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Classical interventions in quantum systems. I. The measuring process

Asher Peres*
Department of Physics, Technion—Israel Institute of Technology, 32 000 Haifa, Israel

~Received 11 June 1999; published 18 January 2000!

The measuring process is an external intervention in the dynamics of a quantum system. It involves a unitary
interaction of that system with a measuring apparatus, a further interaction of both with an unknown environ-
ment causing decoherence, and then the deletion of a subsystem. This description of the measuring process is
a substantial generalization of current models in quantum measurement theory. In particular, no ancilla is
needed. The final result is represented by a completely positive map of the quantum stater ~possibly with a
change of the dimensions ofr). A continuous limit of the above process leads to Lindblad’s equation for the
quantum-dynamical semigroup@Commun. Math. Phys.48, 119 ~1976!#.

PACS number~s!: 03.65.Bz, 03.67.2a
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I. INTRODUCTION

The measuring process@1,2# is the interface of the classi
cal and quantum worlds. The classical world has a desc
tion which may be probabilistic, but in a way that is comp
ible with Boolean logic. In the quantum world, probabilitie
result from complex amplitudes that interfere in a nonclas
cal way. In this paper, the notion of measurement is exten
to a more general one: anintervention. An intervention has
two consequences. One is the acquisition of information
means of an apparatus that produces a record. This st
called ameasurement. Its outcome, which is in general un
predictable, is theoutputof the intervention. The other con
sequence is a change of the environment in which the qu
tum system will evolve after completion of the interventio
For example, the intervening apparatus may generate a
Hamiltonian that depends on the recorded result. In part
lar, classical signals may be emitted for controlling the e
ecution of further interventions. In the second paper of t
series@3#, these signals will be limited to the velocity o
light, so as to obtain a relativistic version of quantum me
surement theory.

Interventions are mathematically represented by co
pletely positive maps. Their properties are discussed in S
II, where a detailed dynamical description is given of t
measuring process: it involves unitary interactions with
measuring apparatus and with an unknown environment
causes decoherence, and then the optional deletion of a
system. The Hilbert space for the resulting quantum sys
may have a different number of dimensions than the ini
one. Thus a quantum system whose description starts
given Hilbert space may evolve into a set of Hilbert spa
with different dimensions. If one insists on keeping the sa
Hilbert space for the description of the entire experime
with all its possible outcomes, this can still be achieved
defining it as a Fock space.

The term ‘‘detector’’ will frequently appear in this pape
and in the following one. It means an elementary detect
element, such as a bubble in a bubble chamber, or a s
segment of wire in a wire chamber. Note that in such
detector, the time required for the irreversible act of amp
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fication ~the formation of a microscopic bubble, or the initi
stage of the electric discharge! is extremely brief, typically of
the order of an atomic radius divided by the velocity of ligh
Once irreversibility has set in, the rest of the amplificati
process is essentially classical. It is noteworthy that the t
and space needed for initiating the irreversible processes
incomparably smaller than the macroscopic resolution of
detecting equipment.

An intervention is described by a set of parameters t
include the time at which the intervention occurs. Interve
tions of finite duration can also be considered@4#, and will be
briefly discussed. For a relativistic treatment~in the follow-
ing paper!, we shall need the location of the intervention
space-time, referred to an arbitrary coordinate system. In
case, we have to specify the speed and orientation of
apparatus in the coordinate system that we are using
various otherinput parameters that control the apparatu
such as the strength of a magnetic field, or that of an rf pu
used in the experiment, and so on. The input parameters
determined by classical information received from past int
ventions, or they may be chosen arbitrarily by the obser
who prepares that intervention, or by a local random dev
acting in lieu of the observer.

A crucial physical assumption is that there exists an
jective time ordering of the various interventions in an e
periment. There are no closed causal loops. This time or
ing defines the notions earlier and later. The input parame
of an intervention are deterministic~or possibly stochastic!
functions of the parameters of earlier interventions, but
of the stochastic outcomes resulting from later interventio
In such a presentation, there is no ‘‘delayed choice parad
@5# ~there can be a delayed choice, of course, but no para
is associated with it!.

The word ‘‘measurement’’ is a bit misleading, because
suggests that there exists in the real world some unkno
property that we are measuring@6#. This term was banned by
Bell @7#, though for a different reason: Bell pointed out th
the notion of measurement, or observation, was logically
consistent in a world whose description is purely quant
mechanical. However, the approach followed in the pres
paper does not comply with Bell’s desiderata. It explicit
associates classical inputs and outputs with each interven
@8,9#.

