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Quantum equations of motion for a dissipative system

R. J. Wysocki
Institute of Theoretical Physics, Warsaw University, Hoz˙a 69, 00-681 Warsaw, Poland

~Received 11 August 1999; published 7 January 2000!

We propose a method of determining quantum evolution equations for dissipative systems. Our approach is
based on the observations that~1! the equations of quantum mechanics for a Hamiltonian system correspond to
the classical equations describing the evolution of a special statistical ensemble of copies of the system, and~2!
the quantum equations can be determined if the corresponding classical equations are known and the satisfac-
tion of the uncertainty principle for particle position and momentum is postulated. Namely, if these statements
are required to remain valid for a dissipative system, the quantum evolution equations for that system can be
obtained.

PACS number~s!: 03.65.Sq, 05.30.2d
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I. INTRODUCTION

Since the very beginning of quantum mechanics, t
question has existed: Given a nonrelativistic physical sys
initially described by the laws of classical mechanics, h
does one describe it in terms of the laws of quantum mech
ics @1#? The most widely accepted answer to this questio
given by the Dirac algebraic rules, the so-called canonica
standard quantization@1,2#, that can be applied to Hamil
tonian systems. Although there are crucial objections to
suitability of the standard quantization rules to connect
classical and quantum theories@1#, this method has been ex
trapolated to the quantum-mechanical study of dissipa
systems@3–6#. However, the difficulties and limitations in
the use of the canonical quantization rules for dissipa
systems make it impossible to obtain a quantum descrip
of these systems from the Lagrangian and Hamiltonian
malisms@1,7–9#. Furthermore, if the dissipative system u
der consideration~systemA) is coupled to a thermal rese
voir ~system B) so that systemA1B as a whole is
considered to be conservative, and the canonical quantiza
rules are applied to systemA1B @10,11#, physical inconsis-
tencies appear@1#.

In order to overcome the problems arising from the Dir
quantization, different quantization methods of dissipat
systems have been proposed@1#. In particular, the nonlinea
Schrödinger-Langevin equation has been obtained by ap
ing the Schro¨dinger method of quantization@12# to the gen-
eralized Hamilton-Jacobi equation@8#, by using the Nelson
stochastic quantization procedure@13,14#, and by applying
the classical Wigner transformations to a Fokker-Plan
equation@1#. Schrödinger-type equations for dissipative sy
tems have also been derived by extensions of the Made
model @15,16#.

We propose another method of determining quantum e
lution equations for dissipative systems. Namely, we fi
examine the classical limit of the hydrodynamic equations
quantum mechanics for a Hamiltonian system@15,17,18# and
find that the quantum equations correspond to the class
equations describing the evolution of a special statistical
semble of copies of the system. We show that such a spe
statistical ensemble of copies of the system can be calle
semipure statistical ensemble, because of its proper
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Next, we demonstrate that the quantum equations can
reproduced if the corresponding classical equations
known and the satisfaction of the uncertainty principle
particle position and momentum is postulated. Subseque
we obtain the classical evolution equations for a semip
statistical ensemble of copies of a dissipative system
which the particle is acted on by a force proportional to
velocity. Then, the uncertainty principle for particle positio
and momentum is assumed to be satisfied and the requ
quantum evolution equations are determined. Finally,
Schrödinger-Langevin equation is derived from these eq
tions.

For simplicity, we consider only one-dimensional sy
tems, although the entire discussion may be repeated f
two- or three-dimensional system without any substan
modifications. Additionally, unless explicitly stated othe
wise, all integrations are performed over the whole availa
space.

II. HYDRODYNAMIC EQUATIONS OF QUANTUM
MECHANICS

In quantum mechanics the system, consisting of a part
acted on by a forceF(x), is described by means of a wav
function c(x,t) that satisfies the Schro¨dinger equation

i\
]

]t
c~x,t !52

\2

2m

]2

]x2
c~x,t !1V~x! c~x,t !, ~1!

whereV(x) is a potential of the force@17,19#. Alternatively,
in order to describe the quantum system one can define
probability density for particle positionr(x,t) and the cor-
responding velocity fieldv(x,t) so that they meet the cond
tions

r~x,t !5c* ~x,t ! c~x,t !, ~2!

r~x,t ! v~x,t !5
\

2 i m Fc* ~x,t !
]

]x
c~x,t !

2c~x,t !
]

]x
c* ~x,t !G . ~3!
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Then, it can be shown that the functionsr(x,t) and v(x,t)
satisfy the system of two evolution equations@15,17,18#

]

]t
r~x,t !1

]

]x
@r~x,t ! v~x,t !#50, ~4!

]

]t
v~x,t !1v~x,t !

