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Classical interventions in quantum systems. II. Relativistic invariance
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Department of Physics, Technion—Israel Institute of Technology, 32 000 Haifa, Israel

~Received 11 June 1999; published 18 January 2000!

If several interventions performed on a quantum system are localized in mutually spacelike regions, they
will be recorded as a sequence of ‘‘quantum jumps’’ in one Lorentz frame, and as a different sequence of
jumps in another Lorentz frame. Conditions are specified that must be obeyed by the various operators
involved in the calculations, so that these two different sequences lead to the same observable results. These
conditions are similar to the equal-time commutation relations in quantum field theory. They are sufficient to
prevent superluminal signaling.„The derivation of these results does not require most of the contents of the
preceding article@Peres, Phys. Rev. A61, 022116~2000!#. What is needed is briefly summarized here, so that
the present article is essentially self-contained.…

PACS number~s!: 03.65.Bz, 03.30.1p, 03.67.2a
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I. THE PROBLEM

Quantum measurements@1# are usually considered quas
instantaneous processes. In particular, they affect the w
function instantaneously throughout the entire configurat
space. Measurements of finite duration@2# cannot alleviate
this conundrum. Is this quasi-instantaneous change of
quantum state, caused by a local intervention, consistent
relativity theory? The answer is not obvious. The wave fu
tion itself is not a material object forbidden to travel fas
than light, but we may still ask how the dynamical evoluti
of an extended quantum system that undergoes several
surements in distant spacetime regions is described in di
ent Lorentz frames.

Difficulties were pointed out long ago by Bloch@3#, Aha-
ronov and Albert@4#, and many others@5#. Still before them,
in the very early years of quantum mechanics, Bohr a
Rosenfeld@6# gave a complete relativistic theory of the me
surement of quantumfields, but these authors were not co
cerned about the properties of the new quantum states
resulted from these measurements, and their work did
answer the question that was raised above. Other aut
@7,8# considered detectors in relative motion, and therefor
rest in different Lorentz frames. These works also did
give an explicit answer to the above question: a detecto
uniform motion is just as good as one that has undergon
ordinary spatial rotation~accelerated detectors involve ne
physical phenomena@9#, and are not considered in this p
per!. The point is not how individual detectors happen
move, but how the effects due to these detectors are
scribed in different ways in one Lorentz frame or anothe

In the preceding paper@10#, the notion of measuremen
was extended to the more general one ofintervention. An
intervention consists of the acquisition and recording of
formation by a measuring apparatus, possibly followed
the emission of classical signals for controlling the execut
of further interventions. More generally, a consequence
the intervention may be a change of the environment
which the quantum system evolves. These effects are

*Electronic address: peres@photon.technion.ac.il
1050-2947/2000/61~2!/022117~8!/$15.00 61 0221
ve
n

he
ith
-
r

ea-
r-

d

at
ot
rs

at
t
in
an

e-

-
y
n
f

n
he

outputof the intervention. These notions are refined in S
II of the present paper so as to be applicable to relativi
situations.

A relativistic treatment is essential to analyze spacel
separated interventions, such as in Bohm’s version of
Einstein-Podolsky-Rosen ‘‘paradox’’@11,12# ~hereafter
EPRB! which is sketched in Fig. 1, with two coordinate sy
tems in relative motion. In that experiment, a pair of spin1

2

particles is prepared in a singlet state at timet0 ~referred to
one Lorentz frame! or t08 ~referred to another Lorentz frame!.
The particles move apart and are detected by two observ
Each observer measures a spin component along an
trarily chosen direction. The two interventions are mutua
spacelike as shown in the figure. EventA occurs first int
time, and eventB is the first one int8 time. The evolution of
the quantum state of this bipartite system appears to be g
inely different when recorded in two Lorentz frames in re

FIG. 1. A quantum system is prepared at pointP. Interventions
A andB are mutually spacelike. The solid and dotted lines repres
equal timest and t8 respectively, in two Lorentz frames in relativ
motion. EventA occurs first int time, and eventB is the first one in
t8 time.
©2000 The American Physical Society17-1
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ASHER PERES PHYSICAL REVIEW A 61 022117
tive motion. The quantum states are not Lorentz transfo
of each other. However, all the observable results are
same. The consistency of the theoretical formalism impo
definite relationships between the various operators use
the calculations. These are investigated in Sec. III.

