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Quantum equations of motion for a dissipative system
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We propose a method of determining quantum evolution equations for dissipative systems. Our approach is
based on the observations tlial the equations of quantum mechanics for a Hamiltonian system correspond to
the classical equations describing the evolution of a special statistical ensemble of copies of the syd®m, and
the quantum equations can be determined if the corresponding classical equations are known and the satisfac-
tion of the uncertainty principle for particle position and momentum is postulated. Namely, if these statements
are required to remain valid for a dissipative system, the quantum evolution equations for that system can be
obtained.

PACS numbds): 03.65.Sq, 05.36:d

[. INTRODUCTION Next, we demonstrate that the quantum equations can be
reproduced if the corresponding classical equations are
Since the very beginning of quantum mechanics, thiknown and the satisfaction of the uncertainty principle for
question has existed: Given a nonrelativistic physical systerfarticle position and momentum is postulated. Subsequently,
initially described by the laws of classical mechanics, howwe obtain the classical evolution equations for a semipure
does one describe it in terms of the laws of quantum mechargtatistical ensemble of copies of a dissipative system in
ics[1]? The most widely accepted answer to this question igvhich the particle is acted on by a force proportional to its
given by the Dirac algebraic rules, the so-called canonical o¥elocity. Then, the uncertainty principle for particle position
standard quantizatiofil,2], that can be applied to Hamil- and momentum is assumed to be satisfied and the required
tonian systems. Although there are crucial objections to th€uantum evolution equations are determined. Finally, the
suitability of the standard quantization rules to connect theSchralinger-Langevin equation is derived from these equa-
classical and quantum theorigl, this method has been ex- tions.
trapolated to the quantum-mechanical study of dissipative For simplicity, we consider only one-dimensional sys-
systems[3—6]. However, the difficulties and limitations in tems, although the entire discussion may be repeated for a
the use of the canonical quantization rules for dissipativdwo- or three-dimensional system without any substantial
systems make it impossib]e to obtain a guantum descriptiomOdiﬁcationS. Additionally, unless exp'lCltly stated other-
of these systems from the Lagrangian and Hamiltonian forwise, all integrations are performed over the whole available
malisms[1,7—9. Furthermore, if the dissipative system un- Space.
der consideratiorisystemA) is coupled to a thermal reser-

voir (system B) so that systemA+B as a whole is Il. HYDRODYNAMIC EQUATIONS OF QUANTUM
considered to be conservative, and the canonical quantization MECHANICS

rules are applied to systeA+B [10,11], physical inconsis- ) o _
tencies appedrl]. In quantum mechanics the system, consisting of a particle

In order to overcome the problems arising from the Diracacted on by a forc&(x), is described by means of a wave
quantization, different quantization methods of dissipativefunction #(x,t) that satisfies the Schinger equation
systems have been propoddd. In particular, the nonlinear
Schralinger-Langevin equation has been obtained by apply- 9
ing the Schrdinger method of quantizatidii2] to the gen- I (X, ) == PMgn? PO V) d(x.1), (D)
eralized Hamilton-Jacobi equatid8], by using the Nelson
stochastic quantization procedur&3,14, and by applying , . :
the classical Wigner transformations to a Fokker—PIanckWhereV(X) 's a potential of the forckl7,19. Alternatively,

equation[1]. Schialinger-type equations for dissipative sys- in order to describe the quantum system one can define the

- : robability density for particle positiop(x,t) and the cor-
tn(:gndser[zi\éelaqlso been derived by extensions of the I\/ladelurpl%sponding velocity fieldr(x,t) so that they meet the condi-

We propose another method of determining quantum evot-Ions

lution equations for dissipative systems. Namely, we first
examine the classical limit of the hydrodynamic equations of
guantum mechanics for a Hamiltonian systielr,17,18 and

find that the quantum equations correspond to the classical
equations describing the evolution of a special statistical en-
semble of copies of the system. We show that such a special
statistical ensemble of copies of the system can be called a — (x t)iz,//*(x t)
semipure statistical ensemble, because of its properties. "X '

12 9°

PO, = ™ (X,1) h(x,1), 2

h 1%
PO VLY = oo P (61 (X,

. 3
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Then, it can be shown that the functiopéx,t) andv(x,t) -
satisfy the system of two evolution equatidi$,17,18 Pc(X,t):j dp f(x,p,1), Pc(P,t)=J dx f(x,p,t),
(10
17
PO+ [p(X ) v(X,)]=0, (4) where p.(x,t) is a probability density for particle position
and p.(p,t) is a probability density for particle momentum
9 J F(X) 1 9 [1]. Therefore, if Eq(9) is integrated ovep, we find that
VXD TV v )= — = oD ox Ta( b,

) 2 pext) =~ D), ay

where the quantityl 4(x,t) is given by
where the currenf®(x,t) is given by
hZ

J
Tq<x’”:m|—p<x,t>

2 az
_p(X,t)} _0_P(X:t)] (6)

X X2

1
0= dpp fxp.0. 12
The analogous equations for a three-dimensional system a
called the hydrodynamic equations of quantum mechanic
since they are very similar to the equations of hydrodynam-"
ics[15,17]. Accordingly, Egs.(4) and(5) can be referred to

éqmilarly, if Eg. (9) is multiplied by p" and integrated over
we get

as the o_ne-dimensional hydrodynamic equations of quantum _j(n)(x,t):nlx)j(nfl)(x,t)_ij(nﬂ)(x,t), (13
mechanics. at m X
We note that if the ratio ofi to mis negligible, Eqs(4) o ) ) )
and (5) change into the classical equations where the functiong(™(x,t) are defined in the following
manner:
J J
P+ Tpe(x,) Ve(x,)]=0, @) | 1
jM(x, )= ﬁf dp P f(x,p,t). (14)
Jd d F(x)
V(XD V(X ) —ve(X, ) = — =, (8 Of course, Eq.(13) is valid for n=1, since the function

i©@(x,t) equalsp(x,t), according to Eqs(10) and (14).

We now see that the Liouville equation, E®), is
equivalent to the infinite system of evolution equations for
nt_he functionsj(M(x,t). Therefore, the state of the classical

tatistical ensemble of copies of the system can be described
)y the probability densityf(x,p,t) or, equivalently, by the

where the functiong(x,t) andv(x,t) have been replaced by
their classical counterpartg(x,t) andv.(x,t), respectively.

These equations describe the evolution of a statistical e
semble of copies of the corresponding classical syste

However, the statistical ensemble of copies of the syste fini £t ) Of hi h
must be prepared in a special manner so that it can be dé&! inite set of functiong™(x,t). OF course, this means that

scribed by Eqgs(7) and(8), which is shown in the next sec- the evolution of the statistical ensemble is determined if all
tion. ’ the functionsj (™ (x,t) are known.

