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Exact diagonalization of two quantum models for the damped harmonic oscillator
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The damped harmonic oscillator is a workhorse for the study of dissipation in quantum mechanics. How-
ever, despite its simplicity, this system has given rise to some approximations whose validity and relation to
more refined descriptions deserve a thorough investigation. In this work, we apply a method that allows us to
diagonalize exactly the dissipative Hamiltonians that are frequently adopted in the literature. Using this
method, we derive the conditions of validity of the rotating-wave approximation~RWA! and show how this
approximate description relates to more general ones. We also show that the existence of dissipative coherent
states is intimately related to the RWA. Finally, through the evaluation of the dynamics of the damped
oscillator, we notice an important property of the dissipative model that has not been properly accounted for in
previous works, namely the necessity of new constraints to the application of the factorizable initial conditions.

PACS number~s!: 03.65.Bz
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I. INTRODUCTION

The study of dissipative systems and in particular
Brownian motion has been pursued for a long time in
context of classical@1# and quantum mechanics@2#. Al-
though there have been a number of publications in this a
there are some subtle points that have never been prop
investigated in the literature. Among these we could ment
three major ones: a careful investigation of the relation
tween different models@3#, the existence of dissipative co
herent states@4–7#, or the condition for the employment o
factorizable initial conditions. These are exactly the iss
we shall address in this paper.

Usually the dissipation in the system is described a
consequence of its coupling to a reservoir. The propertie
this dissipative system are generally studied through
evaluation of the time evolution of its reduced density ope
tor. This evolution is often described either by a generali
tion of the Feynman-Vernon approach@2,8–10# or through
master equations@4–7,11–15#. In this work the properties o
the system will be studied through exact diagonalization
different Hamiltonians of the dissipative models.

We will consider a damped harmonic oscillator. The us
models of dissipation consist of coupling the harmonic os
lator to a reservoir that is conveniently chosen as a grou
N noninteracting oscillators. The coupling between the t
systems is bilinear in the creation and destruction opera
of quanta of energy. Then the Hamiltonian of the total s
tem is given by@4#

Ĥ5Ĥsis1Ĥ res1Ĥ int , ~1.1!

*Electronic address: rosenau@ifi.unicamp.br
†Electronic address: caldeira@ifi.unicamp.br
‡Present address: Huygens Laboratory, University of Leid

P. O. Box 9504, 2300 RA Leiden, The Netherlands. Electro
address: dutra@molphys.leidenuniv.nl

§Present address: Department of Physics of Illinois at Urba
Champaign, 1110 West Green Street, Urbana, IL 61801-3080. E
tronic address: westfahl@cromwell.physics.uiuc.edu
1050-2947/2000/61~2!/022107~14!/$15.00 61 0221
f
e

a,
rly
n
-

s

a
of
e
-
-

f

l
l-
of
o
rs
-

being

Ĥsis5\voâ†â, Ĥ res5\(
j

v j b̂ j
†b̂ j , ~1.2!

Ĥ int5\~ â†1â!(
j

~kj b̂j1kj* b̂ j
†!, ~1.3!

where we consider a harmonic oscillator with frequencyvo
~the system of interest! interacting with a bath of oscillators
with frequenciesv j through the coupling constantskj ’s. We
will take the limit of a continuous spectrum of excitations
the reservoir of the HamiltonianĤ. Then we will diagonalize
Ĥ and determine the time evolution of the operatorâ ex-
actly. The analysis ofâ(t) will determine the conditions of
validity of the rotating-wave approximation~RWA! which
consists of neglecting the termskj âb̂j1kj* â†b̂ j

† in Eq. ~1.2!
and writing

Ĥ int
RWA5\(

j
~kj â

†b̂ j1kj* âb̂ j
†!. ~1.4!

Once this has been accomplished, we will discuss the
istence of dissipative coherent states. Some authors@4–7#
have stated that the coherent states are special states
remain pure during their decay in dissipative systems.
will show that the existence of these dissipative coher
states is directly related to the RWA; they can only exist
zero temperature and in systems that meet the condit
required for the RWA.

Once we have determined the evolution of the opera
â(t) of the system, we can determine the evolution of any
its observables. However, the dynamics of these observa
will depend on the specific form adopted for the coupli
constantskj as functions of the frequenciesv j . Our method
holds for an arbitrary form, but in order to compare o
results with the Caldeira-Leggett model@2# we will reduce
our results to the case where the function becomes the s
as the one they have adopted. Then, as in Refs.@9,10#, we
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will determine the evolution of the mean value of the po
tion operator̂ q̂(t)& of the damped oscillator. The result o
this calculation reveals a very special need to carefully tr
the initial time of the motion. We propose a simple initi
condition that eliminates the initial transient that would a
pear in the evolution of̂ q̂(t)& and we believe that it is
enough to eliminate most of or maybe all the initial tra
sients ~in a certain time scale! which were noticed in this
system in previous works@11,12,14#.

The paper is organized as follows. In Sec. II we write t
Hamiltonian~1.1! in the limit of a continuous spectrum fo
the reservoir excitations and we diagonalize it exactly wit
and without the RWA. We compare the model given by t
Hamiltonian~1.1! with the dissipative model presented in@2#
in Sec. III. Here, we also determine the relation between
coupling function uv(v)u2, introduced in Sec. II, and the
spectral functionJ(v) introduced in@8#. In Sec. IV we ana-
lyze the relevance of the different terms that appear in
calculation of the evolution of the operatorâ(t) with relation
to the intensity of the dissipation in the system. In Sec. V
show under which conditions the evolution of the opera
â(t) is reduced to that given in the RWA. In Sec. VI w
show that the existence of dissipative coherent states is
possible within the RWA. In Sec. VII we present the calc
lation of the evolution of the mean value of the position
the damped harmonic oscillator. In Sec. VIII we discuss
the physical meaning of the initial condition proposed in S
VII. Finally, we discuss the main results and conclusions
Sec. IX.

II. DIAGONALIZATION OF THE DISSIPATIVE
HAMILTONIANS

A. Treating a reservoir with a continuous spectrum

We can rewrite the Hamiltonian~1.1! considering a con-
tinuous spectrum of excitations in the reservoir by mak
use of the transformation between the discrete boson op
tors b̂ j and the continuous onesb̂V @16#,

b̂ j5Ag~V j !E
1/g(V j )

dV b̂V , ~2.1!

where g(V j )dV j is the number of modes in the reservo
with frequencies betweenV j andV j1dV j , and*1/g(V j )

dV

represents an integration in a band of width 1/g(V j ) around
V j . The operatorsb̂V then satisfy the commutation relatio

@ b̂V ,b̂Ṽ
†

#5d~V2Ṽ!, ~2.2!

and all other commutators vanish.
Under the transformation~2.1!, we find

Ĥ int5\~ â†1â!E dVAg~V!@k~V!b̂V1k* ~V!b̂V
† #,

~2.3!

where we considered thatg(V j ) andk(V j ) are constant in-
side the interval 1/g(V j ) and that( j*1/g(V j )

dV is nothing
02210
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but *dV, where this last integral covers the whole spectru
of excitations of the reservoir. Then the total Hamiltonian
our system is given by

Ĥ5\voâ†â1\E Vb̂V
† b̂V dV

1\~ â†1â!E @v~V!b̂V1v* ~V!b̂V
† #dV, ~2.4!

where

v~V!5Ag~V!k~V!. ~2.5!

