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Classical interventions in quantum systems. |I. The measuring process
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The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary
interaction of that system with a measuring apparatus, a further interaction of both with an unknown environ-
ment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is
a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is
needed. The final result is represented by a completely positive map of the quantum @assibly with a
change of the dimensions p). A continuous limit of the above process leads to Lindblad’s equation for the
quantum-dynamical semigroy@ommun. Math. Phys48, 119 (1976].

PACS numbd(s): 03.65.Bz, 03.6%a

[. INTRODUCTION fication (the formation of a microscopic bubble, or the initial
stage of the electric dischange extremely brief, typically of
The measuring proce$$,2] is the interface of the classi- the order of an atomic radius divided by the velocity of light.
cal and quantum worlds. The classical world has a descriponce irreversibility has set in, the rest of the amplification
tion which may be probabilistic, but in a way that is compat-process is essentially classical. It is noteworthy that the time
ible with Boolean logic. In the quantum world, probabilities and space needed for initiating the irreversible processes are
result from complex amplitudes that interfere in a nonclassiincomparably smaller than the macroscopic resolution of the
cal way. In this paper, the notion of measurement is extendedetecting equipment.
to a more general one: dntervention An intervention has An intervention is described by a set of parameters that
two consequences. One is the acquisition of information bynclude the time at which the intervention occurs. Interven-
means of an apparatus that produces a record. This steptisns of finite duration can also be considefddl and will be
called ameasurementts outcome, which is in general un- briefly discussed. For a relativistic treatméint the follow-
predictable, is theutputof the intervention. The other con- ing papey, we shall need the location of the intervention in
sequence is a change of the environment in which the quarspace-time, referred to an arbitrary coordinate system. In any
tum system will evolve after completion of the intervention. case, we have to specify the speed and orientation of the
For example, the intervening apparatus may generate a nespparatus in the coordinate system that we are using and
Hamiltonian that depends on the recorded result. In particuvarious otherinput parameters that control the apparatus,
lar, classical signals may be emitted for controlling the ex-such as the strength of a magnetic field, or that of an rf pulse
ecution of further interventions. In the second paper of thisused in the experiment, and so on. The input parameters are
series[3], these signals will be limited to the velocity of determined by classical information received from past inter-
light, so as to obtain a relativistic version of quantum meawentions, or they may be chosen arbitrarily by the observer
surement theory. who prepares that intervention, or by a local random device
Interventions are mathematically represented by comacting in lieu of the observer.
pletely positive maps. Their properties are discussed in Sec. A crucial physical assumption is that there exists an ob-
Il, where a detailed dynamical description is given of thejective time ordering of the various interventions in an ex-
measuring process: it involves unitary interactions with aperiment. There are no closed causal loops. This time order-
measuring apparatus and with an unknown environment thang defines the notions earlier and later. The input parameters
causes decoherence, and then the optional deletion of a subf an intervention are deterministior possibly stochastjc
system. The Hilbert space for the resulting quantum systerfunctions of the parameters of earlier interventions, but not
may have a different number of dimensions than the initialof the stochastic outcomes resulting from later interventions.
one. Thus a quantum system whose description starts in la such a presentation, there is no “delayed choice paradox”
given Hilbert space may evolve into a set of Hilbert spaceg$5] (there can be a delayed choice, of course, but no paradox
with different dimensions. If one insists on keeping the samés associated with )it
Hilbert space for the description of the entire experiment, The word “measurement” is a bit misleading, because it
with all its possible outcomes, this can still be achieved bysuggests that there exists in the real world some unknown
defining it as a Fock space. property that we are measurifig]. This term was banned by
The term “detector” will frequently appear in this paper Bell [7], though for a different reason: Bell pointed out that
and in the following one. It means an elementary detectinghe notion of measurement, or observation, was logically in-
element, such as a bubble in a bubble chamber, or a smaibnsistent in a world whose description is purely guantum
segment of wire in a wire chamber. Note that in such amechanical. However, the approach followed in the present
detector, the time required for the irreversible act of ampli-paper does not comply with Bell's desiderata. It explicitly
associates classical inputs and outputs with each intervention
[8,9].
*Electronic address: peres@photon.technion.ac.il The probabilities of the various outcomes of an interven-
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tion can be predicted by using a suitable theory, such awith an unknown environment, is discussed in Sec. Ill. The
quantum theory. Besides these outcomes, there may also Kisal result{Eq. (20)], will be extensively used in the follow-
other output parameters: there may be modifications of théng paper. The right-hand side of that equation contains op-
physical environment depending on which outcome arosegratorsA,,, which are typically represented by rectangular
