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Quantum anti-Zeno effect
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We demonstrate that near-threshold decay processes may be accelerated by repeated measurements. Ex-
amples include near-threshold photodetachment of an electron from a negative ion, and spontaneous emission
in a cavity close to the cutoff frequency or in a photon band-gap material.

PACS numbd(s): 03.65.Bz

The interplay between quantum dynamics and quantunerwise partially stable system. We prove the universal fact
measuments has continued to attract the attention of physihat generic decaying systems exhibit anti-Zeno effect for a
cists since the birth of quantum physidg. One of the clas- certain frequency of interruptions.
sic examples of such an interplay is the so-called quantum Near threshold decay occurs in several physical situations.
Zeno effecf2]. It consists of modifying the quantum evolu- Here we discusg¢a) near threshold photodetachment of an
tion by repeated measurments. The essence of the quantutectron from a negative iofi4] and(b) spontaneous emis-
Zeno effect is that repeated interrogations if the system i§ion in a cavity close to cutoff frequengg5] or in a photon
still in an inital state tend to quench the system in this statd#and gap mediurfil6]. The dynamics of all these systems is
as the frequency of interrogations grows. The reason for thigoverned by the following generic Hamiltonian
is that the quantum evolution generated by the Hermitian

Hamiltonian is time reversible, and hence the probability

p(t) of intial state occupancy must be an even function of H:ﬁA|O><O|+f ho(k)[k)(k| dk

time. For typical systems, it must also be an analytic function

of time, and thus it must behave p&)=1— (t/7)? for short f

timest, with 7 being the characteristic time scale. If we make 1 | (9(k)|0)k|+H.c)dk, @

N interrogations within the tim&, and if each of them gives
a positive answer, i.e., collapses the actual state onto thghere|0) is the decaying statéground state for ionization,
initial state, therp(T)=[1—(T/N7)?]N—0 asN—= [3,4].  excited state for spontaneous emissiamd k is a multi-
It is worth stressing, however, that for decay processes intthdex enumerating the states in the final continuum. In case
broad band reservoirs; is typically of the order of the in- (g) of photodetachement these are just the final states of an
verse of the reservoir widtki.e., 10 ° s for laser induced electron, in caséb) of spontaneous emission these are prod-
ionization of an atom For this reason, the Zeno effect in ycts of the atomic ground state and single photon states char-
decay processes is very hard to obsdie acterized by a wave vector and a polarization denote#. by
Following the idea of Cook6], the quantum Zeno effect |n Eq. (1) the rotating wave approximatiociRWA) has been
has been observed in a coherent process of Rabi oscillationged[17].
in a two level systeni7]. Only recently has the Zeno effect  |n case(a), the detuning) is the difference between the
been demonstrated for a single trapped af8inThe idea of  jonizing laser frequency and the ionization potential divided
the Zeno effect was also employed in recent experiments 0By 7. The labelk can be identified witho (k) = w, wheref w
interaction free measurements and imad@p The need for s the energy of the photodetached electron. Various models
the collapse of the wave packet in the quantum Zeno effecéf the couplingg(w) have been discussed in the literature.
has been critically analyzed in Réf.0]. The angular momenturhof the final states determines the
In this article we demonstrate that under suitable condihehavior of|g(w)|?* o't Y2 for small w in accordance with
tions, the decay of some quantum systems from an initia{yigner's law[18]. In the following we will use the expres-
state might be accelerated by frequent interrogations whesgion
the system remains in that state. We call this phenomenon a

guantum anti-Zeno effect. This effect was recently discov- A VBo
ered by Kofman and KurizKil1]. A similar effect has been lg(w)]?=——, 2)
proposed by Gontis and Kaulak}s2], who argued that fre- T ot p

quent interrogations may destroy localization effgt3] in

guantum chaotic systems, and may enforce classical stochder w=0 in thes continuum. In the above expressighis

tic motion. The quantum Zeno effect discussed in Ret]  the continuum width and\, which is proportional to the laser
takes place in systems that decay near threshold. In this pé&tensity, is the Fermi golden rule photodetachment rate far
per we present a unified treatment of this phenomenorgbove the thresholpl4].