The probabilities of the various outcomes of an interve
©2000 The American Physical Society16-1
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ASHER PERES PHYSICAL REVIEW A 61 022116
tion can be predicted by using a suitable theory, such
quantum theory. Besides these outcomes, there may als
other output parameters: there may be modifications of
physical environment depending on which outcome aro
and the intervening apparatus may emit classical signals
instructions for setting up later interventions. As a concr
example, consider the quantum teleportation scenario@10#.
The first intervention is performed by Alice: she has tw
spin-12 particles and she performs on them a test with fo
possible outcomes. When Alice gets the answer, she em
corresponding signal, which becomes an input for Bob’s
tervention: the latter is one of four unitary transformatio
that can be performed on Bob’s particle.

Quantum mechanics is fundamentally statistical@11#. In
the laboratory, any experiment has to be repeated m
times in order to infer a law; in a theoretical discussion,
may imagine an infinite number of replicas of ourgedanken-
experiment, so as to have a genuine statistical ensemble.
various experiments that we consider all start in the sa
way, with the same initial stater0, and the first intervention
is the same. However, later stages of the experiment
involve different types of interventions, possibly with diffe
ent space-time locations, depending on the outcomes o
preceding events. Yet, assuming that each intervention
only a finite number of outcomes, there is for the entire
periment only a finite number of possible records.~Here the
word ‘‘record’’ means the complete list of outcomes th
occurred during the experiment. I do not want to use
word ‘‘history,’’ which has acquired a different meaning
the writings of some quantum theorists.!

Each one of these records has a definite probability in
statistical ensemble. In the laboratory, experimenters can
serve its relative frequency among all the records that w
obtained; when the number of records tends to infinity, t
relative frequency is expected to tend to the true probabi
The role of theoretical physics is to predict the probability
each record, given the inputs of the various interventio
~both the inputs that are actually controlled by the local
perimenter and those determined by the outputs of ea
interventions!. Note that each record is objective: everyo
agrees on what happened~e.g., which detectors clicked!.
Therefore, everyone agrees on what the various relative
quencies are, and the theoretical probabilities are also
same for everyone.

The ‘‘detector clicks’’ are the only real thing we have
consider. Their observed relative frequencies are objec
data. On the other hand, wave functions and operators
nothing more than abstract symbols. They are conven
mathematical concepts, useful for computing quantum pr
abilities, but they have no real existence in Nature@12#. Note
also that while interventions are localized in space-tim
quantum systems are pervasive. In each experiment,
spective of its history, there is only one quantum system.
latter typically consists of several particles or other su
systems, some of which may be created or annihilated a
various interventions.

Section II describes the quantum dynamics of the mea
ing process which is an essential part of each intervent
The role of decoherence, due to an inavoidable interac
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with an unknown environment, is discussed in Sec. III. T
final result@Eq. ~20!#, will be extensively used in the follow-
ing paper. The right-hand side of that equation contains
eratorsAmm which are typically represented by rectangu
matrices. Some of their mathematical properties~in particu-
lar factorability! are discussed in Sec. IV.

Decoherence, whose role is essential in the measu
process, is a stochastic phenomenon similar to Brownian
tion. However, when seen on a coarse time scale, it is p
sible to consider it as a continuous process. This continu
approximation leads to the Lindblad equation@13#, which is
derived in a simple way in Sec. V.

II. MEASURING PROCESS

The measuring process involves several participants:
physical system under study, a measuring apparatus w
states belong to macroscopically distinguishable subspa
and the ‘‘environment’’ which includes unspecified degre
of freedom of the apparatus and the rest of the world. Th
unknown degrees of freedom interact with the relevant on
but they are not under the control of the experimenter a
cannot be explicitly described. Our partial ignorance is no
sign of weakness. It is fundamental. If everything we
known, acquisition of information would be a meaningle
concept.

In order to keep the discussion as general as possible,
I do not introduce any ‘‘ancilla,’’ contrary to current fashion
This omission is not an oversight. It is intentional and d
serves a brief explanation. In the early years of quant
mechanics, von Neumann wrote a rigorous mathemat
treatise@1# which had a lasting influence. According to vo
Neumann, the various outcomes of a measurement co
spond to a complete set of orthogonal projection operator
the Hilbert space of the quantum system under study. It w
later realized that von Neumann’s approach was too
stricted, because the measuring process may have more
tinct outcomes than the number of dimensions of that Hilb
space. The appropriate formalism is that of apositive opera-
tor valued measure~POVM! @14,15#. That is, the various
outcomes of the measurement correspond to positive op
tors Em , which sum up to the unit operator but need n
commute.