and the intervening apparatus may emit classical signals witmatrices. Some of their mathematical propertiesparticu-
instructions for setting up later interventions. As a concretdar factorability are discussed in Sec. IV. .
example, consider the quantum teleportation scer[d:@ Decoherence, whqse role is esseqtla}l in the measuring
The first intervention is performed by Alice: she has twoProcess, is a stochastic phenomenon similar to Brownian mo-
spin- particles and she performs on them a test with fourtion- However, when seen on a coarse time scale, it is pos-
possible outcomes. When Alice gets the answer, she emits$ible to consider it as a continuous process. This continuous
corresponding signal, which becomes an input for Bob's in-2PProximation leads to the Lindblad equatjd8], which is
tervention: the latter is one of four unitary transformationsderived in a simple way in Sec. V.
that can be performed on Bob’s particle.
Quantum mechanics is fundamentally statisticdl]. In
the laboratory, any experiment has to be repeated many
times in order to infer a law; in a theoretical discussion, we The measuring process involves several participants: the
may imagine an infinite number of replicas of @edanken- physical system under study, a measuring apparatus whose
experimentso as to have a genuine statistical ensemble. Thetates belong to macroscopically distinguishable subspaces,
various experiments that we consider all start in the samand the “environment” which includes unspecified degrees
way, with the same initial state,, and the first intervention of freedom of the apparatus and the rest of the world. These
is the same. However, later stages of the experiment maynknown degrees of freedom interact with the relevant ones,
involve different types of interventions, possibly with differ- but they are not under the control of the experimenter and
ent space-time locations, depending on the outcomes of theannot be explicitly described. Our partial ignorance is not a
preceding events. Yet, assuming that each intervention hasgn of weakness. It is fundamental. If everything were
only a finite number of outcomes, there is for the entire exknown, acquisition of information would be a meaningless
periment only a finite number of possible recor(tdere the concept.
word “record” means the complete list of outcomes that In order to keep the discussion as general as possible, here
occurred during the experiment. | do not want to use thd do not introduce any “ancilla,” contrary to current fashion.
word “history,” which has acquired a different meaning in This omission is not an oversight. It is intentional and de-
the writings of some quantum theorigts. serves a brief explanation. In the early years of quantum
Each one of these records has a definite probability in thenechanics, von Neumann wrote a rigorous mathematical
statistical ensemble. In the laboratory, experimenters can oltreatise[1] which had a lasting influence. According to von
serve its relative frequency among all the records that wer&leumann, the various outcomes of a measurement corre-
obtained; when the number of records tends to infinity, thisspond to a complete set of orthogonal projection operators in
relative frequency is expected to tend to the true probabilitythe Hilbert space of the quantum system under study. It was
The role of theoretical physics is to predict the probability oflater realized that von Neumann’s approach was too re-
each record, given the inputs of the various interventionstricted, because the measuring process may have more dis-
(both the inputs that are actually controlled by the local ex-tinct outcomes than the number of dimensions of that Hilbert
perimenter and those determined by the outputs of earliespace. The appropriate formalism is that giasitive opera-
intervention$. Note that each record is objective: everyonetor valued measurédPOVM) [14,15. That is, the various
agrees on what happendd.g., which detectors clicked outcomes of the measurement correspond to positive opera-
Therefore, everyone agrees on what the various relative freors E,, which sum up to the unit operator but need not
guencies are, and the theoretical probabilities are also theommute.
same for everyone. This raised a new problem: the actual implementation of a
The “detector clicks” are the only real thing we have to given POVM. In the final section of his book, von Neumann
consider. Their observed relative frequencies are objectiveormally showed how to construct a Hamiltonian that gener-
data. On the other hand, wave functions and operators aied a dynamical evolution of the type required to obtain a
nothing more than abstract symbols. They are convenierirojection-valued measuf®VM). This was a mathematical
mathematical concepts, useful for computing quantum probproof of existence, namely, quantum dynamics was compat-
abilities, but they have no real existence in Nafur2|. Note  ible with the structure of a PVM. Is it compatible with a
also that while interventions are localized in space-timemore general POVM? This question was answered by Hel-
guantum systems are pervasive. In each experiment, irrestrom[16], who converted the problem of implementation of
spective of its history, there is only one quantum system. Tha POVM into that of an ordinary von Neumann measure-
latter typically consists of several particles or other sub-ment, by introducing an auxiliary quantum system that he
systems, some of which may be created or annihilated at thealled ancilla (the Latin word for housemajdBY virtue of
various interventions. Neumark’s theorerhl7], any POVM can be obtained from a
Section Il describes the quantum dynamics of the measuiPVM applied to a composite system that consists of the
ing process which is an essential part of each interventiororiginal system and an ancilla having a sufficient number of
The role of decoherence, due to an inavoidable interactiodimensions. This provides a formal proof of existence, but in