which we can demonstrate in several physical contexts. In In case(b) of spontaneous emissiah is the difference
fact, we show that even below threshold, frequent interrupbetween the transition frequency and the cavity cutoff, or
tions of the evolution may enforce a complete decay of othband gap edge frequenay,. w(k)=0 describes the disper-
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sion relation; near the boundary of the gap in the isotropic 1 T=100/A
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model it is well approximated by 09 L \
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wherek, is the wave vector ab, . In the relevant region of 05 1000

k=Kkq, g(k) varies slowly, and can be taken as a constant
proportional to the atomic transition dipole momedt
[15,16. . ) ) o FIG. 1. Survival probability for the moddh) as a function of
The survival amplitude in the initial sta@), «(t), may detuning after timel = 100/A. The thick upper curve corresponds
be written as an inverse Laplace transform to the coherent, uninterrupted evolution, whereas the numbers of
e dz interruptions for other curves are indicated.
4

rH(z) 27’ The analytic expressions far(t) can be easily obtained,
and in cas€a) and the model of Eq(2) read

-0.5 0 0.5
DETUNING (units of A)

a(t)=

where the countoul’ runs parallelly to the imaginary axis

and is placed to the right from all singularities of the inte- i yi(yi+ \/[—3) % 7
rand, whereas the resolvent functipifz) is given b t)=2, ————————eWilerfdexp(i w/4)\ty],
g | |r:xm) given by 0= e Thyea d explim/4) y.]m

o g(k)
H—Z+IA+fmdk. (5)

where erfc( - -) denotes the complementary error function

In various regimes of parameters the following singulari-Of complex argument, angi are the(complex in general
ties contribute to the time evolution. Above the threshold,foots of
there exists a Wigner-Weisskopf pole with a negative real 5 )
part. The contribution of this pole represents the exponen- y3+ By +Ay+VB(A—A)=0. (8)
tially damped oscillating term. Both above and below the ] ) ] ]
threshold there is a contribution from the cut in the complexThe corresponding result for mod@) is obtained by setting
plane. The cut may be taken along the negative part of thé—0, A—= in such a way thatA\B—y*? where y
real axis. The cut contribution gives in particular the cel-=[w{?d?/2hc%]?3.
ebrated algebraic long tail of the evolutipt9]. The thresh- As in the Refs.[6,7,21, we propose to interrogate the
old in the model does not correspondAe-0, and instead is decaying system using a series of short pulses of light reso-
dynamically shifted by nant with a dipole allowed transition between the initial state
and some other bound state of the atom. We consider the
B la(k)|? case when the pulse is intense enough to generate a large
¢ ) k) number of fluorescence photons, and much longer than the
characteristic time scale of the decay. In such a case suffi-
For model(a) the threshold is shifted tA.=A, whereas for cient decoherence between the initial state and the con-
model (b) it is pushed toward infinity. The latter effect is tinuum is incurred to interrupt and reset the coherent evolu-
caused by the fact that the density of photon modes has tion [10]. If N interruptions are made within tim&, the
singularity forw(k)=0 [20]. Below the dynamically shifted survival probability becomep(T)=|a(T/N)|N.
threshold, there exists a purely imaginary pole, which con- In Fig. 1 we have plotted the survival probability after
tributes a nondecaying, purely oscillatory term adqt). =100/A with various number of interruption@ndicated as
Thus, sharp edge versions of modb) always exhibit in- a function of detuning in the vicinity of the dynamically
complete damping. Of course, all of the above discussedhifted threshold. The upper thick curve corresponds to the
contributions sum up top(t)=|a(t)|?>=1—t%+? for ul-  fully coherent, uninterrupted dynamics. For modal the
trashort times. It is the steep temporal behavior of the cufollowing parameters were usedA=10* Hz and B/A
contribution formoderately short timewhich we are going =10°. Observation time was taken equBkE10 2 s. We
to exploit for the quantum anti-Zeno effect. In fact, close toconsider interrogation pulses of the duration i, i.e., suf-
threshold modela) enters the regime of asymptotic decay ficient to produce a lot of fluorescence photons for a typical
for such times, and decays generically as.1The exception dipole transition. Such pulses are short enough to be consid-
occurs at the exact threshold, where the decay undergoeseged as instantenous on a time scale of the decay%)1Qip
crossover to the fLbehavior and significant “critical” slow-  to 1000 of such pulses well separated by 18 can be used.
ing down. In particular, it is easy to see that if at such timeBoth below and above threshold the more frequent interrup-
scalesp(t)=(7/t)”, for t>r with »>0, then afteN inter-  tions cause faster decay. The reason for that is explained in
rogations within time T, the survival probability p(T) Fig. 2, which presents the survival probabilty in a logarith-
=(N7/T)N" decreases to values of the order ofmic scale at the exact dynamical threshold as a function of
exp(—ve T/7) asN grows from 1 to=e 1T/7. time for the cases without and with 200 interruptions with