B. The Hamiltonian within the rotating-wave approximation

We will now perform a canonical transformation and a
ply the procedure proposed by Fano@17# in order to diago-
nalize the Hamiltonian of our global system in the RW
which is written as

ĤRWA5\voâ†â1\E Vb̂V
† b̂V dV

1\E @v~V!â†b̂V1v* ~V!âb̂V
† #dV. ~2.6!

The diagonalization procedure presented in the sequel is
sically a review of the method presented in@18#. Our goal is
to find an operator that satisfies the eigenoperator equat

@Âv ,ĤRWA#5\vÂv , ~2.7!

and therefore has its evolution trivially given byÂv(t)
5Âve2 ivt.

The new operatorÂv can be written in terms of the op
eratorâ of the system and of the operatorsb̂V of the reser-
voir in the form

Âv5avâ1E dV bv,Vb̂V . ~2.8!

Substituting this expression forÂv as well as Eq.~2.6! for
ĤRWA in Eq. ~2.7! and calculating the commutators, we ha

voavâ1avE dV v~V!b̂V1E dV Vbv,Vb̂V

1E dV v* ~V!bv,Vâ5vS avâ1E dV bv,Vb̂V D .

~2.9!

Now, taking the commutator of this expression withâ† and
b̂V

† , we obtain

voav1E dV v* ~V!bv,V5vav , ~2.10!
7-2
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v~V!av1Vbv,V5vbv,V , ~2.11!

respectively. Imposing

@Âv ,Âṽ
†
#5d~v2ṽ !, ~2.12!

we have

avaṽ
* 1E dV bv,Vbṽ,V

* 5d~v2ṽ !. ~2.13!

The system of equations~2.10!, ~2.11!, and~2.13! is identical
to the one presented in@17#. The solution is given by

uavu25
uv~v!u2

@v2vo2F~v!#21@puv~v!u2#2
, ~2.14!

with an arbitrary phase ofav , and

bv,V5FP
1

v2V
1

v2vo2F~v!

uv~v!u2
d~V2v!Gv~V!av ,

~2.15!

where

F~v!5PE uv~V!u2

v2V
dV, ~2.16!

and P denotes the principal part.
We can calculate the evolution of the operatorâ of the

system expressing it as a function of the operatorsÂv . We
can writeâ as a function ofÂv in the following way:

â5E dv f vÂv . ~2.17!

Taking the commutator@ â,Âv
† #, first using Eq.~2.8! and then

Eq. ~2.17!, we obtain f v5av* . Therefore, the evolution o

the operatorâ is given by

â~ t !5E dv av* Âve2 ivt. ~2.18!

Substituting the expression forÂv in this equation and using
Eq. ~2.15!, we obtain

â~ t !5E dvuavu2e2 ivtâ

1E dVv~V!H E dvuavu2P
1

v2V
e2 ivt

1
uaVu2

uv~V!u2
@V2vo2F~V!#e2 iVtJ b̂V . ~2.19!
02210
C. The Hamiltonian without the rotating-wave approximation

Now we will present the diagonalization of the Ham
tonian ~2.4! without the RWA. The procedure that we wi
present is similar to the one adopted in@19#.

Again we want to find an operatorÂv that satisfies Eq.
~2.7!, with Ĥ in the place ofĤRWA, and Eq.~2.12!. Then we
write Âv in the form

Âv5avâ1E dV bv,Vb̂V1xvâ†1E dV sv,Vb̂V
† .

~2.20!

Imposing Eqs.~2.7!, and~2.12!, we obtain~see Appendix
A!

uavu25S v1vo

2vo
D 2 1

uv~v!u2@p21z2~v!#
, ~2.21!

bv,V5FP
1

v2V
1z~v!d~v2V!G 2vo

v1vo
v~V!av ,

~2.22!

xv5
v2vo

v1vo
av , ~2.23!

sv,V5
1

v1V

2vo

v1vo
v* ~V!av , ~2.24!

where

z~v!5
v22vo

222voH~v!

2vouv~v!u2
~2.25!

and

H~v!5F~v!2G~v!5PE uv~V!u2

v2V
dV2E uv~V!u2

v1V
dV.

~2.26!

We can expressâ as a function ofÂv and Âv
† in the

following way:

â5E dv fvÂv1E dv wvÂv
† . ~2.27!

Now taking, again, the commutators@ â,Âv
† # and@ â,Âv#, we

obtain fv5av* and wv52xv . Substituting the expressio

~2.20! for Âv in Eq. ~2.27!, the time evolution of the operato
a can be easily written as
7-3
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â~ t !5E dv

p
uL~v!u2$A~v!cos~vt !â

2 i @B~v!â1C~v!â†#sin~vt !%

1E dV

p
B1~V;t !b̂V1E dV

p
B2~V;t !b̂V

† ,

~2.28!

where

A~v!52v, B~v!5
v21vo

2

vo
, C~v!5

v22vo
2

vo
,

~2.29!

B1~V;t !5v~V!$~vo1V!@X~V;t !1Z~V!e2 iVt#

2 iY(1)~V;t !%, ~2.30!

B2~V;t !5v* ~V!$~vo2V!@X~V;t !1Z~V!eiVt#

2 iY(2)~V;t !%, ~2.31!

with

X~V;t !5PE dv
2uL~v!u2

v22V2
v cos~vt !, ~2.32!

Y(6)~V;t !5PE dv
2uL~v!u2

v22V2
~v26voV!sin~vt !,

~2.33!

Z~V!5
uL~V!u2

uv~V!u2
FV22vo

2

2vo
2H~V!G , ~2.34!

uL~v!u25
2pvouv~v!u2

@v22vo
222voH~v!#21@2pvouv~v!u2#2

.

~2.35!

III. THE MODEL
OF COORDINATE-COORDINATE COUPLING

The expressions obtained for the evolution of the opera
â(t), within or without the RWA, remained written in term
of the coupling functionuv(v)u2. Therefore, the choice o
the function uv(v)u2 will determine the dynamics of the
damped oscillator. We will choose the functionuv(v)u2 by
comparing the dissipation model corresponding to
Hamiltonian ~2.4! to the one presented in@2# that corre-
sponds to the following Hamiltonian:

Ĥ5
p̂2

2M
1V~ q̂!1(

j
S p̂ j

2

2mj
1

mjv j
2

2
q̂ j

2D
2(

j
Cj q̂j q̂1VR~ q̂!, ~3.1!
02210
r

e

where the countertermVR(q̂), which cancels the additiona
contribution toV(q̂) due to the coupling of the system to th
reservoir, is given by

VR~ q̂!5(
j

Cj
2

2mjv j
2
q̂2. ~3.2!

The spectral functionJ(v) is defined by

J~v!5
p

2 (
j

Cj
2

mjv j
d~v2v j !5

p

2

g~v!Cv
2

mvv
, ~3.3!

where we have taken the limit of a continuous spectrum
usedg(v) from Eq. ~2.1!. For Ohmic dissipation,

J~v!5H 2Mgv if v,Vc,

0 if v.Vc ,
~3.4!

whereVc is a cutoff frequency, much larger than the natu
frequencies of the motion of the system of interest. But
our calculations we will conveniently use the Drude form

J~v!5
2Mgv

~11v2/Vc
2!

