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The damped harmonic oscillator is a workhorse for the study of dissipation in quantum mechanics. How-
ever, despite its simplicity, this system has given rise to some approximations whose validity and relation to
more refined descriptions deserve a thorough investigation. In this work, we apply a method that allows us to
diagonalize exactly the dissipative Hamiltonians that are frequently adopted in the literature. Using this
method, we derive the conditions of validity of the rotating-wave approximdfA) and show how this
approximate description relates to more general ones. We also show that the existence of dissipative coherent
states is intimately related to the RWA. Finally, through the evaluation of the dynamics of the damped
oscillator, we notice an important property of the dissipative model that has not been properly accounted for in
previous works, namely the necessity of new constraints to the application of the factorizable initial conditions.

PACS numbd(s): 03.65.Bz

I. INTRODUCTION being

The study of dissipative systems and in particular of N S R ~ir
Brownian motion has been pursued for a long time in the Hss=fwoa a, ers_h; wbyb;, 1.2
context of classica[l] and quantum mechanid®]. Al-

though there have been a number of publications in this area, . L ~ .

there are some subtle points that have never been properly Hi=f(a’+ a)z (kjbj+kj bJ-T), 1.3
investigated in the literature. Among these we could mention ]

three major ones: a careful investigation of the relation be- h id h : illat ith f
tween different model§3], the existence of dissipative co- where we consider a harmonic osciiator with frequenty
herent statef4—7], or the condition for the employment of (the system of interesinteracting with a bath of oscillators

factorizable initial conditions. These are exactly the issuedVith frequenciesw; through the coupling constarkg's. We
we shall address in this paper. will take the limit of a continuous spectrum of excitations in

Usually the dissipation in the system is described as &he reservoir of the Hamiltoniad . Then we will diagonalize
consequence of its coupling to a reservoir. The properties aff and determine the time evolution of the operatoex-

this dissipative system are generally studied through th%\ctly. The analysis o&(t) will determine the conditions of

evaluation of the time evolution of its reduced density operas, ..~ . o :
. o . : -~ “validity of the rotating-wave approximatio(RWA) which
tor. This evolution is often described either by a generaliza- y g PP RWA)

tion of the Feynman-Vernon approaf®,8—1q or through ~ CONSISts of neglecting the terrksab, + kfa'b] in Eq. (1.2

master equationgl—7,11—15. In this work the properties of &nd writing

the system will be studied through exact diagonalization of

different Hamiltonians of the dissipative models. ﬂﬁ\tNA=ﬁ2 (kjéT5j+kj* 561.*)_ (1.4
We will consider a damped harmonic oscillator. The usual i

models of dissipation consist of coupling the harmonic oscil- . . A

lator to a reservoir that is conveniently chosen as a group of . 1€ this has been accomplished, we will discuss the ex-

N noninteracting oscillators. The coupling between the twoStence of dissipative coherent states. Some autfrs]

systems is bilinear in the creation and destruction operat0|J§"’We.Stat6d that' the cqherent s_tate; are ;peual states that
remain pure during their decay in dissipative systems. We

of quanta of energy. Then the Hamiltonian of the total sys- = . P
tem is qi will show that the existence of these dissipative coherent
given by(4] S .
states is directly related to the RWA; they can only exist at
H=Hgst Hest Hine, (1.1)  zero temperature and in systems that meet the conditions
required for the RWA.

Once we have determined the evolution of the operator
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"Electronic address: caldeira@ifi.unicamp.br its observables. However, the dynamics of these observables
*present address: Huygens Laboratory, University of Leidenwill depend on the specific form adopted for the coupling
P. O. Box 9504, 2300 RA Leiden, The Netherlands. Electronicconstantsk; as functions of the frequencies . Our method
address: dutra@molphys.leidenuniv.nl holds for an arbitrary form, but in order to compare our
$present address: Department of Physics of Illinois at Urbanaresults with the Caldeira-Leggett mod@] we will reduce
Champaign, 1110 West Green Street, Urbana, IL 61801-3080. Ele®ur results to the case where the function becomes the same
tronic address: westfahl@cromwell.physics.uiuc.edu as the one they have adopted. Then, as in R8{40|, we
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will determine the evolution of the mean value of the posi-but [d(), where this last integral covers the whole spectrum

tion operator<a(t)> of the damped oscillator. The result of of excitation; Of. the reservoir. Then the total Hamiltonian of
this calculation reveals a very special need to carefully trea®ur system is given by

the initial time of the motion. We propose a simple initial
condition that eliminates the initial transient that would ap-

pear in the evolution ofq(t)) and we believe that it is
enough to eliminate most of or maybe all the initial tran-
sients(in a certain time scaJewhich were noticed in this +ﬁ(éT+é)j [v(Q)bo+v*(Q)b,1dQ, (2.9
system in previous workgl1,12,14.

The paper is organized as follows. In Sec. Il we write the
Hamiltonian(1.1) in the limit of a continuous spectrum for where
the reservoir excitations and we diagonalize it exactly within
and without the RWA. We compare the model given by the V() =Vg(D)k(Q). 29
Hamiltonian(1.1) with the dissipative model presented ]
in Sec. lll. Here, we also determine the relation between the B. The Hamiltonian within the rotating-wave approximation
coupling function|v(w)|?, introduced in Sec. Il, and the

spectral function)(w) introduced in8]. In Sec. IV we ana- . ;
. : ly the procedure proposed by Fafi] in order to diago-
lyze the relevance of the different terms that appear in thén)alize the Hamiltonian of our global system in the RWA,

calculation of the evolution of the operataft) with relation which is written as
to the intensity of the dissipation in the system. In Sec. V we
show under which conditions the evolution of the operator

a(t) is reduced to that given in the RWA. In Sec. VI we
show that the existence of dissipative coherent states is only
po_ssible within the_RWA. In Sec. VIl we present the_ (_:alcu- +ﬁf [v(Q)éTBQva*(Q)éBB]dQ. (2.6
lation of the evolution of the mean value of the position of

the damped harmonic oscillator. In Sec. VIl we discussed

the physical meaning of the initial condition proposed in Sec.The diagonalization procedure presented in the sequel is ba-

VII. Finally, we discuss the main results and conclusions insically a review of the method presented i8]. Our goal is
Sec. IX. to find an operator that satisfies the eigenoperator equation