Il. MEASURING PROCESS
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real life this is usually not how measurements are actuallpetween them is that the microscopic degrees of freedom can
performed. Even if an ancilla is used according to Hel-be considered as adequately isolated from the environment
strom’s protocol, we may as well consider it as part of thefor the duration of the experiment, so that their evolution is

measuring apparatus. Therefore, the following description oin principle perfectly controlled, while the macroscopic ones

the measuring process will not involve any ancilla, and yet itcannot be isolated from the unknown environment and the
will explicitly show how any POVM can be implemented by dynamical evolution cannot be completely predicted. Statis-
a unitary interaction of the quantum system with a suitabldical hypotheses are required in order to make plausible pre-
apparatus. dictions, as explained below. Any other degrees of freedom

To simplify the notations, it will be assumed that finite- of the apparatus, for which no explicit description is pro-
dimensional Hilbert spaces are sufficient for describing thevided, are considered as part of the environment.
guantum system under study, the apparatus, and even the An essential property of the composite systémvhich is
environment. Moreover, the initial statgs of the system necessary to produce a meaningful measurement, is that its
and the apparatus are assumed to be pure. Initially mixestates form a finite number of orthogonal subspaces which
states would be a more realistic assumption, but since thegre distinguishable by the observer. These subspaces are
can always be written as convex combinations of pure  similar to, but more general than, Zurek’s “pointer basis”
their use would not bring any essential change in the discug19] which is a preferred basis for the apparatus. Here we
sion below. consider orthogonasubspaceof the composite systerq,

Let a set of basis vectors for the system under study bahich may have different numbers of dimensions. For ex-
denoted ag|s)}. The initial state of that system is a linear ample, a particle detector may have just two such subspaces:
combination, | ) ==c|s), with complex coefficientss. “ready to fire” and “discharged” (obviously, the latter has
Let|A) be the initial state of the apparatus. In the first step ofmany more states than the formeEach macroscopically
the measuring process, which may be called a “premeasuralistinguishable subspace corresponds to one of the outcomes
ment” [18], the apparatus interacts unitarily with the quan-of the intervention and defines a POVM elemé&nt, given
tum system and becomes entangled with it, so that they efxplicitly by Eq. (7) below. The labelsu are completely
fectively become a single composite systém arbitrary; for example they may be the labels printed on the
various detectors. The initial state 6f namely,| o) ®|A),
lies in the subspace that corresponds to the null outdome
detection.

Obviously, the number of different outcomes is far
where{|\)} is a complete basis for the statesflt is the  smaller than the dimensionality of the composite system
choice ofUg, that determines which property of the systemLet us introduce a complete basig, &)}, whereu labels a
under study is correlated to the apparatus, and therefore macroscopic subspace, as explained above ¢dablels mi-
measured. Unitarity implies that croscopic states in that subspace. We thus have

Zs cs|s>®|A>H§ csUa M), (1)

> Ug Uk =6, () (1, &V, m)=6,,,8¢,. 4)
N

Note that the various subspaces labgleghay have different

dimensions, that is, the range of indigemay depend on the

%grresponding/,. We shall henceforth writ&),, instead of
S.

or UUT=1, wherel is the unit matrix in the Hilbert space of
the original quantum system. Thé matrix is not square: it
has fewer rows than columns, because we have consider
only a single initial state of the apparatus, namehy,. If we A .

hag[ introguced a complete setpgf states for ?:1% apparatus After the premeasurement, given by &), the state of
labeled |B), |C), etc., thenU would have been a unitary IS given by

matrix satisfying

l1)= 2 cUguel,&). (5)
; UsarUis \= Sst9as - (3 Sié

The probability of obtaining outcomg is the contribution

Our freedom of choosing the required unitary matdix, , is of subspacg: to the density matrixy, )( ¢ |. Explicitly, it is

equivalent to the freedom of choice of an interaction Hamil-
tonian in the von Neumann formalism.