It turns out that we are able to prepare a statistical en-
semble of copies of the system so that E). is valid and
1. PROBABILITY LIQUID IN CLASSICAL MECHANICS Eq.(13) is satisfied for any greater than one. Namely, if the

Having presented the hydrodynamic equations of quan\_/elocity fieldv¢(x,t) is defined according to the formula
tum mechanics, we now show that the equations they be-

come in the classical limit, Eq47) and (8), are satisfied O = pe(x,t) ve(x,b), (15
under additional conditions imposed on the related statistical _ _
ensemble of copies of the system. and the current™™(x,t) in Egs.(11) and(13) is replaced by

For this purpose we note that in classical mechanics &€ product ofp(x,t) andv,(x,t), we find that
statistical ensemble of copies of a single-particle system, in
which the particle is acted on by a conservative fdr¢a), d J _
is described by means of a probability dendify,p,t) sat- Ft PO 2 Tpe(X, 1) ve(X,1)]=0, (16)
isfying the Liouville equatiori1,17]

1% 1%
d p d d —V(X,t) V(X 1) —v(X,t)
— =—— — — — ot X
S =— - f(x,p,) =F(x) &pf(x,p,t), 9
_ F(x) 1 J
and having the following marginal properties: - m pc(X,t) ax

[P0t = pex, ) vax,H]. (17
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Interestingly enough, Eq(17) changes into Eq.(8) if ity density functions that represent the statistical ensembles
j@(x,t) is equal to the product op(x,t) and vi(x,t).  s" ands®, respectively{17]. Of course, in that case
Moreover, if all the functiong(™(x,t) are given by

o pe(x,)=a pc(x,t)+ B p(X,b), (2D

(M (x,1)=pe(X,t) ve(X,t), 18

PO =pe D velx, 18 according to Eq(10). Similarly, for any integem greater
Eq. (13) is satisfied for any greater than one, which can be than zero
verified by differentiating Eq(18) with respect to time and (n) ) ()
using Eqs(7) and(8) for eliminating the time derivatives of P =ajal (X )+ BE7(X), (22)
pc(X,t) andv.(x,t), respectively, from the resultant equa-
tion. Then, according to Eq$14) and (18), the nth central
momentu,(v) of the probability distribution of particle ve-
locity is given by[20]

according to Eq(14). Therefore, if a statistical ensemble of

copies of the system described by E¢8.and(8) is a mix-

ture of the statistical ensemble$ and s, these statistical

ensembles are also described by E@3.and (8) and the
corresponding velocity fieldg2(x,t) andvE(x,t) are equal

/Ln(V)ZJ dX{ve(X,1) = (v)]" pe(X,1), (199  to the resultant velocity field/;(x,t), which is shown in
Appendix B. Hence, the statistical ensembles of copies of the

system that are described by E¢#). and(8) can be referred

to as semipure statistical ensembles, since none of them can

be obtained as a mixture of statistical ensembles that are not

?;emipure themselves.

Second, we note that semipure statistical ensembles of
copies of a classical single-particle system minimize the av-
anyn at the initial instant of the time, it is satisfied for any erage particle energy with respect to the probability density

at any timet. Hence, we see that EqS) and(8) are satisfied pe(x,t) and the velocity fieldsq(x,t). Namely, for any pair

if the related statistical ensemble of copies of the system i?f func;icnlnsq(x_)t_ and pgxzhthat can be g_probalbili_'iy (;I_elndsity q
prepared so that Eq18) is satisfied for anyn at the initial or particie position and the corresponding velocity Tield an

instant of the time(Of course, it could be very difficult to for an instant of tir_neo, there is a familyS, .Of the statistical
obtain such a statistical ensemble in a real experiment, bLﬁnsemEIes of coplesAof the system for which the related func-
this is beyond the scope of our discussjone note that if  1ONS Pc(X,to) and ve(x,to) are equal tog(x) and p(x),

Egs. (7) and (8) are satisfied, the functiong.(x,t) and respgctwely. Then, in the familys, Fhere is exactly one
vo(x,t) can be treated as quantities describing the classicgemipure stafistical ensemble of copies of the syspmoOn
probability liquid. Then, the liquid of the densigy,(x,t) is the othgr h_and, in classical mechanics the average particle
very simple, since it is a liquid without any internal forces €Nergy is given by

[17]. Nonetheless, the statistical ensembles of copies of the m 0|2

system that can be described in terms of the classical prob- :_f p(—) f

ability liquid have some interesting properties, which are dis- (E) 2 dxd m foap O+ | dxdp M) T0x,p.t)
cussed in the next section.

where (v), denotes the average particle velocity at time
Therefore, for evem, the momentsu,(v) are nonnegative,
which is correct. Thus we can state that E¢&. and (8)
describe the evolution of the relevant statistical ensemble i
Eq. (18) is satisfied for anyn at any timet.

It is shown in Appendix A that if Eq(18) is satisfied for

m
=§<V2>t+<v>ta (23
IV. SEMIPURE ENSEMBLES OF COPIES

OF THE SYSTEM where the time dependence of the average square of particle

Having shown that statistical ensembles of copies of aelocity and the average potential energy is explicitly de-
classical single-particle Hamiltonian system must be prenoted by the subscript Thus, according to Eqg10) and
pared in a special manner so that they are described by Eq&i4), this equation can be transformed in the following man-
(7) and (8), we now discuss some important properties ofner:
such statistical ensembles.

We first observe that any of these statistical ensembles - m 2
cannot be obtained as a mixture of two statistical ensembles <E>_EJ dxve(x.t) pC(X’tHJ dx V(X) pe(X.1)
of copies of the system which are not described by Egs.
and(8). Namely, we recall that a statistical ensemble of cop-
ies of the system can be called a mixture of the statistical
ensembles” ands® if the corresponding probability density
f(x,p,t) is defined by Therefore, if the related statistical ensemble of copies of the

system is semipure, the last term in Eg4) vanishes. Be-
f(x,p,t)=a fAx,p,t)+ B fB(x,p,1), (200  cause this term is never less than zero, which is shown in

Appendix C, the statistical ensemtﬂé has the minimal av-

where a and B are nonnegative real numbers the sum oferage energy within the famil§,, and this means that the
which equals one, anf\(x,p,t) andfB(x,p,t) are probabil- average energy is minimized with respect to the functions

+§f dx[j@(x,1) =va(x,t) pe(x,0)]. (24)
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pc(x,t) andv (x,t) if the corresponding statistical ensemble uncertainty principle is not violated, the well-known equa-
of copies of the system is semipure. tions of quantum mechanics can be obtained.

We now see that semipure statistical ensembles of copies We first observe that in order to satisfy the uncertainty
of the system are special. They are also important, sincprinciple one should add a term independent of the velocity
many statistical ensembles of copies of the system that arfeld to the right-hand side of Eq26). Then, the right-hand
not semipure can be obtained as mixtures of semipure statiside of the resultant equation may be required to depend only
tical ensembles. On the other hand, there are semipure stan the probability density for particle position and on the
tistical ensembles of copies of the system that violate theelocity field, as it does for a semipure statistical ensemble
uncertainty principle for particle momentum and position. of copies of the system. In that case the additional term

In order to show this we first recall that, according to theought to depend only on the probability density for particle
uncertainty principle for particle momentum and position, position. Hence, because the right-hand side of this equation
the following inequality should be satisfied: must be the difference betweén?), and(v)?, one of these

averages should be given by a different, nonclassical for-
0y 0 ﬁ (25) mula. Of course, the corresponding classical formula ought
Vo 2m’ to be approached fori{m) tending to zero, since the right-
o _ hand side of Eq(25) is negligible in that limit.
where o, and o, denote the standard deviations of particle  \ye show in Appendix D that despite the uncertainty prin-

position and velocity, respectivef7,19. Next, we observe  cjpje for particle momentum and position, the average par-
that for a semipure statistical ensemble of copies of a classiic|e velocity is given by

cal single-particle system the dispersion of particle velocity,
being the second central moment of the probability distribu-
tion of particle velocity[20], satisfies the equation <V>t:j dxv(x,t) p(x1), (27)

f d 2 where p(x,t) and v(x,t) are counterparts of the classical
XVe(X,1) pe(X,t) | . . . .
functionsp.(x,t) andv.(x,t), respectively, unless the inter-
(26) pretation of the continuity equation is changed. On the other
hand, a modification of the formula for the average square of
‘particle velocity does not affect the continuity equation.
Therefore, it seems reasonable to attach the additional term
. ) ) , X to the formula for the average square of particle velocity
ticle velocity vanishes at the tinté, which follows from Eq.  5iher than to the formula for the average particle velocity.