Another example, this one taken from real life, is the d
tection system in the experimental facility of a modern hig
energy accelerator@13#. Following a high-energy collision
thousands of detection events occur in locations that ma
mutually spacelike. However, some of the detection eve
are mutually timelike, for example when the world line of
charged particle is recorded in an array of wire chamb
High-energy physicists use a language which is differ
from the one in the present paper. For them, an ‘‘event’
one high-energy collision together with all the subsequ
detections that are recorded. This ‘‘event’’ is what I call he
an experiment~while they called ‘‘experiment’’ the complete
experimental setup that may be run for many months!. Their
‘‘detector’’ is a huge machine weighing thousands of to
while here the term detector means each elementary de
ing element, such as a new bubble in a bubble chamber
small segment of wire in a wire chamber.~A typical wire
chamber records only which wire was excited. However, i
in principle possible to approximately locate the place in t
wire where the electric discharge occurred, if we wish to
so.! Apart from the above differences in terminology, th
events that follow a high-energy collision are an excell
example of the circumstances discussed in the present p

Returning to the Einstein-Podolsky-Rosen conundrum,
must analyze whether it actually involves a genuine quan
nonlocality. Such a claim has led some authors to sugges
possibility of superluminal communication. This would ha
disastrous consequences for relativistic causality@14#. Bell’s
theorem@15# asserts that it is impossible to mimic quantu
correlations by classical local ‘‘hidden’’ variables, so th
any classical imitation of quantum mechanics is necessa
nonlocal. However Bell’s theorem does not imply the ex
tence of any nonlocality in quantum theory itself. It is show
in Sec. IV that quantum measurements do not allow a
information to be transmitted faster than the characteri
velocity that appears in the Green’s functions of the partic
involved in the experiment. In a Lorentz invariant theo
this limit is the velocity of light, of course. Section V i
devoted to a few concluding remarks.

II. RELATIVISTIC INTERVENTIONS

This section includes a brief summary of some parts
the preceding paper@10#, and contains all the material nec
essary to make the present one self-contained. Besides
summary, notions are introduced to cope with the relativis
nature of the phenomena under discussion.

First, recall that each intervention is described by a se
classicalparameters@16,17#. The latter include the location
of that intervention in space-time, referred to an arbitra
coordinate system. The coordinates are classical numb
just as time in the Schro¨dinger equation is a classical param
eter. We also have to specify the speed and orientation o
apparatus in that coordinate system and various otherinput
02211
s
e

es
in

-
-

be
ts

s.
t

s
t

,
ct-
r a

s
t

o

t
er.
e
m
he

t
ly
-

y
ic
s

,

f

his
c

f

y
rs,

he

parameters that define the experimental conditions un
which the measuring apparatus operates. The input par
eters are determined by classical information received fr
the past light cone at the point of intervention, or they m
be chosen arbitrarily~in a random way! by the observer
and/or the apparatus.

I just mentioned the existence of a past light cone. Ac
ally, the only notion needed at the present stage is apartial
ordering of the interventions: that is, there are no clos
causal loops. This property defines the terms earlier
later. The input parameters of an intervention are determ
istic ~or possibly stochastic! functions of the parameters o
earlier interventions, but not of the stochastic outcomes
sulting from later interventions, as explained below.

In the conventional presentation of nonrelativistic qua
tum mechanics, each intervention has a~finite! number of
outcomes, which are also known as ‘‘results of measur
ments’’ ~for example, this or that detector clicks!. In a rela-
tivistic treatment, the spatial separation of the detectors
essential, and each detector corresponds to a different in
vention. The reason for this is that if several detectors are
up so that they act at a given time in one Lorentz frame, th
would act at different times in another Lorentz frame. Ho
ever, a knowledge of the time ordering of events is essen
in our dynamical calculations, so that we want the para
eters of an intervention to refer unambiguously to only o
time ~indeed to only one spacetime point!. Therefore, an in-
tervention can involve only one detector and it can have o
two possible outcomes: either there was a ‘‘click’’ or the
was not.

Note that theabsenceof a click, while a detector was
present, is also a valid result of an intervention. The state
the quantum system does not remain unchanged: it ha
change to respect unitarity. The mere presence of a dete
that could have been excited implies that there has bee
interaction between that detector and the quantum sys
Even if the detector has a finite probability of remaining
its initial state, the quantum system correlated to the la
acquires a different state@18#. The absence of a click, whe
there could have been one, is also an event, and is part o
historical record.

The effect of an intervention on a quantum system i
tially prepared in the stater was given by Eq.~20! in the
preceding paper:

r→rm8 5(
m

AmmrAmm
† , ~1!

wherem is a label that indicates which detector was involv
and whether or not it was activated. The initialr is assumed
to be normalized to unit trace, and the trace ofrm8 is the
probability of occurrence of outcomem. Each symbolAmm
in the above equation represents amatrix ~not a matrix ele-
ment!. These may be rectangular matrices where the num
of rows depends onm. The number of columns is of cours
equal to the order of the initialr. Thus the Hilbert space o
the resulting quantum system may have a different num
of dimensions than the initial one. A quantum system who
description starts in a given Hilbert space may evolve in
7-2
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CLASSICAL INTERVENTIONS IN . . . . II. . . . PHYSICAL REVIEW A61 022117
way that requires a set of Hilbert spaces with different
mensions. If one insists on keeping the same Hilbert sp
for the description of the entire experiment, with all its po
sible outcomes, this can still be achieved by defining it a
Fock space.

