!

wheream
(k)5(nan

(k21)Pn→m . We have

Pn→m55
1

N
if Em,En ,

1

N F11 (
Ek>En

~12pnk
b !G if Em5En ,

1

N
pnm

b if Em.En .

~3.9!

Note that (mPn→m51 as required. The equilibrium stat
Eq. ~1.1!, obeys the detailed balance condition

; n,m Pn→me2bEn5Pm→ne2bEm. ~3.10!

All the matrix elements of the Markov matrixPn→m are
nonzero. Therefore the chain will have a unique fixed po
which is equal to the equilibrium state due to detailed b
ance. Thus for all probability distributionsan we have

lim
k→`

(
n

anPn→m
(k) 5

e2bEm

Z
. ~3.11!

Notice that it is not hard to prepare the initial states of
system and bath. One way to make the completely mi
state 1N is to make a maximally entangled sta
(1/AN)( i 50

N21u i &u i & and trace over the second register. Th
takesO(n) steps. The partial swap in step 5 can be imp
mented withO(n) elementary qubit steps. The dephasing
step 2 is introduced to keep the form of the algorithm cle
but it does not affect its output. This dephasing is imp
mented by measuring the eigenvalue register in the com
tational basis and discarding its answer. When using anm-bit
eigenvalue register the joint probabilityp(n,s) in the first
round ~after step 2) is equal to
02230
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p~n,s!5
1

NU 1

2m (
l 50

2m21

e2p i l (En2s/2m)U2

. ~3.12!

Whenp(n,s) is not ad function on the eigenvalue, the Mar
kov chain will still be in the eigenbasis of the system; it w
be a concatenation of chains. The transition probability
this new chain is

Pn→m8 5(
s,t

p~s u n!Ps→t p~m u t !, ~3.13!

where p(sun) is a conditional probability, defined by
p(n,s)5p(sun)p(n), and Ps→t is the exact chain@when
p(sun)5d2mEn ,s#. Note that(sp(sun)51, so thatPn→m8 is a
stochastic matrix. Let us make a few remarks about the
havior of such an approximate equilibration process. If t
new Markov chain is close to the exact Markov chain, w
can bound the deviation from the exact fixed point with p
turbation theory@40#. Let

Pn→m8 5Pn→m1Enm , ~3.14!

whereEnm is a deviation matrix defined by Eq.~3.14!. Let
rD5rs,b8 2rs,b wherers,b8 is the fixed point of the Markov
chain Pnm8 . Assume thatP is diagonalizable. LetY be the
matrix defined as

Y5~12P1P(`)!212P(`), ~3.15!

whereP(`) is the infinite iteration ofP. We can writeP(`)

5diag(1,0, . . . ,0) in thebasis where the stationary staters,b
is an eigenvector. In this basis, with diagonalizability,P is of
the form diag(1,l2 , . . . ,lN). We can then write

Y5diagS 0,
1

12k
, . . . ,

1

12lN
D , ~3.16!

wherek is the the absolute value of second largest eig
value. For later use we note that the nor
uuuYuuu251/u12ku. It is possible to write the deviationrD in
terms ofY andE:

rD5~12YE!21YErs,b , ~3.17!

whenE is small enough such that12YE is invertible. This
expression can be derived fromP(`)rD50, which follows
from the uniqueness of the stationary stater. We now use

irDi tr<ANirDi2 , ~3.18!

as in proposition 3. Then using the expression forY, Eq.
~3.17! and Eq.~3.18! @see also below Eq.~2.37!# we can
bound

irDi tr<CN Tr rs,b
2 S 12

uuuEuuu2
u12ku D

21 uuuEuuu2
u12ku

<CNS 12
uuuEuuu2
u12ku D

21 uuuEuuu2
u12ku

. ~3.19!
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Thus the size of the correctionrD will be determined by the
strength of the perturbationuuuEuuu2 and the rate of conver
gence of the original Markov chainP.

For a generalHs , the computation of anm-bit approxi-
mation of the eigenvalues can cost an exponential~in m!
number of elementary gates. As there are 2n eigenvalues,
knowing them5 log2 poly(n) bits of the values ofEn still
leaves groups of 2n/poly(n) eigenvalues indistinguishable

Thus only in very special cases, if the gatesUs
2m

can be
implemented with a polynomial~in m) number of elemen-
tary steps~as in Shor’s factoring algorithm@1#!, is it possible
to compute the eigenvalues to high accuracy efficiently.

We have demonstrated a way to set up a Markov chain
a quantum computer that will converge to the equilibriu
state for long enough time. For special Hamiltonians, th
might be more efficient ways to tune and modify this kind
algorithm. The ruleR might be chosen to depend on oth
features of the eigenstatesun& and um& as in the classica
Metropolis algorithm where transitions are made betwe
states that are related by local spin flips. There might
Hamiltonians for which the calculation of an eigenvalu
given the eigenvector, is efficient.