]

]x
v~x,t !5

F~x!

m
2

1

r~x,t !

]

]x
Tq~x,t !,

~5!

where the quantityTq(x,t) is given by

Tq~x,t !5
\2

4m2 H 1

r~x,t ! F ]

]x
r~x,t !G2

2
]2

]x2
r~x,t !J . ~6!

The analogous equations for a three-dimensional system
called the hydrodynamic equations of quantum mechan
since they are very similar to the equations of hydrodyna
ics @15,17#. Accordingly, Eqs.~4! and ~5! can be referred to
as the one-dimensional hydrodynamic equations of quan
mechanics.

We note that if the ratio of\ to m is negligible, Eqs.~4!
and ~5! change into the classical equations

]

]t
rc~x,t !1

]

]x
@rc~x,t ! vc~x,t !#50, ~7!

]

]t
vc~x,t !1vc~x,t !

]

]x
vc~x,t !5

F~x!

m
, ~8!

where the functionsr(x,t) andv(x,t) have been replaced b
their classical counterpartsrc(x,t) andvc(x,t), respectively.
These equations describe the evolution of a statistical
semble of copies of the corresponding classical syst
However, the statistical ensemble of copies of the sys
must be prepared in a special manner so that it can be
scribed by Eqs.~7! and~8!, which is shown in the next sec
tion.

III. PROBABILITY LIQUID IN CLASSICAL MECHANICS

Having presented the hydrodynamic equations of qu
tum mechanics, we now show that the equations they
come in the classical limit, Eqs.~7! and ~8!, are satisfied
under additional conditions imposed on the related statist
ensemble of copies of the system.

For this purpose we note that in classical mechanic
statistical ensemble of copies of a single-particle system
which the particle is acted on by a conservative forceF(x),
is described by means of a probability densityf (x,p,t) sat-
isfying the Liouville equation@1,17#

]

]t
f ~x,p,t !52

p

m

]

]x
f ~x,p,t !2F~x!

]

]p
f ~x,p,t !, ~9!

and having the following marginal properties:
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rc~x,t !5E dp f~x,p,t !, r̃c~p,t !5E dx f~x,p,t !,

~10!

where rc(x,t) is a probability density for particle position
and r̃c(p,t) is a probability density for particle momentum
@1#. Therefore, if Eq.~9! is integrated overp, we find that

]

]t
rc~x,t !52

]

]x
j (1)~x,t !, ~11!

where the currentj (1)(x,t) is given by

j (1)~x,t !5
1

mE dp p f~x,p,t !. ~12!

Similarly, if Eq. ~9! is multiplied by pn and integrated over
p, we get

]

]t
j (n)~x,t !5n

F~x!

m
j (n21)~x,t !2

]

]x
j (n11)~x,t !, ~13!

where the functionsj (n)(x,t) are defined in the following
manner:

j (n)~x,t !5
1

mnE dp pn f ~x,p,t !. ~14!

Of course, Eq.~13! is valid for n51, since the function
j (0)(x,t) equalsrc(x,t), according to Eqs.~10! and ~14!.

We now see that the Liouville equation, Eq.~9!, is
equivalent to the infinite system of evolution equations
the functionsj (n)(x,t). Therefore, the state of the classic
statistical ensemble of copies of the system can be descr
by the probability densityf (x,p,t) or, equivalently, by the
infinite set of functionsj (n)(x,t). Of course, this means tha
the evolution of the statistical ensemble is determined if
the functionsj (n)(x,t) are known.

It turns out that we are able to prepare a statistical
semble of copies of the system so that Eq.~8! is valid and
Eq. ~13! is satisfied for anyn greater than one. Namely, if th
velocity field vc(x,t) is defined according to the formula

j (1)~x,t !5rc~x,t ! vc~x,t !, ~15!

and the currentj (1)(x,t) in Eqs.~11! and~13! is replaced by
the product ofrc(x,t) andvc(x,t), we find that

]

]t
rc~x,t !1

]

]x
@rc~x,t ! vc~x,t !#50, ~16!

]

]t
vc~x,t !1vc~x,t !

]

]x
vc~x,t !

5
F~x!

m
2

1

rc~x,t !

]

]x
@ j (2)~x,t !2rc~x,t ! vc

2~x,t !#. ~17!
4-2
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Interestingly enough, Eq.~17! changes into Eq.~8! if
j (2)(x,t) is equal to the product ofrc(x,t) and vc

2(x,t).
Moreover, if all the functionsj (n)(x,t) are given by

j (n)~x,t !5rc~x,t ! vc
n~x,t !, ~18!

