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Anapole moments and magnetic fields in alkali-metal atoms from Stark mixing
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Toroidal dipole(anapolé¢ moments and magnetic fields due to inversion symmetry breaking by an external
electric field are studied for the alkali-metal atoms from Li to Rb. It is demonstrated that a hydrogenic atomic
model is inadequate for this purpose, while a nhonhydrogenic model based on the quantum-defect method yields
numbers for the anapole moments in excellent agreement with those predicted by a semiempirical product rule.

PACS numbegps): 32.80.Ys

Consideration of parityfP) and time-reversa(T) invari-  current interesft7,8]. In the recent past Lewis and BlindeX]
ance restricts the multipole moments of nondegenerateonsidered the breaking of inversion symmetry in atoms by
guantum-mechanical systems. For example? ind T are  an electric field and found that the Stark mixing of opposite
both conserved an atom can have charge, magnetic dipolparity states induces anapole fields in paramagnetic atoms.
electric quadrupole, etc. Contrarily, there occur electric di-They presented a detailed calculation of the field and associ-
pole, magnetic quadrupole, etc., if bd®andT are violated. ated moment for the hydrogenic ground state and empha-
The most general expansion of the static magnetic field dusized that it will require a major effort to carry out a similar
to a localized current distribution consists of two terms thatanalysis for the alkali-metal atoms. The present paper is an
have opposite parity for the same multipole ortiEt]. One  effort to substantiate the conjecture of Lewis and Blinder. In
of the terms, sayl ;, is the source of conventional multipole the following we briefly review their work and shed light
expansion of the field outside the source redicimarge and upon additional considerations that will be needed for our
curren} and satisfied® and T invariance for odd, but re-  study.
quires bothP and T violation for evenl. It is important to Classically, the toroidal magnetic field0]
note that inT; we do not have any multipole moment that
violatesP but notT invariance. On the other hand, the ex-
pansion in the second term,, having oppositd® properties
as compared td,, is restricted to the source volume and for ] o
odd | it requiresP but notT violation and for everi, T but  arises from poloidal current density given by
not P violation. The odd terms are called the toroidal mag- 1 df
netic multipole moments because in classical electrodynam- == = (F(F-m)—r2m)—2fm, (3)
ics this third family of moments could arise from the expan- rdr
sion of vector potential associated with poloidal current
distribution of toroidal magnets. Historically, it was Zeldov- Wherem is a fixed vector giving the orientation df The
ich [2] who discovered this type of multipole moment and radial functionf(r) can be obtained by evaluating the radial
coined the term “anapole” to denote the toroidal dipole mo-component of such that
ment(TDM). Obviously, the anapole is a wrong-parity mag-

. A7
BITf(r)FXrﬁ (2)

netic dipole moment. The TDM occurs together with the f.j=—2fm-f. 4
magnetic quadrupole moment having the same dimensions R
and identical signature under space invergi®h From Eqgs(1) and(2), we gett as the fourth moment df{(r)

The anapole moment is defined as either a second man the direction ofm and write
ment of the poloidal current densifyor a first moment of

2
the toroidal magnetic fiel® of this current and we have] t=— 16m j drrf(r). (5)
f:_ZJ d3”2j*:%f d3r FxB. (1)  Conversion of the above classical relations to quantum
c theory is rather straightforward. For example, current density

j of the Schidinger equation can be decomposed into orbital
The TDM has been extensively studied in the context ofgng spin parts as

P-violating charge- and neutral-current interactions. The

nuclear anapoles have been found to be of particular interest f fL+Js (6)

[5] because via electromagnetic interaction with a penetrat-

ing atomic electron, these could produce nuclear-spinfor the unperturbed ground state

dependent parity-nonconserving atomic interacti@sThe 3 12

analysis of anapole moments for both chiral and achiral mol- b= ( Z ) e 21y
S

ecules with an unpaired spin is also a subject of considerable s

)
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of a hydrogenic atom, the toroidal spin current density nuclear charge such that the orbit precession could be ne-
glected. Then the alkali spectra are described by a hydro-
> _224 o7y genic model in which the energy levels of the valence elec-
js=—TX Se (8)
T trons are degenerate.