This raised a new problem: the actual implementation o
given POVM. In the final section of his book, von Neuma
formally showed how to construct a Hamiltonian that gen
ated a dynamical evolution of the type required to obtain
projection-valued measure~PVM!. This was a mathematica
proof of existence, namely, quantum dynamics was com
ible with the structure of a PVM. Is it compatible with
more general POVM? This question was answered by H
strom@16#, who converted the problem of implementation
a POVM into that of an ordinary von Neumann measu
ment, by introducing an auxiliary quantum system that
called ancilla ~the Latin word for housemaid!. By virtue of
Neumark’s theorem@17#, any POVM can be obtained from
PVM applied to a composite system that consists of
original system and an ancilla having a sufficient number
dimensions. This provides a formal proof of existence, bu
6-2
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CLASSICAL INTERVENTIONS IN . . . . I. . . . PHYSICAL REVIEW A 61 022116
real life this is usually not how measurements are actu
performed. Even if an ancilla is used according to H
strom’s protocol, we may as well consider it as part of t
measuring apparatus. Therefore, the following description
the measuring process will not involve any ancilla, and ye
will explicitly show how any POVM can be implemented b
a unitary interaction of the quantum system with a suita
apparatus.

To simplify the notations, it will be assumed that finit
dimensional Hilbert spaces are sufficient for describing
quantum system under study, the apparatus, and even
environment. Moreover, the initial statesr i of the system
and the apparatus are assumed to be pure. Initially m
states would be a more realistic assumption, but since
can always be written as convex combinations of purer i ,
their use would not bring any essential change in the disc
sion below.

Let a set of basis vectors for the system under study
denoted as$us&%. The initial state of that system is a linea
combination,uc0&5(csus&, with complex coefficientscs .
Let uA& be the initial state of the apparatus. In the first step
the measuring process, which may be called a ‘‘premeas
ment’’ @18#, the apparatus interacts unitarily with the qua
tum system and becomes entangled with it, so that they
fectively become a single composite systemC:

(
s

csus& ^ uA&→(
s,l

csUslul&, ~1!

where$ul&% is a complete basis for the states ofC. It is the
choice ofUsl that determines which property of the syste
under study is correlated to the apparatus, and therefo
measured. Unitarity implies that

(
l

UslUtl* 5dst , ~2!

or UU†51, where1 is the unit matrix in the Hilbert space o
the original quantum system. TheU matrix is not square: it
has fewer rows than columns, because we have consid
only a single initial state of the apparatus, namely,uA&. If we
had introduced a complete set of states for the appara
labeled uB&, uC&, etc., thenU would have been a unitar
matrix satisfying

(
l

UsA,lUtB,l* 5dstdAB . ~3!

Our freedom of choosing the required unitary matrixUsA,l is
equivalent to the freedom of choice of an interaction Ham
tonian in the von Neumann formalism.

The apparatus itself is an utterly complicated system,
some radical assumptions are needed in order to pro
with explicit calculations. The assumptions below are not
drastic as those commonly used in quantum measurem
theory, yet they ought to be clearly spelled out. Let us
sume that the composite systemC can be fully described by
the theory. Its complete description involves both ‘‘macr
scopic’’ variables and ‘‘microscopic’’ ones. The differenc
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between them is that the microscopic degrees of freedom
be considered as adequately isolated from the environm
for the duration of the experiment, so that their evolution
in principle perfectly controlled, while the macroscopic on
cannot be isolated from the unknown environment and
dynamical evolution cannot be completely predicted. Sta
tical hypotheses are required in order to make plausible
dictions, as explained below. Any other degrees of freed
of the apparatus, for which no explicit description is pr
vided, are considered as part of the environment.

An essential property of the composite systemC, which is
necessary to produce a meaningful measurement, is tha
states form a finite number of orthogonal subspaces wh
are distinguishable by the observer. These subspaces
similar to, but more general than, Zurek’s ‘‘pointer basis
@19# which is a preferred basis for the apparatus. Here
consider orthogonalsubspacesof the composite systemC,
which may have different numbers of dimensions. For e
ample, a particle detector may have just two such subspa
‘‘ready to fire’’ and ‘‘discharged’’~obviously, the latter has
many more states than the former!. Each macroscopically
distinguishable subspace corresponds to one of the outco
of the intervention and defines a POVM elementEm , given
explicitly by Eq. ~7! below. The labelsm are completely
arbitrary; for example they may be the labels printed on
various detectors. The initial state ofC, namely,uc0& ^ uA&,
lies in the subspace that corresponds to the null outcome~no
detection!.

Obviously, the number of different outcomesm is far
smaller than the dimensionality of the composite systemC.
Let us introduce a complete basis$um,j&%, wherem labels a
macroscopic subspace, as explained above, andj labels mi-
croscopic states in that subspace. We thus have

^m,jun,h&5dmndjh . ~4!

Note that the various subspaces labeledm may have different
dimensions, that is, the range of indicesj may depend on the
correspondingm. We shall henceforth writeUsmj instead of
Usl .

After the premeasurement, given by Eq.~1!, the state ofC
is given by

uc1&5 (
s,m,j

csUsmjum,j&. ~5!