(26). Thus, because the standard deviation of particle VelOCConsequently, we postulate that the average square of par-
ity is a square root oé2 [20], the left-hand side of Eq25) ticle velocity is given by

is then equal to zero, since the probability denpityx,t’) is
normalized to unity. Consequently, the uncertainty principle %2 9 2
for particle momentum and position is violated, whatever the(v2>t=j dx p(x,t) vz(x,t)+—2j dx 5p(x,t)} ,
dispersion of particle position is. 4m

We now see that there are semipure statistical ensembles (28)
of copies of the system having the dispersion of particle veyich is a sufficient condition for the satisfaction of the un-
locity that vanishes at certain time independent of the disperze tainty principle for particle momentum and position, ac-
sion of particle position, in which case the uncertainty PriN-cording to the discussion presented in Appendix E.
ciple for particle momentum and posmon_ is wolatgd. Having postulated that Eq28) is satisfied, we now ob-
However, the formulas for mean values of various quantitiegerye that the formula for the average particle energy must be
relative to a semipure statistical ensemble of copies of the,jified accordingly. Namely, if the right-hand side of Eq.

system can be modified so that the uncertainty principle i?28) is substituted foKv2), in Eq. (23), we obtain the fol-
always satisfied. Moreover, the relevant modifications can bﬁ)wing formula:

made in such a manner that they lead to the hydrodynamic

o= [ i e

Of course, in general, the dispersion of particle velocity de
pends on time. Nonetheless, if the velocity field is indepen
dent ofx at certain instant of time’, the dispersion of par-

1
p(x,t)

equations of quantum mechanics. We show this in the next m 5
section. <E>=§f dxve(x,t) p(x,t)
V. EFFECTS OF THE UNCERTAINTY PRINCIPLE +f dx V(X) p(x,t) + U[p(x,)], 29

In classical mechanics the uncertainty principle for par-
ticle momentum and position can be violated, because th@here the functional[ p(x,t)] is defined by
dispersion of particle velocity may be arbitrarily small inde-
pendent of the dispersion of particle position, especially if
the related statistical ensemble of copies of the system is U[p(x,t)]:% pr(x,t)
semipure. We now show that if the formula for the average
square of particle velocity relative to a semipure statisticalOf course, the right-hand side of E9) cannot be a con-
ensemble of copies of the system is modified so that thetant of motion as long as Eg&l) and (8) are satisfied by

2 2

. (30

4 t
5P(X, )
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p(x,t) and v(x,t). Therefore, if the average energy is re- P 52 P 2
quired to be a constant of motion, the probability density for f dxv(x,t)— T(x,t)——‘ —p(X,t)
particle position and the velocity field should satisfy another X 4m? | p(x,t) [ 9x
system of evolution equations. 2

In order to find these equations we note that they should —a—p(x t)] =0 (35)
contain all the terms that appear in E¢#). and (8) together ax2 '

with some additional terms vanishing fof /m) tending to

zero. The reason for this is that the required equations ougftherefore, we introduce the function

to become Eqs(7) and (8) when the ratio of4 to m is

negligible. Moreover, any modifications of the continuity WX, 1) =T(X,1) = Tq(x,1), (36)
equation either lead to complications with the normalizatio L .

of p(x,t), or can be made in such a manner that the resultaﬁ?’hereTq(X’t) is given by Eq.(6), and find that

equation remains a continuity equation, which is discussed in 9

Appendix D. Therefore, we postulate that the equations sat- f dxv(x,t)&w(x,t)zo. (37)
isfied by p(x,t) andv(x,t) be the following:

p p We observe thatv(x,t) is a functional ofp(x,t) and
— p(X,1) +—[p(x,t) v(x,t)]=0, (32) v(x,t), sinceT(x,t) andT4(x,t) are. Therefore, ity is the
ot 2 initial instant of time andw(x,t,) depends orx, Eq. (37)
leads to a condition for the functions(x,ty) andv(x,tg).
T(x.1) Moreover, if this equation is differentiated with respect to
e time, we obtain another condition foi(x,ty) andv(x,tg),
(320  because their time derivatives can be eliminated from the
resulting equation with the help of Eg&81) and (32). Re-
where T(x,t) is an unknown quantity that vanishes for peating this step we get an infinite set of conditions for
(7/m) tending to zero. We also require the quanfifx,t)  p(x,ty) andv(x,ty), which means that these functions de-
to be a functional op(x,t) andv(x,t), since we want Egs. pend on one another. However, there is no physical reason
(31) and(32) to describe a statistical ensemble of copies ofwhy the initial functionsp(x,to) andv(x,t,) should not be
the system that corresponds to a classical semipure statistidgadependent. This leads to the conclusion tivék,t,) does
ensemble of copies of the system. In other words, the evolunot depend orx. Consequentlyyw(x,t) is independent ok
tion of p(x,t) andv(x,t) is assumed to depend only on their for anyt, since it must always be given by the same formula.
initial forms, on the forceF(x), and on the shape of the Hence, Eqs(31) and(32) turn out to be the hydrodynamic
available space, which means that the right-hand side of Egquations of quantum mechanics.
(32), including T(x,t), can be expressed by(x,t) and We now see that the well-known equations of quantum
v(X,t). mechanics may result from the modifications which are
Next, we require that the average particle energy shoul@nade to the classical equations, describing a semipure statis-
be a constant of motion. Hence, because the average enertiyal ensemble of copies of the system, in order to avoid
is given by Eq.(29), we find that violating the uncertainty principle. Namely, the equations of
g quantum mechanics follow from three basic assumptions.
d The first of these assumptions is that the average square of
0= &<E>: &U[p(x’t)]_mf dXV(X't)&T(X’t)' particle velocity should be given by a formula that avoids
(33)  violating the uncertainty principle, the second is that the cor-
responding classical equations ought to be valid in the limit
which is obtained if the right-hand side of E@9) is differ-  of (%/m) tending to zero, and the third is that the average
entiated with respect to time and E@81) and(32) are used particle energy should be a constant of motion. Thus, in or-
for eliminating the time derivatives gf(x,t) and v(x,t), der to find the quantum evolution equations one needs to
respectively, from the resulting equation. Then, if the func-determine the corresponding classical equations, modify the
tional U[p(x,t)] is differentiated with respect to time and formula for the average square of particle velocity so that the
the right-hand side of Eq31) is substituted for the time uncertainty principle is not violated, and require that the av-
derivative ofp(x,t) in the resulting equation, we get erage particle energy does not evolve. In the next section we
apply a similar approach to a system in which the particle is

p J _Fx 1 4
GV TV v D= === TS o

d h? q d J 2 acted on by a force proportional to its velocity.
— X, t)]=—-—1] dxv(x,t) — —p(X
giYlp(x)] 4mf VOGO g1 S | ax P
VI. DISSIPATIVE SYSTEM
2
_ J p(X,t) (34) In the present section our previous results are used in
2 7 L . . - - _
X order to obtain the quantum equations of motion for a single

particle dissipative system in which the particle is acted on
which is shown in Appendix F. This leads to the conclusionby a force proportional to its velocity.
that For this purpose we consider a statistical ensemble of
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copies of a single-particle dissipative system satisfying th€42) and (43). Accordingly, such a statistical ensemble of

following Newton equation of motion: copies of the system can be called a semipure statistical en-
semble, since the discussion presented in Sec. IV can be

d?x dx F(x) applied to it without any modifications. In particular, such a
F:_75+?’ (38 statistical ensemble of copies of the system can be con-

structed so that the uncertainty principle for particle momen-

whereF(x) is a conservative force angis a positive con- U™ i'i”d position is violated at certain instant in tifeeg.,
stant. We assume that this statistical ensemble can be ditial).

scribed by means of the probability densityx,p,t). Of The uncertainty principle can be prevented from being
course, in the present case the functidm,p,t) does not violated in the same manner as in the case of the analogous

satisfy the Liouville equation. However, it is shown in Ap- Hamiltonian system. Namely, it can be postulated that the

pendix G that for the dissipative system under consideratiog;’)erage square of particle velocity be given by E2f).