Eq. ~13! is satisfied for anyn greater than one, which can b
verified by differentiating Eq.~18! with respect to time and
using Eqs.~7! and~8! for eliminating the time derivatives o
rc(x,t) and vc(x,t), respectively, from the resultant equ
tion. Then, according to Eqs.~14! and ~18!, the nth central
momentmn(v) of the probability distribution of particle ve
locity is given by@20#

mn~v !5E dx@vc~x,t !2^v& t#
n rc~x,t !, ~19!

where ^v& t denotes the average particle velocity at timet.
Therefore, for evenn, the momentsmn(v) are nonnegative
which is correct. Thus we can state that Eqs.~7! and ~8!
describe the evolution of the relevant statistical ensemb
Eq. ~18! is satisfied for anyn at any timet.

It is shown in Appendix A that if Eq.~18! is satisfied for
anyn at the initial instant of the time, it is satisfied for anyn
at any timet. Hence, we see that Eqs.~7! and~8! are satisfied
if the related statistical ensemble of copies of the system
prepared so that Eq.~18! is satisfied for anyn at the initial
instant of the time.~Of course, it could be very difficult to
obtain such a statistical ensemble in a real experiment,
this is beyond the scope of our discussion.! We note that if
Eqs. ~7! and ~8! are satisfied, the functionsrc(x,t) and
vc(x,t) can be treated as quantities describing the class
probability liquid. Then, the liquid of the densityrc(x,t) is
very simple, since it is a liquid without any internal force
@17#. Nonetheless, the statistical ensembles of copies of
system that can be described in terms of the classical p
ability liquid have some interesting properties, which are d
cussed in the next section.

IV. SEMIPURE ENSEMBLES OF COPIES
OF THE SYSTEM

Having shown that statistical ensembles of copies o
classical single-particle Hamiltonian system must be p
pared in a special manner so that they are described by
~7! and ~8!, we now discuss some important properties
such statistical ensembles.

We first observe that any of these statistical ensem
cannot be obtained as a mixture of two statistical ensem
of copies of the system which are not described by Eqs.~7!
and~8!. Namely, we recall that a statistical ensemble of co
ies of the system can be called a mixture of the statist
ensemblessA andsB if the corresponding probability densit
f (x,p,t) is defined by

f ~x,p,t !5a f A~x,p,t !1b f B~x,p,t !, ~20!

where a and b are nonnegative real numbers the sum
which equals one, andf A(x,p,t) and f B(x,p,t) are probabil-
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sA andsB, respectively@17#. Of course, in that case

rc~x,t !5a rc
A~x,t !1b rc

B~x,t !, ~21!

according to Eq.~10!. Similarly, for any integern greater
than zero

j (n)~x,t !5a j A
(n)~x,t !1b j B

(n)~x,t !, ~22!

according to Eq.~14!. Therefore, if a statistical ensemble o
copies of the system described by Eqs.~7! and~8! is a mix-
ture of the statistical ensemblessA and sB, these statistical
ensembles are also described by Eqs.~7! and ~8! and the
corresponding velocity fieldsvc

A(x,t) andvc
B(x,t) are equal

to the resultant velocity fieldvc(x,t), which is shown in
Appendix B. Hence, the statistical ensembles of copies of
system that are described by Eqs.~7! and~8! can be referred
to as semipure statistical ensembles, since none of them
be obtained as a mixture of statistical ensembles that are
semipure themselves.

Second, we note that semipure statistical ensemble
copies of a classical single-particle system minimize the
erage particle energy with respect to the probability den
rc(x,t) and the velocity fieldvc(x,t). Namely, for any pair
of functionsq(x) andp(x) that can be a probability densit
for particle position and the corresponding velocity field a
for an instant of timet0, there is a familySA of the statistical
ensembles of copies of the system for which the related fu
tions rc

A(x,t0) and vc
A(x,t0) are equal toq(x) and p(x),

respectively. Then, in the familySA there is exactly one
semipure statistical ensemble of copies of the systems0

A . On
the other hand, in classical mechanics the average par
energy is given by

^E&5
m

2 E dx dpS p

mD 2

f ~x,p,t !1E dx dp V~x! f ~x,p,t !

5
m

2
^v2& t1^V& t , ~23!

where the time dependence of the average square of pa
velocity and the average potential energy is explicitly d
noted by the subscriptt. Thus, according to Eqs.~10! and
~14!, this equation can be transformed in the following ma
ner:

^E&5
m

2 E dx vc
2~x,t ! rc~x,t !1E dx V~x! rc~x,t !

1
m

2 E dx@ j (2)~x,t !2vc
2~x,t ! rc~x,t !#. ~24!

Therefore, if the related statistical ensemble of copies of
system is semipure, the last term in Eq.~24! vanishes. Be-
cause this term is never less than zero, which is shown
Appendix C, the statistical ensembles0

A has the minimal av-
erage energy within the familySA , and this means that th
average energy is minimized with respect to the functio
4-3
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R. J. WYSOCKI PHYSICAL REVIEW A 61 022104
rc(x,t) andvc(x,t) if the corresponding statistical ensemb
of copies of the system is semipure.

