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Quantum anti-Zeno effect
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1Institut für Theoretische Physik, Universita¨t Hannover, D-30167 Hannover, Germany
2Center for Theoretical Physics and College of Science, Polska Akademia Nauk, 02-668 Warsaw, Poland

~Received 11 January 1999; published 10 January 2000!

We demonstrate that near-threshold decay processes may be accelerated by repeated measurements. Ex-
amples include near-threshold photodetachment of an electron from a negative ion, and spontaneous emission
in a cavity close to the cutoff frequency or in a photon band-gap material.

PACS number~s!: 03.65.Bz
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The interplay between quantum dynamics and quan
measuments has continued to attract the attention of ph
cists since the birth of quantum physics@1#. One of the clas-
sic examples of such an interplay is the so-called quan
Zeno effect@2#. It consists of modifying the quantum evolu
tion by repeated measurments. The essence of the qua
Zeno effect is that repeated interrogations if the system
still in an inital state tend to quench the system in this st
as the frequency of interrogations grows. The reason for
is that the quantum evolution generated by the Hermit
Hamiltonian is time reversible, and hence the probabi
p(t) of intial state occupancy must be an even function
time. For typical systems, it must also be an analytic funct
of time, and thus it must behave asp(t).12(t/t)2 for short
timest, with t being the characteristic time scale. If we ma
N interrogations within the timeT, and if each of them gives
a positive answer, i.e., collapses the actual state onto
initial state, thenp(T).@12(T/Nt)2#N→0 asN→` @3,4#.
It is worth stressing, however, that for decay processes
broad band reservoirs,t is typically of the order of the in-
verse of the reservoir width~i.e., 10216 s for laser induced
ionization of an atom!. For this reason, the Zeno effect
decay processes is very hard to observe@5#.

Following the idea of Cook@6#, the quantum Zeno effec
has been observed in a coherent process of Rabi oscilla
in a two level system@7#. Only recently has the Zeno effec
been demonstrated for a single trapped atom@8#. The idea of
the Zeno effect was also employed in recent experiments
interaction free measurements and imaging@9#. The need for
the collapse of the wave packet in the quantum Zeno ef
has been critically analyzed in Ref.@10#.

In this article we demonstrate that under suitable con
tions, the decay of some quantum systems from an in
state might be accelerated by frequent interrogations w
the system remains in that state. We call this phenomen
quantum anti-Zeno effect. This effect was recently disc
ered by Kofman and Kurizki@11#. A similar effect has been
proposed by Gontis and Kaulakys@12#, who argued that fre-
quent interrogations may destroy localization effect@13# in
quantum chaotic systems, and may enforce classical stoc
tic motion. The quantum Zeno effect discussed in Ref.@11#
takes place in systems that decay near threshold. In this
per we present a unified treatment of this phenomen
which we can demonstrate in several physical contexts
fact, we show that even below threshold, frequent interr
tions of the evolution may enforce a complete decay of o
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erwise partially stable system. We prove the universal f
that generic decaying systems exhibit anti-Zeno effect fo
certain frequency of interruptions.

Near threshold decay occurs in several physical situatio
Here we discuss~a! near threshold photodetachment of
electron from a negative ion@14# and~b! spontaneous emis
sion in a cavity close to cutoff frequency@15# or in a photon
band gap medium@16#. The dynamics of all these systems
governed by the following generic Hamiltonian

H5\Du0&^0u1E \v~k!uk&^ku dk

1\E ~g~k!u0&^ku1H.c.!dk, ~1!

whereu0& is the decaying state~ground state for ionization
excited state for spontaneous emission! and k is a multi-
index enumerating the states in the final continuum. In c
~a! of photodetachement these are just the final states o
electron, in case~b! of spontaneous emission these are pro
ucts of the atomic ground state and single photon states c
acterized by a wave vector and a polarization denoted bk.
In Eq. ~1! the rotating wave approximation~RWA! has been
used@17#.

In case~a!, the detuningD is the difference between th
ionizing laser frequency and the ionization potential divid
by \. The labelk can be identified withv(k)[v, where\v
is the energy of the photodetached electron. Various mo
of the couplingg(v) have been discussed in the literatur
The angular momentuml of the final states determines th
behavior ofug(v)u2}v l 11/2 for small v in accordance with
Wigner’s law @18#. In the following we will use the expres
sion

ug~v!u25
A

p

Abv

v1b
, ~2!

for v>0 in the s continuum. In the above expressionb is
the continuum width andA, which is proportional to the lase
intensity, is the Fermi golden rule photodetachment rate
above the threshold@14#.