there are equations that can be treated as counterparts of E 'nsequgntly, we must require that. the average particle en-
(11) and (13). Namely, if the functionp.(x,t) is defined rgy be given by Eq(29). Of course, in the present case the

according to Eq(10), it satisfies Eq(11), wherej D(x.t) is average energy is not a constant of motion. However, if the

given by Eq.(12). Similarly, if the functionsj™(x.t) are evolution equation for the average particle energy is known,
defined by Eq(14), the equéltion ’ the equations of motion for the counterpartspg{x,t) and

v¢(X,t) can be determined.
In order to find the evolution equation for the average

J. F(x) . J . , ; . T
ﬁ](”)(x,t)=nTJ(“‘l)(x,t)—aj(””)(x,t) particle energy, we note that in classical mechanics, if the
underlying system is described by E®@8), it satisfies the
—nyj™M(x,t) (390  equation
is satisfied for all integens greater than zer¢Of course, the d .
function j©(x,t) is identified with p(x,t).] Thus, if the gilEr=—my f dx j20x0), (44)
velocity fieldv.(x,t) is introduced according to E¢L5), the
following equations are satisfied: which is shown in Appendix I. Therefore, if the related sta-
tistical ensemble of copies of the system is semipure, we
’ (x t)+i[ t )]=0 49 have
(9t pC ' (9X pC(Xl )VC(Xv )] 1 ( )
d
E=-my[ oo pixn. @9

d J
ﬁvc(xi)—i_vc(xat) &VC(th)
Of course, the right-hand side of E@5) as well as the

B F(x) 1 d right-hand side of Eq(44) are proportional to the average
— Vet m pc(X,t) ox square of particle velocity. Consequently, EGs}) and (45)
. 5 mean that in classical mechanics the time derivative of the
X[JBx,0) = pe(x,1) va(x,b)]. (41 average particle energy is proportional to its kinetic part. On

) ) ) the other hand, it can be thought that each copy of the system
Therefore, if tzhe function’(x,t) is equal to the product of j the related statistical ensemble contains a particle. Hence,
pc(x,t) andvg(x.t), the last term in Eq(40) vanishes and  one can state that in classical mechanics the time derivative
we find that of the average energy depends on the velocities of these par-
ticles. Specifically, if the particles do not move, the right-
(42) hand sides of Eqg44) and(45) vanish and the time deriva-
tive of the average energy is equal to zero. In other words,
the particles must move so that the average energy can
d d F(x) change.
V(XD V(X D) Z ve(X, ) ==y ve(X, )+ — . If the uncertainty principle is satisfied and the particles
(43) are sufficiently small, we are unable to treat them as observ-
able objects. Nonetheless, if the statistical ensemble under
In that case, if Eq(18) is satisfied for any greater than one, consideration is required to be a counterpart of a classical
Eq. (39) is also satisfied for any greater than one. More- semipure statistical ensemble of copies of the system, we
over, as in the case of the analogous Hamiltonian system, Egquay assume that the particles do not move if the correspond-
(18) is satisfied for anyr and for any instant of timéwhen  ing velocity field is equal to zero. Thus we may require that
it is satisfied for anyn at the initial instant of the time, which the time derivative of the average energy vanish in such a
is shown in Appendix H. Therefore, if a statistical ensemblecase. Consequently, the average square of particle velocity in
of copies of the system is prepared in such a manner that E&q. (45) cannot be replaced with the right-hand side of Eq.
(18) is satisfied for any at the initial instant of the time, the (28) and it seems reasonable to leave it unmodified, since it
corresponding functiong(x,t) and v(x,t) satisfy Eqs. must be valid in the classical limit. Moreover, if the average

J J
EPC(X-t) +3_X[Pc(xvt) Vc(X-t)] =0,
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square of particle velocity in E¢45) were replaced with the 9 d F(X)
right-hand side of Eq(28), we would find that the average S VDV V(XD ==y V(X )+ — =
energy might change because of the uncertainty principle

itself, which would not be acceptable. Therefore, we postu- 1 9

late that the equation ) 5Tq(X,t),

d (52)
&<E>t:_m')’f dxv2(x,t) p(x,1), (46)

where the quantityl,(x,t) is given by Eq.(6).
where p(x,t) and v(x,t) are counterparts op(x,t) and We note that Eq950) and(51) have been found by using

; e he same arguments that can be used for obtaining Eys.
v(X,t), respectively, should be satisfied when the averagé . . S
particle energy is given by Eq29). and (5), which describe the analogous Hamiltonian system,

If Eq. (46) is satisfied and the average particle energy iexcept that the average particle energy is not a constant of

given by Eq.(29), the functionsp(x,t) andv(x,t) cannot motion in the present case. Acqordingly_, these equations can
satisfy Eqs.(42) and (43). Specifically, the continuity equa- be treated as the hydrodynamic equations of quantum me-
tion should be satisfied so that the normalizatiom ©f,t) is chanlcs_ for a one-dimensional d|SS|pat|v_e system, in Wh'Ch
conserved, but Eq43) must be modified. Moreover, it can the particle is acted on by a force proportional to its velocity.
be modified by introducing additional terms that vanish forMn(z)rv?/?]V;?olgtitc;Jr:nes L?:ttiotr??ct)riqésn? Iggiéﬁﬂ dliﬁgc:i% nabe-
(A/m) tending to zero, since the resultant equation shoulct1 a counterpart gf the Schdimaer vF\)/ave functions(x t
approach it in the classical limit. Therefore, we postulate thé\'/vﬁich " shovfn in the next secﬁon np(x.1),
following evolution equations fop(x,t) andv(x,t): '

9 VII. SCHRO DINGER-LANGEVIN EQUATION
g PO+ gl v DI=0, “7 Having derived the quantum evolution equations for a dis-
sipative system we now show that these equations lead to an
d 4 F(x) equation of motion for a complex-valued function being a
VDTV v == yv(x )+ == counterpart of the Schdinger wave functiony(x,t).
For this purpose we assume that the relevant velocity field
iT(x t) v(x,t) is potential. Then, we are able to define the function

~ p(x,t) ax #(x,t) in the following manner:

(48) m (x
P(x,t)= \/p(x,t)exr{i 7 dgv(q,t)
Xo

: (52

where the unknown quantity(x,t) vanishes for f/m)

tending to zero. Consequently, because the average particle

energy satisfies Eq46), we get where xq is an arbitrary fixed spatial coordinate. We note
that the functiony(x,t) is related top(x,t) andv(x,t) via

) Egs.(2) and(3). Consequently, if the right-hand side of Eq.
-m yJ dxve(x,t) p(x,t) (2) is substituted for the functiop(x,t) and the right-hand

q side of Eq.(3) for the product ofp(x,t) andv(x,t) in Eq.
_ _ J (50), we find that
_dt<E>t_ mf dxv(x,t) axT(X’t)

(9 a * ﬁz 02 62 *
d ) ihlp*—l/,Jriﬁlp LA P ,
+ Ul (X D ]=my | dxvi(x,t) p(x,1), ot at 2m ax? ax?