The probability of obtaining outcomem is the contribution
of subspacem to the density matrixuc1&^c1u. Explicitly, it is

(
s,t,j

csct* UsmjUtmj* 5(
s,t

rst~Em! ts , ~6!

where

~Em! ts5(
j

UsmjUtmj* ~7!
6-3
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ASHER PERES PHYSICAL REVIEW A 61 022116
is a POVM element, defined in the Hilbert space of the s
tem under study whose initial state wasrst . Note that the
matricesEm satisfy

(
m

~Em! ts5(
m,j

UsmjUtmj* 5d ts , ~8!

by virtue of the unitarity property in Eq.~2!.

III. DECOHERENCE

Up to now, the quantum evolution has been well defin
and in principle reversible. It would remain so if the macr
scopic degrees of freedom of the apparatus could be
fectly isolated from their environment, and in particular fro
the ‘‘irrelevant’’ degrees of freedom of the apparatus itse
This demand is of course self-contradictory, since we hav
read the result of the measurement if we wish to make
use of it.

Let $uea&% denote a complete basis for the states of
environment, and letuev& be the state of the environment
the moment of the premeasurement. That state is of co
unknown, but I temporarily assume that it is pure, and mo
over that it is one of the basis states, in order to simplify
notations. This pure initial state will later be replaced by
density matrix

re5(
v

pvuev&^evu, ~9!

with unknown random non-negative coefficientspv . There
is no loss of generality in assuming thatre is diagonal in the
basis used for the states of the environment. This me
means that this basis was chosen in the appropriate way

Recall that statesum,j& with different m are macroscopi-
cally different, so that they interact with different enviro
ments. On the other hand, the labelsj refer to microscopic
degrees of freedom that are well protected from paras
disturbances. This sharp dichotomous distinction betw
the two types of degrees of freedom is the only approxim
tion that was made until now.

The unitary interaction ofC with the environment thus
generates an evolution which is not under the control of
experimenter:

um,j& ^ uev&→um,j& ^ (
a

bmvauea&. ~10!

The coefficientsbmva are unknown except for normalization

(
a

ubmvau251; ~11!

they have no subscriptj because the microscopic degrees
freedom do not interact with the environment, and they c
not mix different values ofm because the latter refer to ma
roscopic outcomes that are stable on the time scale of
experiment. One could also consider a more general ev
tion, where the right-hand side of Eq.~10! would involve
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different subspacesm. This would mean that the measurin
apparatus is actually disturbed by the environment. Suc
process is callednoise, and is essentially different from th
phenomenon ofdecoherence, whose occurence is explaine
below. Here it is assumed that no noise affects the measu
process. It is only the environment, whose microscopic
grees of freedom are not robust, that is disturbed by
apparatus~this is the mechanism causing decoherence!. Ex-
actly how it is disturbed cannot be known; however, we
know that macroscopically different states ofC lead to dif-
ferent disturbances of the environment, and hence to the
pearance of an indexm in the coefficientsbmva .

The final state with all the participating subsystems is th

uc2&5 (
s,m,j,a

csUmmjbmvaum,j& ^ uea&. ~12!

The final density matrix~still a pure state, for the sake o
simple notations! is r5uc2&^c2u. Explicitly, we see from
Eq. ~12! that the expression forr contains, among othe
things, operatorsuea&^ebu which refer to states of the envi
ronment. They are unknown and are considered unknowa
The only operator acting on these states that we know
write is represented by the unit matrixdab . Its meaning, in
the laboratory, is that of complete ignorance. Therefore
can effectively replace the complete density matrixr by the
reduced matrix obtained from it by ignoring the inaccessi
degrees of freedom of the environment. That is, we repl
the operatorsuea&^ebu which appear inr by ^ebuea&5dab ,
and we perform a partial trace on the indices that refer to
environment.

The reduced density matrix thus contains expression
the type(abmvabnva* . It will now be shown that, after a
reasonably short time has elapsed, we have

(
a

bmvabnva* .dmn . ~13!

The casem5n is the normalization condition~11! due to
unitarity. WhenmÞn, the rationale for arguing that the left
hand side of Eq.~13! is very close to zero~and has a random
phase! is that the environment has a huge number of sta
sayN, whose dynamics is chaotic. Therefore the scalar pr
uct of any two states such as(bmvauea& and(bnvbueb& that
may result from Eq.~10!, at any random time, is of the orde
of N21/2, because the components of a random state,
randomly chosen basis, are of the order ofN21/2. The time
that has to elapse to make Eq.~13! a good approximation is
called thedecoherence time, and it depends on how well th
macroscopic degrees of freedom of the measuring appar
are isolated from the environment. There may of course
large fluctuations on the left-hand side of Eq.~13!, akin to
Poincare´ recurrences@20#, but this expression isalmost al-
waysvery close to zero ifmÞn.