We now see that semipure statistical ensembles of co
of the system are special. They are also important, s
many statistical ensembles of copies of the system that
not semipure can be obtained as mixtures of semipure st
tical ensembles. On the other hand, there are semipure
tistical ensembles of copies of the system that violate
uncertainty principle for particle momentum and position

In order to show this we first recall that, according to t
uncertainty principle for particle momentum and positio
the following inequality should be satisfied:

sx sv>
\

2m
, ~25!

wheresx and sv denote the standard deviations of partic
position and velocity, respectively@17,19#. Next, we observe
that for a semipure statistical ensemble of copies of a cla
cal single-particle system the dispersion of particle veloc
being the second central moment of the probability distri
tion of particle velocity@20#, satisfies the equation

sv
25E dx vc

2~x,t ! rc~x,t !2F E dx vc~x,t ! rc~x,t !G2

.

~26!

Of course, in general, the dispersion of particle velocity
pends on time. Nonetheless, if the velocity field is indep
dent ofx at certain instant of timet8, the dispersion of par-
ticle velocity vanishes at the timet8, which follows from Eq.
~26!. Thus, because the standard deviation of particle ve
ity is a square root ofsv

2 @20#, the left-hand side of Eq.~25!
is then equal to zero, since the probability densityrc(x,t8) is
normalized to unity. Consequently, the uncertainty princi
for particle momentum and position is violated, whatever
dispersion of particle position is.

We now see that there are semipure statistical ensem
of copies of the system having the dispersion of particle
locity that vanishes at certain time independent of the disp
sion of particle position, in which case the uncertainty pr
ciple for particle momentum and position is violate
However, the formulas for mean values of various quanti
relative to a semipure statistical ensemble of copies of
system can be modified so that the uncertainty principle
always satisfied. Moreover, the relevant modifications can
made in such a manner that they lead to the hydrodyna
equations of quantum mechanics. We show this in the n
section.

V. EFFECTS OF THE UNCERTAINTY PRINCIPLE

In classical mechanics the uncertainty principle for p
ticle momentum and position can be violated, because
dispersion of particle velocity may be arbitrarily small ind
pendent of the dispersion of particle position, especially
the related statistical ensemble of copies of the system
semipure. We now show that if the formula for the avera
square of particle velocity relative to a semipure statisti
ensemble of copies of the system is modified so that
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uncertainty principle is not violated, the well-known equ
tions of quantum mechanics can be obtained.

We first observe that in order to satisfy the uncertain
principle one should add a term independent of the velo
field to the right-hand side of Eq.~26!. Then, the right-hand
side of the resultant equation may be required to depend
on the probability density for particle position and on t
velocity field, as it does for a semipure statistical ensem
of copies of the system. In that case the additional te
ought to depend only on the probability density for partic
position. Hence, because the right-hand side of this equa
must be the difference between^v2& t and^v& t

2 , one of these
averages should be given by a different, nonclassical
mula. Of course, the corresponding classical formula ou
to be approached for (\/m) tending to zero, since the right
hand side of Eq.~25! is negligible in that limit.

We show in Appendix D that despite the uncertainty pr
ciple for particle momentum and position, the average p
ticle velocity is given by

^v& t5E dx v~x,t ! r~x,t !, ~27!

where r(x,t) and v(x,t) are counterparts of the classic
functionsrc(x,t) andvc(x,t), respectively, unless the inter
pretation of the continuity equation is changed. On the ot
hand, a modification of the formula for the average square
particle velocity does not affect the continuity equatio
Therefore, it seems reasonable to attach the additional t
to the formula for the average square of particle veloc
rather than to the formula for the average particle veloc
Consequently, we postulate that the average square of
ticle velocity is given by

^v2& t5E dx r~x,t ! v2~x,t !1
\2

4m2E dx
1

r~x,t ! F ]

]x
r~x,t !G2

,

~28!

which is a sufficient condition for the satisfaction of the u
certainty principle for particle momentum and position, a
cording to the discussion presented in Appendix E.