To be more realistic the orbit precession arising due to
with S=(&)/2 generates the ordinary magnetic dipole fieldinteraction of the valence electron with the ionic core should
of the electron. Because &finvariance the orbital current in be taken into account. In this case thelegeneracy is re-
this state is zero. Herg stands for the Pauli spin functios, ~Moved and the so-called quantum-defect meftidj can be

for the atomic spin in units of, and? is a unit vector. When used to provide an accurate description for the energy spec-

an electric fielcE is applied the ground state is perturbed andtra An interesting aspect of this method is that the value of
the quantum defedchange in the principal quantum num-

the current densltyS acquires an additional poloidal compo- ben determines not only the energy of the state but also
nentjs, which manifests itself in producing the toroidal field spatial character of the wave function. For example, the hy-
and anapole moment. drogenic wave functions are expressed in terms of the con-
The first-order perturbation correctiapy to ¢, can in  fluent hypergeometric or regular Whittaker functions. As op-
principle be obtained from the Rayleigh-Sctimger pertur- posed to this the nonhydrogenic wave functions resulting
bation theory[11]. But it is easier to work with a simple from the removal of degeneracy require the irregular Whit-
variant [12] of this traditional perturbation technique in taker functions for their description.
which ¢ is calculated from the solution of an inhomoge-  In this work we shall use both hydrogenic and nonhydro-

neous differential equation genic wave functions to study the Stark-induced anapole mo-
ment of alkali-metal atoms and examine their relative merits
(Hsor— £15) P1= — (E-T) b1s, 9) and demerits. We shall see that in the hydrogenic model it is

possible to derive an analytical approach to the problem by a
where Hggy, is the Schrdinger-Coulomb Hamiltonian and straightforward generalization of the work of Lewis and
g1 IS the ground-state energy. Equatit® is analytically  Blinder [9] and thereby derive an order-of-magnitude esti-
solvable and we have mate for the anapole moment. The nonhydrogenic wave

functions of the quantum-defect method being characterized

, E.F by irregular Whittaker functions do not permit one to pro-
b15=— Zz | 1+ 5| das (100 ceed analytically but can predict accurate numerical results.
The first-order wave functiom,s+ ¢1 can now be used to A. Hydrogenic approach
get the additional poloidal component in the form In this approach the energy levels of the valence electrons
57 7 are degenerate. In the presence of degeneracy the solutions
jl=—|| 1+ il ExS—z(3+2r)(E-1)fxS|e 22" of equations like Eq(9) are obstructed by the solvability
™ 2 condition[14]. Thus the analysis of anapole fields and toroi-

(11) dal moments for alkali-metal atoms needs a separate consid-
eration. Fortunately, an appropriate inhomogeneous equation
satisfying the solvability condition can also be written to
obtain the first-order correction to a wave function belonging

From Egs.(2), (4), and(11) we can write

z
f(ry=——|{1+ cr e—22r (12)  to a degenerate energy leyab]. We shall take recourse to
2 this equation for the present study. The appropriate general
and inhomogeneous equation is given by
[SnI_HScI{F)]d’rGIm(F)
B=4aZ| 1+ —|e ??[(EXS) X 1], (13

_(E r)(;i)nlm(r f ¢
wherem has been identified witE X S. In rational relativ-
istic units the fine-structure constaat=1/c. The TDM can X(E-F") (P )3, (14)
be computed by using E@12) in Eq. (5).

