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Time-of-arrival distribution for arbitrary potentials
and Wigner’s time-energy uncertainty relation
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A realization of the concept of “crossing state” invoked, but not implemented, by Wigner, allows advance-
ment in two important aspects of the formalization of the time of arrival in quantum mechéni€sr free
motion, we find that the limitations described by Aharoreival. in Phys. Rev. A57, 4130 (1998 for the
time-of-arrival uncertainty at low energies for certain measurement models are in fact already present in the
intrinsic time-of-arrival distribution of KijowsklI ; (ii) we have also found a covariant generalization of this
distribution for arbitrary potentials and positions.

PACS numbds): 03.65.Ca

In spite of the emphasis of quantum theory on the concepiinder time translations, IT(T—t";X;y(t,+t'))
of “observable,” the formalization of “time observables” is =TT, (T:X;y(t,)). For other properties sd&,3,7].
still a major open and challenging question. The “arrival  |n this paper we study two major aspects of this distribu-
time” has in particular received much attention in the lasttion that to our knowledge had not been addres$g@dror
few years(see[1] for a recent review Considering several states with positive or negative momenta we shall obtain the
candidates proposed for the time-of-arrival distribution in thestates of minimum time uncertaintfor given energy width
simple free-motion, one-dimensiondlD) case, some of us and find the same type of limitation pointed out by Aharonov
have recently arguef®] in favor of a distribution originally et al. [8]; (ii) we shall also generalize E¢) for arbitrary
proposed by Kijowsk[3], ITx , because it satisfies a number potentials.
of desirable conditions. To handle conveniently these two issues let us first elabo-
This distribution can be associated with a positive operarate on the form ofl,. For a=+ the contribution in Eq.
tor valued measur¢POVM) and obtained in terms of the (2) can be interpreted as a quantum version of the positive
eigenfunctions|T,a;X) (a=*) of the time-of-arrival op-  flux at the timeT+t, due to right-moving particles. Simi-
eratorT introduced by Aharonov and Bohf#] larly, for a=—, one has a quantum version of minus the
negative flux due to left-moving particles, again a positive

- . 1 1., quantity. Explicitly,
Foo g @05 2@ &
My o(T)=((T)|(|Pl/m) 20 (ap) (@~ X) O (ap)
(T3 ()= 2 [(T,a X[t @ (Pl g(T)), @

, , . where §(q—X)=|X)(X|. The positive operator in Eq4)
(we consider here the general 1D case with both positive a”Qorresponds to the classical dynamical variable

negative momenta as j&,5,6]) wheremis the massX is the
arrival point,q andp are position and momentum operators,

and 5(q—X)%p®(ap), 5

T, a;X) =T (|p|/m) Y20 (ap)| X). (3)

whose average represents the modulus of the flux of particles
(The operator|p|*? is defined by its action on momentum of the classical ensemble that arriveXafrom one sideat a
plane waves,|p|Y4p)=|p|¥qp).) M(T;X;y(t,)) repre- given time. This connection was pointed out by Delgado
sents the probability density of arriving &t at the instant [9,10]. There are, of course, many possible quantizations of
T+t,, i.e., aninterval of timd after the reference instahit ~ this quantity but the symmetrical one in Ed) turns out to
when the wave packef(t,) is specified[Typically one sets be the only one that satisfies the symmetry and minimum
t,=0 so thatT is the “nominal arrival time.” In short variance properties dfly .
notation, I (T)=IIx(T;X;#(t,=0)).] This distribution It is useful to write the positive operator in E@) in the
satisfies in particular the importamtovariance condition form |u,)(u,|, where
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lu,)=|T=0,a;X) (6) measurement that modifiggt).] The moments oP(t) are
defined in the usual way, and in particular tbecond mo-
is the “crossing state.” As emphasized [i], its literal in-  ment with respect togtis defined as
terpretation is problematic because it is not normalizable.