Having postulated that Eq.~28! is satisfied, we now ob-
serve that the formula for the average particle energy mus
modified accordingly. Namely, if the right-hand side of E
~28! is substituted for̂ v2& t in Eq. ~23!, we obtain the fol-
lowing formula:

^E&5
m

2 E dx v2~x,t ! r~x,t !

1E dx V~x! r~x,t !1U@r~x,t !#, ~29!

where the functionalU@r(x,t)# is defined by

U@r~x,t !#5
\2

8mE dx
1

r~x,t ! F ]

]x
r~x,t !G2

. ~30!

Of course, the right-hand side of Eq.~29! cannot be a con-
stant of motion as long as Eqs.~7! and ~8! are satisfied by
4-4
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QUANTUM EQUATIONS OF MOTION FOR A . . . PHYSICAL REVIEW A61 022104
r(x,t) and v(x,t). Therefore, if the average energy is r
quired to be a constant of motion, the probability density
particle position and the velocity field should satisfy anoth
system of evolution equations.

In order to find these equations we note that they sho
contain all the terms that appear in Eqs.~7! and~8! together
with some additional terms vanishing for (\/m) tending to
zero. The reason for this is that the required equations ou
to become Eqs.~7! and ~8! when the ratio of\ to m is
negligible. Moreover, any modifications of the continui
equation either lead to complications with the normalizat
of r(x,t), or can be made in such a manner that the resul
equation remains a continuity equation, which is discusse
Appendix D. Therefore, we postulate that the equations
isfied byr(x,t) andv(x,t) be the following:

]

]t
r~x,t !1

]

]x
@r~x,t ! v~x,t !#50, ~31!

]

]t
v~x,t !1v~x,t !

]

]x
v~x,t !5

F~x!

m
2

1

r~x,t !

]

]x
T~x,t !,

~32!

where T(x,t) is an unknown quantity that vanishes f
(\/m) tending to zero. We also require the quantityT(x,t)
to be a functional ofr(x,t) andv(x,t), since we want Eqs
~31! and ~32! to describe a statistical ensemble of copies
the system that corresponds to a classical semipure statis
ensemble of copies of the system. In other words, the ev
tion of r(x,t) andv(x,t) is assumed to depend only on the
initial forms, on the forceF(x), and on the shape of th
available space, which means that the right-hand side of
~32!, including T(x,t), can be expressed byr(x,t) and
v(x,t).

Next, we require that the average particle energy sho
be a constant of motion. Hence, because the average en
is given by Eq.~29!, we find that

05
d

dt
^E&5

d

dt
U@r~x,t !#2mE dx v~x,t !

]

]x
T~x,t !,

~33!

which is obtained if the right-hand side of Eq.~29! is differ-
entiated with respect to time and Eqs.~31! and~32! are used
for eliminating the time derivatives ofr(x,t) and v(x,t),
respectively, from the resulting equation. Then, if the fun
tional U@r(x,t)# is differentiated with respect to time an
the right-hand side of Eq.~31! is substituted for the time
derivative ofr(x,t) in the resulting equation, we get

d

dt
U@r~x,t !#5

\2

4mE dx v~x,t !
]

]x H 1

r~x,t ! F ]

]x
r~x,t !G2

2
]2

]x2
r~x,t !J , ~34!

which is shown in Appendix F. This leads to the conclusi
that
02210
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E dx v~x,t !
]

]x S T~x,t !2
\2

4m2 H 1

r~x,t ! F ]

]x
r~x,t !G2

2
]2

]x2
r~x,t !J D 50. ~35!

Therefore, we introduce the function

w~x,t !5T~x,t !2Tq~x,t !, ~36!

whereTq(x,t) is given by Eq.~6!, and find that

E dx v~x,t !
]

]x
w~x,t !50. ~37!

We observe thatw(x,t) is a functional ofr(x,t) and
v(x,t), sinceT(x,t) andTq(x,t) are. Therefore, ift0 is the
initial instant of time andw(x,t0) depends onx, Eq. ~37!
leads to a condition for the functionsr(x,t0) and v(x,t0).
Moreover, if this equation is differentiated with respect
time, we obtain another condition forr(x,t0) and v(x,t0),
because their time derivatives can be eliminated from
resulting equation with the help of Eqs.~31! and ~32!. Re-
peating this step we get an infinite set of conditions
r(x,t0) and v(x,t0), which means that these functions d
pend on one another. However, there is no physical rea
why the initial functionsr(x,t0) andv(x,t0) should not be
independent. This leads to the conclusion thatw(x,t0) does
not depend onx. Consequently,w(x,t) is independent ofx
for any t, since it must always be given by the same formu
Hence, Eqs.~31! and ~32! turn out to be the hydrodynami
equations of quantum mechanics.