The approximation becomes even better if instead of
ideal pure initial stateuev& for the environment, we take th
more realistic density matrix given by Eq.~9!. Instead of Eq.
~13! we then have
6-4
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(
v

pv(
a

bmvabnva* .dmn , ~14!

where the off-diagonal terms on the right-hand side are n
of orderN21, rather thanN21/2 as before. It is plausible tha
the above argument can be made mathematically rigorou
the thermodynamic limitN→`.

It follows that states of the environment that are cor
lated to subspaces ofC with different labelsm can safely be
treated in our calculations as if they were exactly orthogon
The resulting theoretical predictions will almost always
correct, and if any rare small deviation from them is ev
observed, it will be considered as a statistical quirk, or
experimental error. The reduced density matrix thus is blo
diagonal, and all our statistical predictions are identical
those obtained for an ordinary mixture of~unnormalized!
pure states

ucm&5(
s,j

csUsmjum,j&, ~15!

where the statistical weight of each state is the square o
norm. This mixture replaces the pure stateuc1& in Eq. ~5!.
This is the meaning of the term decoherence. From this
ment on, the macroscopic degrees of freedom ofC have en-
tered into the classical domain@21,22#. We can safely ob-
serve them and ‘‘lay on them our grubby hands’’@23#. In
particular, they can be used to trigger amplification mec
nisms~the so-called detector clicks! for the convenience o
the experimenter.

Note that all these properties still hold if the measurem
outcome happens to be the one labeledm50 ~that is, if there
is no detector click!. It does not matter whether this is due
an imperfection of the detector or to a probability less tha
that a perfect detector would be excited. The state of
quantum system does not remain unchanged. It has to ch
to respect unitarity. The mere presence of a detector
could have been excited implies that there has been an i
action between that detector and the quantum system. E
if the detector has a finite probability of remaining in i
initial state, the quantum system correlated to the latter
quires a different state@24#. The absence of a click, whe
there could have been one, is also an event and is part o
historical record.

The final ~optional! step of the intervention is to discar
part of the composite systemC. In the case of a von Neu
mann measurement, the subsystem that is discarded
thereafter ignored is the measuring apparatus itself. In g
eral, it is a different subsystem: the discarded part may
pend on the outcomem and in particular its dimensions ma
depend onm. The remaining quantum system then also h
different dimensions. In the subspacem we therefore intro-
duce two sets of basis vectorsum,s& and um,m& for the new
system and the part that is discarded, respectively. They
place the original basisum,j&, and it is convenient to choos
the latter in such a way that for eachj we can write

um,j&5um,s& ^ um,m& ~16!
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as a direct product, rather than a linear superposition of s
products.

We are now ready to discard the subsystem whose b
vectors are denoted asum,m&. In the unnormalized density
matrix rm5ucm&^cmu ~whose trace is the probability of ob
serving outcomem), we ignore the deleted subsystem. Th
is, we replace the operatorum,m&^m,nu that appears inrm by
a unit matrix dmn and we perform a partial trace on th
indices m and n, as we have done when we discarded t
states of the environment. We thus obtain a reduced den
matrix

rm8 5(
s,t

csct* (
m,s,t

UsmsmUtmtm* um,s&^m,tu. ~17!

Its elementŝ m,surm8 um,t& can be written as

~rm8 !st5(
m

(
s,t

~Amm!ssrst~Amm* !tt , ~18!

whererst[csct* , and the notation

~Amm!ss[Usmsm ~19!

was introduced for later convenience. Recall that the indi
s and s refer to the original system under study and to t
final one, respectively. Omitting these indices, Eq.~18! takes
the familiar form

rm8 5(
m

AmmrAmm
† , ~20!

which is the most general completely positive linear m
@25#. This is sometimes written asrm8 5Sr, where S is a
linear superoperatorwhich acts on density matrices~while
an ordinary operator acts on quantum states!. Note, however,
that these superoperators have a very special structure, g
by Eq. ~20!.

Clearly, the ‘‘quantum jump’’r→rm8 is not a dynamical
process that occurs in the quantum system by itself. It res
from the introduction of an apparatus, followed by its de
tion or that of another subsystem. In the quantum folklore,
important role is played by the ‘‘irreversible act of amplifi
cation.’’ The latter is irrelevant to the present issue. T
amplification is solely needed to help the experimenter.
jump in the quantum state occurs even when there is
detector click or other macroscopic amplification, becau
we impose abrupt changes in our way of delimiting the o
ject we consider as the quantum system under study.
precise location of the intervention, which is important in
relativistic discussion@3#, is the point from which classica
information is sent that may affect the input of other inte
ventions. More precisely, it is the earliest space-time po
from which classical information could have been sent. T
is also true for interventions that gave no detection eve
Such a passive intervention is located where the detec
event would have occurred, if there had been one.