(53
(49

which is equivalent to the following system of two partial
which is obtained by differentiating E¢29) with respect to  differential equations:
time and using Eq947) and(48) in order to eliminate the
time derivatives op(x,t) andv(x,t), respectively, from the J
resulting equation. Hence, we see that &%) is satisfied by it Py =-
T(x,t). Therefore, we can introduce the functimgx,t) ac-
cording to Eq.(36) so that it satisfies Eq37). Then, the
same arguments that have been applied in the case of the . J _RZ Py .
analogous Hamiltonian system lead to the conclusion that 77" (=5 X2 gm0 = E(x1) P (X, 1),
w(x,t) should be independent af Finally, we find that (55)

12 9°

2WXZt,!/(><,t)+§(><,t) p(x1), (54

d i - i -
(x,t)+5[p(x,t)v(x,t)]20, (50) where &(x,t) is an unknown real-valued quantity. We ob

aP serve that if¢(x,t) is a functional of¥(x,t) and ¢* (x,t),
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and of the forceF(x), the evolution ofy(x,t) and ™ (x,t) P 52 52
is determined by the above equations. i —(X,t)=— 5 5 P(X,1) +V(X) p(X,1)
The unknown quantity¥(x,t) can be found with the help o Max
of Eq. (3). Namely, it follows from Eqgs(2), (52), (54), and n
(55) that the time derivative of the left-hand side of this yhard gy O] ¥(x.b), (62)
equation is given by which is the required equation of motion for the function
* #(x,t). This equation is apparently nonlinear. However, the
hod Ay oY . L S
>im 7t *5_ x nonlinear term appears in it because of the dissipation of

energy. We note that Eq(62) is very similar to the

1 08 o[ 52 [ 1/ap\? Schralinger-Langevin equation originally derived by Kostin
=—p ( - _) NI DR 7P _- <_p —pv?2 [11] from the Heisenberg-Langevin equation for a Brownian
m IX|  IX | 4m?| x> P\ IX particle interacting with a thermal environmdni.

(56) Some features of the Schiinger-Langevin equation
cause it to be considered as suitable for describing dissipa-
Consequently, the right-hand side of E§6) equals the time tive systems in quantum mechan[ds8,12,14,2) Most im-
derivative of the product o(x,t) andv(x,t). On the other ~portantly, it causes the uncertainty principle for particle po-
hand, according to Eq$50) and(51), we find that sition and momentum to be satisfied and for a two-patrticle
system it factorizes into two independent equations if there is
d no correlation between the motion of the two partidi2s].
E[p(x,t)V(X,t)]=—'yV(X,t)+ TP(X’U It turns out that the corresponding factorization occurs in
classical mechanics for a semipure statistical ensemble of

—5[Tq(x,t)+p(x,t) VAx,0)], copies of the two-particle system, which is discussed in Ap

pendix J.
(57)
VIIl. CONCLUSIONS
whereT,(x,t) is given by Eq.(6). This leads to the follow- . .
ing result: It follows from the considerations presented that quantum
evolution equations for a dissipative system can be formu-
9 % 1 9 lated in a consistent manner. In particular, these equations
- 5§(x,t)= Y57 Uix 0 x (x,t) agree with the equations for the corresponding Hamiltonian
(X, system in that they cause the normalization of the related
1 p probability density for particle position to be conserved.
_ — () [+F(x), (58 Moreover, they change into the equations for the correspond-
* (x,t) IX ing Hamiltonian system if the energy dissipation is negli-
o gible.
which is a consequence of Eq8) and(56). The derivation of the quantum evolution equations for a

Now, we note that there is the function argeturning the  dissipative system is based on the correspondence between
angle of the numbee in the complex plane. Thus, for the classical and quantum mechanics. Namely, it can be ob-
complex-valued function/(x,t) given by Eq.(52), we have  served that in the classical limit the hydrodynamic equations

of qguantum mechanics, resulting from the Sclinger equa-
m (x . " . .

ard ¢(x,t)]= _j dqv(g,t)+2nm, (59  fion, lead to the equations that describe the evolution of a
fi Jx, semipure statistical ensemble of copies of the system. On the

) _ o ) other hand, the uncertainty principle for particle momentum

n being an integer. Hence, the definition of the functionzarg and position can be violated by a classical semipure statisti-
implies the following identity: cal ensemble of copies of the system. In order to assure that

the uncertainty principle is always satisfied, the formulas for

iarq (X t)]=i 1 ilﬂ(x t) mean values of various physical quantities, including energy,
X ' 21| p(x,t) ox ' should be modified. Then, if the average energy is required
to be a constant of motion and the corresponding classical
1 J . equations are required to be approached in the classical limit,

- o) » T xH (60 the quantum evolution equations are found. Accordingly, in

order to obtain the quantum evolution equations for a dissi-
pative system one needs to derive the equations that describe
the evolution of a classical semipure statistical ensemble of
copies of that system. Next, if the classical formulas for

Ex,t)=yh ard y(x,t)]+V(X). (61) mean values of various physical quantities are modified so

that the uncertainty principle is not violated and a certain

Thus, if the right-hand side of this equation is substituted forevolution equation for the average energy is postulated, the
the functioné(x,t) in Eq. (54), we find that required equations can be determined.

Therefore, according to E@58), the potentialV(x) can be
redefined so thaf(x,t) is given by
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It turns out that the quantum evolution equations for a ;2
dissipative system lead to the Sctiger-Langevin equa- —ZW(“’(x,t):nvg’l(x,t)
tion in the same manner that the hydrodynamic equations of at
guantum mechanics lead to the Satinger equatior17]. P
Moreover, the Schidinger-Langevin equation is nonlinear, X— —w@(x,t)+n(n—1) vI~3(x,t)
: : . > . . Jx ot
with the nonlinearity arising directly from the terms describ-
ing the dissipation of energy. Therefore, it seems that the d J
Schralinger equation itself is linear because of the energy XEVC(X,U&—XWQ)(XJHH
conservation principle. This leads to the general hypothesis
that systems obeyi_ng the energy cqnservati(_)n pr_inciple may xiw(”‘l)(x t)—i iw(““)(x 0
be expected to satisfy linear evolution equations in quantum ot ! ox ot i
mechanics. Be constrast, systems in which energy is not con-
served should satisfy nonlinear equations of motion, with the
nonlinear terms due to the dissipation or aggregation of en-
ergy. where the time derivatives o (x,t), w("Y(x,t), and
w("(x,t) can be replaced with the right-hand side of Eq.
(A2) evaluated fon’=2, n"=n—1, andn’=n+1, respec-
tively. Therefore, if all the functions/("(x,t,) are equal to
zero, the right-hand side of EqA3) vanishes and the
| thank Professor W. Bardyszewski and Dr. K. Byczuk for second-order time derivatives of"(x,t) are equal to zero
fruitful discussions and for helping me with the preparationat timet,.
of the present paper. Repeating this step, we can show that the time derivatives
of w(W(x,t) of all orders are equal to zero at ting if all
w((x,t,) vanish, in which case all functions™(x,t) must
APPENDIX A not evolve. On the other hand, all the function&”(x,t,)
. . ) vanish if Eq.(18) is satisfied at time, for any n. Hence, if
. In the prgsent_append|x we show that in (_:Iassmal m_echarEq_ (18) is satisfied at timet, for any n, all functions
ics Eq.(18) is satisfied for anyr and for any instant of time w(x,t) vanish for anyt, which means that Eq(18) is

tif it is satisfied for anyn at the initial instant of timels,  gatisfied for anyn and for anyt. Thus the proof is complete.
provided that the corresponding probability density, p,t)

satisfies Eq(9).

For this purpose we note that in classical mechanics Eq. APPENDIX B
(13) is satisfied for anyh greater than zero by the functions
iMx,t), jMD(x,t), andj""Y(x,t) defined according to
Eq. (14) if the corresponding probability densiti(x,p,t)
satisfies Eq(9). (This is shown in Sec. Il}.Therefore, if the
functionsw(™(x,t) are defined by

F(x)

(A3)

ACKNOWLEDGMENTS

We have stated in Sec. IV that two statistical ensembles
of copies of the systerg” ands® must be semipure so that
another semipure statistical ensemble can be obtained as a
mixture ofs* ands®. Moreover, the corresponding velocity
fields va(x,t) andv(x,t) must be equal for this purpose.