Each experiment yields arecord that comprises a com
plete list of which detectors were available~including when
and where!, and whether these detectors reacted. Suc
record is objective: everyone agrees on what happened~e.g.,
which detectors clicked! irrespective of the state of motion o
the observers who read these records. Therefore, ever
agrees on the relative frequency of each type of rec
among all the records that are observed if the experimen
repeated many times, and the theoretical probabilities
have to be the same for everyone.

What is the role of relativity theory here? We may lik
wise ask what is the role of translation and/or rotation inva
ance in a nonrelativistic theory. The point is that the rules
computing quantum probabilities involve explicitly th
space-time coordinates of the interventions. Lorentz inv
ance~or rotation invariance, as a special case! states that if
the classical space-time coordinates are subjected to a
ticular linear transformation, then the probabilities rema
the same. This invariance is not trivial because the rule
computing the probability of occurrence of a given reco
involves a sequence of mathematical operations corresp
ing to the time-ordered set of all the relevant interventions
we only consider the Euclidean group, all we have to kn
is how to transform the classical parameters, and the w
function, and the various operators, under translations
rotations of the coordinates. However, when we consi
genuine Lorentz transformations, we not only have to L
entz transform the above symbols, but we are faced wit
new problem: the natural way of calculating the result o
sequence of interventions, namely, by considering them
chronological order, is different for different inertial frame
The issue is not only a matter of covariance of the symbol
each intervention and between consecutive interventio
There are genuinely different prescriptions for choosing
sequence of mathematical operations in our calculation.
principle of relativity asserts that there are no privileged
ertial frames. Therefore, these different orderings ough
give the same set of probabilities, and this demand is
trivial.

The experimental records are the only real thing we h
to consider. Their observed relative frequencies are objec
numbers and are Lorentz invariant. On the other hand, w
functions and operators are mathematical concepts usefu
computing quantum probabilities, but they have no real
istence@19#. All the difficulties that have been associate
with a relativistic theory of quantum measurements are
to attributing a real nature to the symbols that repres
quantum states.

Note also that while interventions are localized in spa
time, quantum systems are pervasive. In each experim
irrespective of its history, there is only one quantum syste
The latter typically consists of several particles or other s
systems, some of which may be created or annihilated by
various interventions. The next two sections of this paper
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concerned with sharp localized interventions on quant
systems that freely evolve throughout space-time betw
these interventions, and in particular with the Lorentz co
riance of the results.

III. TWO MUTUALLY SPACELIKE INTERVENTIONS

Consider again the EPRBgedankenexperimentwhich was
depicted in Fig. 1, with two coordinate systems in relati
motion. There exists a Lorentz transformation connecting
initial statesr ~at timet0) andr8 ~at timet08) before the two
interventions, and likewise there is a Lorentz transformat
connecting the final states at timest f andt f8 after completion
of the two interventions. On the other hand, there is no L
entz transformation relating the states at intermediate tim
represented by the lines that pass between interventionA
and B @3,4#. This may be contrasted with the ontology
classical relativistic theory. Classical theory asserts t
fields, velocities, etc., transform in a definite way and th
the equations of motion of particles and fields behave co
riantly. For example if the expression for the Lorentz force
written f m5Fmnun in one frame, the same expression
valid in any other frame. These symbols (f m , etc.! have
objective values. They represent entities that really exist,
cording to the theory. On the other hand, wave functio
have no objective value. They do not transform covarian
when there are interventions. Only the classical parame
attached to each intervention transform covariantly. Ho
ever, in spite of the noncovariance ofr, the final results of
the calculations~the probabilities of specified sets of event!
are Lorentz invariant.

Note that each line in Fig. 1 represents one instant of
time coordinate, as in the ordinary non-relativistic formu
tion of quantum mechanics. There is no way of defining
relativistic proper time for a quantum system which is spre
all over space. It is possible to define a proper time for e
apparatus, which has classical coordinates and follows
continuous world line. However, this is not necessary. W
are only interested in adiscreteset of interventions, and the
latter are referred to a common coordinate system that co
the whole of space-time. There is no role for the priva
proper times that might be attached to the apparatuses’ w
lines.

If we attempt to generalize the parallel straight lines
Fig. 1 to a spacelike foliation in a curved space-time, as
would have in general relativity, we encounter the difficu
that no such foliation may exist globally. However, there
no need for such a global foliation, and in particular we
not assume the validity of a Schwinger-Tomonaga equa
idC/ds5H(s)C, as can be found in the work of Aharono
and Albert @4#. The only condition that we need is the a
sence of closed timelike curves. That is, if two events can
connected by continuous timelike~or null! curves, without
past-future zigzags, then all these curves have the same
entation.

