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Time-of-arrival distribution for arbitrary potentials
and Wigner’s time-energy uncertainty relation
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A realization of the concept of ‘‘crossing state’’ invoked, but not implemented, by Wigner, allows advance-
ment in two important aspects of the formalization of the time of arrival in quantum mechanics:~i! For free
motion, we find that the limitations described by Aharonovet al. in Phys. Rev. A57, 4130 ~1998! for the
time-of-arrival uncertainty at low energies for certain measurement models are in fact already present in the
intrinsic time-of-arrival distribution of KijowskiPK ; ~ii ! we have also found a covariant generalization of this
distribution for arbitrary potentials and positions.

PACS number~s!: 03.65.Ca
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In spite of the emphasis of quantum theory on the conc
of ‘‘observable,’’ the formalization of ‘‘time observables’’ is
still a major open and challenging question. The ‘‘arriv
time’’ has in particular received much attention in the la
few years~see@1# for a recent review!. Considering severa
candidates proposed for the time-of-arrival distribution in
simple free-motion, one-dimensional~1D! case, some of us
have recently argued@2# in favor of a distribution originally
proposed by Kijowski@3#, PK , because it satisfies a numb
of desirable conditions.

This distribution can be associated with a positive ope
tor valued measure~POVM! and obtained in terms of th
eigenfunctionsuT,a;X& (a56) of the time-of-arrival op-
eratorT̂ introduced by Aharonov and Bohm@4#

T̂52
m

2 F ~ q̂2X!
1

p̂
1

1

p̂
~ q̂2X!G , ~1!

PK„T;X;c~ t r !…5(
a

z^T,a;Xuc~ t r !& z2, ~2!

~we consider here the general 1D case with both positive
negative momenta as in@2,5,6#! wherem is the mass,X is the
arrival point,q̂ and p̂ are position and momentum operato
and

uT,a;X&5eiĤ 0T/\~ u p̂u/m!1/2Q~a p̂!uX&. ~3!

~The operatoru p̂u1/2 is defined by its action on momentum
plane waves,u p̂u1/2up&5upu1/2up&.! PK„T;X;c(t r)… repre-
sents the probability density of arriving atX, at the instant
T1t r , i.e., an interval of timeT after the reference instantt r
when the wave packetc(t r) is specified.@Typically one sets
t r50 so that T is the ‘‘nominal arrival time.’’ In short
notation, PK(T)[PK„T;X;c(t r50)….# This distribution
satisfies in particular the importantcovariance condition
1050-2947/2000/61~2!/022118~5!/$15.00 61 0221
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under time translations, PK„T2t8;X;c(t r1t8)…
5PK„T;X;c(t r)…. For other properties see@2,3,7#.

In this paper we study two major aspects of this distrib
tion that to our knowledge had not been addressed:~i! For
states with positive or negative momenta we shall obtain
states of minimum time uncertainty~for given energy width!,
and find the same type of limitation pointed out by Aharon
et al. @8#; ~ii ! we shall also generalize Eq.~2! for arbitrary
potentials.

To handle conveniently these two issues let us first ela
rate on the form ofPK . For a51 the contribution in Eq.
~2! can be interpreted as a quantum version of the posi
flux at the timeT1t r due to right-moving particles. Simi
larly, for a52, one has a quantum version of minus t
negative flux due to left-moving particles, again a positi
quantity. Explicitly,

PK,a~T!5^c~T!u~ u p̂u/m!1/2Q~a p̂!d~ q̂2X!Q~a p̂!

3~ u p̂u/m!1/2uc~T!&, ~4!

where d(q̂2X)5uX&^Xu. The positive operator in Eq.~4!
corresponds to the classical dynamical variable

d~q2X!
ap

m
Q~ap!, ~5!

whose average represents the modulus of the flux of parti
of the classical ensemble that arrive atX from one sideat a
given time. This connection was pointed out by Delga
@9,10#. There are, of course, many possible quantizations
this quantity but the symmetrical one in Eq.~4! turns out to
be the only one that satisfies the symmetry and minim
variance properties ofPK .

It is useful to write the positive operator in Eq.~4! in the
form uua&^uau, where
©2000 The American Physical Society18-1



le
ta
g

y
e

ty

el
of

od

e

t
v

on
o

or
n-
na
c
n

um
va
th
r
n

c
l

nt

pl
ni
b

m

u

e
-
o

us

s

t
n-

of

le

e
fer-

ents.
-

er

is

e

f
-
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uua&5uT50,a;X& ~6!

is the ‘‘crossing state.’’ As emphasized in@2#, its literal in-
terpretation is problematic because it is not normalizab
Only normalized wave packets peaked around these s
have properties as close as desired to the sharp crossin
havior expected on intuitive grounds.