IV. „TIME-DEPENDENT … OBSERVABLES

Given that we have preparedn qubits in the equilibrium
state corresponding to a certain HamiltonianHs , we can
then proceed by experimenting and measuring. The simp
measurement that we could try to perform is the estima
of the expectation value of ad-local ~Hermitian! observable
O:

^O&s5Tr rs,b O. ~4.1!

As O is local, we writeO5( i 51
poly(n)Oi where each operato

Oi operates on a Hilbert space of constant dimensiond. We
can calculate the eigenvectors and eigenvalues of eacOi
rapidly on a ~possibly! classical computer, which take
poly(n,c) operations. IfOi has eigenvaluesm i that are both
smaller as well as larger than zero, we defineOi

1 as

Oi
15

1

max
k

mk1umin
k

mku
~Oi1umin

k
mku1! ~4.2!

such thatOi
1 is positive semidefinite and has eigenvalu

smaller than or equal than 1. IfOi has only positive or zero
eigenvalues, we just ‘‘normalize’’ the operator by dividin
by maxk mk , and similarly if O has only negative eigenva
ues. Let I be a positive operator valued measurem
~POVM @41#! with operation elementsA1,i andA2,i and cor-
responding outcomes 1 and 2 such that

E1,i5A1,i
† A1,i5Oi

1 , E2,i5A2,i
† A2,i512Oi

1 . ~4.3!

This measurement will give outcome 1 with probability

p1,i5Tr Oi
1r, etc. ~4.4!

The operatorsA1,i andA2,i are given by
02230
n
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n
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A1,i5Ui~diagO
i
1!1/2Ui

† and

A2,i5Ui~12diagO
i
1!1/2Ui

† , ~4.5!

where diagO
i
1 is the diagonal form ofOi

1 andUi the diago-

nalizing matrix. We summarize these results in a propositi
Proposition 5. The estimation of TrrO where O is a

d-local observable with precisiond and error probabilitye
and rPBpos,1(HN) (N52n) takesTO„ln(1/e)/d2

…poly(n,c)
operations whereT is the time to prepare the stater.

Proof. All commuting observablesOi can be measured
once for a single preparation ofr. To estimate a probability
p with precision d and error probability e we need
O„ln(1/e)/d2

… samples@42#. j
More interesting is an algorithm to estimate tim

dependent expectation values. LetO1 andO2 be twod-local
observables. We consider how to estimate a time-depen
quantity @identical to Eq.~1.10!#

Tr rb @O1 ,O2t#, ~4.6!

where O2t is in the Heisenberg representation. Notice th
O2t , the time-evolved operator, will for generalt not be
local. Thus we cannot use proposition 5. The way th
quantities come about in linear response theory@11# provides
the key for how to estimate them on a quantum compu
One considers a system that is perturbed at some initial t
t50: its time evolution is generated by the perturbed Ham
tonian Hs1lO1(t) @O1(t,0)50# and l is small. After
time t we consider the response of the system to the per
bation by measuring another observableO2. Notice that with
proposition 5, it is simple to perform this experiment. Line
response means that we take into account corrections o
der l, but no higher order, in the estimation of

d^O2&s5Tr O2r t2Tr O2rb , ~4.7!

where r t is the time-evolved system density matrix. Th
first-order correction takes the form@36#

d^O2&s' ilE
0

t

dt8 Tr rb @O1~ t8!,O2t2t8#. ~4.8!

If the disturbanceO1(t)5O1d(t50), we find on the right-
hand side the correlation function of Eq.~4.6!. The quantity
of Eq. ~4.6! is interesting, because it can be used to comp
the simplest reponse of the system, the linear response o
~4.8!, which we can directly estimate on our quantum co
puter, provided that bothO1 andO2 are local. But we are of
course not restricted to a linear response regime:l is a pa-
rameter that we can tune freely. A sequence of measurem
could determine higher response functions that will invo
quantities such as

^O1t1
O2t2

O3t3
•••Oktk

&s . ~4.9!
1-19
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V. CONCLUSION

It seems that by asking the question of how fast real qu
tum systems equilibrate, we have opened a Pandora’s bo
hard-to-answer questions. If there are many simple quan
systems in nature that equilibrate slowly~that is,not in poly-
nomial time! by any dynamics that does not require exte
sive preknowledge of the system, then it would be unreas
able to ask our quantum computer to perform this ta
efficiently. By relaxation in polynomial time we mean th
following: in polynomial time inn and 1/e we obtain a state
that is withine trace distance of the equilibrium state whe
e is a small constant. It might be the case that leaving as
the classical phenomenon of frustration, relaxation doesnot
take place in polynomial time. The idea here is that fo
quantum system, the eigenbasis is not known beforeh
but must be singled out on the basis of an estimation of
eigenvalues, which is generically a hard problem.