dk. (6)
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FIG. 2. Survival probability for the modeb) as a function of  ie The values of are indicated.

time exactly at the dynamically shifted threshold. The upper curve

corresponds to the coherent, uninterrupted evolution, whereas the del (b) leads t ishi val bability &
lower curves was obtained applying %200 interruption pulses model (b) leads o.a r.10nvanls. ing S““’"’f"‘. probability @s
within the time 2<1G9/A, (1F/A), respectively. —oo, Moreover, this final survival probability depends very

critically on the detuning, and decreases very strongly below

the time T=10%/A. In this case the coherent decay is par-the threshold. This is illustrated in Fig. 3 fdr=—y,0,y,
ticularly slow and occurs on the time scale of few’®.  which give final survival probabilitie;=0.7, 0.45, and
Clearly, the coherent decay is nonexponential, and alread§-15, respectively. Imagine that we perform “quantum
for very short times can be well approximated by the algeJump” measurements in such a way, so that the intervals
braic 1t dependence, which has very large derivative forbetween measurements are at least of the order ofu)0
such times. Measurements set the system back to the initiak., larger than the time scale of the evolutieriO/y. This
state, and essentially press it to exploit this very steepy initiatondition is obviously fulfilled for an inpurity atom in the
part of the time dependence. In effect, the decay becomeghoton band gap medium, and marginally fulfilled for Ryd-
much faster and exponential in charactep(nT/N)  berg atoms in a cavity. On such a long time scale the evolu-
=(7N/T)". Apart from this acceleration of the decay, the tion from Fig. 3 looks similar to an instantenous initial slip
measuments destroy the stability of the decaying state belof@llowed by a constant behavior. Depending on the detuning
threshold. Even though in such a case the coherent evolutigthosen the survival probability monitored by “quantum
leads to nonvanishing probability of survival as-c, how-  jumps” will tend to zero rapidly with the number of inter-
ever, the frequent interruptions lead to the total decay. Onéuptionsn aspy . Frequently observing if the Schiimger cat
should stress, the advantage of working with mo@glis  is alive, kills it faster. Such experiment requires “tuning” of
that the time scale can be here controlled, siAde propor-  atomic transition frequency, or the photon band gap edge
tional to the ionizing laser intensity. Values betweedt i®  within the range ofy, which can be for instance done using
10° are experimentally feasible. Being close to threshold reexternal static electromagnetic field and Zeeman, or Stark
quires laser stability within thé range(i.e., in the worst effect.
case in the kHz range Observation times are reasonable, In fact, the acceleration of decay is in principle possible
and “quantum jumps” measuremt scheme could be implefor all generic weakly coupledi.e., dominated by the
mented without problems. All that means, that quantum antiWigner-Weisskopf exponential degaylecaying systems.
Zeno effect in near threshold decay is easier to observe exthe reason for that is that the ultrashort time of quadratic
perimentally than its ultrashort time analog—the quantumbehavior of the survival probability is separated from the
Zeno effect. exponential decay regime by a rapid initial slip. This slip has