The valence electron of an alkali-metal atom may be aswhere they sum extends over the whole degenerate subspace

sumed to move in a potential due to the nucleus and to thef ¢,,,(F). The unperturbed wave functiahy, () is given
core electrons and to spend much of its time in the outepy

region where the nucleus is screened by the core electrons

and where the potential is of Coulomb form and some frac- DN =Ry (NYM(6,¢). (15
tion of its time penetrating the region of the core. In this

region there is a stronger attractive potential that causes thdere Y|"(6, ¢) stands for the scalar spherical harmonic and
orbit to precess. To a first approximation the electron may b&,,,(r) for the bound state radial solution of the Coulomb
assumed to move in a pure Coulomb field with an effectiveproblem given by
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Rn,(r)=Nn,p'e‘P’ZLﬁ'_ﬁfl(p) (16) Equation(18) in conjunction with Eqs(20) and (23) gives
. the first-order correctiomp/,o(F) of the valence electrons of
with alkali-metal atoms due to the applied electric fi€d The
4Z3(n—1—1)1]12 constant of integratiorC in Eq. (23) can be obtained by
= 4(—+|)|' (17)  using the constrairtl5,17]
n*(n+1)!

(dlgp")=0. (24)

mial of orders and p=2Zr/n. SinceH’ =E-f can connect The quantity §;() is expressed in terms of a generalized
only the states of opposite parity, the solution of Eigl) can  hypergeometric function as
be chosen in the form

In Eq. (16) L‘S‘() denotes the associated Laguerre polyno-

o

Sm(F)=F (YT 1(0,6)+ Gy (NYL4(0,6). (18 Oo(BCX)=Tr ey oFa(lot ot Lot ex).
25
The valence electrons of alkali-metal atoms arelectrons @9
(I=0,m=0). In this case the first term in E(L8) becomes The wave function as obtained above will give a general
irrelevant. Thus from Eqg14) and(18) we get, expression of the additional poloidal currefit, which in
o2 d p 2 turn will determine the corresponding results fir), B
p=——=+2——=+n—— (=|B|), andt(=|t]). For Li the expression fof(r) andB
dp dp 4 p are ai
given by
En’p 3nyn?-1 2
XGno(p)= ——5|Rnot —55—Rn1| (v T amZro 2,2_
19
19 and
We now change the dependent variable in Bd) by sub- . . -
stituting Bi=35Zre “'(2—2Zr)(Z°r=—30). (27)
Gholp)= pe "2Q(p), (200  Although somewhat lengthy, algebraic expressions similar to

those in Eqs(26) and(27) can also be constructed for Na, K,
whereQ(p) is a polynomial inp. For the sake of brevity we and Rb. Interestingly, we could find simple expressiéins
omit the subscriph andl (=0) on the right-hand side of Eq. ynits ofag)

(20). From Egs.(19) and(20) we get
2.752 23.218 114.473 408.464
pQ"+(4—p)Q'+(n-2)Q Wi==Za W71 Ws—Z7— ™72

1/2n-1

S

j=0

(28)

for the magnitudes of the anapole moment or TDM of these
i1 atoms. The toroidal magnetic fields are given in units of

| An+1)(n-3) n'p (21) (Ex S)sin 6, whered is the angle betweem andF
- " - - " . (43 \ .
(+2)(j+3) Jjl(n=1=PI(j+D)!
Since the right-hand side of E¢R1) involves a finite sum, B. Nonhydrogenic approach
the solution to it can be related to the solution of the nonho-  Here the wave function of our interest is provided by the
mogeneous confluent hypergeometric equatitsi quantum-defect method, and Seaf@8] derived the general
2 solution
0 ax &Y * Puni(F)=[val (vp+1+ 1)L (vy—1)] Y2
where o is a constant. Thus the complete primitive of Eq. 2r\ o
(21) can be written as XW, 1412 o Yi(F)x, (29
2t - where the effective quantum numbef=n— u with u, the
= — . [ —1)/ - ’
Qlp)=CiFa(2—n.4ip) +E 1223) =0 (=1 so-called quantum defect. The nonhydrogenic sté&8sare