Let us first discuss the point~i! related to the time-energ
uncertainty principle. Since the Hamiltonian and the tim
operator~1! are conjugate variables a minimum uncertain
product can be established in the usual fashion@6#. However,
Aharonovet al. have proposed, based on a series of mod
a second limitation on the possible values of the time-
arrival uncertainty:dt Ek.\, wheredt is the width of the
‘‘pointer variable’’ used to measure the arrival time, andEk
‘‘the typical initial kinetic energy of the particle’’@8#. It is to
be stressed that this relation is based on measurement m
for the arrival time where some extra~clock! degree of free-
dom is coupled continuously with the particle. We shall s
that in fact the ‘‘intrinsic’’ distributionPK ~there is no ex-
plicit recourse to additional pointer degrees of freedom
define PK) is consistent with the behavior that Aharono
et al. described for their models@8#.

There are many other time-energy uncertainty relati
@11#, but here we shall be mainly interested in the version
Wigner @12#, because his formalism is particularly suited f
the time of arrival. In his original paper Wigner did not co
sider in detail any application and described a variatio
method to find the states of minimum uncertainty produ
but did not actually obtain these states, except in two a
lytically solvable cases@12#. We shall extend Wigner’s work
in several directions by evaluating the states of minim
uncertainty product and applying the formalism to the arri
time. For completeness we shall next briefly summarize
main results obtained by Wigner in@12#, and add a numbe
of comments and observations relevant for our applicatio

He defines the basic amplitude asx(t)5^uuc(t)&, where
uu& is in principle any state vector.~Wigner’s formalism en-
compasses many different time-energy uncertainty produ
depending on theuu& chosen, each with its own physica
interpretation.! Note that t is considered the independe
variable ofx, and uu& is fixed. uu& is not necessarily a Hil-
bert space normalizable vector. It may also be, for exam
a position or a time-of-arrival eigenvector provided the mi
mum uncertainty product state obtained is square integra
P(t)[ux(t)u2/*2`

` ux(t)u2dt plays the role of a normalized
distribution for being found inuu& at time t. This is not a
standard quantity in the ordinary formulation of quantu
mechanics~which assigns probabilities only at fixed timet),
but the interpretation is consistent with the ordinary form
lation in the following way: Here ‘‘being found’’ implies
operationally to perform measurements ofuu&^uu at a given
time t for the members of an ensemble prepared att8,t
according toc(t8). This is repeated at different times but th
ensemble is always prepared anew att8 with the same speci
fications. The distribution of positive counts as a function
time is proportional toz^uuc(t)& z2, and P(t) is obtained
when this distribution can be normalized~which is not al-
ways the case!. @P(t) does not correspond to a continuo
02211
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measurement that modifiesc(t).# The moments ofP(t) are
defined in the usual way, and in particular thesecond mo-
ment with respect to t0 is defined as

t2[

E
2`

`

ux~ t !u2~ t2t0!2dt

E
2`

`

ux~ t !u2dt

. ~7!

The information contained inx(t) can also be encoded in it
Fourier transform,

h~E![h21/2E
2`

`

x~ t !eiEt/\dt. ~8!

The conjugate variableE has dimensions of energy, bu
h(E) is not, in general, an energy amplitude in the conve
tional sense.h and the conventional energy amplitude
c(t50), can be related by expandingc(t) in a basis of
energy eigenstatesuE,a&,

h~E!5h1/2(
a

^uuE,a&^E,auc~0!&Q~E!. ~9!

In a general casea is an index to account for the possib
degeneracy. In particular, for free motion,a56, and

uE,a&5S m

2ED 1/4

up5a~2mE!1/2&. ~10!

Analogously to Eq.~7! the second energy momentwith re-
spect to E0 is defined as

e2[

E
0

`

uh~E!u2~E2E0!2dE

E
0

`

uh~E!u2dE

. ~11!

Neither t0 nor E0 should in general be identified with th
average values of time and energy. They are instead re
ence parameters fixed beforehand to evaluate the mom
As a consequence,e2 andt2 should not in general be iden
tified with the ‘‘variances’’ (DE)2 and (Dt)2, which are the
second moments with respect to the average values.

Sinceh(E) andx(t) are Fourier transforms of each oth
the uncertainty productet is greater than\/2 ~a peculiarity
of time and energy with respect to position and momentum
that the equality is never satisfied@12#!. In fact the bound
increases substantially asE0 decreases. Wigner sought th
function h(E) that renderst to a minimum for fixede. In
order to have a finite second momentt2, h(E) must vanish
at the originh(0)50, so h must vanish at both ends o
integrationE50,̀ . Using partial integration and the nota
tion h05he2 iEt0 /\ ~Wigner showed that the minimum ofte
must correspond to a realh0), one finds that
8-2
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t25

\2E
0

`

u]h0~E!/]Eu2dE

E
0

`

uh0~E!u2dE

. ~12!