We now see that the well-known equations of quant
mechanics may result from the modifications which a
made to the classical equations, describing a semipure st
tical ensemble of copies of the system, in order to av
violating the uncertainty principle. Namely, the equations
quantum mechanics follow from three basic assumptio
The first of these assumptions is that the average squar
particle velocity should be given by a formula that avoi
violating the uncertainty principle, the second is that the c
responding classical equations ought to be valid in the li
of (\/m) tending to zero, and the third is that the avera
particle energy should be a constant of motion. Thus, in
der to find the quantum evolution equations one needs
determine the corresponding classical equations, modify
formula for the average square of particle velocity so that
uncertainty principle is not violated, and require that the a
erage particle energy does not evolve. In the next section
apply a similar approach to a system in which the particle
acted on by a force proportional to its velocity.

VI. DISSIPATIVE SYSTEM

In the present section our previous results are used
order to obtain the quantum equations of motion for a sing
particle dissipative system in which the particle is acted
by a force proportional to its velocity.

For this purpose we consider a statistical ensemble
4-5
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copies of a single-particle dissipative system satisfying
following Newton equation of motion:

d2x

dt2
52g

dx

dt
1

F~x!

m
, ~38!

whereF(x) is a conservative force andg is a positive con-
stant. We assume that this statistical ensemble can be
scribed by means of the probability densityf (x,p,t). Of
course, in the present case the functionf (x,p,t) does not
satisfy the Liouville equation. However, it is shown in Ap
pendix G that for the dissipative system under considera
there are equations that can be treated as counterparts o
~11! and ~13!. Namely, if the functionrc(x,t) is defined
according to Eq.~10!, it satisfies Eq.~11!, wherej (1)(x,t) is
given by Eq.~12!. Similarly, if the functionsj (n)(x,t) are
defined by Eq.~14!, the equation

]

]t
j (n)~x,t !5n

F~x!

m
j (n21)~x,t !2

]

]x
j (n11)~x,t !

2n g j (n)~x,t ! ~39!

is satisfied for all integersn greater than zero.@Of course, the
function j (0)(x,t) is identified with rc(x,t).# Thus, if the
velocity fieldvc(x,t) is introduced according to Eq.~15!, the
following equations are satisfied:

]

]t
rc~x,t !1

]

]x
@rc~x,t ! vc~x,t !#50, ~40!

]

]t
vc~x,t !1vc~x,t !

]

]x
vc~x,t !

52g vc~x,t !1
F~x!

m
2

1

rc~x,t !

]

]x

3@ j (2)~x,t !2rc~x,t ! vc
2~x,t !#. ~41!

Therefore, if the functionj (2)(x,t) is equal to the product o
rc(x,t) and vc

2(x,t), the last term in Eq.~40! vanishes and
we find that

]

]t
rc~x,t !1

]

]x
@rc~x,t ! vc~x,t !#50, ~42!

]

]t
vc~x,t !1vc~x,t !

]

]x
vc~x,t !52g vc~x,t !1

F~x!

m
.

~43!

In that case, if Eq.~18! is satisfied for anyn greater than one
Eq. ~39! is also satisfied for anyn greater than one. More
over, as in the case of the analogous Hamiltonian system
~18! is satisfied for anyn and for any instant of timet when
it is satisfied for anyn at the initial instant of the time, which
is shown in Appendix H. Therefore, if a statistical ensem
of copies of the system is prepared in such a manner that
~18! is satisfied for anyn at the initial instant of the time, the
corresponding functionsrc(x,t) and vc(x,t) satisfy Eqs.
02210
e
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n
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e
q.

~42! and ~43!. Accordingly, such a statistical ensemble
copies of the system can be called a semipure statistica
semble, since the discussion presented in Sec. IV can
applied to it without any modifications. In particular, such
statistical ensemble of copies of the system can be c
structed so that the uncertainty principle for particle mom
tum and position is violated at certain instant in time~e.g.,
initial!.

The uncertainty principle can be prevented from be
violated in the same manner as in the case of the analog
Hamiltonian system. Namely, it can be postulated that
average square of particle velocity be given by Eq.~28!.
Consequently, we must require that the average particle
ergy be given by Eq.~29!. Of course, in the present case th
average energy is not a constant of motion. However, if
evolution equation for the average particle energy is know
the equations of motion for the counterparts ofrc(x,t) and
vc(x,t) can be determined.

In order to find the evolution equation for the avera
particle energy, we note that in classical mechanics, if
underlying system is described by Eq.~38!, it satisfies the
equation

d

dt
^E& t52m gE dx j(2)~x,t !, ~44!

which is shown in Appendix I. Therefore, if the related st
tistical ensemble of copies of the system is semipure,
have

d

dt
^E& t52m gE dx vc

2~x,t ! rc~x,t !. ~45!