Returning to special relativity, consider the evolution
the quantum state in the Lorentz frame where interventioA
is the first one to occur and has outcomem, and B is the
second intervention, with outcomen. Between these two
7-3
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ASHER PERES PHYSICAL REVIEW A 61 022117
events, nothing actually happens in the real world. It is o
in our mathematical calculations that there is a determini
evolution of the state of the quantum system. This evolut
is not a physical process. For example, the quantum stat
Schrödinger’s legendary cat, doomed to be killed by an a
tomatic device triggered by the decay of a radioactive ato
evolves into a superposition of ‘‘live’’ and ‘‘dead’’ states
This is a manifestly absurd situation for a real cat. The o
meaning that such a quantum state can have is that
mathematical tool for statistical predictions on the fates
numerous cats subjected to the same cruel experiment.

What distinguishes the intermediate evolutionbetweenin-
terventions from the one occurringat an intervention is the
unpredictability of the outcome of the latter: either there i
click or there is no click of the detector. This unpredictab
macroscopic event starts a new chapter in the history of
quantum system which acquires a new state, according to
~1!. As long as there is no such branching, the quantum e
lution will be called free, even though it may depend o
external classical fields that are specified by the class
parameters of the preceding interventions.

Quantum mechanics asserts that during the free evolu
of a closed quantum system, its state undergoes a un
transformation generated by a Hamiltonian. The latter
pends in a prescribed way on the preceding outcome~s! ac-
cording to the protocol that has been specified for the exp
ment. The unitary operator for the evolution followin
interventionA with outcomem, and ending at interventionB,
will be denoted byUBAm

. ~More generally, it is possible to
consider an evolution which is continuously perturbed by
environment, as in the last section of the preceding pa
@10#. In that case, the unitary evolution would be replaced
a more general continuous completely positive map, so
instead ofUBAm

there would be Kraus operators with add
tional indices to be summed over. I shall refrain from usi
this more general formalism so as not to get into an unn
essarily complicated argument. In any case, the presenc
such a pervasive environment would break Lorentz inv
ance.!

Note that the chronological order of the indices inUBAm
is

from right to left ~just as is the order for consecutive app
cations of a product of linear operators!, and in particular
that UBAm

does not depend on the future outcome at int

ventionB. Likewise, there is a unitary operatorUA0 for the
evolution that precedes eventA, and an operatorU f Bn

for the

final evolution that follows outcomen of interventionB. The
final quantum state at timet f is given by a generalization o
Eq. ~1!:

r f5(
m,n

KmnrKmn
† , ~2!

where

Kmn5U f Bn
BnnUBAm

AmmUA0 . ~3!

The same events can also be described in the Lorentz fr
whereB occurs first. We have, with the primed variables,
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Lmn8 r8Lmn8† , ~4!

where

Lmn8 5Vf Am
8 Amm8 VABn

8 Bnn8 VB08 . ~5!

Here the unitary operator for the free evolution between
two interventions has been denoted byVABn

8 . It is not related

in any obvious way to the operatorUBAm
. These operators

indeed correspond to different slabs of space-time. Likew
the other evolution operators in the primed coordinates h
been called V8 with appropriate subscripts. Note tha
Tr (r f)5Tr (r f8) is the joint probability of occurrence of th
recordsm andn during the experiment.

Einstein’s principle of relativity asserts that there is
privileged inertial frame, and therefore both descriptio
given above are equally valid. Formally, the statesr f ~at
time t f) and the stater f8 ~at time t f8) have to be Lorentz
transforms of each other. This requirement imposes se
restrictions on the various matrices that appear in the pre
ing equations. In order to investigate this problem, conside
continuous Lorentz transformation from the primed to t
unprimed frame. As long as the order of occurrence ofA and
B is not affected by this continuous transformation of t
spacetime coordinates, the latter is implemented in the qu
tum formalism by unitary transformations of the various o
erators. These unitary transformations obviously do not
fect the observable probabilities.

Therefore, in order to investigate the issue of relativis
invariance, it is sufficient to consider two Lorentz fram
whereA andB are almost simultaneous: eitherA occurs just
beforeB, or just afterB. There is of course no real differenc
in the actual physical situations and the Lorentz ‘‘transf
mation’’ between these two arbitrarily close frames~primed
and unprimed! is performed by the unit operator. In particu
lar, UBAm

515VABn
8 , since there is no finite time lapse fo

any evolution to occur between the two events. The o
difference resides in our method for calculating the fin
quantum state: firstA thenB, or first B thenA. Consistency
of the two results is obviously achieved if

AmmBnn5BnnAmm ~6!

or

@Amm ,Bnn#50. ~7!

