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Anapole moments and magnetic fields in alkali-metal atoms from Stark mixing
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Toroidal dipole~anapole! moments and magnetic fields due to inversion symmetry breaking by an external
electric field are studied for the alkali-metal atoms from Li to Rb. It is demonstrated that a hydrogenic atomic
model is inadequate for this purpose, while a nonhydrogenic model based on the quantum-defect method yields
numbers for the anapole moments in excellent agreement with those predicted by a semiempirical product rule.

PACS number~s!: 32.80.Ys
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Consideration of parity~P! and time-reversal~T! invari-
ance restricts the multipole moments of nondegene
quantum-mechanical systems. For example, ifP and T are
both conserved an atom can have charge, magnetic dip
electric quadrupole, etc. Contrarily, there occur electric
pole, magnetic quadrupole, etc., if bothP andT are violated.
The most general expansion of the static magnetic field
to a localized current distribution consists of two terms t
have opposite parity for the same multipole orderl @1#. One
of the terms, sayT1 , is the source of conventional multipol
expansion of the field outside the source region~charge and
current! and satisfiesP and T invariance for oddl, but re-
quires bothP and T violation for evenl. It is important to
note that inT1 we do not have any multipole moment th
violatesP but not T invariance. On the other hand, the e
pansion in the second termT2 , having oppositeP properties
as compared toT1 , is restricted to the source volume and f
odd l it requiresP but notT violation and for evenl, T but
not P violation. The oddl terms are called the toroidal mag
netic multipole moments because in classical electrodyn
ics this third family of moments could arise from the expa
sion of vector potential associated with poloidal curre
distribution of toroidal magnets. Historically, it was Zeldo
ich @2# who discovered this type of multipole moment a
coined the term ‘‘anapole’’ to denote the toroidal dipole m
ment~TDM!. Obviously, the anapole is a wrong-parity ma
netic dipole moment. The TDM occurs together with t
magnetic quadrupole moment having the same dimens
and identical signature under space inversion@3#.

The anapole moment is defined as either a second
ment of the poloidal current densityjW or a first moment of
the toroidal magnetic fieldBW of this current and we have@4#

tW52
p

c E d3r r 2 jW5 1
2 E d3r rW3BW . ~1!

The TDM has been extensively studied in the context
P-violating charge- and neutral-current interactions. T
nuclear anapoles have been found to be of particular inte
@5# because via electromagnetic interaction with a penet
ing atomic electron, these could produce nuclear-sp
dependent parity-nonconserving atomic interactions@6#. The
analysis of anapole moments for both chiral and achiral m
ecules with an unpaired spin is also a subject of consider
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current interest@7,8#. In the recent past Lewis and Blinder@9#
considered the breaking of inversion symmetry in atoms
an electric field and found that the Stark mixing of oppos
parity states induces anapole fields in paramagnetic ato
They presented a detailed calculation of the field and ass
ated moment for the hydrogenic ground state and emp
sized that it will require a major effort to carry out a simila
analysis for the alkali-metal atoms. The present paper is
effort to substantiate the conjecture of Lewis and Blinder.
the following we briefly review their work and shed ligh
upon additional considerations that will be needed for o
study.

Classically, the toroidal magnetic field@10#

BW 5
4p

c
f ~r !rW3mW ~2!

arises from poloidal current density given by

jW5
1

r

d f

dr
„rW~rW•mW !2r 2mW …22 f mW , ~3!

wheremW is a fixed vector giving the orientation oftW. The
radial functionf (r ) can be obtained by evaluating the rad
component ofjW such that

r̂ • jW522 f mW • r̂ . ~4!

From Eqs.~1! and~2!, we gettW as the fourth moment off (r )
in the direction ofmW and write

tW52
16p2

3c
mW E

0

`

dr r 4f ~r !. ~5!

Conversion of the above classical relations to quant
theory is rather straightforward. For example, current den
jW of the Schro¨dinger equation can be decomposed into orb
and spin parts as

jW5 jWL1 jWS . ~6!