In case~b! of spontaneous emissionD is the difference
between the transition frequency and the cavity cutoff,
band gap edge frequencyvc . v(k)>0 describes the disper
©2000 The American Physical Society05-1
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sion relation; near the boundary of the gap in the isotro
model it is well approximated by

v~k!5
vc

k0
2 ~k2k0!2, ~3!

wherek0 is the wave vector atvc . In the relevant region of
k.k0 , g(k) varies slowly, and can be taken as a const
proportional to the atomic transition dipole momentd
@15,16#.

The survival amplitude in the initial stateu0&, a(t), may
be written as an inverse Laplace transform

a~ t !5E
G

ezt

H~z!

dz

2p i
, ~4!

where the countourG runs parallelly to the imaginary axi
and is placed to the right from all singularities of the int
grand, whereas the resolvent functionH(z) is given by

H5z1 iD1E ug~k!u2

z1 iv~k!
dk. ~5!

In various regimes of parameters the following singula
ties contribute to the time evolution. Above the thresho
there exists a Wigner-Weisskopf pole with a negative r
part. The contribution of this pole represents the expon
tially damped oscillating term. Both above and below t
threshold there is a contribution from the cut in the comp
plane. The cut may be taken along the negative part of
real axis. The cut contribution gives in particular the c
ebrated algebraic long tail of the evolution@19#. The thresh-
old in the model does not correspond toD50, and instead is
dynamically shifted by

Dc5E ug~k!u2

v~k!
dk. ~6!

For model~a! the threshold is shifted toDc5A, whereas for
model ~b! it is pushed toward infinity. The latter effect i
caused by the fact that the density of photon modes ha
singularity forv(k)50 @20#. Below the dynamically shifted
threshold, there exists a purely imaginary pole, which c
tributes a nondecaying, purely oscillatory term toa(t).
Thus, sharp edge versions of model~b! always exhibit in-
complete damping. Of course, all of the above discus
contributions sum up top(t)5ua(t)u2.12t2/t2 for ul-
trashort times. It is the steep temporal behavior of the
contribution formoderately short timeswhich we are going
to exploit for the quantum anti-Zeno effect. In fact, close
threshold model~a! enters the regime of asymptotic dec
for such times, and decays generically as 1/t3. The exception
occurs at the exact threshold, where the decay undergo
crossover to the 1/t behavior and significant ‘‘critical’’ slow-
ing down. In particular, it is easy to see that if at such tim
scalesp(t).(t/t)n, for t.t with n.0, then afterN inter-
rogations within time T, the survival probability p(T)
.(Nt/T)Nn decreases to values of the order
exp(2ne21T/t) asN grows from 1 to.e21T/t.
02210
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The analytic expressions fora(t) can be easily obtained
and in case~a! and the model of Eq.~2! read

a~ t !5(
i 51

3
yi~yi1Ab!

3yi
212Abyi1D

e( iy i
2t)erfc@exp~ ip/4!Atyi #,

~7!

where erfc(•••) denotes the complementary error functio
of complex argument, andyi are the~complex in general!
roots of

y31Aby21Dy1Ab~D2A!50. ~8!

The corresponding result for model~b! is obtained by setting
b→0, A→` in such a way thatAAb→g3/2, where g
5@vc

7/2d2/2\c3#2/3.
As in the Refs.@6,7,21#, we propose to interrogate th

decaying system using a series of short pulses of light re
nant with a dipole allowed transition between the initial sta
and some other bound state of the atom. We consider
case when the pulse is intense enough to generate a
number of fluorescence photons, and much longer than
characteristic time scale of the decay. In such a case s
cient decoherence between the initial state and the c
tinuum is incurred to interrupt and reset the coherent evo
tion @10#. If N interruptions are made within timeT, the
survival probability becomesp(T).ua(T/N)uN.