. ~3.5!

We are treating a damped harmonic oscillator soV(q̂)
51/2Mvo

2q̂2. Applying the usual definitions of the operato

â and b̂ j ,

â5AMvo

2\ S q̂1
i

Mvo
p̂D , b̂ j5Amjv j

2\ S q̂ j1
i

mjv j
p̂ j D ,

~3.6!

we can rewrite Eq.~3.1!, initially without the inclusion of the
countertermVR(q̂), as

Ĥ5\voâ†â1(
j

\v j b̂ j
†b̂ j

2
\

2
A 1

Mvo
~ â1â†!(

j

Cj

Amjv j

~ b̂ j1b̂ j
†! ~3.7!

~measuring the energy of the system from the energy of
vacuum!. Now we can use the transformation~2.1! in order
to consider a continuous spectrum for the excitations of
reservoir. The second term on the right-hand side of Eq.~3.7!
becomes

Ĥ res5\E vb̂v
† b̂v dv ~3.8!

and its last term can be written in the following way:

Ĥ int52
\

2
A 1

Mvo
~ â1â†!E dvAg~v!

mvv
Cv~ b̂v1b̂v

† !.

~3.9!
7-4
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Now comparing Eqs.~3.7!–~3.9! with Eq. ~2.4!, we see that
both Hamiltonians will be equivalent if we employ

v~v!52
1

2
A g~v!

Mvomvv
Cv . ~3.10!

Taking the square of Eq.~3.10! and comparing it with Eq.
~3.3!, we obtain

v2~v!5
1

2p

J~v!

Mvo
. ~3.11!

Adopting the Drude form~3.5!, uv(v)u2 is given by

uv~v!u25
gv

pvo

1

~11v2/Vc
2!

, ~3.12!

which is defined only forv>0.
Now that we have established the form ofuv(v)u2 corre-

sponding to the Caldeira-Leggett model@2#, we can deter-
mine H(v) through Eq.~2.26!. A simple calculation shows
that H(v) will be given by

H~v!52
gVc

vo

1

~11v2/Vc
2!

. ~3.13!

We can also diagonalize the Hamiltonian~3.1! consider-
ing the inclusion of the countertermVR(q̂) ~see Appendix
A!. The result is that all the equations~2.20!–~2.35! will
remain valid with the following substitution: whenever th
function H(v) appears, it should be replaced by

HR~v!5H~v!1
Dv2

2vo
, ~3.14!

where the frequency shiftDv2 is defined as@2#

Dv2

2vo
5

1

2voM (
j 51

N Cj
2

mjv j
2

52E dv
uv~v!u2

v
5

gVc

vo
.

~3.15!

Whenever a function appears with the subindex ‘‘R’’ it
means that we are considering the introduction of the co
terterm.

The spectral function~3.5! is appropriate to the descrip
tion of the reservoir since we considerVc@vo ,g. So, in
order to simplify and also obtain the exact function asso
ated to the Ohmic dissipation, we will take the limitVc

→` in the expression foruL(v)uR
2 . To do so, first we con-

sider the renormalized functionuL(v)uR
2 given by

uL~v!uR
25

2pvouv~v!u2

@v22vo
222voHR~v!#21@2pvouv~v!u2#2

.

~3.16!

Once

lim
Vc→`

HR~v!50 and lim
Vc→`

uv~v!u25
gv

pvo
,

~3.17!
02210
n-

i-

we obtain

lim
Vc→`

uL~v!uR
25

2gv

~v22vo
2!21~2gv!2

. ~3.18!

Thus, we see that

lim
Vc→`

uL~v!uR
25Mx9~v!, ~3.19!

wherex9(v) is the imaginary part of the response functio
of a damped harmonic oscillator.

In the limit g!vo , we can write

uL~v!uR
2.

2vog

@2vo~v2vo!#21~2vog!2

5
1

2vo

g

~v2vo!21g2
, ~3.20!

which corresponds to a Lorentzian distribution of widthg.
For the functionuL(v)u2, without the renormalization, we

have H(v!Vc).2gVc /vo and therefore forVc@vo ,g
we obtain

uL~v!u25
2gv

~v22vo
212gVc!

21~2gv!2
. ~3.21!

In this case we should havevo
2.2gVc , because, without

the renormalization, we must have@19#

vo
2.uDv2u ~3.22!

for the diagonalization to be consistent.

IV. ANALYSIS OF THE EVOLUTION OF â„t…

Now we can analyze in detail the time evolution of th
operatorâ associated with the system. We will analyze ea
term of the expression forâ(t) in Eq. ~2.28!. We will be
interested in the relation between the degree of dissipatio
our system and the importance of each one of those term

Initially we will analyze the coefficients associated to t
operatorsâ and â†. The fastest and most efficient way t
understand the behavior of each one of them is thro
graphs.

The graphs in Fig. 1~a! present the behavior ofuL(v)uR
2

for three values of g: g150.1vo , g25vo , and g3

510vo . We see that forg150.1vo , uL(v)uR
2 presents a

narrow peak centered approximately aboutvo @we showed
that in the limit g!vo the function uL(v)uR

2 tends to a
Lorentzian centered atvo and with widthg#. As g increases
(g25vo), the functionuL(v)uR

2 broadens and becomes ce
tered at progressively lower frequencies. Forg still larger
(g3510vo),uL(v)uR

2 narrows again, but its peak is abo
very low frequencies.

The graphs in Fig. 1~b! present the behavior of the func
tions A(v), B(v), and C(v) that appear multiplying
7-5
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uL(v)uR
2 in the different terms of the expression forâ(t).

Simultaneously observing Figs. 1~a! and 1~b!, we conclude
that wheng!vo , the functionC(v)uL(v)uR

2 has a negli-
gible amplitude if compared to the functionsA(v)uL(v)uR

2

and B(v)uL(v)uR
2 , because in this caseuL(v)uR

2 is very
sharp and centered atvo whereasC(vo)50. As g/vo in-
creases,uL(v)uR

2 has its peak broadened and moved aw
from vo . The functionC(v)uL(v)uR

2 becomes comparabl
to the others, and in the limitg@vo it is of the same order o
B(v)uL(v)uR

2 whereasA(v)uL(v)uR
2 becomes very small.

It remains to analyze the coefficientsB1,R(V;t) and
B2,R(V;t) of b̂V and b̂V

† , respectively, in the expressio

~2.28! for â(t). We know that in the limitg!vo the func-
tion uL(v)uR

2 tends to a Lorentzian centered atvo and with
width g. Therefore, the function (vo2V)ZR(V) that ap-
pears in the expression~2.31! for B2,R(V;t) is, in this limit,
negligible if compared to the function (vo1V)ZR(V) in the
expression~2.30! for B1,R(V;t). The evaluation ofXR(V;t)
results in

FIG. 1. ~a! Graph of uL(v)uR
2 for different rationsg/vo . ~b!

Graph of the functionsA(v), B(v), andC(v) that appear multi-

plying uL(v)uR
2 in the different terms of the expression forâ(t).
02210
y

XR~V;t !5
2p

~V22v821g2!1~2gv8!2

3
d

dt H FV22v821g2

v8
sin~v8t !

12g cos~v8t !Ge2gtJ 2
2gV sin~Vt !