In order to show this, we consider a statistical ensemble
of copies of the system described by the probability density
f(x,p,t), which is given by Eq(20), and calculate the quan-
tity

w(x,1) =} M(x,t) = pe(X,t) VE(X,1), (A1)

the following evolution equation is satisfied:
? q x0T

W(x,t)=j®(x,t)— XD

: (B1)

J J
—w(x,t)=nv(x,t) —w®(x,1) _ _ _ _
ot 2 wherep.(x,t) is defined according to E421) andj®)(x,t)

andj®)(x,t) are given by Eq(22) for n=1 andn=2, re-

+nmw(nfl)(x,t)_iw(nﬂ)(x,t), spectively. We note that/(x,t) must vanish so that the sta-
m IX tistical ensemble under consideration is semipure.
(A2) We first observe that EqB1) can be transformed in the
following manner:
for any integern greater than one. Of course, the function _ A B
wB(x,t) is always equal to zero, according to E¢k5) and P} WX ) =L e pcx,)+ B pcx.t)]
(AL). x[aiPxH+BiP(x0]
If Eq. (A2) is differentiated with respect to time, we find (1) (1) 5
that —laj’(x)+Bjg (x,1)]% (B2
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with the help of Egs.(21) and (22). Therefore, because according to Eqs(15), (21), and (22). Hence, the velocity
pc(x,t) is nonnegative and normalized to unity, the right- field v.(x,t) is then equal to’2(x,t) andvE(x,t). Therefore,
hand side of Eq(B2) must vanish so that/(x,t) is equal to  if the statistical ensembles® ands® are semipure, the cor-

zero. . . _ responding velocity fields2(x,t) andvE(x,t) must be equal
Next, we recalculate the right-hand side of EB2) in  so that any mixture of* and s® is a semipure statistical
such a manner that ensemble of copies of the system, in which case the resultant
velocity field is equal tos2(x,t) andvE(x,t).
A B . e\’
pc(X,t) W(X,t) =[a pc(X,t) + B pc(X,1)] Finally, we can state that the statistical ensembfeand

s® must be semipure and the corresponding velocity fields

A B
XLa Wi+ BWA D] vA(x,t) andvB(x,t) must be equal so that any mixture f

A and s® is a semipure statistical ensemble of copies of the
pC(X’t)(l) . . P
+ap — g (xt) system. Moreover, if a semipure statistical ensemble of cop-
pe(X,t) ies of the system is a mixture ef* andsB, the correspond-
5t) 2 ing velocity field is equal tos2(x,t) andv2(x,t). Thus the
pc(X,1). roof is complete.
“\/ E&’(x,o] ., ® P P
pC(X7t)

APPENDIX C

where the quantitiedVA(x,t) and WB(x,t) are defined in n th di how that f istical
analogy withW(x,t) for the statistical ensemble$ ands?, n the present appendix we show that for any statistica
ensemble of copies of a classical single-particle system,

respectively. S . i :
Now, we note that the function&(x,t) andW8(x,t) are which is described by a probability densitgx,p,t), there is
X X | a nonnegative quantity/(x,t) defined by

not less than zero, which is shown in Appendix C. Moreover,
they vanish if and only if the corresponding statistical en- (1) )
sembles of copies of the system are semipure. Consequently, W(x,t)=]® _[J (x,0)]

) o ; ) =]11(x1) , (CD

if any of the statistical ensemble$ ands® are not semipure, pe(X,t)

there is a spatial coordinaxdor which the right-hand side of

Eq. (B3) is greater than zero. Then, the quanttix,t) is  where p.(x,t) is given by Eq.(10) and j®(x,t) and
not equal to zero and the corresponding statistical ensembjé?)(x,t) are given by Eq(14) for n=1 andn=2, respec-
of copies of the system is not semipure. Thus the statisticélvely.

ensembles” ands® must be semipure so that any mixture of ~ For this purpose we observe that

them can be a semipure statistical ensemble of copies of the

system.

We now assume that the statistical ensembfesind s® W(X’t):f dp
are semipure. Then, according to EB3), we find that

2
f(x,p,t), (C2

p
E—vc(x,t)

where the velocity fields.(x,t) is defined according to Eq.

ph(x,t) (15). Namely, we have

pe(X,t)

p
—pg(x't)'(”( t) 2 (B4) fdp{ﬁ_v‘:(x’t)
- JA Xl .
pe(x,t)

c\™ p2
=f dp—zf(x,p,t)+v§(x,t)f dpf(x,p,t)
m

pe(X,1) W<x,t>=aﬂ[ i S, t)

2
f(x,p.t)

Next, we observe that the right-hand side of E84) van-
ishes if and only if p

C2vxh) f dpf(x,p.D), ()
i iRy

pB(x,1) B pAx 1) (BS Which can be transformed so that
. . . B 2
which means that the velocity fleldsf(x,t) and v (x,t) j dp B—v (x,t) f(x,p,t)=j(2)(x,t)—v2(x,t)p (x,1),
must be equal so that the right-hand side of B84) can m ¢ ¢ ¢
vanish. However, i/2(x,t) andvE(x,t) are equal, we have (C4

with the help of Eqs(10), (14), and(15). Of course, accord-

't 't —i(1) t
P V(XD =] 00D ing to Eq.(15), the right-hand side of EC4) is equal to the

=[a ph(x,t)+ B pB(x,1)IvE(x,1) right-hand side of Eq(C1). Therefore, because the left-hand
A side of EqQ.(C4) is never less than zero, the functig¥(x,t)
=pc(X,1) vei(x,t), (B6) s nonnegative and the proof is complete.
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APPENDIX D with Eq. (D1), we state that the average particle velocity is

iven by Eq.(27). Of course, once the velocity field is rede-

evm?igr?\g?‘ f’rﬁzte?(;gaiﬁﬁ' \éézz}tth%req:?ttigg dg:ﬁlrcl)t;]lr:g ;h%ned, the evolution equation for it must be modified accord-
continuity e uatti)m in cIaZsicaI m)échaﬁics as \F/)vell as in théngly. However, we can show that if the corresponding clas-

ity €q ; o . ... Sical statistical ensemble of copies of the system is semipure,
case in which the uncertainty principle for particle position

and momentum is satisfied. Moreover, in either case the rthe relevant modification can be be made by adding a new

lated mean value of particle velocity is given by E7), term to the right-hand side of this equation.

- . For this purpose we observe thatjif(x,t) vanishes for
whe_rep(x,t)_ _andv(x,t) denote the _probablllfty d_ensr[y for (2/m) tending to zero, the following equation must be valid
particle position and the corresponding velocity field, reSPec; e classical limit:

tively.
In order to show this, we first observe that in classical 9 F(x) @

mechanics Eq(11) is satisfied by the probability density Ej(x’t):T_ &[p(x,t)vﬁ(x,t)], (D6)

pc(x,t). Therefore, the average particle position and the av-

erage particle velocity satisfy the equation wherev(x,t) is defined according to Eq15) for the prob-
q ability densityp(x,t) and the currenf®(x,t). [Of course,
—(xX)=(V)y, (D1)  in that casev (x,t) satisfies Eq(8).] Therefore, in general,
dt the currentj (x,t) should satisfy the equation

which is verified by multiplying Eq(11) by x and integrating 9 F(X) 4

over it with the help of Eq(12). Of course, the mean values —j(%t) = ——— —[p(x,t) vVi(x,)) ]+ S(x,1), (D7)

of particle position and velocity can be determined indepen- o m X

dently, and this means that the uncertainty principle shouldyhere S(x,t) vanishes for £/m) tending to zero. On the

ought to be satisfied when the uncertainty principle is.
We now suppose that the formula for the average particle o . d

d
velocity is modified in order to avoid violating the uncer- 771 (XD =p(Xt) —v(X,)=v(X,) —= [p(X,1) V(X,1)].
tainty principle. Then, we have (D8)

d Thus, if the spatial derivative of the product pfx,t) and
Gi= V- f dxx Qx,1), (D2)  \2(xt) is added to both sides of E¢D7), we obtain that

where the classical average particle velocity is denoted by
(v){ and the additional term is given by the spatial integral
on the right-hand side of the equation. Hence, we find that

J Jd
p(X,t) Ev(x,t) +p(X,t) v(X,t) &v(x,t)