For the unperturbed ground state

f1s5S Z3

p D 1/2

e2Zrx ~7!
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of a hydrogenic atom, the toroidal spin current density

jWs5
2Z4

p
r̂ 3SW e22Zr ~8!

with SW 5^sW &/2 generates the ordinary magnetic dipole fie
of the electron. Because ofT invariance the orbital current in
this state is zero. Herex stands for the Pauli spin function,SW
for the atomic spin in units of\, andr̂ is a unit vector. When
an electric fieldEW is applied the ground state is perturbed a
the current densityjWs acquires an additional poloidal compo
nent jWs8 , which manifests itself in producing the toroidal fie
and anapole moment.

The first-order perturbation correctionf1s8 to f1s can in
principle be obtained from the Rayleigh-Schro¨dinger pertur-
bation theory@11#. But it is easier to work with a simple
variant @12# of this traditional perturbation technique i
which f1s8 is calculated from the solution of an inhomog
neous differential equation

~HSch2«1s!f1s8 52~EW •rW !f1s , ~9!

where HSch is the Schro¨dinger-Coulomb Hamiltonian and
«1s is the ground-state energy. Equation~9! is analytically
solvable and we have

f1s8 52
EW •rW

Z2 S 11
Zr

2 Df1s . ~10!

The first-order wave functionf1s1f1s8 can now be used to
get the additional poloidal component in the form

jWs85
2Z

p F S 11
Zr

2 DEW 3SW 2Z~ 3
2 1Zr !~EW •rW ! r̂ 3SW Ge22Zr.

~11!

From Eqs.~2!, ~4!, and~11! we can write

f ~r !52
Z

p S 11
Zr

2 De22Zr ~12!

and

BW 54aZS 11
Zr

2 De22Zr@~EW 3SW !3rW#, ~13!

wheremW has been identified withEW 3SW . In rational relativ-
istic units the fine-structure constanta51/c. The TDM can
be computed by using Eq.~12! in Eq. ~5!.

The valence electron of an alkali-metal atom may be
sumed to move in a potential due to the nucleus and to
core electrons and to spend much of its time in the ou
region where the nucleus is screened by the core elect
and where the potential is of Coulomb form and some fr
tion of its time penetrating the region of the core. In th
region there is a stronger attractive potential that causes
orbit to precess. To a first approximation the electron may
assumed to move in a pure Coulomb field with an effect
02211
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nuclear charge such that the orbit precession could be
glected. Then the alkali spectra are described by a hyd
genic model in which the energy levels of the valence el
trons are degenerate.

To be more realistic the orbit precession arising due
interaction of the valence electron with the ionic core sho
be taken into account. In this case thel degeneracy is re-
moved and the so-called quantum-defect method@13# can be
used to provide an accurate description for the energy s
tra. An interesting aspect of this method is that the value
the quantum defect~change in the principal quantum num
ber! determines not only the energy of the state but a
spatial character of the wave function. For example, the
drogenic wave functions are expressed in terms of the c
fluent hypergeometric or regular Whittaker functions. As o
posed to this the nonhydrogenic wave functions result
from the removal ofl degeneracy require the irregular Whi
taker functions for their description.

In this work we shall use both hydrogenic and nonhyd
genic wave functions to study the Stark-induced anapole
ment of alkali-metal atoms and examine their relative me
and demerits. We shall see that in the hydrogenic model
possible to derive an analytical approach to the problem b
straightforward generalization of the work of Lewis an
Blinder @9# and thereby derive an order-of-magnitude es
mate for the anapole moment. The nonhydrogenic w
functions of the quantum-defect method being characteri
by irregular Whittaker functions do not permit one to pr
ceed analytically but can predict accurate numerical resu

A. Hydrogenic approach

In this approach the energy levels of the valence electr
are degenerate. In the presence of degeneracy the solu
of equations like Eq.~9! are obstructed by the solvabilit
condition@14#. Thus the analysis of anapole fields and tor
dal moments for alkali-metal atoms needs a separate con
eration. Fortunately, an appropriate inhomogeneous equa
satisfying the solvability condition can also be written
obtain the first-order correction to a wave function belong
to a degenerate energy level@15#. We shall take recourse to
this equation for the present study. The appropriate gen
inhomogeneous equation is given by

@«nl2HSch~rW !#fnlm8 ~rW !

5~EW •rW !fnlm~rW !2(
g

fg~rW !E fg~rW8!