Of course, the right-hand side of Eq.~45! as well as the
right-hand side of Eq.~44! are proportional to the averag
square of particle velocity. Consequently, Eqs.~44! and~45!
mean that in classical mechanics the time derivative of
average particle energy is proportional to its kinetic part.
the other hand, it can be thought that each copy of the sys
in the related statistical ensemble contains a particle. He
one can state that in classical mechanics the time deriva
of the average energy depends on the velocities of these
ticles. Specifically, if the particles do not move, the righ
hand sides of Eqs.~44! and~45! vanish and the time deriva
tive of the average energy is equal to zero. In other wor
the particles must move so that the average energy
change.

If the uncertainty principle is satisfied and the particl
are sufficiently small, we are unable to treat them as obs
able objects. Nonetheless, if the statistical ensemble un
consideration is required to be a counterpart of a class
semipure statistical ensemble of copies of the system,
may assume that the particles do not move if the correspo
ing velocity field is equal to zero. Thus we may require th
the time derivative of the average energy vanish in suc
case. Consequently, the average square of particle veloci
Eq. ~45! cannot be replaced with the right-hand side of E
~28! and it seems reasonable to leave it unmodified, sinc
must be valid in the classical limit. Moreover, if the avera
4-6
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square of particle velocity in Eq.~45! were replaced with the
right-hand side of Eq.~28!, we would find that the averag
energy might change because of the uncertainty princ
itself, which would not be acceptable. Therefore, we pos
late that the equation

d

dt
^E& t52m gE dx v2~x,t ! r~x,t !, ~46!

where r(x,t) and v(x,t) are counterparts ofrc(x,t) and
vc(x,t), respectively, should be satisfied when the aver
particle energy is given by Eq.~29!.

If Eq. ~46! is satisfied and the average particle energy
given by Eq.~29!, the functionsr(x,t) and v(x,t) cannot
satisfy Eqs.~42! and ~43!. Specifically, the continuity equa
tion should be satisfied so that the normalization ofr(x,t) is
conserved, but Eq.~43! must be modified. Moreover, it ca
be modified by introducing additional terms that vanish
(\/m) tending to zero, since the resultant equation sho
approach it in the classical limit. Therefore, we postulate
following evolution equations forr(x,t) andv(x,t):

]

]t
r~x,t !1

]

]x
@r~x,t ! v~x,t !#50, ~47!

]

]t
v~x,t !1v~x,t !

]

]x
v~x,t !52g v~x,t !1

F~x!

m

2
1

r~x,t !

]

]x
T~x,t !,

~48!

where the unknown quantityT(x,t) vanishes for (\/m)
tending to zero. Consequently, because the average pa
energy satisfies Eq.~46!, we get

2m gE dx v2~x,t ! r~x,t !

5
d

dt
^E& t52mE dx v~x,t !

]

]x
T~x,t !

1
d

dt
U@r~x,t !#2m gE dx v2~x,t ! r~x,t !,

~49!

which is obtained by differentiating Eq.~29! with respect to
time and using Eqs.~47! and ~48! in order to eliminate the
time derivatives ofr(x,t) andv(x,t), respectively, from the
resulting equation. Hence, we see that Eq.~35! is satisfied by
T(x,t). Therefore, we can introduce the functionw(x,t) ac-
cording to Eq.~36! so that it satisfies Eq.~37!. Then, the
same arguments that have been applied in the case o
analogous Hamiltonian system lead to the conclusion
w(x,t) should be independent ofx. Finally, we find that

]

]t
r~x,t !1

]

]x
@r~x,t ! v~x,t !#50, ~50!
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]

]t
v~x,t !1v~x,t !

]

]x
v~x,t !52g v~x,t !1

F~x!

m

2
1

r~x,t !

]

]x
Tq~x,t !,

~51!

where the quantityTq(x,t) is given by Eq.~6!.
We note that Eqs.~50! and~51! have been found by using

the same arguments that can be used for obtaining Eqs~4!
and ~5!, which describe the analogous Hamiltonian syste
except that the average particle energy is not a constan
motion in the present case. Accordingly, these equations
be treated as the hydrodynamic equations of quantum
chanics for a one-dimensional dissipative system, in wh
the particle is acted on by a force proportional to its veloci
Moreover, it turns out that Eqs.~50! and ~51! lead to a
known evolution equation for a complex-valued function b
ing a counterpart of the Schro¨dinger wave functionc(x,t),
which is shown in the next section.

VII. SCHRÖ DINGER-LANGEVIN EQUATION

Having derived the quantum evolution equations for a d
sipative system we now show that these equations lead t
equation of motion for a complex-valued function being
counterpart of the Schro¨dinger wave functionc(x,t).