In Fig. 1 we have plotted the survival probability afterT
5100/A with various number of interruptions~indicated! as
a function of detuning in the vicinity of the dynamicall
shifted threshold. The upper thick curve corresponds to
fully coherent, uninterrupted dynamics. For model~a! the
following parameters were used:A5104 Hz and b/A
5106. Observation time was taken equalT51022 s. We
consider interrogation pulses of the duration 1026 s, i.e., suf-
ficient to produce a lot of fluorescence photons for a typi
dipole transition. Such pulses are short enough to be con
ered as instantenous on a time scale of the decay (1022); up
to 1000 of such pulses well separated by 1025 s can be used
Both below and above threshold the more frequent interr
tions cause faster decay. The reason for that is explaine
Fig. 2, which presents the survival probabilty in a logarit
mic scale at the exact dynamical threshold as a function
time for the cases without and with 200 interruptions w

FIG. 1. Survival probability for the model~a! as a function of
detuning after timeT5100/A. The thick upper curve correspond
to the coherent, uninterrupted evolution, whereas the number
interruptions for other curves are indicated.
5-2
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QUANTUM ANTI-ZENO EFFECT PHYSICAL REVIEW A61 022105
the timeT5105/A. In this case the coherent decay is pa
ticularly slow and occurs on the time scale of few 105/A.
Clearly, the coherent decay is nonexponential, and alre
for very short times can be well approximated by the al
braic 1/t dependence, which has very large derivative
such times. Measurements set the system back to the in
state, and essentially press it to exploit this very steepy in
part of the time dependence. In effect, the decay beco
much faster and exponential in character,p(nT/N)
.(tN/T)nn. Apart from this acceleration of the decay, th
measuments destroy the stability of the decaying state be
threshold. Even though in such a case the coherent evolu
leads to nonvanishing probability of survival ast→`, how-
ever, the frequent interruptions lead to the total decay. O
should stress, the advantage of working with model~a! is
that the time scale can be here controlled, sinceA is propor-
tional to the ionizing laser intensity. Values between 104 to
108 are experimentally feasible. Being close to threshold
quires laser stability within theA range ~i.e., in the worst
case in the kHz range!. Observation times are reasonab
and ‘‘quantum jumps’’ measuremt scheme could be imp
mented without problems. All that means, that quantum a
Zeno effect in near threshold decay is easier to observe
perimentally than its ultrashort time analog—the quant
Zeno effect.

In principle, the same effects as discussed for model~a!
can be observed in case~b!, but here the time scales are n
so favorable. Depending on whether we consider sponta
ous decay in the cavity or in the photon band gap mediu
the reasonable values ofg lie between 105 Hz ~Rydberg at-
oms in a microwave cavity or wave guide! and 109 Hz ~op-
tical and infrared transitions in band gap media!. In model
~b! the characteristic time scale of the decay is typica
.10/g. For Rydberg atoms the decay would take place
the scale of hundreds of microseconds, and could thus
monitored using the ‘‘quantum jumps’’ technique, which r
quires the time scales discussed above in the contex
model~a!. The decay of an impurity atom in the photon ba
gap medium in the infrared or optical regime of photon f
quencies would then take few nanoseconds, and would
rather hard to be interrupted by ‘‘quantum jumps’’ to anoth
level.

It is worth stressing that independently of the value ofD

FIG. 2. Survival probability for the model~a! as a function of
time exactly at the dynamically shifted threshold. The upper cu
corresponds to the coherent, uninterrupted evolution, whereas
lower curves was obtained applying 50~200! interruption pulses
within the time 23105/A, (105/A), respectively.
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model ~b! leads to a nonvanishing survival probability ast
→`. Moreover, this final survival probability depends ve
critically on the detuning, and decreases very strongly be
the threshold. This is illustrated in Fig. 3 forD52g,0,g,
which give final survival probabilitiespf.0.7, 0.45, and
0.15, respectively. Imagine that we perform ‘‘quantu
jump’’ measurements in such a way, so that the interv
between measurements are at least of the order of 100ms,
i.e., larger than the time scale of the evolution.10/g. This
condition is obviously fulfilled for an inpurity atom in the
photon band gap medium, and marginally fulfilled for Ry
berg atoms in a cavity. On such a long time scale the evo
tion from Fig. 3 looks similar to an instantenous initial sl
followed by a constant behavior. Depending on the detun
chosen the survival probability monitored by ‘‘quantu
jumps’’ will tend to zero rapidly with the number of inter
ruptionsn aspf

n . Frequently observing if the Schro¨dinger cat
is alive, kills it faster. Such experiment requires ‘‘tuning’’ o
atomic transition frequency, or the photon band gap e
within the range ofg, which can be for instance done usin
external static electromagnetic field and Zeeman, or S
effect.