Only normalized wave packets peaked around these states o 5 5
have properties as close as desired to the sharp crossing be- ffml)((t)' (t—to)=dt
havior expected on intuitive grounds. = (7)
Let us first discuss the poifi) related to the time-energy ” 2
: e . o : |x(t)|dt
uncertainty principle. Since the Hamiltonian and the time _e

operator(1) are conjugate variables a minimum uncertainty
product can be established in the usual fash@nHowever,  The information contained ig(t) can also be encoded in its
Aharonovet al. have proposed, based on a series of modelszqyrier transform,
a second limitation on the possible values of the time-of-
arrival uncertainty:st E,>#%, where 6t is the width of the
“pointer variable” used to measure the arrival time, dfg n(E)Eh‘l’zj
“the typical initial kinetic energy of the particle[8]. It is to -
be stressed that this relation is based on measurement models ) ) ) )
for the arrival time where some exttelock) degree of free- The conjugate variabl& has dimensions of energy, but
dom is coupled continuously with the particle. We shall see?7(E) is not, in general, an energy amplitude in the conven-
that in fact the “intrinsic” distributionII, (there is no ex- tional sense. and the conventional energy amplitude of
plicit recourse to additional pointer degrees of freedom to#(t=0), can be related by expanding(t) in a basis of
define I1y) is consistent with the behavior that Aharonov €Nergy eigenstate&, a),
et al. described for their models8].

There are many other time-energy uncertainty relations
[11], but here we shall be mainly interested in the version of n(E)= hl/z; (U[E,@)(E,al(0))O(E). ©)
Wigner[12], because his formalism is particularly suited for
the time of arrival. In his original paper Wigner did not con- L

oo

x(t)e'Edt, (8)

: : . S - . n a general case is an index to account for the possible
sider in detgll any application _ar_1d described a variationa egeneracy. In particular, for free motiom=*, and
method to find the states of minimum uncertainty product,
but did not actually obtain these states, except in two ana- m
lytically solvable casegl2]. We shall extend Wigner's work |E,a)= (_
in several directions by evaluating the states of minimum 2E
uncertainty product and applying the formalism to the arrival
time. For completeness we shall next briefly summarize thénalogously to Eq(7) the second energy momewith re-
main results obtained by Wigner [i12], and add a number spect to E is defined as
of comments and observations relevant for our application.

1/4
|p=a(2mE)Y?). (10)

He defines the basic amplitude &)= (u|(t)), where 0 ) )
|u) is in principle any state vectofWigner’s formalism en- fo | 7(E)|*(E—Eo)*dE
compasses many different time-energy uncertainty products, = - (12
depending on théu) chosen, each with its own physical f | 7(E)|2dE
interpretation). Note thatt is considered the independent 0

variable ofy, and|u) is fixed.|u) is not necessarily a Hil-

bert space normalizable vector. It may also be, for exampleNeither ty nor E, should in general be identified with the

a position or a time-of-arrival eigenvector provided the mini-average values of time and energy. They are instead refer-
mum uncertainty product state obtained is square integrablence parameters fixed beforehand to evaluate the moments.
P(t)=|x(t)|?/ S~ .| x(t)|?dt plays the role of a normalized As a consequence? and 7* should not in general be iden-
distribution for being found iu) at timet. This is not a tified with the “variances” AE)? and (At)?, which are the
standard quantity in the ordinary formulation of quantumsecond moments with respect to the average values.
mechanicgwhich assigns probabilities only at fixed tirig Sincen(E) andx(t) are Fourier transforms of each other
but the interpretation is consistent with the ordinary formu-the uncertainty producér is greater thark/2 (a peculiarity
lation in the following way: Here “being found” implies of time and energy with respect to position and momentum is
operationally to perform measurements|of(u| at a given that the equality is never satisfi¢d2]). In fact the bound
time t for the members of an ensemble prepared’att increases substantially &%, decreases. Wigner sought the
according tay(t"). This is repeated at different times but the function #(E) that rendersr to a minimum for fixede. In
ensemble is always prepared anew’anith the same speci- order to have a finite second momert 7(E) must vanish
fications. The distribution of positive counts as a function ofat the origin »(0)=0, so » must vanish at both ends of
time is proportional to|(u|(t))]?, and P(t) is obtained integrationE=0s. Using partial integration and the nota-
when this distribution can be normalizédhich is not al-  tion 7,= e 'Elo’* (Wigner showed that the minimum ot
ways the cage[P(t) does not correspond to a continuous must correspond to a reagl,), one finds that
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hZJ |0mo(E)/IE|2dE
0

7_2

= - (12
IRZCRE

The productr?e? subject to the constraint of fixed? is

minimized by variational calculus. This leads, using Egs.
(11 and(12), to

!

(927;
2 o+_2(E_Eo)2770:(7'2+)\’)770, (13 <E>/e
€

—h
JE?