A= fiwoatat s j 0blb, d

We will now perform a canonical transformation and ap-

HRWA=f woata+7 f Qblb, dQ

II. DIAGONALIZATION OF THE DISSIPATIVE [Aw yHRWA]:h(DAw, 2.7
HAMILTONIANS
and therefore has its evolution trivially given b4, (t)

=A, e et
We can rewrite the HamiltoniaflL.1) considering a con- The new operatoA  can be written in terms of the op-
tinuous spectrum of excitations in the reservoir by making . P @ - P
use of the transformation between the discrete boson oper§tatora of the system and of the operatdrg of the reser-

torsb; and the continuous onds, [16], voir in the form

A. Treating a reservoir with a continuous spectrum

b= \/g(nj)f dQ by, (2.1 Aw=awé+f dQ B, 0bg . (2.8
1g(9))

where g({2;)d(}; is the number of modes in the reservoir Substituting this expression féx, as well as Eq(2.6) for
with frequencies betweefl; andQ;+dQ);, and[y40)dQ  [{RWA|n Eq.(2.7) and calculating the commutators, we have
represents an integration in a band of widtg(12;) around

;. The operatord, then satisfy the commutation relation wg At awf do V(Q)69+f do Q,Bwvgﬁg

[bo.b1=56(0-D), (22 ) ) )
. +f dQV*(Q)Bw nad=w awa-i-f dQ B, QbQ .
and all other commutators vanish. ’ ’
Under the transformatiof®.1), we find (2.9
H=%a"+ 5)] dQ\g(Q)[k(Q)bg+k* (Q)b])], Now, taking the commutator of this expression wath and

2.3 b, , we obtain

where we considered thg((};) andk((};) are constant in- B
side the interval 1(€);) and thatS. [ 1q(0,,d2 is nothing wo,+ | dQVH(Q)B, 0= wa,, (2.10

022107-2
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V(Q)aw+ﬂﬁw,(l:wﬁw,(l! (21])
respectively. Imposing
[A, All=8(0-w), (212
we have
awa§+f dQ B, 0B (= 80— w). (2.13

The system of equationf®.10, (2.11), and(2.13) is identical
to the one presented [17]. The solution is given by

o 2= V(w)]? 2.14
" [e-we—F(o)PH[mv(e)P?
with an arbitrary phase ok, , and
g 1 w—w,— F(w)
Buwo= P—a ST S(Q—w)|v(Q)a,,
(2.15
where
F(w)sz lv(Q)lde (2.1
w—Q ' '

and P denotes the principal part.

We can calculate the evolution of the operatopf the
system expressing it as a function of the operafogs We
can writea as a function ofA, in the following way:

ézf do f A, . (2.17)

Taking the commutatdra,A ], first using Eq(2.8) and then
Eg. (2.17, we obtainf,=a% . Therefore, the evolution of

the operatoa is given by

a(t)zf do a*A e 'l (2.18

Substituting the expression féx,, in this equation and using

Eqg. (2.15, we obtain
é(t)=J do|a,|?e *a

1 .
—I—JdQV(Q) fda)|aw|2F’—ef'“’t
w—Q

|asz|2
lv(Q)[2

[Q—wo—F(Q)]eim] bo. (2.19

PHYSICAL REVIEW A 61 022107

C. The Hamiltonian without the rotating-wave approximation

Now we will present the diagonalization of the Hamil-
tonian (2.4) without the RWA. The procedure that we will
present is similar to the one adopted[i®)].

Again we want to find an operatdk, that satisfies Eq.
(2.7), with A in the place ofARWA and Eq.(2.12. Then we
write A, in the form

Aw=awé+f dQ Bw,()BSI+XwéT+f dQ O-w,QB;-)‘

(2.20
Imposing Eqgs(2.7), and(2.12), we obtain(see Appendix
A)
o+ w,)? 1
aw2=( ° . (2.2
1 o, VoA @]
Ip sz a0 0)| 22 v
IBw,Q_ w—0 Z(w) (w_ ) (1)+(1)0V( )awa
(2.22
_0)—0)0 22
Xw_w+w0 W ( . 3
_ 1 2% g 2.2
T2 0T ot wg (Q)e,, (2.29
where
0?— 0’ 2wH(w
2(w)= o~ 2woH(w) (2.25
2wo|V(w)|2
and

w+Q )
(2.26

2 2
H(w)=F(w)—G(w):Pj |\;(i1())| dﬂ‘f VR

We can expresa as a function ofA, and A! in the
following way:

é:f do ¢wAw+f do ¢, Al . (2.27

Now taking, again, the commutatdra,A’ ] and[a,A,], we
obtain ¢, = a* and ¢,=— x,,. Substituting the expression

(2.20 for Aw in EqQ. (2.27), the time evolution of the operator
a can be easily written as

022107-3
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“ do R
a(t)=f7IL(w)|2{A(w)cos(wt)a

—i[B(w)a+C(w)a']sin(wt)}

fdQB Q;t)b fdQB Q;t)b!
+ 71( ;Dbg+ 72( Hbg,

(2.28
where
w2+w§ w2—w0
A(w)=2w, B(w)= , Clw)= ,
Wq [OR)
(2.29
B1(Q;t)=v(Q){(w,+ Q)[X(Q;1)+Z(Q)e '
—iY Q)] (2.30
Bo(2;t) =v* (Q){(wo— Q)[X(Q;t) +Z(Q)eM]
with
2
X(Q;t)= Pfd l (o )| w cog wt), (2.32
2
Yo (Qit)= Pfd 2L (w )| — 5 (0 F 0 Q)sin(wt),
(2.33
Z2(Q)= LOFTQ —H(Q)} (2.34)
V)2l 20,
IL(w)[2= 2mwo|V(w)|?
O 0= wE—2wH(w) P+ [2mwglv(w) |22
(2.35
I1l. THE MODEL

OF COORDINATE-COORDINATE COUPLING

PHYSICAL REVIEW /&1 022107

where the counterterm{R(fq), which cancels the additional

contribution toV(q) due to the coupling of the system to the
reservoir, is given by

c?
VR(@)=2 0% (32
The spectral functiod(w) is defined by
2 2
T - 7 9(w)C;
J(cu)—E; o w)=5———, (33

w

%I

where we have taken the limit of a continuous spectrum and
usedg(w) from Eq.(2.1). For Ohmic dissipation,