F(x) d
; ) = FS(xt) - a{p(X,t) Vq(X,t)
—p(x,t)=——jPx,H —Q(x,), (D3)
ot X X[vg(x,H)+2ve(x,)]}, (D9)

where P(X’t).(l')s a counterpart of the classical quantity wherev,(x,t) is defined according to E¢L5) for the current
pe(x,t) and j*7(x,t) is defined by Eq.(15) with pc(xt) jq(x,t) and the probability densitg(x,t). Consequently, if
substituted for by its counterpap(x,t). the functionT(x,t) is defined so that

We note that the spatial integral f(x,t) must be equal

to zero, since otherwise the normalization gfix,t) is not d J

conserved, in which cage(x,t) cannot be treated as a prob- x TG ==SX, D+ —{p(X,1) Vg(X,1)

ability density function. Moreover, we can safely assume

that Q(x,t) is not singular. Therefore, the function X[Vg(X,t) +2 v (x,t)]}, (D10

] x it vanishes in the classical limit, and the system of equations
Jqx,t)= JX dq Q(q,t), (D4)  (D3) and(D9) can be represented as E¢31) and (32).
0 We can conclude that any modification of the formula for
wherex, is an arbitrary fixed spatial coordinate, is well de- e average particle velocity is irrelevant as far as the uncer-
fined for any spatial coordinate Consequently, we are able tainty principle is concerned, since the velocity field can al-

to define the currenjt(x,t) in the following manner: ways be changed so that H@7) is safisfied. Moreover, any
modification of the right-hand side of the continuity equation
j(x,t)=j(1)(x,t) +igq(x.1), (D5) can be compensated by a change of the right-hand side of the

evolution equation for the velocity field. Therefore, we can
and the corresponding velocity field(x,t) can be defined assume that the average particle velocity is given by(Eq).
according to Eq(15). Then, if Eq.(D3) is multiplied byx  and that Eq(31) is valid when the uncertainty principle for
and integrated over it and the resulting equation is comparegarticle momentum and position is satisfied.
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APPENDIX E which is the required result, since the left-hand side of this

In the present appendix we show that [E2f) is satisfied inequality is the right-hand side of EGE3).

if Eg. (28) is, which means that Eq28) can be treated as a
sufficient condition for the satisfaction of the uncertainty

principle for particle momentum and position. In the present appendix we provide the entire derivation

For this purpose we first assume that E2f) is satisfied  of Eq. (34), which begins with differentiating Eq30) with
and observe that, according to it, the square of the left-hangbspect to time.

APPENDIX F

side of Eq.(25) is given by For this purpose we first transform E&O) in the follow-
ing manner:
oy 0=0% f dxv2(x) p(x) =(v)? 12 J 2
, ) , Ulp(x,)]= 5| dX—R(x.1)| , (F1)
+o2— | dx—|—p(¥)| , E1l
T am? p(X) axP) ED where R(x,t) = \p(x,t). Then, if Eq.(F1) is differentiated

with respect to time, we find that
where the irrelevant time dependence of all quantities is ne-

glected. We also note that the average particle velocity is d #2 IR o0 (IR %2 J°R JR
given by Eq.(27), according to the discussion presented in GVl D ]= o [ dxoe = | | = — XE e
Appendix D.

Next, we show that the first term on the right-hand side of (F2)

Eq. (E1) is never less than zero. Namely, we observe thatyhere the resulting equation is integrated by parts with the
according to Eq(27), the following equation is satisfied:  assumption that(x,t) as well as its spatial derivative vanish
on the system boundaries.
f dX[V(X)—<V>]2p(X)=f dxv2(x) p(x)—{v)?, Next, if the continuity equation, Ed4), is used for elimi-
(E2) nating the time derivative of the functidR(x,t) from Eg.
(F2) and the resulting equation is integrated by parts, we
since the probability densitp(x) is normalized to unity. obtain that
Hence, because the first term on the right-hand side of Eq. )
(E1) is a product ofo? and of the right-hand side of Eq. EU[ 1=— ﬁ_j dxv 9
(E2), it cannot be negative. This means, however, that dt - tP 2m P ox

1 #°R

R E ) (F3)

h? d 2 which can be represented by means of the functjepst)
2 2 2
x5 ] IR ax P (B3 andv(x,t), ie.,
Therefore, the proof will be complete if we show that the EU[ ]:_ﬁ_z dxv a1 1 [(dp\?
right-hand side of Eq(E3) is not less than#?/4m?). dt P 2m Pax| 2p gx2 4p2\ X
In order to show this, we consider the quanfié) de- (F4)

fined by[17]

Z(§)=f dx[

) Finally, we observe that there is the following identity
m] (E4) which holds for an arbitrary three-times-differentiable func-

1%
o £ ()

tion f(x):
and find that d| 1 (df\?2 1d?f| d|1/df\? d?f
Lro1qe P Fax 2l dx) “Tae| " ax|Tlax) e P
Z(§)=U§§2+§+Zf x5 W(x)} ., (EH) _ ; _ ,
p and apply it to the probability density(x,t). Hence, with

since p(x) vanishes on the system boundaries. Hence, bet-he help of Eq(F4) we obtain the required result, E(B4).

cause the quadratic for#@(¢) cannot be negative, according

to Eq. (E4), we have APPENDIX G
109 2 In classical mechanics, if a system is described by Eq.
A= 1_0)2(f dx——|—p(x)| <O. (E6) (38 and there is a statistical ensemble of copies of this sys-
p(X) [ dx tem that can be described by means of a probability density

f(x,p,t), the corresponding functions.(x,t) andjM(x,t),
defined by Eqs(10) and(14), respectively, satisfy Eq$11)

P 2 32 and(39), respectively.

—p(X)} = (E7) In order to show this we consider a subset\ofopies of

IX 4m? the system, selected from the statistical ensemble described

Consequently, we can state that

hZ
2
S dX_
Ux4m2J p(x)

022104-12



QUANTUM EQUATIONS OF MOTION FOR A . ..

by f(x,p,t), and define the function
N
1
pNOGD= g 2, SX (D] (G

whered(x) is the Diracé distribution and the functions;(t)

PHYSICAL REVIEW A61 022104

be treated as a limit of a sequence of functieqpgx,t) for N
tending to infinity, since any continuous function can be ap-
proximated by staircase functions with arbitrary precision
[20]. Accordingly, the functionp(x,t) can be treated as a
limit of a sequence of functionpy(x,t) for N tending to
infinity. Of course, similar arguments can be applied to the

describe the time dependence of positions of particles in thgnctionsj (M (x,t) andj™(x,t).
corresponding copies of the system. Of course, the functions Finally, we observe that Eq$G3) and (G6) are linear

x;(t) satisfy Eq.(38).
Now, if the currentjy(x,t) is defined in the following
manner:

N

> V() Slx—x;(1)],

j=1

_ 1
]N(th): N (Gz)

where v;(t) = (dx;/dt), and py(x,t) is differentiated with
respect to time, we find that

dJ J
aPN(X,t): - 5JN(X,I)- (G3
Similarly, if the functionsj{’(x,t) are defined by
1 N
j(Nn)(x,t):N]Zl vi(t) S[x—x;(1)], (G4)
and differentiated with respect to time, we get
N
J n
i N ) n-1
N D= 2 OV
J +(n+1)
X o[ x—x;(t)]— &jN (x,t), (GH

where a;(t) = (d?x; /dt?). Therefore, because the functions
x;(t) satisfy Eq.(38), we obtain that

F(x)

J. (n— .
SR =n——= 0P —nyjPxt)

J
_ __j(n+1)

axIn (). (G6)

We now note that the functions,(x,t) andj((x,t) are
approximated by py(x,t) and j{"(x,t), respectively.
Namely, one can define the quantity

PN(Xit):fqupN(qlt)! (G7)
Xo

with respect to the functiongy(x,t) andj{’(x,t). There-
fore, they are satisfied in the limit df tending to infinity.
Consequently, Eq$11) and(39) are satisfied by (x,t) and
j™M(x,t) and the proof is complete.