This, however, is not in contradiction with physical an
experimental reality as we know it, as the quantities that
measured in an experimental setup usually involve opera
on a small number of qubits; these are the experiments
can be done efficiently~in polynomial time! and thus do not
necessarily probe the system’s complete state. For exam
the outcomes of the set of measurementss i 1

^ s i 2
^ •••

^ s i n
wheres i j

is one of the Pauli matrices or1, completely

determines the state, but there are 4n measurements in thi
set. In an experimental setup, we might randomly selec
polynomial subset of them and there is some small chanc
order poly(n)/4n that these are the measurements that dis
guish the equilibrated state from the present state in the la
ratiry that is supposed to approximate it. The estimates
time-dependent correlations could possibly be more sens
to distance from equilibrium, as these involve time-evolv
nonlocal operations. The numerical study suggests that p
uct baths whose size is polynomially related to the sys
can function as adequate baths in the sense of providing
laxation in polynomial time. The relaxed state could still be
rather rough approximation to the true equilibrium state,
as we argued above, it might be a good starting point
subsequent measurements.

We have taken the bath to be part of the~cost of! the
quantum computer. In any experimental setup, there
natural bath that is used to equilibrate and cool the quan
computer. Can we use this bath for a computational prob
such as equilibration? Consider for example the NMR qu
tum computer@18# where computation takes place at roo
temperature. In the regime in which the heat bath has a n
Markovian character it has been shown to be possible to a
the Hamiltonian of the system and the coupling to the b
dynamically ~see @43#, but also standard books on NM
@33#!. These techniques could make it possible to simu
the time evolution of a ‘‘designer’’ Hamiltonian and also
equilibrate the system to the equilibrium state of this d
signer Hamiltonian.

Finally, we have taken steps in developing a theory
quantum Markov chains for quantum computational p
poses. It will be interesting to bring this theory to the ne
level. For example, we can try to define the notions of ir
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ducibility and ergodicity for these quantum Markov chain
One of the essential question is then, can we find quan
Markov chains that are rapidly mixing for interesting com
putational problems for which no good classical algorith
are available? Such a problem could for example be a p
lem of equilibration for a specific HamiltonianH. In this
study we have laid the ground work for this future resear
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APPENDIX A: NORMS

In this appendix we give the definitions of several norm
and inner products. The inner product between vectors
CN2

can be represented onB(HN) as

^x1ux2&5Tr x1
†x2 . ~A1!

The trace norm@34,35# is defined as

iAi tr5TrAA†A. ~A2!

What makes this norm attractive is that it captures a mea
able closeness of two density matricesr1 andr2 @35#:

ir12r2i tr5max
A

(
j

uP1
A~ j !2P2

A~ j !u, ~A3!

whereP1
A and P2

A are the probability distributions over ou
comesj that are obtained by measuring observableA on r1
andr2. The matrix normuuu•uuu2 is defined as

uuuAuuu25 max
x:ixi251

iAxi2 . ~A4!

where i•i2 is the Euclidean norm onCN2
: A^vuv& for uv&

PCN2
. We have

iAxi2<uuuAuuu2ixi2 . ~A5!

In order to aid in the interpretation of the numerical results
Sec. II G, we present some numerical estimates for the a
agei•i tr distance of two randomly chosen density matric
We first have to choose a measure overBpos,1. All density
matrices can be written asr5( il i u i &^ i u with ( i 51

N l i51.
The eigenvalueslk lie on a (N21)-dimensional simplexS
in RN. We use the Euclidean metrici•i2 induced on the
simplex. The Haar measure on the group of unitary matri
U(N) induces a uniform measure on the set of project

$u i &^ i u% i 51
N2

. Together this defines a measureMBpos,1
@44#.

Within this measure, one can express the average dist
1-20
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between two density matricesr1 and r2, using the unitary
invariance ofi•i tr , as

@ ir12r2i tr #MBpos,1

5
1

Vol~S!2V„U~N!…
E dUE

0

1

dl1•••dlk

3E
0

1

dm1•••dmkdS (
i

l i21D dS (
i

m i21D
3TrU(

j
l j u j &^ j u2U(

j
m j u j &^ j uU†U. ~A6!

The values obtained by a numerical calculation of Eq.~A6!
are tabulated in Table II.

TABLE II. The average distance between two randomly
lected density matrices.

dim Mean Standard error5Avar/(n21), n51000

4 0.90388 0.00740588
8 0.96190 0.00514057
16 1.00294 0.00341226
32 1.01452 0.00220363
64 1.02617 0.00132233
y

o-

W

ui-
-

th
ls.
pr
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APPENDIX B: PREPARATION OF THE BATH

To prepare the state

rb,b5rb,b
1

^ •••^ rb,b
k , ~B1!

given Hb5( i 51
k 1K/2^ hi , we first calculate the eigenvalue

and eigenvectors of each qubit Hamiltonianhi . We prepare
the state

)
i 51

k

~e2bei ,0u0&^0u1e2bei ,1u1&^1u!/Zi . ~B2!

with $e0,i ,e1,i% the eigenvalues of qubit Hamiltonianhi . This
can be done by changing an initial stateu0&^0u with prob-
ability e2bei ,1/Zi into stateu1&^1u for eachi. We then rotate
each qubit to its eigenbasis$ubi0&,ubi1&%:

^ i 51
k Ubi

5 ^ i 51
k ~ ubi0&^0u1ubi1&^1u!. ~B3!

In total we perform 2k elementary qubit operations plu
some constant classical overhead.
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