2Myow  if 0<Qq,

Y@ =10 it w0,

(3.9

where ) is a cutoff frequency, much larger than the natural
frequencies of the motion of the system of interest. But in
our calculations we will conveniently use the Drude form

2Mvyw

Nw)=——12
()= 02,

(3.5

We are treating a damped harmonic oscillator\&a)
=1/2M wf,fqz. Applying the usual definitions of the operators
a andb,

(3.6

we can rewrite Eq(3.1), initially without the inclusion of the
countertermVg(q), as

H Zhwoéfé+2 thBIBI
J

o1
_ T
2 VMo, 2t2 );

(b;+b"

Cj
Jma, o030
177

The expressions obtained for the evolution of the operator

a(t), within or without the RWA, remained written in terms

of the coupling functionv(w)|?. Therefore, the choice of

the function|v(w)|? will determine the dynamics of the

damped oscillator. We will choose the function(w)|? by

(measuring the energy of the system from the energy of the
vacuun). Now we can use the transformati¢2.1) in order

to consider a continuous spectrum for the excitations of the
reservoir. The second term on the right-hand side of(EJ)
becomes

comparing the dissipation model corresponding to the

Hamiltonian (2.4) to the one presented if2] that corre-
sponds to the following Hamiltonian:

"2 2
mjwiA;)

2mJ 2 9

"2

H= p +V(q)+2

—; C;0;q+ Vr(Q), (3.0

Bt f wb!p, do 3.9

and its last term can be written in the following way:

f 1 . . J(w) A A
E\/Mwo(a—FaT)f dw\/m—waw(bw+bI,).

(3.9
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Now comparing Eqs(3.7)—(3.9) with Eqg. (2.4), we see that we obtain
both Hamiltonians will be equivalent if we employ

1 [ g iim |L(w)]3 oo (318
J(w Im wW)|R= . .
V(w)Z—E mcw. (3.10 Q- (wz—w§)2+(2yw)2
Taking the square of Eq3.10 and comparing it with Eq.  Thus, we see that
(3.3), we obtain lim |L(w)|2R=M)(”(w), (3.19
) 1 J(w) Qe
Vi(w)= 77— —. (3.11
2m Mw, wherexy”(w) is the imaginary part of the response function
Adopting the Drude form(3.5), |v(w)|? is given by of a damped harmonic oscillator.
In the limit y<w,, we can write
0 (312
V(w)|“= , . 2
Two (1+ w2/ Q2) IL(w)[3= @o¥

_ 2y 2
which is defined only forw=0. [Zeolo= o) [T (2e0y)
Now that we have established the form|efw)|? corre- 1
sponding to the Caldeira-Leggett model], we can deter- e 2z
mine H(w) through Eq.(2.26). A simple calculation shows @o (0= wo)"+y
thatH(w) will be given by

Y

(3.20

which corresponds to a Lorentzian distribution of width

yQ, 1 For the functior|L (w)|?, without the renormalization, we
H(w)=— TP (3.13  haveH(w<Q)=-y0./w, and therefore fo).>w,,y
@o (1+w%Ch) we obtain
We can also diagonalize the Hamiltonié®1) consider-
. . . ~ . 2yw
ing the inclusion of the counterteriviz(q) (see Appendix IL(w)|?= — 5 > (3.21)
A). The result is that all the equatiort8.20—(2.35 will (0= w5 +2yQ) "+ (2yw)
remain valid with the following substitution: whenever the ] ) )
function H(w) appears, it should be replaced by In this case we should hawe,>2y{)., because, without
5 the renormalization, we must hay&9]
Aw
He(@)=H(w)+ 5, (3.14 w2>|Aw? (3.22
where the frequency shifi ? is defined a$2] for the diagonalization to be consistent.
N 2 ~
Aw? 1 Cj :zf dw|V(w)|2 RALE IV. ANALYSIS OF THE EVOLUTION OF  a(t)
2 20M £ m: ' . . , .
@o @olM j=1 mjw] @o (3.15 Now we can analyze in detail the time evolution of the

operatora associated with the system. We will analyze each
Whenever a function appears with the subindeR™“it  term of the expression foa(t) in Eq. (2.28. We will be
means that we are considering the introduction of the counmterested in the relation between the degree of dissipation in
terterm. our system and the importance of each one of those terms.
The spectral functiort3.5) is appropriate to the descrip-  |njtially we will analyze the coefficients associated to the

tion of the reservoir since we consid&c>w,,y. SO, N horai0rs3 and &', The fastest and most efficient way to

order to simplify qnd _als_o o_btam the exact functlor_1 assoClynderstand the behavior of each one of them is through
ated to the Ohmic dissipation, we will take the lindi,

. . ) graphs.
—o in the expression fofl (w)|%. To do so, first we con- The graphs in Fig. (8 present the behavior dt (w)|3
sider the renormalized functidi.(w)|2 given by

for three values ofy: y;=0.lw,, v>2=w,, and vy;
=100,. We see that fory;=0.1w,, |L(w)|% presents a
narrow peak centered approximately abaut[we showed
[0?— 02— 2w Hr(®) P+ [ 27w v(w)|?]? that in the limit y<w, the function|L(w)|3 tends to a
(3.16 Lorentzian centered aé, and with widthy]. As vy increases
(y2=w,), the function|L(w)|% broadens and becomes cen-

IL(w)2= Zrglvio)l

Once tered at progressively lower frequencies. Rostill larger
o (y3=100,),|L(w)|3 narrows again, but its peak is about
lim Hr(w)=0 and lim|v(w)?=—o, very low frequencies. _
Qe Qo TWo The graphs in Fig. (b) present the behavior of the func-

(3.17  tions A(w), B(w), and C(w) that appear multiplying
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FIG. 1. (a) Graph of |L(w)|3 for different rationsy/w,. (b)
Graph of the function®\(w), B(w), andC(w) that appear multi-
plying |L ()| in the different terms of the expression fatt).