The apparatus itself is an utterly complicated system, and * * _
some radical assumptions are needed in order to proceed s,Z,g CsCi UsueUine ; psiEules: ©
with explicit calculations. The assumptions below are not as
drastic as those commonly used in quantum measuremeffere
theory, yet they ought to be clearly spelled out. Let us as-
sume that the composite systéhtan be fully described by
the theory. Its complete description involves both “macro- (E,) =E U. LU* @
scopic” variables and “microscopic” ones. The difference wits L TemET L
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is a POVM element, defined in the Hilbert space of the sysdifferent subspaceg. This would mean that the measuring

tem under study whose initial state wag,. Note that the apparatus is actually disturbed by the environment. Such a

matricesk, satisfy process is calledhoise and is essentially different from the
phenomenon oflecoherencewhose occurence is explained

Z (E.) :2 U. .U* =5 ) below. Here_ it is assumed t.hat no noise affects. the mea;uring
iRy sue-tug Utso process. It is only the environment, whose microscopic de-
grees of freedom are not robust, that is disturbed by the
by virtue of the unitarity property in Eq2). apparatugthis is the mechanism causing decoherg¢nEg-
actly how it is disturbed cannot be known; however, we do
IIl. DECOHERENCE know that macroscopically different states ®fead to dif-

ferent disturbances of the environment, and hence to the ap-
Up to now, the quantum evolution has been well definedhearance of an indep in the coefficients .., -
and in principle reversible. It would remain so if the macro-  The final state with all the participating subsystems is thus
scopic degrees of freedom of the apparatus could be per-
fectly isolated from their environment, and in particular from
the “irrelevant” degrees of freedom of the apparatus itself. [42)= 2 CUmuebuwal . €)®€,). 12
This demand is of course self-contradictory, since we have to Sinda
read the result of the measurement if we wish to make an
use of it.
Let {|e,)} denote a complete basis for the states of th

%‘he final density matrixstill a pure state, for the sake of
Simple notationsis p=|¢,)(¢,|. Explicitly, we see from

environment, and ldfe,) be the state of the environment at E9- (12 that the expression fop contains, among other

the moment of the premeasurement. That state is of courdings, operatorge, )(e,| which refer to states of the envi-

unknown, but | temporarily assume that it is pure, and morefonment. They are unknown and are considered unknowable.

over that it is one of the basis states, in order to simplify the! '® Only operator acting on these states that we know to

notations. This pure initial state will later be replaced by aWV'it€ iS represented by the unit matr . Its meaning, in
density matrix the Iaborgtory, is that of complete ignorance. Therefore we
can effectively replace the complete density magriky the
reduced matrix obtained from it by ignoring the inaccessible
pe=2 Pol€u){(€ul, 9 degrees of freedom of the environment. That is, we replace
¢ the operator$e,)(eg| which appear irp by (egle,)= 6,4,

with unknown random non-negative coefficieqts. There and we perform a partial trace on the indices that refer to the

is no loss of generality in assuming thatis diagonal in the ~ €nVironment. : _ . .

basis used f%r the s}t/ates of the genr\’/?rtonmegt. This mereIY The reduced dfnsny mgtnx thus contains expressions of

means that this basis was chosen in the appropriate way. 1€ YP€2b,uaDy,, - It will now be shown that, after a
Recall that statefu, &) with different u are macroscopi- easonably short time has elapsed, we have

cally different, so that they interact with different environ-

ments. On the other hand, the labélsefer to microscopic Z b b* ~s (13)

degrees of freedom that are well protected from parasitic T peaTvee TRy

disturbances. This sharp dichotomous distinction between

the two types of degrees of freedom is the only approximaThe caseu= v is the normalization conditioi11) due to

tion that was made until now. unitarity. Whenw # v, the rationale for arguing that the left-
The unitary interaction of® with the environment thus nand side of Eq(13) is very close to zer¢éand has a random

generates an evolution which is not under the control of thgynasg is that the environment has a huge number of states,

experimenter: sayN, whose dynamics is chaotic. Therefore the scalar prod-
uct of any two states such &b, ,,/e,) and=b,,,slez) that
|M,§>®|ew>—>|ﬂ,§>®2 D oal€a)- (10) may result from Eq(10), at any random time, is of the order
a of N2 because the components of a random state, in a

randomly chosen basis, are of the ordeMbf'2. The time
The coefficientd,,,, are unknown except for normalization, that has to elapse to make H43) a good approximation is
called thedecoherence timeand it depends on how well the
2_1. macroscopic degrees of freedom of the measuring apparatus
> [byual®=1; (1D . .
e are isolated from the environment. There may of course be
large fluctuations on the left-hand side of E§3), akin to
they have no subscrigt because the microscopic degrees ofPoincarerecurrence$20], but this expression ialmost al-
freedom do not interact with the environment, and they canwaysvery close to zero ifu# v.
not mix different values of. because the latter refer to mac-  The approximation becomes even better if instead of an
roscopic outcomes that are stable on the time scale of thieleal pure initial statée,,) for the environment, we take the
experiment. One could also consider a more general evolunore realistic density matrix given by E@). Instead of Eq.
tion, where the right-hand side of ELO) would involve  (13) we then have
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as a direct product, rather than a linear superposition of such
2 pwE bp,wab:wazé,U«V! (14) prOdUCtS.
¢ “ We are now ready to discard the subsystem whose basis
vectors are denoted ag,m). In the unnormalized density

where the off-diagonal terms on the right-hand side are OV~ trix p.=|.)(w,| (whose trace is the probability of ob-