~V22vo
2!1~2gV!2

~4.1!

for g,vo , wherev85Avo
22g2. We see that in the limit

g!vo , the function XR(V;t) will also be very sharply
peaked around vo . Therefore, the function (vo
2V)XR(V;t) in the expression~2.31! for B2,R(V;t) is also
negligible if compared to the function (vo1V)XR(V;t) in
the expression~2.30! for B1,R(V;t). Similarly it can be
shown that, in this limit, the functionY(2),R(V;t) is negli-
gible in relation to the functionY(1),R(V;t). We conclude
that in the limit g!vo , the coefficientB2,R(V;t) is negli-
gible in comparison to the coefficientB1,R(V;t). As the ratio
g/vo increases and the functionuL(v)uR

2 changes its shape
the coefficientB2,R(V;t) becomes comparable toB1,R(V;t).

So far we have analyzed the relevance of the terms a
ciated toâ† andb̂V

† in the expression~2.28! for â(t) consid-

ering the inclusion of the countertermVR(q̂) in our model.
We showed that these terms are negligible in the limitg
!vo , but become important as the dissipation increases
the functionuL(v)uR

2 becomes broader and is no longer ce
tered atvo . Now if we had not considered the inclusion o
the counterterm in the interaction Hamiltonian, we wou
haveuL(v)u2 given by Eq.~3.21! instead ofuL(v)uR

2 . In this
case, we see that the condition for the functionuL(v)u2 to be
centered very close tovo is that 2gVc!vo

2 or

g

vo
!

vo

Vc
~!1!. ~4.2!

Therefore, the conditiong/vo!1 would not be enough for
us to ignore the terms associated toâ† andb̂V

† in the expres-

sion for â(t). These terms can only be neglected if the co
dition ~4.2!, which limits our system to a much weaker di
sipation, is satisfied.

We notice that a system subject to a weak dissipat
(g!vo in our case! does not guarantee that its frequen
shift (Dv252gVc) is also small. We will see later, in mor
detail, that for a system subject to very weak dissipation,
damping coefficientg will be given by puv(vo)u2 and the
frequency shift byH(vo). Observing the expression~2.26!
for H(v), we clearly see that the relation between the
functions depends on the form adopted for the funct
uv(v)u2. Therefore,puv(vo)u2!vo does not guarantee tha
we will haveH(vo)!vo @as we have seen to be the case
uv(v)u2 given by Eq.~3.12!#, although this can happen fo
some functionsuv(v)u2.
7-6
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V. REDUCTION TO THE MODEL
WITH THE ROTATING-WAVE APPROXIMATION

Now let us consider the situation in which the followin
conditions are satisfied:

puv~v!u2!vo for v ; vo , ~5.1!

H~v!!vo for v ; vo . ~5.2!

Under these conditions the functionuL(v)u2 will be a func-
tion well-peaked aroundvo . Therefore, we can ignore th
terms associated withâ† and b̂V

† in the expression forâ(t).

Even the expressions for the coefficients ofâ andb̂V can be
approximated considering thatuL(v)u2 will only be appre-
ciable, in this case, forv.vo . We can write

A~v!uL~v!u2.B~v!uL~v!u2.2vouL~v!u2, ~5.3!

BV
(1).v~V!H E dv 2uL~v!u2P

vo

v2V
e2 ivt

12vo

uL~V!u2

uv~V!u2
@V2vo2H~V!#e2 iVtJ , ~5.4!

and finally

â~ t !5E dvuãvu2e2 ivtâ

1E dV v~V!H E dvuãvu2P
1

v2V
e2 ivt

1
uãVu2

uv~V!u2
@V2vo2H~V!#e2 iVtJ b̂V , ~5.5!

where the functionuãvu2 comes from the approximation o
uL(v)u2 considering Eqs.~5.1! and ~5.2!,

2vo

p
uL~v!u2.

uv~v!u2

@v2vo2H~v!#21@puv~v!u2#2
5uãvu2.

~5.6!

Now let us compare Eqs.~5.5! and~5.6! with the expres-
sions ~2.14! and ~2.19!, previously obtained in the RWA
The only difference between these expressions is given
the presence ofH(v) instead ofF(v). OnceH(v)2F(v)
52G(v), we would have, forv;vo ,H(v).F(v) if
G(v)!F(v). There can be functionsuv(v)u2 that satisfy
this requirement. However, most of the physically reasona
functionsuv(v)u2 do not; for example, ifuv(v)u2 is given by
Eq. ~3.12!, we haveG(v)/F(v).21 for v;vo . In this
case,H(vo).2F(vo) yielding twice the frequency shif
given by the model within the RWA@22#. The same relation
is found wheneveruv(v)u2 extends to frequencies muc
larger thanvo with non-negligible values, for then

H~vo!.22PE uv~V!u2

V
dV.2F~vo!. ~5.7!
02210
y
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This larger frequency shift can be easily understo
through a perturbative analysis. Let us consider a sys
described by Eqs.~1.1! and ~1.2! and havingĤ int within the
RWA ~1.4!. It can be shown that, in second order, the p
turbed levels of the oscillator remain equidistant with an a
parent frequencyvo1DRWAv, where@16#

DRWAv5P(
j

ukj u2

vo2v j
. ~5.8!

Taking the continuous limit and using Eq.~2.5!, we see that
this expression is nothing butF(vo), which really represents
the frequency shift in the weak dissipation limit. Now it
easy to show that if we considerĤ int given by Eq. ~1.3!
without the RWA, we have in second order in the perturb
tion,

Dv5P(
j

ukj u2

vo2v j
2P(

j

ukj u2

vo1v j
. ~5.9!

This expression, in the continuum limit, is merelyH(vo).
Therefore, we see that the substitution ofF(vo) by H(vo)
could already be foreseen by a simple perturbative the
The same perturbative analysis can be used to unders
why the counter-rotating term is not important in the calc
lation of the decay rate of the system in the weak dissipa
limit. In first order, the decay rate of the system is given
Fermi’s golden rule, for which only the terms ofĤ int that
directly conserve energy in the transition are relevant. Thi
not done by the counter-rotating terms. In fact, it is on
done by the rotating terms that create or destroy ene
quanta such thatv j5vo . This is the reason for the depen
dence only onuv(vo)u2 that appears in the very weak diss
pation calculations.

In a model that takes the counterterm into account,
automatically haveHR(v)50 and the expression~5.5! can
be substituted by

â~ t !5E dvuavuR
2e2 ivtâ1E dV v~V!

3F E dvuavuR
2P

1

v2V
e2 ivt

1
uaVuR

2

uv~V!u2
~V2vo!e2 iVtG b̂V , ~5.10!

where

2vo

p
uL~v!uR

2.
uv~v!u2

~v2vo!21@puv~v!u2#2
5uavuR

2 .

~5.11!

Therefore, the RWA leads us to the correct results, w
regard to the decay rate of the system~related touavuR

2), if
and only if the condition of weak dissipation (5.1) is sat
fied. Regarding the frequency shift@associated toF(vo)#, we
see that its agreement with that given in the limit of we
dissipation, in a model without the counterterm, strongly d
7-7
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pends on the functionuv(v)u2 adopted. For functions
uv(v)u2 that extend to frequencies much larger thanvo , we
have twice the shift foreseen in the RWA. Besides, it is a
necessary that the condition~5.2! be satisfied in order to
guarantee that this shift is much smaller thanvo @and we can
neglect the terms inâ† and b̂V

† in the expression forâ(t)#.
In the case of Ohmic dissipation, the conditions~5.1! and

~5.2! are reduced to

g!vo , ~5.12!

once in this case

puv~vo!u25g and HR~v!50,

in the limit Vc→`.