In principle, the same effects as discussed for mgdel to be faster than the corresponding exponential decay, and
can be observed in cagb), but here the time scales are not generically leads to a decrease of the survival probability.
so favorable. Depending on whether we consider spontane- In order to demonstrate this fact we observe that
ous decay in the cavity or in the photon band gap medium,
the reasonable values oflie between 18 Hz (Rydberg at- a(t)=1-0(t?) 9
oms in a microwave cavity or wave guidand 16 Hz (op-
tical and infrared transitions in band gap medim model
(b) the characteristic time scale of the decay is typically
=10/y. For Rydberg atoms the decay would take place on
the scale of hundreds of microseconds, and could thus be
monitored using the “quantum jumps” technique, which re-
quires the time scales discussed above in the context dbr the bulk of the decay, whery=—y—iA denotes the
model(a). The decay of an impurity atom in the photon band Wigner-Weisskopf pole with the negative real pgrtFrom
gap medium in the infrared or optical regime of photon fre-7(z,)=0, we obtain that
guencies would then take few nanoseconds, and would be
rather hard to be interrupted by “quantum jumps” to another

2
level. . _ f WLH=1, (11)
It is worth stressing that independently of the valueAof [A—w(k)]?+v?

for ultrashort times, whereas

a(t)=Aexp(zqt) (10
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|g(k)|2|[Z—w(k)] B and A not too far from zero, which assures thatA) is
= I =[A—w(k)]. (12 small, whereas the slip large
[A= (k)] +y Summarizing, we have shown that near threshold decay

can be exploited to observe the quantum anti-Zeno effect.
Typical near threshold decay processes are characterized by
ultrashort period of quadratic decay, followed by a long
phase of nonexponential decay, with a very large rate at the

The coefficienfA on the other hand is the residuum oflat
2o, that iSA™1="H"(z),

|g(k)|2|[Z—w(k)]2 begining, gradually slowing down in the course of the dy-
A l=1- - EETCE (13)  namics. Monitoring if the decaying system remains in the
A=)+ 77 initial state, shifts the system back to the fast initial phase of

the nonexponential decay. In effect, more frequent measure-
The imaginary part oA™* can be easily find in the per- ment, cause faster decay. We discussed experimental feasi-
turbative limit. Denotingy(A) = m|g[k(A)]|?, wherek(A) pility of observing this effect for two models describiia)
is defined througho[k(A)]=A, and using the fact that pear threshold photodetachment of an electron from a nega-
y(4) is much smaller than the characteristic frequency scalgye jon and spontaneous emission from an atom located in a
of variations of|g(k)|, we can write cavity, or from an impurity located within a photon band gap
medium. Our scheme is quite general, and can be used for
~ any decaying system with several time scales. Frequent mini-
=5'[A-w(K)], (14 toring of such systems will tend to diminish the role of the
long time scales, and to blow up the role and influence of the
where 6'(---) is the derivative of the Dirac’s delta. The shorter time scales. In particular, frequent monitoring leads
above expression gives us I t=—iy'(A). to full decay of otherwise partially stable systems. We dem-
Calculation of the real part is a little more complicated; it onstrate also that the anti-Zeno effect is always present for
requires second order Taylor expansion of the coupling funcgeneric weakly coupled decaying systems for a certain re-
tion [g(k)|? in the vicinity of w(k)=A. The final resultis ~ gime of interrogation(generic means here systems with
power law coupling dependence on energy near threghold
_v(A)Y'(a) o) (15  There are implications of our result for quantum error cor-
2 'Y ' rection schemes in quantum computi, which typically
_ _ employ quantum Zeno effect. Using computing units with
Assuming a generic near threshold power law dependence @fynstandard decay, such as the ones discussed above, might
y(A)A” with »>0, we obtain in the perturbative limit  j50se serious limitations on, or require developent of new
Y(A)? error correcting strategies.

AZ

1 [A-e®]?
T {[A—w(k)]?+y?}?

A l=1

|Al2=1—v <1. (16)
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