3~EW •rW8!fnlm~rW8!d3r 8, ~14!

where theg sum extends over the whole degenerate subsp
of fnlm(rW). The unperturbed wave functionfnlm(rW) is given
by

fnlm~rW !5Rnl~rW !Yl
m~u,f!. ~15!

HereYl
m(u,f) stands for the scalar spherical harmonic a

Rnl(r ) for the bound state radial solution of the Coulom
problem given by
2-2
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Rnl~r !5Nnlr
le2r/2Ln2 l 21

2l 11 ~r! ~16!

with

Nnl5F4Z3~n2 l 21!!

n4~n1 l !! G1/2

. ~17!

In Eq. ~16! Ls
k( ) denotes the associated Laguerre polyn

mial of orders andr52Zr/n. SinceH85EW •rW can connect
only the states of opposite parity, the solution of Eq.~14! can
be chosen in the form

fnlm8 ~rW !5Fn,l~r !Yl 21
m ~u,f!1Gn,l~r !Yl 11

m ~u,f!. ~18!

The valence electrons of alkali-metal atoms ares electrons
( l 50,m50). In this case the first term in Eq.~18! becomes
irrelevant. Thus from Eqs.~14! and ~18! we get,

Fr d2

dr2 12
d

dr
2

r

4
1n2

2

rG
3Gn,0~r!5

En2r

2)Z2 F rRn,01
3nAn221

2Z
Rn,1G .

~19!

We now change the dependent variable in Eq.~19! by sub-
stituting

Gn,0~r!5re2r/2Q~r!, ~20!

whereQ(r) is a polynomial inr. For the sake of brevity we
omit the subscriptn andl (50) on the right-hand side of Eq
~20!. From Eqs.~19! and ~20! we get

rQ91~42r!Q81~n22!Q

5ES n

12Z3D 1/2

(
j 50

n21 F ~21! j

3H 11
3~n11!~n23!

~ j 12!~ j 13! J n!r j 11

j ! ~n212 j !! ~ j 11!! G . ~21!

Since the right-hand side of Eq.~21! involves a finite sum,
the solution to it can be related to the solution of the non
mogeneous confluent hypergeometric equation@16#

x
d2y

dx2 1~c2x!
dy

dx
2ay5xs21, ~22!

wheres is a constant. Thus the complete primitive of E
~21! can be written as

Q~r!5C1F1~22n,4;r!1ES n

12Z3D 1/2

(
j 50

n21

~21! j

3F11
3~n11!~n212 j !

~ j 12!~ j 13! G
3

n!

j ! ~n212 j !! ~ j 11!!
u j 12~22n,4;r!. ~23!
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Equation~18! in conjunction with Eqs.~20! and ~23! gives
the first-order correctionfn008 (rW) of the valence electrons o

alkali-metal atoms due to the applied electric fieldEW . The
constant of integrationC in Eq. ~23! can be obtained by
using the constraint@15,17#

^fuf8&50. ~24!

The quantityu j ( ) is expressed in terms of a generaliz
hypergeometric function as

us~a,c;x!5
xs

s~s1c21! 2 F2~1,s1a;s11,s1c;x!.

~25!

The wave function as obtained above will give a gene
expression of the additional poloidal currentjWs8 , which in
turn will determine the corresponding results forf (r ), B

(5uBW u), and t(5u tWu). For Li the expression forf (r ) andB
are given by

f Li~r !5
Z

32p
e2Zr~22Zr !~Z2r 2230!, ~26!

and

BLi5
1
8 Zre2Zr~22Zr !~Z2r 2230!. ~27!

Although somewhat lengthy, algebraic expressions simila
those in Eqs.~26! and~27! can also be constructed for Na, K
and Rb. Interestingly, we could find simple expressions~in
units of a0

4)

tLi5
2.752

Z4 , tNa5
23.218

Z4 , tK5
114.473

Z4 , tRb5
408.464

Z4

~28!

for the magnitudes of the anapole moment or TDM of the
atoms. The toroidal magnetic fields are given in units
a(EW 3SW )sinu, whereu is the angle betweenmW and rW.