This equal-time commutation relation, which was deriv
here as a sufficient condition for consistency of the calcu
tions, is always satisfied if the operatorsAmm and Bnn are
direct products of operators pertaining to the two su
systems:

Amm5amm^ 1 and Bnn51^ bnn , ~8!

where1 now denotes the unit matrix of each subsystem. T
relationship is obviously fulfilled if there are two distinc
apparatuses whose dynamical variables commute, and m
7-4
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CLASSICAL INTERVENTIONS IN . . . . II. . . . PHYSICAL REVIEW A61 022117
over if the dynamical variables of the quantum subsyste
commute. This is indeed a necessary condition for legi
mately calling them subsystems.

The analogy with relativistic quantum field theory
manifest: field operators belonging to points at spacelike
tances commute~or anticommute in the case of fermion
fields!. Quantum field theory mostly uses the Heisenberg p
ture or the interaction picture, while in the present work it
the Schro¨dinger picture that is employed. This makes no d
ference in Eq.~7!, which applies to equal times. Could w
have here too anticommutation relations? It is easily s
that it is possible to introduce a minus sign on the right-ha
side of Eq.~6!, or even an arbitrary phase factoreifAB. How-
ever, this generalization will not be investigated in t
present paper, whose subject is quantum mechanics,
quantum field theory.

One may wonder whether the result expressed in Eq.~8!
is trivial. Direct products were postulated in the very ea
years of quantum mechanics by Weyl@20# as the only rea-
sonable way for describing composite systems. Here this
resentation was derived from an argument involving Lore
invariance. However, such a proof may well be circular@21#:
it assumes a relativistic partial ordering of events, i.e.,
impossibility of superluminal signaling, while this imposs
bility is proved in quantum field theory by assuming t
tensor product representation for composite systems.
issue was also investigated by Rosen@22# in the context of
molecular biology. According to Rosen, while any micr
physical system can be expressed as a composite of
systems, there is no reason to suppose that such a facto
tion is unique, because rings of operators may in genera
factored in many distinct ways. Only if it were found that th
factorization is unique, this would imply that there is on
one way in which the state of a system can be synthet
from the states of simpler subsystems.

Returning to Eq.~8!, it is important to remember that a
intervention can change the dimensions of the quantum
tem. Here is a simple example. The quantum system initi
consists of a pair of spin-1

2 particles, as in the EPRB exper
ment. The two observers are called Alice and Bob, as us
Alice, who intervenes atA, uses an apparatus that contain
subsystemS prepared as an entangled state of a spin-1

2 par-
ticle and a particle of spin 1. She receives a particle of spi1

2

~that is, one of the two particles of the quantum system un
observation! and she measures the Bell operator@23# of the
composite system formed by that particle and the spin-1

2 par-
ticle in S. That measurement can have four different o
comes, and according to its result Alice performs one of f
specified unitary rotations on the spin-1 particle ofS. She
then discards everything but that particle of spin 1, and
releases the latter for future experiments. In this way, Alic
intervention converts an incoming spin-1

2 system into an out-
going spin 1 system.

Likewise, Bob’s intervention, located spacelike with r
spect to Alice’s, outputs a spin-2 particle when Bob recei
one with spin 1

2 . How shall we describe the sequence
events in the frame where Alice is the first one to act, and
the frame where Bob is first?
02211
s

s-

-

-

n
d

ot

p-
z

e

is

b-
za-
be

d

s-
ly

al.
a

er

-
r

e
s

s
f
n

Alice’s Amm matrices are direct products of a matrix
dimensions 332 and the two-dimensional unit matrix, as
Eq. ~8!. Thereafter, there is a free unitary evolution, whe
UBAm

has rank 6. Then Bob’sBnn matrices are direct prod
ucts of a three-dimensional unit matrix and one of dimens
532. The finalr is 15-dimensional~the final quantum sys-
tem consists of a particle of spin 1 and a particle of spin!.
A similar description holds,mutatis mutandis, in the frame
where Bob acts first~this frame is denoted by primes!. The
unitary matrixVABn

8 for the free evolution fromB to A is of

order 10, whileUBAm
was of order 6. Obviously these cann

be Lorentz transforms of each other. They would not be L
entz transforms even if dimensions were the same. Howe
the final r f and r f8 have to be Lorentz transforms of eac
other.

Are Amm and Amm8 related by a Lorentz transformation
We have seen thatAmm is a direct product of a matrix o
dimension 332 and the two-dimensional unit matrix. On th
other hand,Amm8 is a direct product of a matrix of dimensio
332 and the five-dimensional unit matrix~the latter acts on
the spin 2 particle that Bob has produced!. Then the non-
trivial parts ofAmm andAmm8 , both rectangular 332 matri-
ces, are Lorentz transforms of each other. We may also, if
wish, call the completeAmm and Amm8 matrices ‘‘Lorentz
transforms’’ if we accept that unit matrices of any order
considered as Lorentz transforms of each other.