The productt2e2 subject to the constraint of fixede2 is
minimized by variational calculus. This leads, using E
~11! and ~12!, to

2\2
]2h0

]E2
1

l8

e2
~E2E0!2h05~t21l8!h0 , ~13!

wherel8 is a Lagrange multiplier. This equation is formal
similar to the Schr¨odinger equation for the harmonic oscilla
tor, except for the boundary condition atE50, h0(0)50,
and the subsidiary condition fore, Eq. ~11!. The minimumt
is obtained from the lowest eigenvalue corresponding to
value ofl8 where the subsidiary condition is satisfied. Fo
tunately the solution depends only on the ratioE0 /e,
namely,h(E;E0 ;e)5g(E/e;E0 /e), whereg is the solution
of Eq. ~13! with e51. Note also that, sinceuh0u25uhu2, the
value of t0 does not play any role in the minimization pro
cess.@Physically the statex0(t) corresponding tot050 is
valid for any other timet0 by a shift of the argument.# The
minimization oft for fixed E0 /e requires a method to solv
the differential equation~13! for many different values of
l8, until e251 is satisfied. In our calculation the success
valuesl8(n) have been obtained with a Newton-Raphs
algorithm, and the lowest eigenstate and eigenvalue of
~13! for eachl8(n) are obtained with a very efficient ‘‘re
laxation method’’@13#.

The only explicit case considered in the original paper
Wigner wasuu&5uX&. The correspondingP(t) provides a
time distribution for thepresenceof the particle atX but not
for its arrival. In an intriguing ‘‘general observation,
Wigner stated that, instead of asking for the probability t
the particle be at a definite landmark in space, just at the t
t, ‘‘it would be more natural to ask . . . for the probability
that the particle crosses the aforementioned landmark a
time t from the left, and also that it crosses the landmark
a given time, from the right.’’ But the paragraph ends w
‘‘This point . . . interesting though it may be, will not b
elaborated further.’’ Precisely, it is our aim here to elabor
further on this question. Indeed the probabilities mention
by Wigner can be obtained by means of the crossing st
uu1& and uu2& discussed before, see Eq.~6!. Specializing to
states having only positive-negative momentumPK,a(t)
5 z^uauc(t)& z2 provides the arrival time distribution att.
Consideringx(t)5^uauc(t)&, we see that Wigner’s prob
ability density is nothing but Kijowski’s distributionP(t)
5PK,a(t)5ux(t)u2. Moreover, the Fourier transform o
x(t) is in this case up to a phase factor the standard en
amplitude,h(E)5^E,auc(0)&exp@iX(2mE)1/2/\#, so thate
becomes the spread~aroundE0) of the ordinary energy dis
tribution.

For a given ratioE0 /e there is a minimum value ofte.
The family of states of minimal uncertaintyh(E;E0 ;e) with
02211
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the same ratioE0 /e have in common the same value
^E&/e. Figure 1 showste vs ^E&/e for the states of mini-
mized time-energy uncertainty product. For comparison
also show the curvee/^E&. Clearly

t.\/^E&, ~14!

which has the sameform as the relation proposed by Aha
ronov et al. based on measurement models@8#. However,t
is not due to the effect of any measuring apparatus, it is
intrinsic uncertainty associated with an intrinsic time-o
arrival distribution. It is not the coupling introduced in
measurement between the particle and other degrees of
dom that leads to this relation but the very quantu
mechanical nature of the particle alone and the lower bo
of the energy.

To elaborate the figure,E0 /e has been increased regular
from the minimum possible value21. ~For smaller values it
is impossible to satisfy the subsidiary condition.! For each
value the minimization ofte is performed and the corre
spondinĝ E&/e is obtained. Aŝ E&/e→` the minimum un-
certainty product tends to the~global! minimum \/2, the
same value found for position and momentum, because
effect of the lower bound of the energy tends to disappea
that limit, and h(E) gets closer and closer to a Gaussi
centered atE0 with variancee2 @12#. However, in the oppo-
site limit the lower bound atE50 plays an important role
Indeed,^E&/e→0 corresponds to the limitE0 /e→21, and
the only way to satisfy the constraint is by strictly localizin
h(E) at E50 (DE→0), but this completely delocalizes th
conjugate time variable, namely,t→`. Thus, Eq.~14! ap-
pears as a consequence of the ordinary uncertainty princ
due to the tendency of the minimum uncertainty prod
states to have smaller variances for smaller energies.~The
precise dependence for arbitrary values ofE0 /e has to be
obtained numerically.!