|L(w)|3 in the different terms of the expression fatt).
Simultaneously observing Figs(dl and Xb), we conclude
that wheny<w,, the functionC(w)|L(w)|3 has a negli-
gible amplitude if compared to the functiodf w)|L(w)|3
and B(w)|L(w)|3, because in this casf (w)|3 is very
sharp and centered at, whereasC(w,)=0. As y/w, in-

PHYSICAL REVIEW /&1 022107

—1ar
(V=024 9% +(2yw')?
d|]|Q%—w'?+y%
gil | ————sin(e't)

w

Xr(2;t)=

X

eth 2yQ sin(Qt)
(02— wd)+(2yQ)?
(4.1

+2ycoqw't)

for y<w,, wherew' = \Jw?—»?. We see that in the limit
v<w,, the function Xg(;t) will also be very sharply
peaked around w,. Therefore, the function
—Q)Xgr(Q;t) in the expression2.31) for B,(£2;t) is also
negligible if compared to the functiorwg+ Q)Xg(Q;t) in
the expression(2.30 for B;g({2;t). Similarly it can be
shown that, in this limit, the functiolY ) ({1;t) is negli-
gible in relation to the functiory ) g({2;t). We conclude
that in the limit y<w,, the coefficientB,r({;t) is negli-
gible in comparison to the coefficieBt g({);t). As the ratio
ylw, increases and the functidh(w)|4 changes its shape,
the coefficienB,r({);t) becomes comparable By g(£2;t).

So far we have analyzed the relevance of the terms asso-
ciated toa' andby, in the expressiori2.28 for a(t) consid-
ering the inclusion of the counterteriz(q) in our model.
We showed that these terms are negligible in the limit
<w,, but become important as the dissipation increases and
the function|L(w)|§ becomes broader and is no longer cen-
tered atw,. Now if we had not considered the inclusion of
the counterterm in the interaction Hamiltonian, we would
have|L (w)|? given by Eq.(3.21) instead of L (w)|%. In this
case, we see that the condition for the funciibfw)|? to be
centered very close to, is that 2yQ) . < wg or

Y

w
o
e

<1).
oo S0, (<1

4.2

Therefore, the condition/w,<1 would not be enough for
us to ignore the terms associatecafoandby, in the expres-
sion foré(t). These terms can only be neglected if the con-

creases|L(w)|3 has its peak broadened and moved awaydition (4.2), which limits our system to a much weaker dis-

from w,. The functionC(w)|L(w)|4 becomes comparable
to the others, and in the limig> w, it is of the same order of
B(w)|L(w)|3 whereasA(w)|L(w)|4 becomes very small.

It remains to analyze the coefficienB8;g({);t) and
B,r(Q;t) of by, and b}, respectively, in the expression
(2.28 for a(t). We know that in the limity<w, the func-
tion |L(w)|3 tends to a Lorentzian centered @ and with
width y. Therefore, the functiond,—Q)Zz(Q) that ap-
pears in the expressigq@.31) for B,g(£;t) is, in this limit,
negligible if compared to the functionwi+ Q) Zg(Q) in the
expression(2.30 for By g(£2;t). The evaluation oKg(£2;t)
results in

sipation, is satisfied.

We notice that a system subject to a weak dissipation
(y<w, in our case does not guarantee that its frequency
shift (Aw?=2y0Q,) is also small. We will see later, in more
detail, that for a system subject to very weak dissipation, the
damping coefficienty will be given by 7|v(w,)|?> and the
frequency shift byH(w,). Observing the expressidi2.26)
for H(w), we clearly see that the relation between these
functions depends on the form adopted for the function
|v(w)|?. Therefore,m|v(w,)|*<w, does not guarantee that
we will haveH (w,) <, [as we have seen to be the case for
|v(w)|? given by Eq.(3.12], although this can happen for
some functiongv(w)|2.
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V. REDUCTION TO THE MODEL
WITH THE ROTATING-WAVE APPROXIMATION

Now let us consider the situation in which the following
conditions are satisfied:
mv(w)|?<w, (5.1

for w ~ w,,

Hw)<w, for o~ wg. (5.2
Under these conditions the functiob(w)|? will be a func-

tion well-peaked arounad,. Therefore, we can ignore the
terms associated with" andby, in the expression foa(t).

Even the expressions for the coefficientsacdndb,, can be
approximated considering thét (»)|? will only be appre-
ciable, in this case, fob=w,. We can write

A(0)|L(0)[*=B(o)|L(»)[*=2w,/L(w)[?, (5.3
BN=v(Q) fdw2|L(w)|2chi—°Qe’i“’t
wow[ﬂ—wo—H(Q)]e‘m], (5.4
v(Q)[?
and finally

é(t)=f dow|a,|?e “a

- 1 )
+f dQv(Q) f dw|aw|2pme_""t
[l [Q—w,—H(Q)]e by, (5.5
v(Q)[2

where the functiona,|?> comes from the approximation of
|L(w)|? considering Eqgs(5.1) and(5.2),

2 |V(w)|2 :|a |2
[o—wo—H(0) P+ [7|v(w)|?]? 7

(OF 2
2oL (w) 2=

Now let us compare Eq$5.5 and(5.6) with the expres-
sions (2.14) and (2.19, previously obtained in the RWA.

The only difference between these expressions is given by

the presence ofl (w) instead ofF (w). OnceH(w)—F(w)
—G(w), we would have, foro~w,,H(w)=F(w) if
G(w)<F(w). There can be functionb/(w)|? that satisfy

this requirement. However, most of the physically reasonable

functions|v(w)|? do not; for example, ifv(w)|? is given by
Eqg. (3.12, we haveG(w)/F(w)=-1 for o~w,. In this
case,H(w,)=2F(w,) Yielding twice the frequency shift
given by the model within the RWA22]. The same relation
is found whenevelv(w)|? extends to frequencies much
larger thanw, with non-negligible values, for then

v

0)|?
dQ=2F(w,).