Is it possible to maintain a strict quantum formalism a
treat the intervening apparatus as a quantum-mechanical
6-5



e
s

th
b

um
e
st
de
e
o
ea

-
a

l a

a

th
en
si
th

h
n

ip-

.
at
th
s

ur
tu

al
e

u

t
ut

e
.
ta
en

di-
ther
ral,

d
ea-

r-

r

tus.
ay

r
gle

ple

.
eri-
ter-

al
f

f

in
so

ble

ASHER PERES PHYSICAL REVIEW A 61 022116
tem, without ever converting it to a classical description? W
could then imagine not only sets of apparatuses spr
throughout space-time, but also truly delocalized apparatu
@26#, akin to Schro¨dinger cats@27,28#, so that interventions
would not be localized in space-time as required in
present formalism. However, such a process would only
the creation of a correlation between two nonlocal quant
systems. This would not be a true measurement but rath
‘‘premeasurement’’@18#. A valid measuring apparatus mu
admit a classical description equivalent to its quantum
scription @22#, and in particular it must have a positiv
Wigner function. Therefore a delocalized apparatus is a c
tradiction in terms. If a nonlocal system is used for the m
surement, it must be described by quantum mechanics~no
classical description is possible!, and then it has to be mea
sured by a valid apparatus that behaves quasiclassically
in particular is localized. It can indeed be localized as wel
we wish, if it is massive enough.

Likewise, quantum measurements of finite duration,
discussed by Peres and Wootters@4#, actually are only pre-
measurements. To obtain consistent results, these au
had to explicitly introduce a second apparatus that sudd
measures the first one. Their first apparatus has no clas
description. In the language that I am using now, only
second apparatus performs a valid measurement.

In a purely quantum description of the apparatus, whic
the one appropriate at the premeasurement stage, the
state is an incoherent mixture of variousrm correlated to
distinct outcomesm of the apparatus. However, the descr
tion of the apparatus must ultimately be converted into
classical one@21,22# if we want it to yield a definite record
On the other hand, it is also possible to discard the appar
without recording its result. We then have to describe
state of the quantum system by a mixture of mixtures, a
Eq. ~37! below. The term ‘‘compound’’@29# has been pro-
posed for that kind of mixture which is solely due to o
ignorance of the actual outcome and has no objective na
Once we have a definite outcomem, the new state isrm ,
given by Eq.~20!.

IV. KRAUS MATRICES

A special case of Eq.~20! for square matricesAmm was
obtained by Kraus@30#, who sought to find the most gener
completely positive map for the density matrices of a giv
quantum system~no change of dimensions was allowed!.
Kraus’s result obviously is a generalization of von Ne
mann’s prescription for the state resulting from themth out-
come of a measurement, namelyrm5PmrPm , wherePm is
the projection operator associated with outcomem. Recall
that, even if the initialr is normalized to unit trace~as we
always assume!, the trace ofrm in the above equations is no
equal to 1. Rather, it is the probability of occurrence of o
come m. It is quite convenient to keeprm unnormalized,
with the above interpretation for its trace.

The results obtained here are more general than thos
Kraus, because the matricesAmm may be rectangular. As Eq
~19! shows, these matrices are simply related to the uni
transformationUsmsm that generates the premeasurem
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@31#. Superoperators that do not conserve the number of
mensions of the density matrix were also considered by o
authors@32#. The present treatment is even more gene
because it allows the number of rows inAmm ~that is, the
order ofrm8 ) to depend onm, since we may decide to discar
different subsystems according to the outcome of the m
surement.

From Eq.~19!, which relates the matrix elements (Amm)ss
to the unitary transformation involved in the quantum inte
vention, it appears that if we multiply the order ofrm8 by the
range of the indicesm in Amm , the product of these two
numbers is the same for allm, since it is equal to the numbe
of dimensions of the composite systemC, namely, the origi-
nal quantum system together with the measuring appara
However, the situation is more complicated, because it m
happen thatAmm50 for some values ofmm. Moreover, if
the matricesAmm andAmn are proportional to each other fo
somem andn, these matrices can be combined into a sin
one; and conversely, anyAmm can be split into several which
are proportional to each other. Therefore there is no sim
rule saying how many terms appear in the sum in Eq.~20!.

The probability of occurrence of outcomem in a measure-
ment is given by Eq.~6!, and it can now be written as

pm5(
m

Tr ~AmmrAmm
† !5Tr ~Emr!. ~21!

The positive~that is, non-negative! operators

Em5(
m

Amm
† Amm , ~22!

whose dimensions are the same as those of the initialr, are
elements of a POVM and satisfy(mEm51. Note that null
outcomes~i.e., no detection! have to be included in that sum
They indeed are the most probable result in typical exp
mental setups. Yet, even if no detector is excited, the in
vention may affect the quantum system@24#, and the corre-
spondingAmm are not trivial. There may even be sever
distinct Amm for ‘‘no detection,’’ depending on the cause o
the failure.