B. Nonhydrogenic approach

Here the wave function of our interest is provided by t
quantum-defect method, and Seaton@13# derived the genera
solution

Pnnl~rW !5@nn
2G~nn1 l 11!G~nn2 l !#21/2

3Wnn ,l 11/2S 2r

nn
DYl

m~ r̂ !x, ~29!

where the effective quantum numbernn5n2m with m, the
so-called quantum defect. The nonhydrogenic states~29! are
solutions of the Schro¨dinger equation for a potentialV(r )
that approaches22/r only asymptotically andnn is a nonin-
teger dependent on the value of the principal quantum n
ber n although the quantum defectm is a slowly varying
function of n. In writing Eq. ~29! we have assumed that th
variation ofm with energy is negligibly small. It is of interes
2-3
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A. BHATTACHARYA AND B. TALUKDAR PHYSICAL REVIEW A 61 022112
to note that although Seaton’s wave function is of appro
mate nature for smallr, it has been used successfully for th
entire range ofr in studies of alkali-metal and alkaline-eart
metal atoms@13#. Further, the wave functionsPnnl(rW) for
different values ofl belong to nondegenerate energy leve
Physically, this implies that interaction of the valence ele
tron with the ionic core results in the removal ofl degen-
eracy. In view of this, one would like to calculate the pertu
bative correction toPnnl(rW) by using an equation similar to
that in Eq.~9!. Unfortunately, due to the appearance of t
irregular Whittaker function in Eq.~29!, it is not possible to
solve the associated inhomogeneous differential equatio
using analytic techniques. Therefore, implementing the s
dard Rayleigh-Schro¨dinger perturbation theory we write th
first-order correctionPnn08 (rW) to the valence-electron wav

function of the alkali-metal atoms in the form

Pnn08 ~rW !5
E

@3nn
2G~nn11!G~nn!#1/2

3(
k

F Rkn

@nk
2G~nk12!G~nk21!#1/2

1

~«nn02«nk1!G
3Pnk1~rW ! ~30!

with

Rkn5E
0

`

rWnk,3/2~r !Wnn,1/2~r !dr. ~31!

In the above the summation overk includes the value of
principal quantum numbern since in the nonhydrogeni
model thel degeneracy has already been removed. As in
hydrogenic case we have

f ~r !5
1

4p

1

@nn
2G~nn11!G~nn!#

3(
k

F Rkn

@nk
2G~nk12!G~nk21!#

1

~«nn02«nk1!G
3

1

r
Wnk,3/2~r !Wnn,1/2~r ! ~32!

to study the nonhydrogenic behavior of the toroidal magn
field and anapole moments by the use of Eqs.~2! and ~5!.

Before computing the numbers fort or analyzing the be-
havior ofB by using the present formalism it may be of som
interest to investigate how the values of the polarizabi
implied by Eqs.~20! and~30! do compare with experiments
Admittedly, such a comparison is expected to provide
indication for the atomic model to be used for the pres
purpose, since in the semiempirical product rule@9# tW

5(2p/e)mW 3dW with mW 52aea0SW and dW 5aEEW is directly
proportional to the values of dipole polarizabilityaE . More-
over, this rule is an exact result in the one-particle nonre
tivistic theory used in this paper.
02211
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For the hydrogenic case the expression for polarizabi
is given by@15#

ah~n,0,0!52
2

)
E

0

`

Rn,0~r !r 3Gn,0~r !dr. ~33!

We have used the subscript h ona to indicate that Eq.~33!
represents the polarizability calculated on the basis of hyd
genic wave functions in which energy levels havel degen-
eracy. From Eqs.~16!, ~20!, ~23!, and~33! we have obtained
ah~Li) 5120/ZLi

4 , ah~Na)51012.5/ZNa
4 , ah~K) 54992/ZK

4 ,
andah~Rb)517 812.5/ZRb

4 . For the nonhydrogenic~nh! case
it is not possible to construct a simple expression
anh(nn). By using Eq.~30! we have, however, derived a
infinite series representation for it to write

anh~nn!5
2

3@nn
2G~nn11!G~nn!#

3(
k

F 1

@nk
2G~nk12!G~nk21!#

Rkn
2

~«nn02«nk1!G .

~34!

It is of interest to note that by using the values ofah in the
product rule we recover the results fort given in Eq.~28!.
This agreement clearly explains the reason for the 1/Z4 de-
pendence of the anapole moment.