H(wo):—zpf Q

(5.7

PHYSICAL REVIEW A 61 022107

This larger frequency shift can be easily understood
through a perturbative analysis. Let us consider a system
described by Eqg1.1) and(1.2) and havingH;,, within the
RWA (1.4). It can be shown that, in second order, the per-
turbed levels of the oscillator remain equidistant with an ap-
parent frequency,+ARWAw, where[16]

kil
RWA = _ J
ARWA, PZj = (5.9
Taking the continuous limit and using E@.5), we see that
this expression is nothing b&t w,), which really represents
the frequency shift in the weak dissipation limit. Now it is
easy to show that if we considét,, given by Eq.(1.3)
without the RWA, we have in second order in the perturba-
tion,

Ikil?
0ot o)’

k_2
WE

0o~ Wj ]

Aw=P2 (5.9
T

This expression, in the continuum limit, is meret( w,).
Therefore, we see that the substitutionFdfw,) by H(w,)

could already be foreseen by a simple perturbative theory.
The same perturbative analysis can be used to understand
why the counter-rotating term is not important in the calcu-
lation of the decay rate of the system in the weak dissipation
limit. In first order, the decay rate of the system is given by

Fermi’'s golden rule, for which only the terms Bfim that
directly conserve energy in the transition are relevant. This is
not done by the counter-rotating terms. In fact, it is only
done by the rotating terms that create or destroy energy
quanta such thab; = w,. This is the reason for the depen-
dence only onjv(w,)|? that appears in the very weak dissi-
pation calculations.

In a model that takes the counterterm into account, we
automatically haveHg(w)=0 and the expressio(b.5) can
be substituted by

a(t)zf dw|aw|§e*iwté+f dQv(Q)

2 L iat
X dw|aw|RPwTe te

Q

2
%(Q—wo)e-imlﬁg, (5.10
where
2w, Iv(w)|?
L(w)|2= =l vy [
e TP
(5.11)

Therefore, the RWA leads us to the correct results, with
regard to the decay rate of the systémlated to|«,|3), if
and only if the condition of weak dissipation (5.1) is satis-
fied Regarding the frequency shifissociated t&(w,)], we
see that its agreement with that given in the limit of weak
dissipation, in a model without the counterterm, strongly de-
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pends on the functionv(w)|?> adopted. For functions In the case of Ohmic dissipation with the inclusion of the
|v(w)|? that extend to frequencies much larger than we  counterterm, we have
have twice the shift foreseen in the RWA. Besides, it is also )
necessary that the conditiois.2) be satisfied in order to a(t)=ae e, (6.9
guarantee that thls. AS:“ft 'S [nTuF:h smaller th@p[and e can Now it is clear that when Eq95.1) and (5.2) are not
neglect the terms ia" andby, in the expression foa(t)]. L ) i -

In the case of Ohmic dissipation, the conditighsl) and §at|sf|ed making the terms asscimated to the operafoamd
(5.2) are reduced to b}L2 in the expression(2.28 for a(t) no longer negligible,

|,0) will not be an eigenstate ai(t) becausda) and|0)

V<o, 512 arenot eigenstates af andb], , respectively. Therefore, we
once in this case see that an initial coherent stdie), interacting with a res-
ervoir even at temperatufe=0, will not remain a coherent
7mv(wy)|?=y and Hg(w)=0, state during its decay unless we have a system subject to
very weak dissipation.
in the limit ), — . The previous works that emphasized the existence of dis-
sipative coherent statdg—7|, in models described by the
VI. EVOLUTION OF A COHERENT STATE H, (1.3, were based on master equations obtained through

a method that is appropriate only in the limit of weak dissi-
pation. However, we saw that in this limit the corresponding

. A model (1.3) is reduced to the RWA modé€ll.4) that really
evolution of the operatoa(t) can be reduced to the expres- yreserves the coherent states. We believe that the implicit
sion given by Eq/(5.5). Now we will suppose that initially  assumption of weak dissipation is the reason why these au-
our system is in a coherent st4te) and that the reservoir is - ,r< have obtained the dissipative coherent states. Our result
in the vacuum statf0) corresponding to a reservoir at zero 4grees with the one presented|[itg], where it was shown

We showed that if our system satisfies the conditions o
weak dissipation5.1) and small frequency shifts.2), the

temperature. In this case we have that the mode(3.1) presents the coherent states as the initial
states of the system that produce the least amount of entropy
a(t)|a,0)=j do|a,|’e “'a|a,0). (6.1)  as time evolves.
Therefore, in this particular case, a coherent state stays as VII. EVOLUTION OF THE CENTER
such during its evolution with eigenvalugt) given by OF A WAVE PACKET

— it We can also study the evolution of the operaicassoci—
— —lw ~
a(t)= “f dofa,|%e™"" 6.2 ated to the position of the particle. Once the operaipasid

p are related to the operatarby Eq.(3.6), we obtain from

We can also calculate the evolution of the operdigft) of Eq. (2.28 the following expression fog(t):
the reservoir. Then in the case of weak dissipation and small

frequency shift we can show that the modes of the reservoir a(t)=Gs(q,p;t) + Fr(Qq.Pat), (7.0
also evolve from the vacuum state to coherent states with
eigenvalues given by where
Bt =a Pf ola)m—“"ze*““t q.p;t —Aiﬁt +E£t 7.2
Q—w,—H(Q) ~ , dQ meQ ([ d
2 Gl v (). (6.3 a5 )= f_ ([Meft)l d
P |aql (@) 63 Fr(@a Pait) =20, | —v(Q) o | GrWa(QD
Still under the conditiong5.1) and (5.2) we can further +Zr(Q)cog Q) |qq + [QWR(Q,1)
approximate «,,|? by i
. Pa
o= 7|V (wo)|? 6.4 +ZR(Q)sm(Qt)]] o’ (7.3
" [o= 0o H(we) P+ [7|v(w,)[?]? g
w .
and also extend the lower limit of the frequency integral in ﬁ(t):zf ?|L(w)|§sm(wt), (7.4
Eq. (6.2 to — o introducing a negligible error. Then we have
. 2
a(t):ae—|[wo+Aw]te—Tr|V(mo)|2t where Aw=H(w0). WR(Q,I):PI do 2|L(w)|Rsin(wt), (7.5
(6.5 w?—0?
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with Z(Q) defined in Eq.(2.349). Thus, we see that there is a phase difference between Egs.
Now we suppose that the initial density operator of our(7.11) and(7.12) if the oscillator has an initial displacement
global system can be written in the factorizable form do -
Let us now suppose that the initial state of the reservoir is
PT=PS®RPR, (7.6)  such that
whereps and pg are, respectively, the density operators of . c. . A
the system and reservoir when they are isolated. Then we (qj)R=—12<q)S, (pj)»r=0. (7.13
have m; o;
<E1(t)>=Tfs[gs(fl,ﬁit)l)s]+Tf7z[3’:7z(6m,bmt)PR] We can write the expressiof7.3) in the discrete limit, re-