-1 -1/2 ; ;
T e b T ot 3NN UG, e ignore e cileed subsystem. Tha
S is, we replace the operatfyz,m){ «,n| that appears ip,, by
the thermodynamic limilN—co. . . . u
It follows that states of the environment that are corre-> unit Matrix omp and we perform a partial trace on the
lated to subspaces ¢fwith different labelsy can safely be indicesm and n, as we have done wheq we discarded th(_a
. . . states of the environment. We thus obtain a reduced density
treated in our calculations as if they were exactly orthogonalm atrix
The resulting theoretical predictions will almost always be
correct, and if any rare small deviation from them is ever
observed, it will be considered as a statistical quirk, or an pl=2 CCf > UguomUimlmo)m 7. (17)
experimental error. The reduced density matrix thus is block- st m.e.7
diagonal, and all our statistical predictions are identical toI | , b .
those obtained for an ordinary mixture @innormalizedd ' elements(u,op,| 1, 7) can be written as
pure states

(Plor=2 2 (Aumdospst(Apm),  (18)
m st
| ¢#> = E CSU S,LL§|/“'LY§>’ (15) .
S. wherepg=csc; , and the notation
where the statistical weight of each state is the square of its (Aum) os=Usuom (19

norm. This mixture replaces the pure stpgg) in Eq. (5).
This is the meaning of the term decoherence. From this mowas introduced for later convenience. Recall that the indices
ment on, the macroscopic degrees of freedond bave en- s and o refer to the original system under study and to the
tered into the classical domal21,22. We can safely ob- final one, respectively. Omitting these indices, Eif) takes
serve them and “lay on them our grubby hand®3]. In  the familiar form
particular, they can be used to trigger amplification mecha-
nisms (the so-called detector click$or the convenience of
the experimenter.

Note that all these properties still hold if the measurement
outcome happens to be the one labegledO (that is, if there  which is the most general completely positive linear map
is no detector click It does not matter whether this is due to [25]. This is sometimes written aﬁ;L:Sp, whereS is a
an imperfection of the detector or to a probability less than linear superoperatowhich acts on density matricesvhile
that a perfect detector would be excited. The state of then ordinary operator acts on quantum statiiste, however,
quantum system does not remain unchanged. It has to changeat these superoperators have a very special structure, given
to respect unitarity. The mere presence of a detector thagy Eq. (20).
could have been excited implies that there has been an inter- Clearly, the “quantum jump”p—p/, is not a dynamical
action between that detector and the quantum system. Evefyocess that occurs in the quantum system by itself. It results
if the detector has a finite probability of remaining in its from the introduction of an apparatus, followed by its dele-
initial state, the quantum system correlated to the latter aGjon or that of another subsystem. In the quantum folklore, an
quires a different statg24]. The absence of a click, when jmportant role is played by the “irreversible act of amplifi-
there could have been one, is also an event and is part of thtion.” The latter is irrelevant to the present issue. The
historical record. amplification is solely needed to help the experimenter. A

The final (optiona) step of the intervention is to discard jump in the quantum state occurs even when there is no
part of the composite systeth In the case of a von Neu- detector click or other macroscopic amplification, because
mann measurement, the subsystem that is discarded apg impose abrupt changes in our way of delimiting the ob-
thereafter ignored is the measuring apparatus itself. In genect we consider as the quantum system under study. The
eral, it is a different subsystem: the discarded part may deprecise location of the intervention, which is important in a
pend on the outcome and in particular its dimensions may relativistic discussio3], is the point from which classical
depend onu. The remaining quantum system then also hasnformation is sent that may affect the input of other inter-
different dimensions. In the subspagewe therefore intro-  ventions. More precisely, it is the earliest space-time point
duce two sets of basis vectdys,o) and|w,m) for the new  from which classical information could have been sent. This
system and the part that is discarded, respectively. They res also true for interventions that gave no detection event.
place the original basig,£), and it is convenient to choose Such a passive intervention is located where the detection