VI. EVOLUTION OF A COHERENT STATE

We showed that if our system satisfies the conditions
weak dissipation~5.1! and small frequency shift~5.2!, the
evolution of the operatorâ(t) can be reduced to the expre
sion given by Eq.~5.5!. Now we will suppose that initially
our system is in a coherent stateua& and that the reservoir is
in the vacuum stateu0& corresponding to a reservoir at ze
temperature. In this case we have

â~ t !ua,0&5E dvuãvu2e2 ivtaua,0&. ~6.1!

Therefore, in this particular case, a coherent state stay
such during its evolution with eigenvaluea(t) given by

a~ t !5aE dvuãvu2e2 ivt. ~6.2!

We can also calculate the evolution of the operatorb̂V(t) of
the reservoir. Then in the case of weak dissipation and sm
frequency shift we can show that the modes of the reser
also evolve from the vacuum state to coherent states
eigenvalues given by

bV
(R)~ t !5aFPE dv

uãvu2

v2V
e2 ivt

1
V2vo2H~V!

uv~V!u2
uãVu2e2 iVtGv* ~V!. ~6.3!

Still under the conditions~5.1! and ~5.2! we can further
approximateuãvu2 by

uãvu2.
puv~vo!u2

@v2vo2H~vo!#21@puv~vo!u2#2
~6.4!

and also extend the lower limit of the frequency integral
Eq. ~6.2! to 2` introducing a negligible error. Then we hav

a~ t !5ae2 i [vo1Dv] te2puv(vo)u2t where Dv5H~vo!.
~6.5!
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In the case of Ohmic dissipation with the inclusion of t
counterterm, we have

a~ t !5ae2 ivote2gt. ~6.6!

Now it is clear that when Eqs.~5.1! and ~5.2! are not
satisfied making the terms associated to the operatorsâ† and
b̂V

† in the expression~2.28! for â(t) no longer negligible,

ua,0& will not be an eigenstate ofâ(t) becauseua& and u0&
are not eigenstates ofâ† andb̂V

† , respectively. Therefore, we
see that an initial coherent stateua&, interacting with a res-
ervoir even at temperatureT50, will not remain a coheren
state during its decay unless we have a system subjec
very weak dissipation.

The previous works that emphasized the existence of
sipative coherent states@4–7#, in models described by the
Ĥ int ~1.3!, were based on master equations obtained thro
a method that is appropriate only in the limit of weak dis
pation. However, we saw that in this limit the correspondi
model ~1.3! is reduced to the RWA model~1.4! that really
preserves the coherent states. We believe that the imp
assumption of weak dissipation is the reason why these
thors have obtained the dissipative coherent states. Our r
agrees with the one presented in@13#, where it was shown
that the model~3.1! presents the coherent states as the ini
states of the system that produce the least amount of ent
as time evolves.

VII. EVOLUTION OF THE CENTER
OF A WAVE PACKET

We can also study the evolution of the operatorq̂ associ-
ated to the position of the particle. Once the operatorsq̂ and
p̂ are related to the operatorâ by Eq. ~3.6!, we obtain from
Eq. ~2.28! the following expression forq̂(t):

q̂~ t !5GS~ q̂,p̂;t !1FR~ q̂V ,p̂V ;t !, ~7.1!

where

GS~ q̂,p̂;t !5q̂
d

dt
L~ t !1

p̂

M
L~ t !, ~7.2!

FR~ q̂V ,p̂V ;t !52voE dV

p
v~V!AmVV

Mvo
H F d

dt
WR~V,t !

1ZR~V!cos~Vt !G q̂V1@VWR~V,t !

1ZR~V!sin~Vt !#J p̂V

mVV
, ~7.3!

L~ t !52E dv

p
uL~v!uR

2 sin~vt !, ~7.4!

WR~V,t !5PE dv
2uL~v!uR

2

v22V2
sin~vt !, ~7.5!
7-8
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with Z(V) defined in Eq.~2.34!.
Now we suppose that the initial density operator of o

global system can be written in the factorizable form

rT5rS^ rR , ~7.6!

whererS and rR are, respectively, the density operators
the system and reservoir when they are isolated. Then
have

^q̂~ t !&5TrS@GS~ q̂,p̂;t !rS#1TrR@FR~ q̂V ,p̂V ;t !rR#

5GS~^q̂&S ,^ p̂&S ;t !1FR~^q̂V&R ,^ p̂V&R ;t !. ~7.7!

Assuming that the initial state of the reservoir is such t

^q̂ j&R5^ p̂ j&R50, ~7.8!

which in the continuum limit corresponds tôq̂V&R
5^ p̂V&R50, we obtain the following expression for^q̂(t)&:

^q̂~ t !&5^q̂&S
d

dt
L~ t !1

^ p̂&S
M

L~ t !, ~7.9!

where

L~ t !55
1

v8
sin~v8t !e2gt for g,vo ,

te2gt for g5vo ,

1

g22g1
e2g1t1

1

g12g2
e2g2t for g.vo ,

~7.10!

with v85Avo
22g2 andg1,25g6Ag22vo

2. The expression
~7.9! was also obtained by Grabert and collaborators@9#, by
the method of functional integration. They affirmed that
would correspond to the classical trajectory of a damped
monic oscillator. However, it is easy to see that this is
true. If the initial state of the system presents an initial av
age momentum̂ p̂&S5po and an initial average positio

^q̂&S5qo , then according to Eq.~7.9!, ^q̂(t)& would evolve
as

^q̂~ t !&5qoFcos~v8t !2
g

v8
sin~v8t !Ge2gt

1
po

Mv8
sin~v8t !e2gt ~7.11!

for g,vo . However the classical trajectory is known to b

q~ t !clas5qoFcos~v8t !1
g

v8
sin~v8t !Ge2gt

1
po

Mv8
sin~v8t !e2gt. ~7.12!
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Thus, we see that there is a phase difference between
~7.11! and~7.12! if the oscillator has an initial displacemen
qo .

Let us now suppose that the initial state of the reservoi
such that

^q̂ j&R5
Cj

mjv j
2 ^q̂&S , ^ p̂ j&R50. ~7.13!

We can write the expression~7.3! in the discrete limit, re-
place Eq.~7.8! by Eq. ~7.13!, and return to the continuum
limit. Then we obtain~see Appendix B! the following ex-
pression for̂ q̂(t)&:

^q̂~ t !&5^q̂&SF d

dt
L~ t !12gL~ t !G1

^ p̂&S
M

L~ t !. ~7.14!

In this case if the initial state of the system presents an in
average momentum̂p̂&S5po and an initial average position

^q̂&S5qo , Eq. ~7.14! becomes

^q̂~ t !&5qoFcos~v8t !1
g

v8
sin~v8t !Ge2gt

1
po

Mv8
sin~v8t !e2gt ~7.15!

for g,vo , which corresponds to the correct classical traje
tory.