place Eq.(7.8) by Eq. (7.13, and return to the continuum
= Gs({Q)s . (P)si) + Fr({Qa)r (Pa)r;t). (7.7)  limit. Then we obtain(see Appendix B the following ex-

pression forq(t)):
Assuming that the initial state of the reservoir is such that

(a)r=(P;)z=0, (7.9 (@) =(as g ﬁ(t)+27£(t)+ﬂsﬁ(t (7.14

which in the continuum limit corresponds tdd)x

N A In this case if the initial state of the system presents an initial
=(pa)r=0, we obtain the following expression f¢q(t)):

average momenturtp)s=p, and an initial average position
(9)s=0o, EQ.(7.14 becomes

<p>s
(@)= <Q>$dt£(t)+—£(t) (79
(G(1))=o| cogw't) + Lsin(w't) | "
where o’
(1 Po _ .
N e + —=sin(w't)e” 7.1
w,sm(w t)e for y<w,, Mo’ Nw't) (7.19
L(t)=1{ te " for y=w,, for y<w,, which corresponds to the correct classical trajec-
1 tory.
—e Mt ———e 72 for y>w,, Thus, we see that the classical evolution is not obtained
\ V2= 71 Yi— Y2

(7.10 with the initial condition(7.8) but with the initial condition
(7.13. We can understand why this happens through the

Wwith o’ = /wOZ_yz andy, = y=* /yz_woz_ The expression clas_sical analysis of the modéB.5 presented in the next

(7.9 was also obtained by Grabert and collaboraféisby  Section.

the method of functional integration. They affirmed that it

would correspond to the classical trajectory of a damped har-  VIIl. CLASSICAL ANALYSIS AND DISCUSSION

monic oscillator. However, it is easy to see that this is not

true. If the initial state of the system presents an initial aver-

the model used. Our objective is to obtain a physical intu-
age momentum(p) s= Po and an initial average position jion on the effect that causes the difference between Egs.
(9)s=0,, then according to E¢(7.9), (q(t)) would evolve  (7.11) and(7.15 and then on the meaning of the initial con-

In this section we will accomplish a classical analysis of

as dition (7.13. This procedure can be justified by the equiva-
lence of the classical and quantum dynamics of this model
A , Y ., o [20].
(a(t))=do| cog @'t) — ;S'n(“’ vie” The Hamiltonian(3.1) can be written a§21]
2 2 2 2
Po . . P P Mo G
+ —sin(w't)e” " 7.1 H= oo +V(Q)+ 2 |5 q;— al |-
Mo’ n( ) (7.11) 2M ] 2 J mjwjz

(8.9

for y<w,. However the classical trajectory is known to be . . . .
The equations of motion of this system are given by

Y .
0(t)las=do| COg@'t) + —sin(w't) |~ " . C.
! O Ma+V' (@)= ¢l ai(- —am|, (8.2
J m]ﬂ)J
Po i et )
e oeve T (712 M (1) + el () =Ca(t). 63
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If g;(0) andq;(0), are theinitial conditions the solution of (8.10 and after some algebraic manipulations, it is shown

the homogeneous part of EE.3 will be that (F(t))=0 and (F(t)F(t"))=4MykTs(t—t'), which
correspond to the expressions that characterize the Brownian
( ) motion.
qJ (t)=0q;(0)cog w; t)+ sm(w t). (8.9 On the other hand, if we had adopted the initial condition
. 1
The particular solution, considering the presence of the force (9j(0))=(q;(0))= H<p1(0)>=0, (8.11
Ciq(t), can be obtained by taking the Fourier transform of !
Eqg. (8.3). Then we have we would have
Cz
a;(t =—f dt’ q(t")sifwj(t—t")] <F(t)>——q(0)2 ——coq wjt)
m;of
Ci —AMyq(0) f " t
= 'z(qm—q(mcoswjt) =~ 4Mya(0) 7 |+ dw cosw
j ©j
_ =—4Myq(0)8(t), (8.12
_fodt' q(t’)cog wi(t—t")] . @5  Wwhere we have used Eq€3.3), (3.4), and taken the limit

Q—c. Therefore, we would not have=(t))=0, but the
Using the definition of the spectral functidfw) [Egs.(3.3 ~ Presence of & force att=0. Physically what happens is

and(3.4)], it can be shown that in the limi2,— o we have that .if the oscillators of the_ bath are no_t .“gppropri_a.tely”
distributed around the particlgas in the initial condition

(8.11)], when it is inserted in the bath, these oscillators will
co&{wj(t—t’)]d(t’)ZZM yé](t). “pull” the particle until they reach this “appropriate” dis-
tribution. This force will act on the particle during a time
(8.6 interval of the order X}.. Therefore, in the limiQ).— o~ we
will have a é force that will cause a phase difference in the
Therefore, the general solution of E.3, 4;()=a;'(t)  gyolution of the system. This phase difference is the differ-
+qJ (t), when substituted in Ed8.2) results in the follow-  gnce petween Eq€7.11) and (7.12, which is corrected in
ing Langevin equation: Eq. (7.19 by the adoption of the initial conditior7.13
. : [quantum analog of Eq8.9)] instead of Eq(7.8) [quantum
Maq(t)+V'(q)+2Myq(t)=F(1), analog of Eq(8.11)]. As far as we know, the need to use the
initial condition (7.13 in place of Eq.(7.8) in the quantum
treatment of this model has not been noticed in previous
B C.. works. In Ref.[2] the authors make some approximations
F(t)=z quj(O)cos(wjt)JrZ —qu(O)sin(wjt) which are equivalent to regarding the initial time &s
] 1@ =0"(t~1/Q,). So the initial conditions are established at
(8.7 this instant although the coupling between particle and bath
is the fluctuating force and we have redefined the position off SWitched on at=0 and gives rise to &-type force at this
the oscillators of the batf23], instant. The inclusion df=0 in propagator methods must be
accompanied by the above-mentioned modification of the
factorizable initial condition. However, it must be empha-