Pu= 2 AumpPim, (20

the latter in such a way that for eaghwe can write event would have occurred, if there had been one.
Is it possible to maintain a strict quantum formalism and
|, &)=|p,o)®|u,m) (16)  treat the intervening apparatus as a quantum-mechanical sys-
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tem, without ever converting it to a classical description? We 31]. Superoperators that do not conserve the number of di-
could then imagine not only sets of apparatuses spreachensions of the density matrix were also considered by other
throughout space-time, but also truly delocalized apparatuseaithors[32]. The present treatment is even more general,
[26], akin to Schrdinger catg27,2§, so that interventions because it allows the number of rows A, (that is, the
would not be localized in space-time as required in theorder ofp/,) to depend on, since we may decide to discard
present formalism. However, such a process would only beifferent subsystems according to the outcome of the mea-
the creation of a correlation between two nonlocal quantunsurement.
systems. This would not be a true measurement but rather a From Eq.(19), which relates the matrix elementd (i) s
“pre_measurement’[lB]. A _Valid mgasuring apparatus must to the unitary transformation involved in the quantum inter-
adr_nlt_ a classical de_SCI’IptI_OI’l equ_lvalent to its quantum devention, it appears that if we multiply the order,mﬁ by the
scription [22], and in particular it must have a positive range of the indicesn in A, the product of these two
Wigner function. Therefore a delocalized apparatus is & cOmumbpers is the same for all, since it is equal to the number
tradiction in terms. If a nonlocal system is used for the meagf dimensions of the composite systéinnamely, the origi-
surement, it must be described by quantum mechaimios na| quantum system together with the measuring apparatus.
classical description is possibjeand then it has to be mea- However, the situation is more complicated, because it may
sured by a valid apparatus that behaves quasiclassically a’P\%ppen thatA ,,,=0 for some values oftm. Moreover, if
in parltlcul_ar. is Iocallzgd. It can indeed be localized as well agpe matricesA,,,, andA,,, are proportional to each other for
we wish, if it is massive enough. o _ somem andn, these matrices can be combined into a single

Likewise, quantum measurements of finite duration, a%ne; and conversely, amy,, can be split into several which
discussed by Peres and Wootteds, actually are only pre- i " i i

) " are proportional to each other. Therefore there is no simple

measurements. To obtain consistent results, these authqi§e saying how many terms appear in the sum in @4).
had to explicitly introduce a second apparatus that suddenly ¢ probability of occurrence of outcomein a measure-

measures the first one. Their first apparatus has no classicant is given by Eq(6), and it can now be written as
description. In the language that | am using now, only the

second apparatus performs a valid measurement. .

In a purely quantum description of the apparatus, which is P.=2> Tr(AumpAum) =Tr (Eup). (21)
the one appropriate at the premeasurement stage, the new "
state is an incoherent mixture of variopg correlated to  The positive(that is, non-negatijeoperators
distinct outcomeg of the apparatus. However, the descrip-
tion of the apparatus must ultimately be converted into a +
classical on¢21,22 if we want it to yield a definite record. E#:% AumPAum (22)
On the other hand, it is also possible to discard the apparatus
without recording its result. We then have to describe thQNhOSE dimensions are the same as those of the |p|l‘|a|’e
state of the quantum system by a mixture of mixtures, as ilements of a POVM and satisty ,E,,= 1. Note that null
Eqg. (37) below. The term “compound’{29] has been pro- outcomegi.e., no detectionhave to be included in that sum.
posed for that kind of mixture which is solely due to our They indeed are the most probable result in typical experi-
ignorance of the actual outcome and has no objective naturgnental setups. Yet, even if no detector is excited, the inter-

Once we have a definite outcome the new state i$,,  vention may affect the quantum systé@w], and the corre-
given by Eq.(20). spondingA,,, are not trivial. There may even be several
distinctA ,, for “no detection,” depending on the cause of

IV. KRAUS MATRICES the failure.

Conversely, giverE, (a non-negative square matrix of
A special case of Eq20) for square matrice#,, was  orderk) it is always possible to split it in infinitely many
obtained by Krau$30], who sought to find the most general ways as in Eq(22). This is easily proved by taking a basis in
completely positive map for the density matrices of a givenwhich E,, is diagonal. All the elements are non-negative, so
quantum systenino change of dimensions was allowed that by taking their square roots we obtain a matfi, that
Kraus’s result obviously is a generalization of von Neu-satisfies the relation required fér,n. Next let{S,} be a
mann’s prescription for the state resulting from fhth out-  set of complex rectangular matrices wkttolumns and any

come of a measurement, namely=P ,pP,, whereP, is  number of rows, satisfying® ,S},,S,m="1. It follows that
the projection operator associated with outcomeRecall Aum=Sum /E# satisfies Eq(22).