Conversely, givenEm ~a non-negative square matrix o
order k) it is always possible to split it in infinitely many
ways as in Eq.~22!. This is easily proved by taking a basis
which Em is diagonal. All the elements are non-negative,
that by taking their square roots we obtain a matrixAEm that
satisfies the relation required forAmm . Next let $Smm% be a
set of complex rectangular matrices withk columns and any
number of rows, satisfying(mSmm

† Smm51. It follows that
Amm5SmmAEm satisfies Eq.~22!.

Moreover, if a POVM is factorable, namely,

Emn5Em
(1)

^ En
(2) , ~23!

where the indices~1! and ~2! refer to two distinct sub-
systems, then the above construction provides factora
Kraus matrices:

Amnmn5Amm
(1)

^ Ann
(2) . ~24!
6-6
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The operator sum in Eqs.~20! and~22! now becomes double
sums, over the indicesm andn. Such double sums are indee
needed. If we had simply written, instead of Eq.~23!, Em

5Em
(1)

^ Em
(2) , the corresponding Kraus matrices would

general not be factorable. Such a POVM, with a single ind
is calledseparable, and it cannot in general be implemente
by separate operations on the two subsystems with clas
communication between them@32#.

The factorization of a POVM as in Eq.~23! is not the
most general one. It corresponds to two POVM’s indep
dently chosen by the two observers. However, the obser
may also follow an adaptive strategy. After the first o
~conventionally called Alice! executes the POVM$Em

(1)%, she
informs the second observer~Bob! of the result,m say, and
then Bob uses a POVM adapted to that result. This will
denoted as$Enm

(2)%, with

(
n

Enm
(2)51(2), ; m. ~25!

Note that the chronological order of the Greek indices in
cating the outcomes of consecutive measurements is f
right to left, just as the order for consecutive applications
a product of linear operators. We then have, instead of
~23!,

Enm5Em
(1)

^ Enm
(2) , ~26!

and thus

Anmnm5Amm
(1)

^ Anmn
(2) . ~27!

A more complicated situation arises when thesamesys-
tem or subsytem is subjected to consecutive intervent
that depend on the outcomes of preceding interventions.
have, subsequent to the map in Eq.~20!,

rm8 →rnm9 5(
n

Bnmnrm8 Bnmn
† . ~28!

The result of these two consecutive maps can be written

r→rnm9 5(
n,m

CnmnmrCnmnm
† , ~29!

where

Cnmnm5BnmnAmm . ~30!

It follows that

Enm5(
n,m

Cnmnm
† Cnmnm5(

m
Amm

† S (
n

Bnmn
† BnmnDAmm .

~31!

There is no simple relationship between this express
and the antecedent POVM elementEm , unless the Kraus
matricesBnmn are chosen in such a way that
02211
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n,n

Bnmn
† Bnmn51. ~32!

We then have

(
n

Enm5Em . ~33!

This splitting of Em into a sum of several parts is called
POVM refinement@33#. It may be repeated many times, un
all the final POVM elements are matrices of rank 1. F
example, this can be done by an apparatus that includ
multidimensional ancilla which isnot discarded at interme
diate stages but only after the completion of the measu
procedure. This is why it is convenient to consider that a
cilla explicitly rather than as part of the measuring appara
In the resulting Neumark extension~that is, the joint Hilbert
space of the quantum system and the ancilla!, each POVM is
implemented as an ordinary von Neumann PVM@16,17#.
Initially, the latter is coarse grained: it distinguishes on
multidimensional subspaces of the system and the anc
This PVM is then gradually ‘‘refined’’ by the observer wh
uses further PVM’s to select smaller and smaller orthogo
subspaces. How these subspaces are explicitly defined
pends on results obtained in preceding tests. This is an a
tive strategy which is particularly efficient for the optim
identification of an unknown bipartite quantum state@33#.
The two observers take turns in performing local measu
ments and informing each other of the results they obtain
The final result again has the form of Eq.~26!, but now the
label m stands for the entire sequence of intermediate o
comes that were obtained by the two observers, and the l
n indicates the result of the very last intervention.

For example, if each observer performs just two tes
with consecutive resultsm ~Alice!, n ~Bob!, s ~Alice!, andt
~Bob!, then Eq.~27! becomes

Atsnmtsnm5Anmss
(1) Amm

(1)
^ Atsnmt

(2) Anmn
(2) . ~34!

This relationship is valid for any two pairs of consecuti
tests, not only for those of the ‘‘refinement’’ type.

Returning to the case of a single observer, let a comp
set of POVM elements be given. It is then always possible
construct from their Kraus matrices~in infinitely many ways!
unitary transformations that satisfy Eq.~2!. Indeed, writing
all indices explicitly, the relation(mEm51 becomes

(
m,m,s

~Amm!ss* ~Amm!st5dst . ~35!