In fact, the acceleration of decay is in principle possib
for all generic weakly coupled~i.e., dominated by the
Wigner-Weisskopf exponential decay! decaying systems
The reason for that is that the ultrashort time of quadra
behavior of the survival probability is separated from t
exponential decay regime by a rapid initial slip. This slip h
to be faster than the corresponding exponential decay,
generically leads to a decrease of the survival probability

In order to demonstrate this fact we observe that

a~ t !512O~ t2! ~9!

for ultrashort times, whereas

a~ t !5A exp~z0t ! ~10!

for the bulk of the decay, wherez052g2 i D̃ denotes the
Wigner-Weisskopf pole with the negative real partg. From
H(z0)50, we obtain that

E ug~k!u2u

@D̃2v~k!#21g2
51, ~11!

e
he

FIG. 3. Survival probability for the model~b! as the function of
time. The values ofD are indicated.
5-3
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E ug~k!u2u@D̃2v~k!#

@D̃2v~k!#21g2
5@D̃2v~k!#. ~12!

The coefficientA on the other hand is the residuum of 1/H at
z0, that isA215H 8(z0),

A21512E ug~k!u2u@D̃2v~k!#2

$@D̃2v~k!#21g2%2
. ~13!

The imaginary part ofA21 can be easily find in the per
turbative limit. Denotingg(D)5pug@k(D)#u2, wherek(D)
is defined throughv@k(D)#5D, and using the fact tha
g(D) is much smaller than the characteristic frequency sc
of variations ofug(k)u, we can write

2
1

p

@D̃2v~k!#2

$@D̃2v~k!#21g2%2
.d8@D̃2v~k!#, ~14!

where d8(•••) is the derivative of the Dirac’s delta. Th
above expression gives us ImA21.2 ig8(D).

Calculation of the real part is a little more complicated;
requires second order Taylor expansion of the coupling fu
tion ug(k)u2 in the vicinity of v(k)5D̃. The final result is

A21512
g~D!g9~D!

2
2 ig8~d!. ~15!

Assuming a generic near threshold power law dependenc
g(D)}Dn with n.0, we obtain in the perturbative limit

uAu2512n
g~D!2

D2
,1. ~16!

As we see, even that the effect is the fourth order in
coupling, it may be quite significant@especially whenn,1
-

e

e
g
sy
.

en
lea
e
t.
ar
tu
es
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and D not too far from zero, which assures thatg(D) is
small, whereas the slip large#.

Summarizing, we have shown that near threshold de
can be exploited to observe the quantum anti-Zeno eff
Typical near threshold decay processes are characterize
ultrashort period of quadratic decay, followed by a lo
phase of nonexponential decay, with a very large rate at
begining, gradually slowing down in the course of the d
namics. Monitoring if the decaying system remains in t
initial state, shifts the system back to the fast initial phase
the nonexponential decay. In effect, more frequent meas
ment, cause faster decay. We discussed experimental f
bility of observing this effect for two models describing~a!
near threshold photodetachment of an electron from a ne
tive ion and spontaneous emission from an atom located
cavity, or from an impurity located within a photon band g
medium. Our scheme is quite general, and can be used
any decaying system with several time scales. Frequent m
toring of such systems will tend to diminish the role of th
long time scales, and to blow up the role and influence of
shorter time scales. In particular, frequent monitoring lea
to full decay of otherwise partially stable systems. We de
onstrate also that the anti-Zeno effect is always present
generic weakly coupled decaying systems for a certain
gime of interrogation~generic means here systems wi
power law coupling dependence on energy near thresho!.
There are implications of our result for quantum error c
rection schemes in quantum computing@4#, which typically
employ quantum Zeno effect. Using computing units w
nonstandard decay, such as the ones discussed above,
impose serious limitations on, or require developent of n
error correcting strategies.

The idea of this paper came from fruitful discussions w
Anna Sanpera. We acknowledge the support of the Deuts
Forschungsgemeinschaft~SFB 407!. K.R. thanks the Hum-
boldt Foundation for its generous support.
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