The second question we shall address in this paper is
generalization of the free-motion distribution~2! for arbitrary
potentials and positions~a previous attempt was only appl
cable to asymptotic positions where the motion is essenti
free @14#!. A generalization based on a quantization of cla
sical expressions as in Eq.~1! is problematic: the classica
expressions for the time of arrival will rarely be analytica

FIG. 1. et ~in a.u.,\51) vs ^E&/e for the states of minimized
uncertainty product~dashed line!; e/^E& ~solid line!.
8-3
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not all phase-space points lead to arrival, and the orde
problems may be formidable. The way out though, will
surprisingly simple in terms of crossing states.

There is in fact nothing that limits Eq.~5!, and the corre-
sponding operator in Eq.~4! to free motion. In particular, the
classical motivation for consideringuua& a ‘‘crossing state’’
is equally valid when an arbitrary potential is present. T
state~3! may be regarded as one that has evolved ‘‘ba
wards’’ with H0 a timeT from the crossing stateuua& so that
it becomesuua& precisely at the nominal arrival timeT. In
the same vein we construct for an arbitrary HamiltonianH

uT,a;X&H5eiĤT/\uua&, ~15!

so that at the nominal arrival timeT, uua& is recovered. The
generalization of the arrival time distribution for arbitra
potentials is therefore

PH„T;X;c~ t r !…5(
a

z^uaue2 iĤ T/\uc~ t r !& z2. ~16!

@As we have done forPK , it is convenient to use the
short notations PH(T)[PH„T;X;c(t r50)…, or PH(t)
[(az^uauc(t)& z2.# It is evidently covariant under time trans
lations as it should; in general it is not normalized, and
may be unnormalizable~its classical counterpart shares the
properties!. For example, it may be constant for stationa
states, or periodic for oscillating coherent states in a h
monic potential, but it provides in any case relative inform
tion by comparison of two times. Consistent with this, t
statesuT,a;X&H do not form in general a complete bas
One important property for its interpretation is that its cla
sical analog~the sum of the absolute values of positive a
negative fluxes! takes into account any crossings~not only
first, or last!.

In order to have a better grasp of the meaning of
generalization, we portray in Fig. 2 several aspects of
collision, in a tunneling regime, of a Gaussian wave pac
with a square barrier. In Fig. 2~a! we show the two compo
nents ofPH (PH,1 andPH,2), and the current densityJ as
functions of timet at a position in front of the barrier~i.e., on
the incident side!. J andPH,12PH,2 are very close numeri
cally, and the situation would be identical to the free ca
were it not for the hump inPH,2 ~in this hump2PH,2 and
J are essentially coincident!, which corresponds to the re
flecting wave packet, traversing the reference point after
collision. In Fig. 2~b! we see the various distributions at th
center of the barrier, in the interacting regime. There i
delay between the maxima ofP1 andP2 , due to the fact
that P2 is mostly associated with the reflection.

As to Fig. 2~c!, corresponding to a position after the ba
rier, the maximum ofP1 is brought forward when compare
to the free case, in accordance with the well-known Ha
mann effect@15#. Additionally, J, P1 , and P12P2 are
indistinguishable in the scale of the figure. Well after t
collision has occurred the wave is monochromatic over m
periods, so the difference betweenP12P2 andJ tends to
vanish. In this ‘‘classical’’ limit the different quantization
orderings chosen for the momentum in the correspond
02211
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FIG. 2. ~a! Current density~circles!, P1 ~solid line!, andP2

~long-dashed line! before the barrier (X58) for a collision with a
square barrier of energy 40 located betweenx512 and 12.5~all
quantities in a.u.!. The initial state (t50) is a minimum position-
momentum uncertainty product Gaussian with^q̂&5^ p̂&55, and
^(q̂25)2&51, for a particle of massm51/2. ~b! Same as~a!, but
at the barrierX512,25. Also depicted areP11P2 ~dotted-dashed
line!, andP12P2 ~short-dashed line!. ~c! Same as~a!, but after
the barrierX515. P2 is negligible in this scale. Also depicted ar
P1 andJ ~indistinguishable! for free motion~dotted line!.
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operators is irrelevant~since in each expectation valuep̂ can
be substituted by a number!. As a consequence, the analys
performed withJ that describes the asymptotic particle pa
sage in terms of ‘‘phase times’’ is still valid forPH , see,
e.g.,@15,16#, andJ or PH may be very close to the absorp
tion rate of ideal detectors, as shown in@17#. Contrast this to
the quantum regime at the barrier, Fig. 2~b!, whereJ and
PH,12PH,2 are clearly different. An interesting challeng
is the actual measurement of these quantities in the ba
region. Testing experimentally the predicted values ofPH,6
may be much more difficult there, since standard detec
ru

.G

h

. I

th
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are usually designed to compute only the first arrival, n
several crossings. MoreoverPH asPK @2# ignores the inter-
ference components of the density operator between pos
and negative momenta. Thus, an experimental test for
arbitrary state should be able to effectively perform a c
lapse into positive and negative momentum components
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