This can be written, owing to Eq.~19!, as

(
m,m,s

Usmsm* Utmsm5dst , ~36!

which is the same as Eq.~2! with the indexl ~which refers
to the composite systemC) replaced by the composite inde
sms. This explicitly shows how any POVM can be imple
mented by a unitary transformation and a suitable appar
having the necessary dimensionality~usually much smaller
6-7
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ASHER PERES PHYSICAL REVIEW A 61 022116
than the one required by the introduction of an ancilla!.
Recall that theAmm matrices are in general rectangula

For example, in the teleportation scenario@10#, Alice can
discard her two quantum particles together with her mea
ing apparatus after she performs her four-way test. The
bert space of Alice’s subsystem then becomes trivial: it
only one dimension~only one state!. In that case,Amm has a
single row,Amm

† a single column, andrm is just a number,
namely, the probability of obtaining outcomem. Likewise,
each stage of a quantum distillation@34,35# causes a reduc
tion of the number of dimensions of the quantum system
is distilled. That system initially consists of a set of e
tangled subsystems. Successive interventions select sui
subsets that have higher degrees of entanglement. Ide
the final result should be arbitrarily close to a pair of spin1

2

particles in a singlet state.
Some authors consider only square matricesAmm , and

then it is mathematically permitted to sum allrm so as to
obtain the average state of all the outgoing quantum syste
For example, if the outcomes of our interventions are
recorded, so that no subensembles are selected, we may

r85(
m,m

AmmrAmm
† , ~37!

where the trace ofr8 is 1, of course. Such sums are rare
needed in theoretical discussions. Different labelsm corre-
spond to different world histories~that is, different samples
in the ensemble of experiments!. Summing over them is like
saying that peas and peanuts contain on the average 42
water, instead of saying that peas have 78% and peanut
@36#. Still, there are some cases where this kind of averag
is justified. For example, when we compare the expec
yields of various distillation methods@34,35#, we are inter-
ested only in average results. Moreover, when the quan
system weakly interacts with an unknown environment~such
as a heat bath!, rather than with an apparatus that can nea
distinguish different outcomes of the intervention, the res
is a continuous decoherence of the quantum state@37#. This
issue is discussed quantitatively in Sec. V.

V. LINDBLAD EQUATION

For a complete treatment of the quantum system in
unknown environment, we write the Hamiltonian as

H5H01Henv1H int , ~38!

with obvious notations. The last two terms inH generate a
stochastic, rapidly fluctuating motion. The exact evolutio
taking everything into account, is a Brownian motion~a kind
of random walk! superimposed on the ideal motion. Assum
that the unperturbed evolution due toH0 is very slow on the
n-
,
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scale oftdecoh, the time needed for Eq.~13! to be valid. One
can thus write~combining the composite indexmm into a
single indexj )

Aj5Sj1F j , ~39!

where the matricesSj correspond to the slow motion gene
ated byH0, and the matricesF j to the fast fluctuations due to
the environment. This neat decomposition into slow and f
variables involves of course some arbitrariness that will
reflected in the derivation of the Lindblad equation below

It follows from Eq.~39! thatAjrAj
† splits into three kinds

of terms. Those terms quadratic inSj represent the smooth
evolution due toH0. If we wish to write a differential equa-
tion for dr/dt, the other terms have to be smoothed out o
time scale much longer thantdecoh. Since this is a random
walk, the terms linear inF j average out to zero on that tim
scale, and the terms that are quadratic inF j grow linearly in
time. Clearly, this smoothing out and the resulting line
growth involve some approximations whose validity have
be ascertained on a case by case basis.

Let us thus assume that there is a coarse time scaldt
@tdecoh, long enough so that the fluctuations are averag
out, and yet short enough so that the slow evolution due
H0 is negligible beyond first order indt. We can then write
F j.VjAdt, where the matricesVj are finite. The result is the
Lindblad equation@13#

dr/dt5 i @r,H0#1(
j

~VjrVj
†2 1

2 rVj
†Vj2

1
2 Vj

†Vjr!.

~40!

This equation is of course valid only in the future time d
rection (dt.0), because the smoothing out of fluctuatio
entails an irreversible loss of information. Lindblad’s orig
nal derivation used an abstract argument involving comp
positivity and a semigroup structure~again dt.0). An
equivalent argument was given independently by Go
et al. @38#. The present proof is based on an explicit dynam
cal model of interaction, and it may be easier to understa
A similar derivation was also obtained by Schumacher@39#
and, after the present paper was submitted for publicatio
more detailed discussion, also based on the Kraus formal
was published by Baconet al. @40#. Still more recently,
Adler sharpened the above heuristic derivation of Eq.~40! by
using Itô’s stochastic calculus@41#.
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