that, even if the initialp is normalized to unit tracéas we Moreover, if a POVM is factorable, namely,

always assumethe trace op, in the above equations is not

equal to 1. Rather, it is the probability of occurrence of out- E,..=El®E®, (23
come u. It is quite convenient to keep, unnormalized,

with the above interpretation for its trace. where the indiceg1) and (2) refer to two distinct sub-

The results obtained here are more general than those sfstems, then the above construction provides factorable
Kraus, because the matricAs,, may be rectangular. As Eq. Kraus matrices:
(19 shows, these matrices are simply related to the unitary (1) o A (2)
transformationUs,,,, that generates the premeasurement Apmn=A @A . (29)
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The operator sum in Eq§20) and(22) now becomes double

sums, over the indices andn. Such double sums are indeed > BIMann: 1 (32
needed. If we had simply written, instead of Eg3), E, i

=EPoEQ), the corresponding Kraus matrices would in e then have

general not be factorable. Such a POVM, with a single index,

is calledseparable and it cannot in general be implemented E E —E (33
by separate operations on the two subsystems with classical - TvpT R

communication between thef82].

The factorization of a POVM as in Eq23) is not the  This splitting of E,, into a sum of several parts is called a
most general one. It corresponds to two POVM'’s indepenPOVM refinement33]. It may be repeated many times, until
dently chosen by the two observers. However, the observeidl the final POVM elements are matrices of rank 1. For
may also follow an adaptive strategy. After the first oneexample, this can be done by an apparatus that includes a
(conventionally called Aliceexecutes the POVI\{’IES)}, she multidimensional ancilla which isiot discarded at interme-
informs the second observéBob) of the result,u say, and diate stages but only after the completion of the measuring
then Bob uses a POVM adapted to that result. This will begprocedure. This is why it is convenient to consider that an-
denoted agf(Eg)zﬂ)}, with cilla explicitly rather than as part of the measuring apparatus.

In the resulting Neumark extensidthat is, the joint Hilbert
@) 1(2) space of the quantum system and the ancilach POVM is
2 EQD=1®, ¥ u. (25 implemented as an ordinary von Neumann P\16,17.
’ Initially, the latter is coarse grained: it distinguishes only
Note that the chronological order of the Greek indices indi_mulndlmensmnal subspaces of the system and the ancilla.

cating the outcomes of consecutive measurements is fromhiS PYM is then gradually “refined” by the observer who

right to left, just as the order for consecutive applications ofiS€S further PVM's to select smaller and smaller orthogonal
a product of linear operators. We then have, instead of EqcUPSPaces. How these subspaces are explicitly defined de-

(23), ends on results obtained in preceding tests. This is an adap-
tive strategy which is particularly efficient for the optimal
E —gWgg® (26) identification of an unknown b_ipartite quantum Sta8s).
e TR v The two observers take turns in performing local measure-
and thus ments and informing each other of the results they obtained.

The final result again has the form of E@6), but now the
A N PYNG) 27 label . stands for the entire sequence of intermediate out-
venm T pn ¢ comes that were obtained by the two observers, and the label

A more complicated situation arises when gmmesys- ” indicates the result of the very last intervention.
tem or subsytem is subjected to consecutive interventions _tEor exampt)_le, i eallch Xlt_)server gek;formsAlj_ust tW% tests,
that depend on the outcomes of preceding interventions. W% bcotr;]secE |vezresl;u ta (Alice), v (Bob), o (Alice), and7
have, subsequent to the map in E20), ob), then Eq.(27) becomes

Asguptsnm= AL A @ AD, AT (34)

VoS Tovut™ vun -

’ "o ot
Pu=Pou ; BuyunPuBoun- (28) This relationship is valid for any two pairs of consecutive

tests, not only for those of the “refinement” type.