IV. SUPERLUMINAL COMMUNICATION?

Bell’s theorem@15# has led some authors to suggest t
feasibility of superluminal communication by means
quantum measurements performed on correlated system
away from each other@24,25#. It will now be shown that
such a possibility is ruled out by the present relativistic fo
malism. We have already assumed that there exists a pa
ordering of events. Superluminal communication wou
mean that the deliberate choice@26# of the test performed by
an observer~or the random choice of the test performed
his apparatus! could influence in a deterministic way, at lea
statistically, the outputs of tests located at a spacelike
tance from that observer~or apparatus! and having a later
time coordinate. If this were true for any pair of spaceli
separated events, this would lead to the possibility of pro
gating information backwards in time between events w
timelike separation. For example, we may haveA in the past
light cone ofB, and bothA andB spacelike with respect toC.
ThenB could superluminally influenceC in the frame where
B occurs earlier thanC, and in another frameC would like-
wise influenceA, so that B could indirectly influenceA.
Therefore the assumption of Lorentz invariance, and the
istence of random inputs, and the restriction of causal re
tionships between timelike related events to the future dir
tion, are incompatible with causal relationships at spa
distances.

All this was discussed ad nauseam at the classical le
many years ago, when tachyons were popular@27,28#. More
recently, superluminal group velocities have actually be
observed in barrier tunneling in condensed matter@29,30#.
7-5
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However, special relativity does not forbid thegroup veloc-
ity to exceedc. It is the front velocity of a wave packet tha
is the relevant criterion for signal transmission, and the fr
velocity never exceedsc. What novelty does quantum theor
bring to this issue? The common wisdom is that the mea
ing process creates a ‘‘reality’’ that did not exist objective
before the intervention@31#. Let us examine this claim mor
carefully.

Consider aclassical situation analogous to the EPR
setup: a bomb, initially at rest, explodes into two fragme
carrying opposite angular momenta. Alice and Bob, far aw
from each other, measure arbitrarily chosen component
J1 andJ2. ~They can measure all the components, since th
have objective values.! However, Bob’s measurement tel
him nothing of what Alice did, nor even whether she d
anything at all. He can only know with certainty whatwould
be the result found by Aliceif she measures herJ along the
same direction as he, and make statistical inferences for o
possible directions of Alice’s measurement.

In the quantum world, consider two spin-1
2 particles in a

singlet state. Alice measuressz and finds, say,11. This tells
her what the state of Bob’s particle is, namely the probab
ties that Bobwould obtain 11 if he measures~or has mea-
sured, or will measure! s along any direction he choose
This is manifestly counterfactual information: nothin
changes at Bob’s location until he performs the experim
himself, or receives a classical message from Alice tell
him the result that she found. No experiment performed
Bob can tell him whether Alice has measured~or will mea-
sure! her half of the singlet. The rules are exactly the same
in the classical case. It does not matter at all that quan
correlations are stronger than classical ones, and violate
Bell inequality.

A seemingly paradoxical way of presenting these res
is to ask the following naive question: suppose that Al
finds thatsz51, while Bob does nothing. When does th
state of Bob’s particle, far away, become the one for wh
sz521 with certainty? Though this question is meanin
less, it has a definite answer: Bob’s particle state chan
instantaneously. In which Lorentz frame is this instan
neous? Inany frame. Whatever frame is chosen for definin
simultaneity, the experimentally observable result is
same, owing to Eq.~7!. This does not violate relativity be
cause relativity is built in that equation, as will now b
shown in a formal way.

Consider again Eqs.~2! and ~3! which give the final~un-
normalized! r f following two interventions in which Alice
obtains the resultm, and then Bob obtains the resultn. The
probability for that pair of results is Tr (r f). If eventB lies in
the future light cone ofA, there can be ordinary classic
communication fromA to B and there is no causality contro
versy. We are interested here in the case whereB is spacelike
with respect toA. The problem is to prove that the probab
ity of Bob’s outcomen is independent of whether or no
Alice intervenes before him~in any Lorentz frame!. Note
that the unitary matrices in Eq.~3! are the Green’s function
for the propagation of thecompletequantum system, and tha
its subsystems may interact in a nontrivial way even wh
02211
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they are macroscopically separated~for example, these may
be charged particles!.

Fortunately, we do not need to know these Green’s fu
tions explicitly. We simply note that the probabilities that w
are seeking are invariant under unitary transformations of
various operators in Eq.~3!. In particular, they are not af
fected by transforming the initialUA0 and finalU f Bn

. There

still is the intermediate unitary operatorUBAm
for the propa-

gation of the composite quantum system between timestA
and tB . That quantum system is not a localized object.
velocity is not a well-defined concept, and it is meaningle
to argue that it is less than the velocity of light. However,
is possible to eliminateUBAm

by using the same stratagem
in Sec. III: we perform a Lorentz transformation of th
space-time coordinates, which is implemented by a unit
transformation of the quantum operators~so that all prob-
abilities are invariant!, in such a way that the time elapsin
between interventionsA andB is arbitrarily small, and there-
fore UBAm

→1.