FIG. 1. e7 (in a.u.,A=1) vs(E)/e for the states of minimized
where\ ' is a Lagrange multiplier. This equation is formally uncertainty productdashed ling e/(E) (solid line).
similar to the Schwdinger equation for the harmonic oscilla-
tor, except for the boundary condition Bt=0, 7,(0)=0, the same ratidEy/e have in common the same value of
and the subsidiary condition fer, Eq.(11). The minimumr  (E)/e. Figure 1 showsre vs (E)/e for the states of mini-
is obtained from the lowest eigenvalue corresponding to th&ized time-energy uncertainty product. For comparison we
value of " where the subsidiary condition is satisfied. For-also show the curve/(E). Clearly
tunately the solution depends only on the rafig/e,
namely, 7(E;Eq;€)=g(E/€;Eq/€), whereg is the solution >hI{E), (14
of Eq. (13) with e=1. Note also that, sindey,|?=|7|?, the
value ofty does not play any role in the minimization pro- which has the samform as the relation proposed by Aha-
cess.[Physically the stateyo(t) corresponding tdy=0 is  ronov et al. based on measurement modggd$ However,r
valid for any other timet, by a shift of the argumerjtThe is not due to the effect of any measuring apparatus, it is an
minimization of 7 for fixed Eq/e requires a method to solve intrinsic uncertainty associated with an intrinsic time-of-
the differential equatio(13) for many different values of arrival distribution. It is not the coupling introduced in a
\', until €2=1 is satisfied. In our calculation the successivemeasurement between the particle and other degrees of free-
values\’(n) have been obtained with a Newton-Raphsondom that leads to this relation but the very quantum-
algorithm, and the lowest eigenstate and eigenvalue of Eqnechanical nature of the particle alone and the lower bound
(13) for each\’(n) are obtained with a very efficient “re- of the energy.
laxation method[13]. To elaborate the figur&,/e has been increased regularly
The only explicit case considered in the original paper byfrom the minimum possible value 1. (For smaller values it
Wigner was|u)=|X). The correspondind®(t) provides a is impossible to satisfy the subsidiary conditipfor each
time distribution for thepresenceof the particle aiX but not  value the minimization ofre is performed and the corre-
for its arrival. In an intriguing “general observation,” sponding(E)/e is obtained. AJE)/e— o the minimum un-
Wigner stated that, instead of asking for the probability thatcertainty product tends to theloba) minimum #/2, the
the particle be at a definite landmark in space, just at the timeame value found for position and momentum, because the
t, “it would be more natural to ds. .. for theprobability effect of the lower bound of the energy tends to disappear in
that the particle crosses the aforementioned landmark at thteat limit, and »(E) gets closer and closer to a Gaussian
time t from the left, and also that it crosses the landmark, atentered aE, with variancee? [12]. However, in the oppo-
a given time, from the right.” But the paragraph ends withsite limit the lower bound aE=0 plays an important role.
“This point. .. interesting though it may be, will not be Indeed,(E)/e—0 corresponds to the limE,/e——1, and
elaborated further.” Precisely, it is our aim here to elaboratehe only way to satisfy the constraint is by strictly localizing
further on this question. Indeed the probabilities mentioned,(E) atE=0 (AE—0), but this completely delocalizes the
by Wigner can be obtained by means of the crossing statasonjugate time variable, namely—o. Thus, Eq.(14) ap-
lu;) and|u_) discussed before, see H§). Specializing to  pears as a consequence of the ordinary uncertainty principle,
states having only positive-negative momentdir ,(t) due to the tendency of the minimum uncertainty product
=Ku,lg(t))> provides the arrival time distribution at  states to have smaller variances for smaller energigse
Consideringx(t)=(u,|¢(t)), we see that Wigner's prob- precise dependence for arbitrary valuesEgf/e has to be
ability density is nothing but Kijowski’'s distributiorP(t) obtained numerically.
=My ,(t)=|x(t)|%. Moreover, the Fourier transform of  The second question we shall address in this paper is the
x(t) is in this case up to a phase factor the standard energyeneralization of the free-motion distributi@®) for arbitrary
amplitude, 7(E) =(E, a|#(0))exdiX(2mEY?#], so thate  potentials and position& previous attempt was only appli-
becomes the spregdroundE,) of the ordinary energy dis- cable to asymptotic positions where the motion is essentially
tribution. free[14]). A generalization based on a quantization of clas-
For a given ratioEy/e there is a minimum value ofe. sical expressions as in E{L) is problematic: the classical
The family of states of minimal uncertainty(E;Eg; €) with expressions for the time of arrival will rarely be analytical,
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not all phase-space points lead to arrival, and the ordering
problems may be formidable. The way out though, will be
surprisingly simple in terms of crossing states.