solutions of the Schiinger equation for a potentialf(r)
3(n+1)(n—=1-j) that approaches 2/r only asymptotically and, is a nonin-
(j+2)(j+3) teger dependent on the value of the principal quantum num-
ber n although the quantum defegt is a slowly varying
% n! 0 ,(2-ndp). (23 function ofn. In writing Eq. (29) we have assumed that the
jl(n—1—j)1(j+1)! 1+2 P variation of u with energy is negligibly small. It is of interest
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to note that although Seaton’s wave function is of approxi-
mate nature for smatl, it has been used successfully for the
entire range of in studies of alkali-metal and alkaline-earth-

metal atoms{13]. Further, the wave function®, () for

different values of belong to nondegenerate energy levels.
Physically, this implies that interaction of the valence elec-¢
tron with the ionic core results in the removal bflegen- @
eracy. In view of this, one would like to calculate the pertur-
bative correction td3yn|(F) by using an equation similar to
that in Eq.(9). Unfortunately, due to the appearance of the
irregular Whittaker function in Eq29), it is not possible to
solve the associated inhomogeneous differential equation b
using analytic techniques. Therefore, implementing the stan:
dard Rayleigh-Schiinger perturbation theory we write the
first-order correctiorP;no(F) to the valence-electron wave FIG. 1. Toroidal magnetic field of the valence electron in units
function of the alkali-metal atoms in the form of (Ex S)sin 6 as a function of in a.u.

1 2 3 4
r

For the hydrogenic case the expression for polarizability

P! o(F)= e i
vo(F) [302T (vt DT ()2 is given by[15]
Rkn 1 2 Jw
X 00=-—| R 3G dr. 33
= {[vﬁrwwz)r(vk—l)]”z (e 00— #00) an(M00== 75 |, RadDGnolndr. (33
X kal(r) (30 we have used the subscript h arto indicate that Eq(33)
. represents the polarizability calculated on the basis of hydro-
with genic wave functions in which energy levels hdveéegen-
eracy. From Eqs(16), (20), (23), and(33) we have obtained
] : 4 4 4
R = ["rw W dr. 3p L) =120Zf;, ay(Na)=1012.5Zy, ay(K)=4992Z,
kn f "W a2 1) W 112(1)dY S and a(Rb)=17 812.5Z%,. For the nonhydrogenigmh) case

it is not possible to construct a simple expression for
In the above the summation ové&rincludes the value of an(v,). By using Eq.(30) we have, however, derived an
principal quantum numben since in the nonhydrogenic infinite series representation for it to write
model thel degeneracy has already been removed. As in the
hydrogenic case we have 2

@ ¥0) = 3 2r (T (o]

1 1
f(r=1—> 1 R
477[ nF( n+1)r( n)] kn
o R ’ 1 XEK: (Wil (et 2)T (= 1)] (4 0= €00) ||
kn
3 [T (nc+ 2T (n=1)] (84,0~ €4,1) (34)

1 It is of interest to note that by using the valuesagfin the
XFWkag/z(r)WVnyl/z(r) (32 prqduct rule we recover the results fogiven in Eq.(28).

This agreement clearly explains the reason for th# He-
ndence of the anapole moment.
For the hydrogenic model we shall require the values of
the effective nuclear charges as seen by the valence electron.

Before computing the numbers foor analyzing the be- y\yg haye determined the values Dby a fit to binding en-
havior of B by using the present formalism it may be of Someergies through the use of the hydrogenic formua

interest to investigate how the values of the polarizability _ ~ 72/2n2. An approach similar to ours has been used ear-
implied by Eqs.(20) and(30) do compare with experiments. o\ iy gifferent physical context§18]. To work with the
Admittedly, such a comparison is expected to provide arh,hhydrogenic model we shall require, in addition to the
indication for the atomic model to be used for the prgse”bround-state energy, the numbers for binding energies and
purpose, since in the semiempirical product r8 t  quantum defects for exciteuistates. We have taken the rel-
=(2mle)axd with i=—aea,S and d=agE is directly evant data from the classic work of Hafi9]. Ham has
proportional to the values of dipole polarizabilia . More-  given values of energy levels and quantum defects foipthe
over, this rule is an exact result in the one-particle nonrelaelectrons up tok=6, 7, 8, and 9 for Li, Na, K, and Rb,
tivistic theory used in this paper. respectively. Thus in calculating,,(»,) we could include

e
to study the nonhydrogenic behavior of the toroidal magnetié)
field and anapole moments by the use of Eg%.and(5).
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TABLE I. Results forZqs, an, apn, th, andtg.