The probability that Bob obtains a resultn, irrespective of
Alice’s result, thus is

pn5(
m

Tr S (
m,n

BnnAmmrAmm
† Bnn

† D . ~9!

We now employ Eq.~7! to exchange the positions ofAmm

andBnn , and likewise those ofAmm
† andBnn

† , and then we
moveAmm from the first position to the last one in the pro
uct of operators in the traced parentheses. We thereby ob
expressions

(
m

Amm
† Amm5Em . ~10!

As explained in Ref.@10#, these are elements of a positiv
operator valued measure~POVM! that satisfy (mEm51.
Therefore Eq.~9! reduces to

pn5Tr S (
n

BnnrBnn
† D , ~11!

from which all expressions involving Alice’s operatorsAmm
have totally disappeared. The statistics of Bob’s result
not affected at all by what Alice may do at a spacelike d
tance, so that no superluminal signaling is possible.

Note that in order to obtain meaningful results the ent
experiment has to be considered as a whole: that is, what
prepared in the past light cone ofall the interventions, and
the complete set of results that were obtained, and are kn
in their joint future light cone. It is tempting, and often po
sible, to dissect an experiment into consecutive steps, jus
it is often possible to discuss separately the properties
entangled particles. However, if ambiguities~or conflicting
predictions, or any other ‘‘paradoxes’’! are encountered
what has to be done is to consider the whole entangled
tem and the whole experiment. Contrary to naive intuitio
there is no physical state vector that interpolates between
initial and final states. Such interpolations can formally
7-6
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written, but they are not unique, not Lorentz covariant, a
therefore physically meaningless.

However, there is an important exception to the abo
rule: if there exists a space-time point such that there
interventions in the past and future light cones of that po
but no intervention is spacelike with respect to it, then it
possible to divide the experiment into two steps, before
after that point. It is then meaningful to define not only
initial stater0 and a final stater f , but also an intermediate
stater i at that point. It is conventional to refer such a state
a spacelike hyperplane that passes through the point, bu
tually the only role of that hyperplane is to define the Lore
frame in which we write a mathematical description of t
state.

It thus appears that the notion of quantum state should
reassessed. There are two types of states: first, there
physically meaningful states, attached to space-time po
with respect to which no classical intervention has a spa
like location. Then, between any two such points, we m
draw a continuous timelike curve and try to attach a quan
state to each one of the points of that curve. These inte
lating states can indeed be defined, as shown in the pre
paper, by considering a set of parallel spacelike hyperpla
However, states defined in such a way are merely for
mathematical expressions, and they have no invariant ph
cal meaning.

In summary, relativistic causality cannot be violated
quantum measurements. The fundamental physical assu
tion that was needed in the above proof was that Lore
transformations of the space-time coordinates are im
mented in quantum theory byunitary transformations of the
various operators. This is the same as saying that the Lor
group is a valid symmetry of the physical system.

V. CONCLUDING REMARKS

In the present paper it has been shown that a careful tr
ment, avoiding any speculations that have no experime
support, leads to the ‘‘peaceful coexistence’’@32# of quan-
tum mechanics and special relativity. The space-time coo
nates of the observers’ interventions are classical param
subject to ordinary~classical! Lorentz transformations. The
latter are implemented in quantum mechanics by unit
transformations of the operators. There are no essent
new features in the causality issue that arise because of q
n,
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tum mechanics. Quantum correlations do not carry any
formation, even if they are stronger than Bell’s inequal
allows. The information has to be carried by material objec
quantized or not.

The issue of information transfer is essentially nonrelat
istic. Replace ‘‘superluminal’’ by ‘‘supersonic’’ and the ar
gument is exactly the same. The maximal speed of com
nication is determined by the dynamical laws that govern
physical infrastructure. In quantum field theory, the field e
citations are called ‘‘particles,’’ and their speed over mac
scopic distances cannot exceed the speed of light.
condensed-matter physics, linear excitations are ca
phonons and the maximal speed is that of sound.

The classical-quantum analogy~with bomb fragments car-
rying opposite angular momentaJ152J2) becomes com-
plete if we use statistical mechanics for treating the class
case. The distribution of bomb fragments is given by a Lio
ville function in phase space. When Alice measuresJ1, the
Liouville function for J2 is instantly altered, however fa
Bob is from Alice. No one would find this surprising, since
is universally agreed that a Liouville function is only a mat
ematical tool representing our statistical knowledge. Lik
wise, the wave functionc, or the corresponding Wigne
function @33# which is the quantum analog of a Liouvill
function, should be considered as mere mathematical t
for computing probabilities. It is only when they are r
garded as physical objects that superluminal paradoxes a

The essential difference between the classical and qu
tum functions which change instantaneously as the resu
measurements is that the classical Liouville function is
tached to objective properties that are only imperfec
known. On the other hand, in the quantum case, the pr
abilities are attached topotential outcomes of mutually in-
compatible experiments, and these outcomes do not e
‘‘out there’’ without the actual interventions. Unperforme
experiments have no results@34#.