There is in fact nothing that limits E@5), and the corre-
sponding operator in E@4) to free motion. In particular, the
classical motivation for considerirlg,) a “crossing state”
is equally valid when an arbitrary potential is present. The
state(3) may be regarded as one that has evolved “back-
wards” with H, a timeT from the crossing statel,,) so that o o
it becomesju,) precisely at the nominal arrival tim€. In at © o
the same vein we construct for an arbitrary Hamiltorti&n o

(@

T, Xy =e"T"u,), (15 oo

so that at the nominal arrival timg |u,) is recovered. The t
generalization of the arrival time distribution for arbitrary
potentials is therefore 08

-~ )

(T X ()= Kuale T2yt ). (16)

[As we have done fordly, it is convenient to use the
short notations I14(T)=I14(T;X; ¢(t,=0)), or II4(t)

=3 (u,|¥(1))[2.]Itis evidently covariant under time trans-
lations as it should; in general it is not normalized, and it
may be unnormalizabléts classical counterpart shares these
propertie$. For example, it may be constant for stationary
states, or periodic for oscillating coherent states in a har-
monic potential, but it provides in any case relative informa-
tion by comparison of two times. Consistent with this, the ~ -02/ 05 ; 15
states|T,a;X)y do not form in general a complete basis. 1

One important property for its interpretation is that its clas-
sical analog(the sum of the absolute values of positive and 3
negative fluxestakes into account any crossingsot only e (©
first, or las}. .

In order to have a better grasp of the meaning of our I
generalization, we portray in Fig. 2 several aspects of the *
collision, in a tunneling regime, of a Gaussian wave packet . .
with a square barrier. In Fig.(2 we show the two compo- .
nents oflly (11 , andIl ), and the current densityas Ty *
functions of timet at a position in front of the barridr.e., on .
the incident side J andIly , —II,; _ are very close numeri- . .
cally, and the situation would be identical to the free case, o U
were it not for the hump idl _ (in this hump—II, _ and
J are essentially coincidentwhich corresponds to the re-
flecting wave packet, traversing the reference point after the X )
collision. In Fig. Zb) we see the various distributions at the 0 0.5 1 15
center of the barrier, in the interacting regime. There is a
delay between the maxima of , andIl_, due to the fact

thatTl_ is mostly associated with the reflection. FIG. 2. (@) Current density(circles, I, (solid line), andTI_
As to Fig. 4c), corresponding to a position after the bar- (jong-dashed lingbefore the barrierX=8) for a collision with a
rier, the maximum ofl , is brought forward when compared square barrier of energy 40 located between12 and 12.5(all
to the free case, in accordance with the well-known Hartquantities in a.). The initial state {=0) is a minimum position-
mann effect[15]. Additionally, J, I1,, andIl, —II_ are  momentum uncertainty product Gaussian wif)=(p)=5, and
indistinguishable in the scale of the figure. Well after the((g—5)% =1, for a particle of mass=1/2. (b) Same aga), but
collision has occurred the wave is monochromatic over manyt the barrierX=12,25. Also depicted arH , +11_ (dotted-dashed
periods, so the difference betwekh, —I1_ andJ tends to line), andIl, —II_ (short-dashed line (c) Same aga), but after
vanish. In this “classical” limit the different quantization the barrierX=15.I1_ is negligible in this scale. Also depicted are
orderings chosen for the momentum in the corresponding!l+ andJ (indistinguishablgfor free motion(dotted line.
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operators is irrelevar{since in each expectation valpecan  are usually designed to compute only the first arrival, not
be substituted by a numbei\s a consequence, the analysis several crossings. Moreovély aslIly [2] ignores the inter-
performed withJ that describes the asymptotic particle pas-ference components of the density operator between positive
sage in terms of “phase times” is still valid fdil,, see, @and negative momenta. Thus, an experimental test for an
e.g.,[15,16, andJ or [T, may be very close to the absorp- arbltra_ry state_ghould be abI_e to effectively perform a col-
tion rate of ideal detectors, as shown iY]. Contrast this to lapse into positive and negative momentum components.

the quantum regime at the barrier, FigbR whereJ and One of us(J.G.M) acknowledges C. R. Leavens for help-
Iy + —1IIy - are clearly different. An interesting challenge ful discussions. This work was supported by Gobierno Au-
is the actual measurement of these quantities in the barrigbnomo de Canaria@B/95, Ministerio de Educacioy Cul-
region. Testing experimentally the predicted value$lgf.  tura (PB97-1482, and Canadian European Research
may be much more difficult there, since standard detectorhkitiative on Nanostructures.
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