The result of these two consecutive maps can be written Returning to the case of a single observer, let a complete
set of POVM elements be given. It is then always possible to
construct from their Kraus matricéim infinitely many way$

N :2 C ct (29 . . : <.
P=Pyyu ~ vunmP~yunmo unitary transformations that satisfy E(®). Indeed, writing
’ all indices explicitly, the relatiorx ,E ,=1 becomes

where

- > (AL m) Es(Aum) ot = st (35
30 pamo

This can be written, owing to Eq19), as

C vpunm— Bv,unA

pum

It follows that

2 UL mUiuom= dst, (36)
Ev,uzg1 Cl,unmcv,unmzé ALm(; B;l;,unBV,un)Ap,m' wma . g
(31)  which is the same as E) with the index\ (which refers
to the composite systed) replaced by the composite index
There is no simple relationship between this expressiosuo. This explicitly shows how any POVM can be imple-
and the antecedent POVM elemég},, unless the Kraus mented by a unitary transformation and a suitable apparatus
matricesB, ,, are chosen in such a way that having the necessary dimensionalitysually much smaller
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than the one required by the introduction of an angilla scale oftgecon, the time needed for E¢13) to be valid. One
Recall that theA,, matrices are in general rectangular. can thus write(combining the composite indexm into a

For example, in the teleportation scenafld], Alice can  single indexj)

discard her two quantum particles together with her measur-

ing apparatus after she performs her four-way test. The Hil- Aj=S5+Fj, (39

bert space of Alice’s subsystem then becomes trivial: it has , i

only one dimensiorfonly one state In that caseA,,, has a where the matrices; Correspond to the slow mqtlon gener-

single row,ALm a single column, ang, is just a number, ated byHo, and the matrice; to the fasft.fluc.tuatmns due to

namely, the probability of obtaining outcome Likewise, the environment. This neat decomposition into slow and fast

each stage of a quantum distillati684,35 causes a reduc- variables_involves pf course some arbitrariness_ that will be
tion of the number of dimensions of the quantum system thaeflected in the derivation of the Llpdblgd equation below.
is distilled. That system initially consists of a set of en- _ !t follows from Eq.(39) thatA,pA; splits into three kinds
tangled subsystems. Successive interventions select suitat$lé terms. Those terms quadratic 8) represent the smooth
subsets that have higher degrees of entanglement. Ideall§volution due tcH,. If we wish to write a differential equa-
the final result should be arbitrarily close to a pair of spin- {ion for dp/dt, the other terms have to be smoothed out on a
particles in a singlet state. time scale much- Ionggr thaecon Since this is a randqm
Some authors consider only square matriges,, and walk, the terms linear ifr; average out to zero on that time
then it is mathematically permitted to sum alj, so as to ~ Scale, and the terms that are quadratié jrgrow linearly in
obtain the average state of all the outgoing quantum systeméme. Clearly, this smoothing out and the resulting linear
For example, if the outcomes of our interventions are no@rowth involve some approximations whose validity have to

recorded, so that no subensembles are selected, we may writé @scertained on a case by case basis. _
Let us thus assume that there is a coarse time sffale

p’=2 AMmPAT , 37 >1t4econ 10Ng enough so that the fluctuations are_averaged

= um out,_ and y_et_ short enoug_h so that _the slow evolution o_lue to
Hy is negligible beyond first order iat. We can then write

where the trace op’ is 1, of course. Such sums are rarely Fj=V; Jét, where the matrice¥; are finite. The result is the

needed in theoretical discussions. Different lahelgorre-  Lindblad equatiorf13]

spond to different world historieghat is, different samples

in the ensemble of experimentSumming over them is like i vyt 1 oyty. _ 1yty,

saying that peas and peanuts contain on the average 42% of dpldt I[p’H°]+zj" (VipVi—2pViVi=2VjVip).

water, instead of saying that peas have 78% and peanuts 6% (40

[36]. Still, there are some cases where this kind of averagin

is justified. For example, when we compare the expecte&his_ equation is of course valid only_in the future time_ di-
yields of various distillation method84,35, we are inter- 'ection [dt>0), because the smoothing out of flucytuatl_orjs
ested only in average results. Moreover, when the quantunﬂ”ta'ls an .|rreverS|bIe loss of mformatlon._Lmdb_Iad S origi-
system weakly interacts with an unknown environm@nch nal 'd'envatlon used an abstract argument mvolvmg complete
as a heat bajhrather than with an apparatus that can neatlyPoSitivity and a semigroup structureagain dt>0). An
distinguish different outcomes of the intervention, the resul€duivalent argument was given independently by Gorini

is a continuous decoherence of the quantum $&# This  ©t &l-[38]. The present proof is based on an explicit dynami-
issue is discussed quantitatively in Sec. V. cal model of interaction, and it may be easier to understand.

A similar derivation was also obtained by Schumadig
and, after the present paper was submitted for publication, a
more detailed discussion, also based on the Kraus formalism,
For a complete treatment of the quantum system in itsvas published by Bacort al. [40]. Still more recently,
unknown environment, we write the Hamiltonian as Adler sharpened the above heuristic derivation of @q) by
using Itds stochastic calculu41].

V. LINDBLAD EQUATION

H=Hy+Hen*+ Hints (39
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