Toroidal or anapole

PHYSICAL REVIEW A61 022112

We have analytically demonstrated that the expressions
for hydrogenic toroidal dipole moments in E@®8) found
from the ab initio calculations agree with those obtained

sz‘taﬁe Polarizabilities moments from the product rule by using values of the appropriate po-
valence (units of ag) (units of ao) larizabilities. Such a clear demonstration was not, however,
Element electrons  ap @ ty ton possible for the nonhydrogenic case. Thus we recalculated
: the results fot,,, from Egs.(5) and(32) and found a similar
L 1.259 47.762  163.500 1.094 3.744 agreement for the numbers foy, given in Table I. This
(163.700 (3.749 indicates that in this work we derived a perfectly valid ap-
Na 1.844 87.569 2.005 proach to study the Stark-induced anapole moment from the
K 2259 191695  289.521 4.389 6630 fist principle. A hydrogenic model could account only for
(295.600 (6.769 the qualitative behavior dfwhile the nonhydrogenic nature
Rb 2770 302.556 318517 6.929 7294 of the valence electrons of alkali-metal atoms provided some
(330.000 (7.557

additional insight for the effect under study.

In Fig. 1 we display the radial dependence of the toroidal
) . . magnetic field of the hydrogenic valence electrons. The
only five terms in the sum present in .E(($4). Fortunately., variation of B for Li, Na, K, and Rb are denoted by solid,
we have found that the finite truncation of the sum 9V€Syashed, dashed with dots, and dotted lines, respectively. An
well-converged results. . important feature of our results is that both maxima and

In Table I we Pres.eﬁ_‘ our results for effective rlLJCIearminima of the curves for higher alkali metals are more pro-
phargeg Zeﬁ),'polanzabmtles @y andaryy), and corresponq- nounced and closer to the origin than the corresponding re-
ing toroidal dipole momentst{ andt,) for the elements L_" sults for lower ones. This may be attributed to the fact that
Na, K, and Rb. We have calculated the results for_the O_I'pm%he valence electrons of high-alkali metals have greater
moments .by_ using the product rufe]. W,e have given in probability of residing in the immediate vicinity of the
parenthesis in the column far,, the experimental values of a5 and also producing a more intense toroidal magnetic
dipole polarizabilities. The corresponding values toéire  foiq we have verified that the radial dependence of the
given similarly in the column fot,,. From our data for,  ¢5rgidal magnetic field of the nonhydrogenic electrons is
and ay, it is clear that the nonhydrogenic model for alkali- jjentical to that of the hydrogenic electrons except that the
metal atoms is far more realistic than the hydrogenic on€ggpeciive curves are pushed a little away from the origin.
For example, in the case of Li the valuedfis only 29% of  \ye haye not separately displayed the nonhydrogBrfields
the experimental value, while the value fef, is almost in ecause they do not give any new insight into additional
exact agreement with the experimental result. For higher a'physical realization. From our point of view the hydrogenic

kali metals, however, our results fef,, exhibit some devia- cajcylation also appears to be quite instructive although
tion from the corresponding experimental data. Interestinglygomewhat pedagogic.

the hydrogenic model gets better as we go to tighikali

metals and this model recovers 92% of the experimental po- One of the authorgA.B.) would like to acknowledge fi-
larizability for Rb. Since the values of the anapole momentancial support by the CSIR, Government of India. The au-
have been calculated by using the product rule the numbetbors also thank Professor S.K. Adhikari, Universidade Es-
for t,, andt,, show similar behavior as observed for the po-tadual Paulista, Instituto de Fisica Teorica, Sao Paulo, Brazil,
larizabilities. for his kind interest in this work.
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