Thus, we see that the classical evolution is not obtain
with the initial condition~7.8! but with the initial condition
~7.13!. We can understand why this happens through
classical analysis of the model~3.5! presented in the nex
section.

VIII. CLASSICAL ANALYSIS AND DISCUSSION

In this section we will accomplish a classical analysis
the model used. Our objective is to obtain a physical in
ition on the effect that causes the difference between E
~7.11! and~7.15! and then on the meaning of the initial con
dition ~7.13!. This procedure can be justified by the equiv
lence of the classical and quantum dynamics of this mo
@20#.

The Hamiltonian~3.1! can be written as@21#

H5
p2

2M
1V~q!1(

j
F pj

2

2mj
1

mjv j
2

2 S qj2
Cj

mjv j
2

qD 2G .

~8.1!

The equations of motion of this system are given by

Mq̈~ t !1V8~q!5(
j

CjFqj~ t !2
Cj

mjv j
2

q~ t !G , ~8.2!

mjq̈j~ t !1mjv j
2qj~ t !5Cjq~ t !. ~8.3!
7-9
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If qj (0) andq̇ j (0), are theinitial conditions the solution of
the homogeneous part of Eq.~8.3! will be

qj
H~ t !5qj~0!cos~v j t !1

q̇ j~0!

v j
sin~v j t !. ~8.4!

The particular solution, considering the presence of the fo
Cjq(t), can be obtained by taking the Fourier transform
Eq. ~8.3!. Then we have

qj
P~ t !5

Cj

mjv j
E

0

t

dt8 q~ t8!sin@v j~ t2t8!#

5
Cj

mjv j
2 H q~ t !2q~0!cos~v j t !

2E
0

t

dt8 q̇~ t8!cos@v j~ t2t8!#J . ~8.5!

Using the definition of the spectral functionJ(v) @Eqs.~3.3!
and~3.4!#, it can be shown that in the limitVc→` we have

(
j

Cj
2

mjv j
2E0

t

dt8 cos@v j~ t2t8!#q̇~ t8!52Mgq̇~ t !.

~8.6!

Therefore, the general solution of Eq.~8.3!, qj (t)5qj
H(t)

1qj
P(t), when substituted in Eq.~8.2! results in the follow-

ing Langevin equation:

Mq̈~ t !1V8~q!12Mgq̇~ t !5F~ t !,

where

F~ t !5(
j

Cj q̃j~0!cos~v j t !1(
j

Cj

v j
q̇ j~0!sin~v j t !

~8.7!

is the fluctuating force and we have redefined the position
the oscillators of the bath@23#,

q̃ j~0!5qj~0!2
Cj

mjv j
2

q~0!. ~8.8!

Supposing that the bath is initially in thermodynamic eq
librium in relation to the coordinatesq̃ j (0), wehave, in the
classical limit,

^q̃ j~0!&5^q̇ j~0!&5^q̃ j~0!q̇ j 8~0!&50, ~8.9!

^q̃ j~0!q̃ j 8~0!&5
kT

mjv j
2
d j j 8 , ^q̇ j~0!q̇ j 8~0!&5

kT

mj
d j j 8 .

~8.10!

The physical meaning of this initial condition written i
terms of the relative coordinatesq̃ j has already been ana
lyzed by Zwanzig@24# some time ago. Using Eqs.~8.9! and
02210
e
f
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~8.10! and after some algebraic manipulations, it is sho
that ^F(t)&50 and ^F(t)F(t8)&.4MgkTd(t2t8), which
correspond to the expressions that characterize the Brow
motion.

On the other hand, if we had adopted the initial conditi

^qj~0!&5^q̇ j~0!&5
1

mj
^pj~0!&50, ~8.11!

we would have

^F~ t !&52q~0!(
j

Cj
2

mjv j
2
cos~v j t !

524Mgq~0!
1

pE0

Vc
dv cosvt

524Mgq~0!d~ t !, ~8.12!

where we have used Eqs.~3.3!, ~3.4!, and taken the limit
Vc→`. Therefore, we would not havêF(t)&50, but the
presence of ad force at t50. Physically what happens i
that if the oscillators of the bath are not ‘‘appropriately
distributed around the particle@as in the initial condition
~8.11!#, when it is inserted in the bath, these oscillators w
‘‘pull’’ the particle until they reach this ‘‘appropriate’’ dis-
tribution. This force will act on the particle during a tim
interval of the order 1/Vc . Therefore, in the limitVc→` we
will have ad force that will cause a phase difference in t
evolution of the system. This phase difference is the diff
ence between Eqs.~7.11! and ~7.12!, which is corrected in
Eq. ~7.15! by the adoption of the initial condition~7.13!
@quantum analog of Eq.~8.9!# instead of Eq.~7.8! @quantum
analog of Eq.~8.11!#. As far as we know, the need to use th
initial condition ~7.13! in place of Eq.~7.8! in the quantum
treatment of this model has not been noticed in previo
works. In Ref. @2# the authors make some approximatio
which are equivalent to regarding the initial time ast
501(t;1/Vc). So the initial conditions are established
this instant although the coupling between particle and b
is switched on att50 and gives rise to ad-type force at this
instant. The inclusion oft50 in propagator methods must b
accompanied by the above-mentioned modification of
factorizable initial condition. However, it must be emph
sized that we are not addressing here the question of
generalized initial condition@9,10#. Actually the point we
have raised is clearly responsible for the disagreement
tween ^q̂(t)& found in these references. In Ref.@9# the au-
thors reproduced the dephased^q̂(t)& @cf. Eq. ~7.9! above#,
whereas in Ref.@10# this time evolution is the correct one a
in Eq. ~7.15!. The origin of the discrepancy is the use oft
50 or t501 as the initial instant together with the factoriz
able initial condition.

We would like to take advantage of this opportunity
correct a mistake that was made in Ref.@10#, of which one of
us is coauthor. The referred article considers an initial c
dition of the system when the bath of oscillators meets th
modynamical equilibrium with the particle at the position
is placed in the bath. In this case one obtains mean value
the position^q̂(t)& and momentum̂ p̂(t)& which depend on
7-10
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the temperature of the reservoir and that do not exactly
incide with their classical counterparts. This disagreem
was justified within a classical analysis of the model. In t
analysis it was affirmed that the classical initial conditi
equivalent to the proposed quantum initial state, which c
responds exactly tôq̃ j (0)&50, would imply a classical so
lution of the model different from the trajectories of
damped harmonic oscillator. We saw in the present work
this is not true and therefore this argument cannot be u
We believe that the origin of the disagreement when ado
ing a nonfactorizable initial condition is the impossibility o
describing the evolution of the system through an indep
dent sum of functions of the system and reservoir variab
as in Eq.~7.7!. The quantum effects of the correlation b
tween the variables of the system and reservoir preve
direct comparison of the quantum mean values with the
ues obtained through the classical analysis of the model.
cordingly, it can be shown that the discrepancy vanishe
the classical limit (kT@\vo).