APPENDIX H

In the present appendix we show that in classical mechan-
ics Eq.(18) is satisfied for anyr and for any instant of time
t if it is satisfied for anyn at the initial instant of time,,
provided that the underlying single-particle system is de-
scribed by Eq(38).

For this purpose we observe that if the underlying system
is described by Eq(38), Egs.(11) and(39) are satisfied by
the functionsp(x,t) andj™(x,t), defined by Eqs(10) and
(14), respectively, which is shown in Appendix G. There-
fore, if the functionsw(™(x,t) are introduced according to
Eqg. (Al), we find that

)

d )
EW(”)(x,t)zn wD(x,t) —n yw(x,t)

d J
+nvli(x,t) &W(Z)(X,t) - 5W(“*1)(x,t).
(H1)

Hence, if Eq.(H1) is differentiated with respect to time, we
obtain an equation that is very similar to Eé2). Accord-
ingly, the right-hand side of this equation can be transformed
by eliminating the time derivatives @i(™(x,t) with the help

of Eq. (H1). Consequently, if all the functions("(x,t,) are
equal to zero, the right-hand side of this equation vanishes
and the second-order time derivativeswsf’(x,t) are equal

to zero at the time,.

Repeating this step we can show that the time derivatives
of w"(x,t) of all orders are equal to zero at ting if all
w(M(x,t,) vanish, in which case all functions™(x,t) must
not evolve. On the other hand, all the function&”(x,t,)
vanish if Eq.(18) is satisfied at the tim#, for anyn. Hence,
if Eq. (18) is satisfied at time for any n, all functions
w(M(x,t) vanish for anyt, which means that Eq(18) is

wherexg is an arbitrary fixed spatial coordinate, which is a satisfied for anyn and for anyt. Therefore, the proof is

staircase function of having jump discontinuitieg20].
Then, the continuous functioR(x,t), defined by

Pou= [ dapdan, @9
X0

is approximated byP\(x,t). The greater the numb&\, the
better the approximation. Therefore, the funct®fx,t) can

complete.

APPENDIX |

In classical mechanics, if a system is described by Eq.
(38), the average particle energy relative to a statistical en-
semble of copies of this system is given by E2@). There-
fore, the average energy satisfies Etf).

022104-13
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In order to show this, we differentiate E(R3) with re- 1
spect to time and obtain that j(”'"‘)(xl,xz,t):mn m”‘f dp; dp, Pt pP5 f(X1,P1,X2,P2,t).
112
aE—mfda'(z)tandv ? p(xit >
S(Eh=o5 | dxo i X V) e p(X1).

(11) Next, we observe that these functions satisfy the equations

Then, according to Eq$11) and(39), we get
ip(x X t)z—ij(l'o)(x X t)—ij(o'l)(x X,1)
&t 1172 axl 1172, axz 1:°82,4),

J
E(E);f dx F(x)j(l)(x,t)—myJ dx j@(x,t) (J4
—f dx V(x)ij(l)(x t) 12) 9 nm
ax o St (X X2, 1)
Next, integrating by parts and using the observation that
jM)(x,t) vanishes on the system boundaries, we find that the F(X0) (0 1my )
last term on the right-hand side of BiR) is equal to the first " (X, X2, t) =Ny JF(Xg,Xa,t)
term on the right-hand side of it with the opposite sign. Con-
sequently, we have F(x2) . .
auenty. w Y +m% M=%y, %, 1) =My j M (xg, %5, 1)
2
i(E) =-m 'yf dx j@(x,t) (13) J J
ot t L)y _ﬁj(n+l’m)(xlyxzyt)_Wj(n’erl)(XlaXzyt)y (J5)
1 2

which is the required result, EqR3).
which can be shown in analogy with the discussion presented
APPENDIX J in Appendix G. _ . .
We now note that, according to the discussion presented
The Schrdinger-Langevin equation obtained in Sec. VIl in Sec. IV, the statistical ensemble of copies of the system
has the important property that for a two-particle system itunder consideration is semipure if the functions
can be factorized into two equations having the form of Eqj(™™(x,,x,,t) are given by
(62) if there is no correlation between the motion of the two
particles[21]. Thus, for such a system, the wave function
satisfying the Schiidinger-Langevin equation is separable. It 1™ (X1,X2,t) =V1(Xq,X2,1) V3(X1,%2,t) p(Xg,X2,1),
turns out that the corresponding factorization occurs in clas- (J6
sical mechanics for a semipure statistical ensemble of copies

of the two-particle system. where the velocity fi
- ) _ y fields1(Xq,X,,t) and v,(Xq,X5,t) are
In order to show this, we proceed in analogy with the yefineq in the manner of EG15). Hence, if the considered

discussion presented in Sec. VI. Namely, we first consider @,iigtical ensemble of copies of the system is semipure, we
statistical ensemble of copies of the two-particle system dehave

scribed by the following Newton equations of motion:

d?x, dx1+F(x1) d?x, dx, F(Xp)

-n_ w2 PR T —p
dt? Pat T my 0 ge Tt m, at

JD

J
(X11X21t)+ﬁ[p(xlvx2!t) Vl(XlIXZ!t)]
1

1%
"‘W[P(lexzat)Vz(lexzat)]:Oa 7
where x,(t), X,(t), andm;, m, denote the positions and 2
masses of the particles, respectively. We assume that the
statistical ensemble of copies of the system can be described J J
by means of the probability density function 21 Va(X1,X2, ) = = Va(Xq X, 1) —2=Va (X1, X2, 1)
f(X1,P1,X2,p2,t), wherep,, p, are the momenta of the two !

particles. Then we define the probability dengix; ,x,,t) d
and the functiong(™™(x,,x,,t) in the following manner: ~Va(X1,X2,1) - Va(Xg,Xa, 1)
2
F(x1)
P(lexzit):f dp1dp, f(X1,p1,%2,P2:1),  (J2 ~yVa(Xy X, )+ m, ' (I8

022104-14
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g Va(X1,X2,1) = —Vi(X1,Xa, t) Vz(Xl X2,1)
_V2(X1,X2 t) V2(X1,X2 t)
F(x2)
- 7V2(X1:X21t)+ m . (Jg)
2

Finally, we observe that the two particles of which the
underlying system consists are independent. Therefore, the
probability densityf(x4,p1,X>,p2,t) can be factorized into

two probability density functions:
(J10

since the two pairs of random variables, p; andx,, ps

f(X1,P1,X2,P2,1) =f1(Xq,p1,1) F2(Xz,p2,1),

are then statistically independd20]. Consequently, accord-

ing to Egs.(J2 and(J3), we obtain that
(J13
(912

p(X1,Xz,t)=p1(Xq,1) pa(Xz,t),

FO(%q X, 1) =] 1(Xq,1) pa(Xa,t),

PHYSICAL REVIEW A61 022104

(J13

JOB(x1,Xa,8) = p1(Xq,t) jo(Xa,1),

in which case the velocity field#t,(X;,X,,t) is independent
of X, and the velocity field/,(x4,X5,t) is independent of;.
Thus, because E@J7) can be transformed in the following
manner:

Jd d
[ —pa(Xy, t)+ [Pz(Xz t) vo(Xy, t)]}

p2(x2 vt)

14
P1(X1 t) a_xl[pl(xl’t) V1(X1-t)]+,

(J14

[ it p1(Xy,t)+

we find that each of the two pairs of functiopsg(x,,t),
v1(Xq,t) andps(Xs,,t), Va(Xs,t) satisfies Eqsi42) and(43).
Therefore, if the statistical ensemble of copies of the system
under consideration is semipure, it can be split into two in-
dependent statistical ensembles of copies of single-particle
systems, and this corresponds to the factorization of the re-
lated Schrdinger-Langevin equation.
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