where

~ G ; : .
qj(0)=q;(0)— 59(0). (8.8  sized that we are not addressing here the question of the
m;j ; generalized initial conditiorf9,10]. Actually the point we

have raised is clearly responsible for the disagreement be-
tween(q(t)) found in these references. In R¢€] the au-
thors reproduced the dephas@t)) [cf. Eq. (7.9) abovd,
whereas in Ref[10] this time evolution is the correct one as
in Eqg. (7.19. The origin of the discrepancy is the usetof
=0 ort=0" as the initial instant together with the factoriz-
KT KT able initial condition.
~ AN _ 5 N _th e We would like to take advantage of this opportunity to
(9;(0)a;-(0)) 29170 (93(0)a;(0))= -8 correct a mistake that was made in R&0], of which one of
(8.10  Us is coauthor. The referred article considers an initial con-
dition of the system when the bath of oscillators meets ther-
The physical meaning of this initial condition written in modynamical equilibrium with the particle at the position it
terms of the relative coordlnatequ has already been ana- is placed in the bath. In this case one obtains mean values of
lyzed by Zwanzig24] some time ago. Using Eqé8.9) and  the position(q(t)) and momentun{p(t)) which depend on

Supposing that the bath is initially in thermodynamic equi-

librium in relation to the coordinateﬁsj(O), we have, in the
classical limit,

(9;(0))=(0;(0))=(7;(0)q;(0))=0, (8.9

i 9]
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the temperature of the reservoir and that do not exactly caosients that would appear in this system in the characteristic
incide with their classical counterparts. This disagreementime scale 10).. However, another initial transient in this
was justified within a classical analysis of the model. In thissystem is also known. If25], it was shown that for a fac-
analysis it was affirmed that the classical initial conditiontorizable initial state in the high-temperature limikT
equivalent to the proposed quantum initial state, which cor>#();) of the master equation it presents an initial transient
responds exactly t(iij(O)>=0, would imply a classical so- within the time scale of the internal decoherence of the initial
lution of the model different from the trajectories of a Wave packet. If applied to times shorter than this, it can lead
damped harmonic oscillator. We saw in the present work thaf0 nonsensical results. We believe that this pathology can
this is not true and therefore this argument cannot be use@nly be really corrected with the adoption of nonfactorizable
We believe that the origin of the disagreement when adoptinitial conditions.

ing a nonfactorizable initial condition is the impossibility of

describing the evolution of the system through an indepen- IX. CONCLUSION

dent sum of functions of the system and reservoir variables ] ) ) o
as in Eq.(7.7). The quantum effects of the correlation be- In this paper we have applied the Fano diagonalization
tween the variables of the system and reservoir prevent Brocedure to two Hamiltonians commonly used as models
direct comparison of the quantum mean values with the valfor dissipative systems in quantum optics and in condensed
ues obtained through the classical analysis of the model. Achatter systems; the rotating wave and the coordinate-
cordingly, it can be shown that the discrepancy vanishes ifoordinate coupling models, respectively.

the classical limit kKT>%w,). By exgctly dlggonal|2|ng these two models, we have suc-

After we had made the above analysis, we became awareeeded in showing how the RWA turns out to be the ex-
that in previous work$11,17 the authors had also noticed treme_ly underdamped limit of the more general coordinate-
the existence of initial kicks and jolts in this system when thecoordinate coupling model. We have also been able to
initial condition implied by Eqs(7.6) and (7.8) is used. In analyze the role played by the counterterm in this limiting
both of them the existence of an initial kick, given by Eg. Procedure from the latter to the RWA. We have shown
(8.12 in the limit 0 .— o, is noticed see their Eqg3.2) and  through the evaluation of the destruction operat() of the
(45), respectively. However, the existence of this initial System that the RWA is a good approximation for Eiql) if
transient is considered as a characteristic of the model to band only if the conditiong5.1) and (5.2) are satisfied. For
taken into account. In our analysis we see that, although theertain choices ofv(w)|?, we haveH (w,)~ m|v(w,)|? and
existence of the kick given by E@8.12 is a real character- the fulfillment of Eq.(5.1) automatically implies Eq(5.2).
istic of the model when it is subject to the above-mentionedHowever, for other choices, we can havel(w,)
initial condition, it is an undesirable feature that should be> 7|v(w,)|? and Eq.(5.2) limits the validity of the approxi-
corrected. Fortunately, this correction can be made even withation. Once these conditions are satisfied, we have shown
an improved factorizable initial condition, that is, E8.6) that the time evolution of the system is identical to that de-
and(7.13. termined within the RWA, with the exception of the fre-

The authors off11] and [12] have recognized that the quency shift. We have found that this shift will be given by
presence of initial jolts, in their master equation coefficientsH(w,) instead ofF(w,). As we have shown, these functions
generates certain nonphysical effects and so they suppossually have the same order of magnitude, but they are not
that they are due to the adoption of a factorizable initialidentical. For functiongv(w)|? that extend to frequencies
condition. In[14] the evolution of the system is analyzed for much larger thanw,, we haveH(wy)=2F(w,).

a nonfactorizable initial condition, similar to the one used in  The comparison of the Hamiltonig@.4) with the Hamil-

[9] and[10], in which the initial position of the particle is tonian of the coordinate-coordinate coupling model estab-
defined by a measurement process in a state in thermodiished the relatior{3.11) between the spectral functial{w)
namic equilibrium with the bath. However, the initial jolts in of this model and the coupling functida(w)|2. In the case
the time scale 11 still persist. We believe that this happens of Ohmic dissipation and considering the inclusion of the
because this initial condition does not satisfy E@.13 counterterm, we find thatlg(w)=0 in the limit Q) —o.
when the initial mean values of the position of the particleThen the only condition required for the RWA to be valid is
and the oscillators in the bath are calculated. Thus, in this

aspect, it is less general than the improved factorizable initial Y<w,. 9.9
condition that we considered.