After we had made the above analysis, we became aw
that in previous works@11,12# the authors had also notice
the existence of initial kicks and jolts in this system when
initial condition implied by Eqs.~7.6! and ~7.8! is used. In
both of them the existence of an initial kick, given by E
~8.12! in the limit Vc→`, is noticed@see their Eqs.~3.2! and
~45!, respectively#. However, the existence of this initia
transient is considered as a characteristic of the model t
taken into account. In our analysis we see that, although
existence of the kick given by Eq.~8.12! is a real character
istic of the model when it is subject to the above-mention
initial condition, it is an undesirable feature that should
corrected. Fortunately, this correction can be made even
an improved factorizable initial condition, that is, Eqs.~7.6!
and ~7.13!.

The authors of@11# and @12# have recognized that th
presence of initial jolts, in their master equation coefficien
generates certain nonphysical effects and so they sup
that they are due to the adoption of a factorizable ini
condition. In@14# the evolution of the system is analyzed f
a nonfactorizable initial condition, similar to the one used
@9# and @10#, in which the initial position of the particle is
defined by a measurement process in a state in therm
namic equilibrium with the bath. However, the initial jolts
the time scale 1/Vc still persist. We believe that this happen
because this initial condition does not satisfy Eq.~7.13!
when the initial mean values of the position of the parti
and the oscillators in the bath are calculated. Thus, in
aspect, it is less general than the improved factorizable in
condition that we considered.

Actually the initial jolt, at least the one they attribute
the decoherence process~however, see the discussion b
low!, does not appear in the more general initial condit
later adopted in@15#. It is an initial condition prepared by a
dynamic process in a finite timetp . In this case we can
consider that the condition~7.13! will be satisfied sincetp
@1/Vc . Indeed, in this situation (tp@1/Vc), it was shown
that the initial jolt does not appear.

Thus, we believe that the initial condition~7.13! is
enough to eliminate most of or maybe all the initial tra
02210
o-
nt
s

r-

at
d.
t-

-
s

a
l-
c-
in

re

e

be
e

d
e
th

,
se
l

y-

is
al

n

sients that would appear in this system in the character
time scale 1/Vc . However, another initial transient in thi
system is also known. In@25#, it was shown that for a fac-
torizable initial state in the high-temperature limit (kT
@\Vc) of the master equation it presents an initial transi
within the time scale of the internal decoherence of the ini
wave packet. If applied to times shorter than this, it can le
to nonsensical results. We believe that this pathology
only be really corrected with the adoption of nonfactorizab
initial conditions.

IX. CONCLUSION

In this paper we have applied the Fano diagonalizat
procedure to two Hamiltonians commonly used as mod
for dissipative systems in quantum optics and in conden
matter systems; the rotating wave and the coordina
coordinate coupling models, respectively.

By exactly diagonalizing these two models, we have s
ceeded in showing how the RWA turns out to be the e
tremely underdamped limit of the more general coordina
coordinate coupling model. We have also been able
analyze the role played by the counterterm in this limiti
procedure from the latter to the RWA. We have show
through the evaluation of the destruction operatorâ(t) of the
system that the RWA is a good approximation for Eq.~1.1! if
and only if the conditions~5.1! and ~5.2! are satisfied. For
certain choices ofuv(v)u2, we haveH(vo)'puv(vo)u2 and
the fulfillment of Eq.~5.1! automatically implies Eq.~5.2!.
However, for other choices, we can haveH(vo)
@puv(vo)u2 and Eq.~5.2! limits the validity of the approxi-
mation. Once these conditions are satisfied, we have sh
that the time evolution of the system is identical to that d
termined within the RWA, with the exception of the fre
quency shift. We have found that this shift will be given b
H(vo) instead ofF(vo). As we have shown, these function
usually have the same order of magnitude, but they are
identical. For functionsuv(v)u2 that extend to frequencie
much larger thanvo , we haveH(vo).2F(vo).

The comparison of the Hamiltonian~2.4! with the Hamil-
tonian of the coordinate-coordinate coupling model est
lished the relation~3.11! between the spectral functionJ(v)
of this model and the coupling functionuv(v)u2. In the case
of Ohmic dissipation and considering the inclusion of t
counterterm, we find thatHR(v)50 in the limit Vc→`.
Then the only condition required for the RWA to be valid

g!vo . ~9.1!

As an application of this method, we have studied t
existence of dissipative coherent states and concluded
they can only exist within the RWA and when thermal flu
tuations are negligible. When these conditions are not m
the initial state will in the long run become a statistical mi
ture.

Finally, we have also addressed the question of the
crepancies in the time evolution of the observables of
system that arise when the factorizable initial conditions
not properly accounted for. We have shown how to deal w
7-11
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this problem by using the appropriate improved factoriza
initial condition ~7.13! rather than~7.8!.
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APPENDIX A: DIAGONALIZATION WITHOUT THE RWA

Here, the procedure used in the diagonalization of
Hamiltonian ~2.4! will be presented. We want to find th
operatorÂv that allows us to write Eq.~2.4! in the diagonal
form. We write Âv in its general form~2.20! and then we
impose the commutation relation~2.7!,

@Âv ,Ĥ#5\vÂv . ~A1!

Replacing Eqs.~2.4! and~2.20! in Eq. ~A1! and taking the
commutators of the expression obtained withâ†, â, b̂V ,
and b̂V

† , we have, respectively,

vav5voav1E @bv,Vv* ~V!2sv,Vv~V!#dV,

~A2!

vxv52voxv1E @bv,Vv* ~V!2sv,Vv~V!#dV,

~A3!

vbv,V5~av2xv!v~V!1Vbv,V , ~A4!

vsv,V5~av2xv!v* ~V!2Vsv,V . ~A5!

Subtracting Eq.~A2! from Eq. ~A3!, we have

xv5
v2vo

v1vo
av . ~A6!

Replacing Eq.~A6! in Eq. ~A4! we obtain

bv,V5FP
1

v2V
1z~v!d~v2V!G 2vo

v1vo
v~V!av ,

~A7!

wherez(v) is a function to be determined. Similarly, subs
tuting Eq.~A6! in Eq. ~A5!, we have

sv,V5
1

v1V

2vo

v1vo
v* ~V!av . ~A8!

Now, substituting Eqs.~A7! and~A8! in Eq. ~A2!, we obtain
z(v) given by Eq.~2.25!.

It remains to determineav . For this we impose the con
dition ~2.12!, which results in
02210
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avaṽ
* 1E dV bv,Vbṽ,V

* 2xvxṽ
* 2E dV sv,Vsṽ,V

*

5d~v2ṽ !. ~A9!

Using Eqs.~A6! and ~A8! we obtain, respectively,

avaṽ
* 2xvxṽ

* 5
2vo~v1ṽ !

~v1vo!~ṽ1vo!
avaṽ

* ~A10!

and

E dV sv,Vsṽ,V
* 5

~2vo!2

~v1vo!~ṽ1vo!

G~ṽ !2G~v!

v2ṽ
avaṽ

* ,

~A11!

whereG(v) is given by Eq.~2.26!. Now, using Eq.~A7!, as
well as the property

P
1

v2v8
P

1

ṽ2v8
5P

1

v2ṽ
S P

1

ṽ2v8
2P

1

v2v8
D

1p2d~v2ṽ !dFv82
1

2
~v1ṽ !G ,

~A12!

we obtain

E dV bv,Vbṽ,V
* 5

~2vo!2

~v1vo!~ṽ1vo!
H 1

v2ṽ
F ṽ22v2

2vo

1G~ṽ !2G~v!G
1@p21z2~v!#uv~v!u2d~v2ṽ !J .