ACKNOWLEDGMENTS

I am grateful to the California Institute of Technolog
where this research program began, for its hospitality, an
particular to Chris Fuchs for many helpful comments and
inexhaustible supply of references. I also had fruitful disc
sions with Dagmar Bruß, Rainer Plaga, Barbara Terhal,
Daniel Terno. This work was supported by the Gera
Swope Fund and the Fund for Encouragement of Resea
k.

@1# Quantum Theory and Measurement, edited by J. A. Wheeler

and W. H. Zurek ~Princeton University Press, Princeto
1983!.

@2# A. Peres and W. K. Wootters, Phys. Rev. D32, 1968
~1985!.

@3# I. Bloch, Phys. Rev.156, 1377~1967!.
@4# Y. Aharonov and D. Z. Albert, Phys. Rev. D24, 359 ~1981!;

29, 228 ~1984!.
@5# A. Peres, inFundamental Problems in Quantum Theory, ed-

ited by D. M. Greenberger and A. Zeilinger@Ann. ~N.Y.!
Acad. Sci.755, 445 ~1995!#, and references therein.
@6# N. Bohr and L. Rosenfeld, Mat. Fys. Medd. Dan. Videns

Selsk.12 ~8! ~1933!; an English translation appears in Ref.@1#.
@7# A. Peres,Quantum Theory: Concepts and Methods~Kluwer,

Dordrecht, 1993!, p. 154.
@8# A. Suarez and V. Scarani, Phys. Lett. A232, 9 ~1997!.
@9# W. G. Unruh, Phys. Rev. D14, 870 ~1976!.

@10# A. Peres, preceding paper, Phys. Rev. A61, 022116~2000!.
@11# A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev.47, 777

~1935!.
7-7



-

ett

an,

,

,

ASHER PERES PHYSICAL REVIEW A 61 022117
@12# D. Bohm,Quantum Theory~Prentice-Hall, New York, 1951!,
p. 614.

@13# K. Ahmet et al., Nucl. Instrum. Methods Phys. Res. A305,
275 ~1991!.

@14# J. Berkovitz, Stud. Hist. Philos. Mod. Phys.29, 183 ~1998!;
29, 509 ~1998!.

@15# J. S. Bell, Physics~Utrecht! 1, 195 ~1964!.
@16# Ph. Blanchard and A. Jadczyk, Found. Phys.26, 1669~1996!;

Int. J. Theor. Phys.37, 227 ~1998!.
@17# I. C. Percival, Phys. Lett. A244, 495 ~1998!.
@18# R. H. Dicke, Am. J. Phys.49, 925 ~1981!.
@19# H. P. Stapp, Am. J. Phys.40, 1098~1972!.
@20# H. Weyl, Gruppentheorie und Quantenmechanik~Hirzel,

Leipzig, 1928!; translated by H. P. Robertson,The Theory of
Groups and Quantum Mechanics~Methuen, London, 1931; re
printed by Dover, New York!, p. 91.

@21# J. B. Kennedy, Philos. Sci.62, 543 ~1995!.
@22# R. Rosen, Bull. Math. Biophys.22, 227 ~1960!.
@23# S. L. Braunstein, A. Mann, and M. Revzen, Phys. Rev. L
02211
.

68, 3259~1992!.
@24# N. Herbert, Found. Phys.12, 1171~1982!.
@25# A. Garuccio, inQuantum Interferometry, edited by by F. De

Martini, G. Denardo, and Y. Shih~VCH, Weinheim, 1996!.
@26# A. Peres, Found. Phys.16, 573 ~1986!.
@27# O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarsh

Am. J. Phys.30, 718 ~1962!.
@28# G. Feinberg, Phys. Rev.159, 1089~1967!.
@29# R. Y. Chiao and A. M. Steinberg, inProgress in Optics

XXXVII, edited by E. Wolf~Elsevier, Amsterdam, 1997!; Phys.
Scr.T76, 61 ~1998!.

@30# J. C. Garrison, M. W. Mitchell, R. Y. Chiao, and E. L. Bolda
Phys. Lett. A245, 19 ~1998!.

@31# J. A. Wheeler, inMathematical Foundations of Quantum
Theory, edited by A. R. Marlow~Academic Press, New York
1978!, pp. 9–48.

@32# A. Shimony, Internat. Philos. Quarterly18, 3 ~1978!.
@33# E. Wigner, Phys. Rev.40, 749 ~1932!.
@34# A. Peres, Am. J. Phys.46, 745 ~1978!.
7-8