For the hydrogenic model we shall require the values
the effective nuclear charges as seen by the valence elec
We have determined the values ofZ by a fit to binding en-
ergies through the use of the hydrogenic formulaEn
52Z2/2n2. An approach similar to ours has been used e
lier in different physical contexts@18#. To work with the
nonhydrogenic model we shall require, in addition to t
ground-state energy, the numbers for binding energies
quantum defects for excitedp states. We have taken the re
evant data from the classic work of Ham@19#. Ham has
given values of energy levels and quantum defects for thp
electrons up tok56, 7, 8, and 9 for Li, Na, K, and Rb
respectively. Thus in calculatinganh(nn) we could include

FIG. 1. Toroidal magnetic field of the valence electron in un

of a(EW 3SW )sinu as a function ofr in a.u.
2-4
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only five terms in the sum present in Eq.~34!. Fortunately,
we have found that the finite truncation of the sum giv
well-converged results.

In Table I we present our results for effective nucle
charges (Zeff), polarizabilities (ah andanh), and correspond-
ing toroidal dipole moments (th andtnh) for the elements Li,
Na, K, and Rb. We have calculated the results for the dip
moments by using the product rule@9#. We have given in
parenthesis in the column foranh the experimental values o
dipole polarizabilities. The corresponding values oft are
given similarly in the column fortnh. From our data forah
and anh it is clear that the nonhydrogenic model for alka
metal atoms is far more realistic than the hydrogenic o
For example, in the case of Li the value ofah is only 29% of
the experimental value, while the value foranh is almost in
exact agreement with the experimental result. For higher
kali metals, however, our results foranh exhibit some devia-
tion from the corresponding experimental data. Interestin
the hydrogenic model gets better as we go to high-Z alkali
metals and this model recovers 92% of the experimental
larizability for Rb. Since the values of the anapole mom
have been calculated by using the product rule the num
for th and tnh show similar behavior as observed for the p
larizabilities.

TABLE I. Results forZeff , ah , anh, th , andtnh.

Element

Zeff

of the
valence
electrons

Polarizabilities
~units of a0

3)

Toroidal or anapole
moments

~units of a0
4)

ah anh th tnh

Li 1.259 47.762 163.500 1.094 3.744
~163.700! ~3.749!

Na 1.844 87.569 2.005
K 2.259 191.695 289.521 4.389 6.630

~295.600! ~6.769!
Rb 2.770 302.556 318.517 6.929 7.294

~330.000! ~7.557!
-

t.

ys

l.
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We have analytically demonstrated that the expressi
for hydrogenic toroidal dipole moments in Eq.~28! found
from the ab initio calculations agree with those obtaine
from the product rule by using values of the appropriate
larizabilities. Such a clear demonstration was not, howev
possible for the nonhydrogenic case. Thus we recalcula
the results fortnh from Eqs.~5! and~32! and found a similar
agreement for the numbers fortnh given in Table I. This
indicates that in this work we derived a perfectly valid a
proach to study the Stark-induced anapole moment from
first principle. A hydrogenic model could account only fo
the qualitative behavior oft while the nonhydrogenic natur
of the valence electrons of alkali-metal atoms provided so
additional insight for the effect under study.

In Fig. 1 we display the radial dependence of the toroi
magnetic field of the hydrogenic valence electrons. T
variation of B for Li, Na, K, and Rb are denoted by solid
dashed, dashed with dots, and dotted lines, respectively
important feature of our results is that both maxima a
minima of the curves for higher alkali metals are more p
nounced and closer to the origin than the corresponding
sults for lower ones. This may be attributed to the fact t
the valence electrons of high-Z alkali metals have greate
probability of residing in the immediate vicinity of th
nucleus and also producing a more intense toroidal magn
field. We have verified that the radial dependence of
toroidal magnetic field of the nonhydrogenic electrons
identical to that of the hydrogenic electrons except that
respective curves are pushed a little away from the orig
We have not separately displayed the nonhydrogenicB fields
because they do not give any new insight into additio
physical realization. From our point of view the hydrogen
calculation also appears to be quite instructive althou
somewhat pedagogic.
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