~A13!

Then substituting Eqs.~A10!, ~A11!, and~A13! in Eq. ~A9!,
we have

avaṽ
*

~2vo!2uv~v!u2

~v1vo!~ṽ1vo!
@p21z2~v!#d~v2ṽ !5d~v2ṽ !

~A14!

and, therefore, we should haveuavu2 given by Eq.~2.21!.
In the calculations presented above, we supposed

uv(v)u is a continuous function such thatuv(0)u50. In this
way we guarantee that*0

`dV f (V)uv(V)u2d(V2v)
5 f (v)uv(v)u2 for any nonsingular functionf (v) within the
whole interval (0,̀ ).

We can also diagonalize the Hamiltonian~3.1! consider-
ing the introduction of the countertermVR(q̂). Rewriting it
in terms of the operatorsâ and b̂ j , defined in Eq.~3.6!, we
have

Ĥ5\voâ†â1\
Dv2

4vo
~ â1â†!21(

j
\v j b̂ j

†b̂ j

2
\

2
A 1

Mvo
~ â1â†!(

j

Cj

Amjv j

~ b̂ j1b̂ j
†!. ~A15!
7-12
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Writing Eq. ~A15! in the continuum limit and following the
same procedure as adopted above, we will see that the e
tions ~A2! and~A3! will be substituted now by the equation

vav5S vo1
Dv2

2vo
Dav2

Dv2

2vo
xv

1E @bv,Vv* ~V!2sv,Vv~V!#dV, ~A16!

vxv52S vo1
Dv2

2vo
Dxv1

Dv2

2vo
av

1E @bv,Vv* ~V!2sv,Vv~V!#dV, ~A17!

respectively. Equations~A4! and ~A5! will stay the same.
Thus, it can be easily shown that all the other previous eq
tions will not change, with the only difference being that t
functionH(v) should be substituted byHR(v) given in Eq.
~3.14!.

APPENDIX B: CALCULATION OF FR„Šq̂j‹R ,Šp̂j‹R ; t…

Expression~7.3! for FR(q̂V ,p̂V ;t) can be written as

FR~ q̂V ,p̂V ;t !52voE dV

p
AmVV

Mvo
v~V!FJ~V;t !q̂V

1K~V;t !
p̂V

mVV
G , ~B1!

where the expressions forJ(V;t) andK(V;t) are obtained
by direct comparison between Eqs.~B1! and ~7.3!. Now we
can substitute the expression~3.10! for v(V) in Eq. ~B1! and
write the expression obtained in the discrete limit,

FR~ q̂V ,p̂V ;t !

52
1

M (
j

CV j

p FJ~V j ;t !Ag~V j !E
1/g(V j )

dV q̂V

1
K~V j ;t !

mV j
V j

Ag~V j !E
1/g(V j )

dV p̂VG . ~B2!

Recalling the relation~2.1! between the discrete and contin
ous operators, we obtain
02210
ua-

a-

FR~ q̂ j ,p̂ j ;t !52
1

M (
j

C
j

p FJ~V j ;t !q̂ j1K~V j ;t !
p̂ j

mV j
V j

G .

~B3!

Employing the initial condition~7.13!, we have

FR~^q̂ j&R ,^ p̂ j&R ;t !52
1

Mp (
j

Cj
2

mjV j
2
J~V j ;t !^q̂&S

5H~ t !^q̂&S , ~B4!

with

H~ t !524voE dV

p

uv~V!u2

V
J~V;t !, ~B5!

where we used again the relation~3.10!. Writing H(t) as

H~ t !5I 1~ t !1I 2~ t !, ~B6!

we have

I 1~ t !524voE dV

p

uv~V!u2

V

d

dt
WR~V,t !, ~B7!

I 2~ t !524voE dV

p

uv~V!u2

V
ZR~V!cos~Vt !. ~B8!

The calculation ofI 1(t) is a somewhat lengthy but straigh
forward calculation and results inI 1(t)50. So all that is left
is

H~ t !5I 2~ t !54gE dV

p

vo
22V2

~V22vo
2!21~2gV!2

cos~Vt !.

~B9!

The evaluation of this last integral can also be accomplis
by the method of residues and yields

H~ t !52gL~ t ! ~B10!

for t.0.
@1# P. Ullersma, Physica~Amsterdam! 32, 27 ~1966!; 32, 56
~1966!; 32, 79 ~1966!.

@2# A.O. Caldeira and A.J. Leggett, Physica A121, 587 ~1983!.
@3# G.W. Ford, J .T. Lewis, and R.F. O’Connell, Phys. Rev. A37,

4419 ~1988!.
@4# G.S. Agarwal, Phys. Rev. A4, 739 ~1971!.
@5# D.F. Walls and G.J. Milburn, Phys. Rev. A31, 2403~1985!.
@6# C.M. Savage and D.F. Walls, Phys. Rev. A32, 2316~1985!.
@7# S.M. Dutra, Eur. J. Phys.18, 194 ~1997!; S.M. Dutra, J. Mod.
Opt. 45, 759 ~1998!.

@8# A.O. Caldeira and A.J. Leggett, Ann. Phys.~N.Y.! 149, 374
~1983!.

@9# H. Grabert, P. Schramm, and G.-L. Ingold, Phys. Rep.168,
115 ~1988!.

@10# C. Morais Smith and A.O. Caldeira, Phys. Rev. A41, 3103
~1990!.
7-13



-

ROSENAU da COSTA, CALDEIRA, DUTRA, AND WESTFAHL PHYSICAL REVIEW A61 022107
@11# B.L. Hu, J.P. Paz, and Y. Zhang, Phys. Rev. D45, 2843
~1992!.

@12# J.P. Paz, S. Habib, and W.H. Zurek, Phys. Rev. D47, 488
~1993!.

@13# W.H. Zurek, S. Habib, and J.P. Paz, Phys. Rev. Lett.70, 1187
~1993!.

@14# L.D. Romero, and J.P. Paz, Phys. Rev. A55, 4070~1997!.
@15# J.R. Anglin, J.P. Paz, and W.H. Zurek, Phys. Rev. A55, 4041

~1997!.
@16# C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg,Atom-

Photon Interactions/Basic Processes and Applications~John
Wiley & Sons, New York, 1992!.

@17# U. Fano, Phys. Rev.124, 1866~1961!.
02210
@18# S.M. Barnett and P.M. Radmore, Opt. Commun.68, 364
~1988!.

@19# B. Huttner and S.M. Barnett, Phys. Rev. A46, 4306~1992!.
@20# J. Anglin and S. Habib, Mod. Phys. Lett. A11, 2655~1996!.
@21# V. Hakim and V. Ambegaokar, Phys. Rev. A32, 423 ~1985!.
@22# However, this frequency shift is still much smaller thanvo .
@23# The distributionq̃ j50 is the one which minimizes the poten

tial energy of the global system~system plus reservoir! for a
fixed value ofq, as we can see directly from Eq.~8.1!.

@24# R.W. Zwanzig, J. Stat. Phys.9, 215 ~1973!; in Systems Far
from Equilibrium, edited by L. Garrido~Springer, Berlin,
1980!.

@25# V. Ambegaokar, Ber. Bunsenges. Phys. Chem.95, 400~1991!.
7-14