Actually the initial jolt, at least the one they attribute to ~ As an application of this method, we have studied the
the decoherence procefisowever, see the discussion be- existence of dissipative coherent states and concluded that
low), does not appear in the more general initial conditionthey can only exist within the RWA and when thermal fluc-
later adopted if15]. It is an initial condition prepared by a tuations are negligible. When these conditions are not met,
dynamic process in a finite timg,. In this case we can the initial state will in the long run become a statistical mix-
consider that the conditiof.13 will be satisfied since, ture.
>1/Q).. Indeed, in this situationtf>1/).), it was shown Finally, we have also addressed the question of the dis-
that the initial jolt does not appear. crepancies in the time evolution of the observables of the

Thus, we believe that the initial conditiof7.13 is  system that arise when the factorizable initial conditions are
enough to eliminate most of or maybe all the initial tran- not properly accounted for. We have shown how to deal with
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this problem by using the appropriate improved factorizable . . . N
initial condition (7.13 rather than(7.8). a,a;+ J dQ B,aBy 0~ XXy~ f dQ o, 007 o
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APPENDIX A: DIAGONALIZATION WITHOUT THE RWA (A11)

Here the procedure used in the d|ag0nal|zat|0n of thQNhereG(w) is g|ven by Eq (2 26) NOW us|ng Eq(A?) as
Hamiltonian (2.4) will be presented. We want to find the el as the property

operatorA,, that allows us to write Eq(2.4) in the diagonal
form. We write A, in its general form(2.20 and then we p ! =) ! =p ! (p ! —-p ! )

impose the commutation relatidg.7), o—0 oo w—w w—o' w—w'
[A, . H]=foA,. (A1) +w25(w—a)5w’—§(w+;) ,
Replacing Eqs(2.4) and(2.20 in Eq. (A1) and taking the (A12)
commutators of the expression obtained wath a, by,  we obtain

andb/,, we have, respectively,

(2w,)2 [ 1 {Zﬂ—wz

f dQ Bw,ﬂﬂ;,n:(w_,_wo)(z,-f- w,) 2w,

w—w

wa,= woaw+ f [IBw,QV* (Q) - Uw,(lv(ﬂ)]dﬂl
(A2) +G(w)—G(w)

wa:_onw+f[ﬂw,QV*(Q)_Utv,QV(Q)]dQ’ +[ 72+ Z2(0)]|V(0)|28(w—0) | .

(A3)
(A13)
=(a,— +

0Bu0=(a,=X)V(Q)+QB,q, (A4) Then substituting EqgA10), (A11), and(A13) in Eq. (A9),

00, 0=(Ay= X))V (Q)— Q0 q. (A5) ~we have

2 2
Subtracting Eq(A2) from Eq. (A3), we have o o (2wg) |v~(w)| ot o) B0 = ST
¢ “(w+ wy)(w+ wy)

Xw=w w, a,. (AB) (A14)

wt+w,

and, therefore, we should haje,|? given by Eq.(2.21).
In the calculations presented above, we supposed that
|v(w)]| is a continuous function such that(0)|=0. In this
1 2w, way we guarantee thatf3dQ f(Q)|v(Q)]?6(Q— w)
Buo=|P —q Te®)d0-Q)|———"Vv(D)a,, =f(w)|v(w)|? for any nonsingular functiof(w) within the
° (A7)  Whole interval (Cx).

We can also diagonalize the Hamiltonié®h1) consider-
wherez(w) is a function to be determined. Similarly, substi- ing the introduction of the counterteriiz(q). Rewriting it

tuting Eq.(A6) in Eq. (AS), we have in terms of the operators andb;, defined in Eq(3.6), we
1 20, have

0,0~ (U+Q (1)+(1)0 *(Q) (A8) ~ o 2 o
H =ﬁwoaTa+ 2 Abijj
Now, substituting EqS(A7) and(A8) in Eq. (A2), we obtain J
z(w) given by Eq.(2.25.

It remains to determine,,. For this we impose the con-
dition (2.12), which results in

Replacing Eq(A6) in Eq. (A4) we obtain
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Writing Eq. (A15) in the continuum limit and following the

same procedure as adopted above, we will see that the equa‘R(qJ ,p] )=

tions (A2) and(A3) will be substituted now by the equations

A w? A w?
wa,=| wyt g a,— g){w
(0] o]
+ [ thuavt @)= o, avi0)ia0, a10
Aw? Aw?
OXo= | WoT 5 X0 5
o] (o]

+ [ 18t @)=, avi)id0,  (a17

respectively. Equation§A4) and (A5) will stay the same.

Thus, it can be easily shown that all the other previous equa-
tions will not change, with the only difference being that the

function H(w) should be substituted dyr(w) given in Eq.
(3.14.

APPENDIX B: CALCULATION OF  Fr({(d)= (P 1)

Expression(7.3) for Fx(0q ,pa;t) can be written as

~ ~ dQ mQQ
fR(QQipﬂ;t)zzwoJ — VVao V()
0

J(Q;1)aq
pQ
QO
+K(Q;t) ——= ik (B1)

where the expressions fgf((};t) and K({);t) are obtained
by direct comparison between Ed81) and(7.3). Now we
can substitute the expressi@ 10 for v({}) in Eqg.(B1) and
write the expression obtained in the discrete limit,

Fr(Aq,Pa;t)

——E {ﬂnj,twg(nf dnag

| Ky

Mo, Q; Va(€2;)

1/g(2))

dQ pg|. (B2)

Recalling the relatiori2.1) between the discrete and continu-
ous operators, we obtain
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1 > C, P

_M : ; QJ ,t)qJ+IC(QJ ,t) Qj .
(B3)

Employing the initial condition(7.13), we have

fR((&j)R,@QR;t):__Z j(QJ,t)<Q>$
=H(t)(Q)s. (B4)
with
~ do v(Q))>

H(t)——4wof — 0 J(Q;t), (B5)

where we used again the relatiG®10. Writing H(t) as

H()=11(t) +15(1), (B6)
we have
dQ |v( Q)|2
Il(t)=—4w0f — o dat Wgr(Q,1), (B7)
dQ |v(Q)|2
|z(t)=—4wof - a Za(Q)cogQt). (B8)

The calculation of 1(t) is a somewhat lengthy but straight-
forward calculation and results In(t)=0. So all that is left
is

w§—92
HH=15(0) = 4yf—(92 a0
(B9)

The evaluation of this last integral can also be accomplished
by the method of residues and yields
H(t)=2yL(1) (B10)

for t>0.
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