For this purpose we assume that the relevant velocity fi
v(x,t) is potential. Then, we are able to define the functi
c(x,t) in the following manner:

c~x,t !5Ar~x,t !expF i
m

\ Ex0

x

dq v~q,t !G , ~52!

where x0 is an arbitrary fixed spatial coordinate. We no
that the functionc(x,t) is related tor(x,t) and v(x,t) via
Eqs.~2! and ~3!. Consequently, if the right-hand side of E
~2! is substituted for the functionr(x,t) and the right-hand
side of Eq.~3! for the product ofr(x,t) and v(x,t) in Eq.
~50!, we find that

i\ c*
]c

]t
1 i\ c

]c*

]t
52

\2

2m S c*
]2c

]x2
2c

]2c*

]x2 D ,

~53!

which is equivalent to the following system of two parti
differential equations:

i\
]

]t
c~x,t !52

\2

2m

]2

]x2
c~x,t !1j~x,t ! c~x,t !, ~54!

i\
]

]t
c* ~x,t !5

\2

2m

]2c*

]x2
c* ~x,t !2j~x,t ! c* ~x,t !,

~55!

where j(x,t) is an unknown real-valued quantity. We ob
serve that ifj(x,t) is a functional ofc(x,t) and c* (x,t),
4-7
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and of the forceF(x), the evolution ofc(x,t) andc* (x,t)
is determined by the above equations.

The unknown quantityj(x,t) can be found with the help
of Eq. ~3!. Namely, it follows from Eqs.~2!, ~52!, ~54!, and
~55! that the time derivative of the left-hand side of th
equation is given by

\

2 i m

]

]t S c*
]c

]x
2c

]c*

]x D
5

1

m
r S 2

]j

]xD1
]

]x H \2

4m2 F ]2r

]x2
2

1

r S ]r

]xD 2G2r v2J .

~56!

Consequently, the right-hand side of Eq.~56! equals the time
derivative of the product ofr(x,t) andv(x,t). On the other
hand, according to Eqs.~50! and ~51!, we find that

]

]t
@r~x,t ! v~x,t !#52g v~x,t !1

F~x!

m
r~x,t !

2
]

]x
@Tq~x,t !1r~x,t ! v2~x,t !#,

~57!

whereTq(x,t) is given by Eq.~6!. This leads to the follow-
ing result:

2
]

]x
j~x,t !52g

\

2 i F 1

c~x,t !

]

]x
c~x,t !

2
1

c* ~x,t !

]

]x
c* ~x,t !G1F~x!, ~58!

which is a consequence of Eqs.~3! and ~56!.
Now, we note that there is the function argz returning the

angle of the numberz in the complex plane. Thus, for th
complex-valued functionc(x,t) given by Eq.~52!, we have

arg@c~x,t !#5
m

\ Ex0

x

dq v~q,t !12np, ~59!

n being an integer. Hence, the definition of the function arz
implies the following identity:

]

]x
arg@c~x,t !#5

1

2 i F 1

c~x,t !

]

]x
c~x,t !

2
1

c* ~x,t !

]

]x
c* ~x,t !G . ~60!

Therefore, according to Eq.~58!, the potentialV(x) can be
redefined so thatj(x,t) is given by

j~x,t !5g \ arg@c~x,t !#1V~x!. ~61!

Thus, if the right-hand side of this equation is substituted
the functionj(x,t) in Eq. ~54!, we find that
02210
r

i\
]

]t
c~x,t !52

\2

2m

]2

]x2
c~x,t !1V~x! c~x,t !

1g \ arg@c~x,t !# c~x,t !, ~62!

which is the required equation of motion for the functio
c(x,t). This equation is apparently nonlinear. However, t
nonlinear term appears in it because of the dissipation
energy. We note that Eq.~62! is very similar to the
Schrödinger-Langevin equation originally derived by Kost
@11# from the Heisenberg-Langevin equation for a Browni
particle interacting with a thermal environment@1#.

Some features of the Schro¨dinger-Langevin equation
cause it to be considered as suitable for describing diss
tive systems in quantum mechanics@1,8,12,14,21#. Most im-
portantly, it causes the uncertainty principle for particle p
sition and momentum to be satisfied and for a two-parti
system it factorizes into two independent equations if ther
no correlation between the motion of the two particles@21#.
It turns out that the corresponding factorization occurs
classical mechanics for a semipure statistical ensemble
copies of the two-particle system, which is discussed in A
pendix J.

VIII. CONCLUSIONS

It follows from the considerations presented that quant
evolution equations for a dissipative system can be form
lated in a consistent manner. In particular, these equat
agree with the equations for the corresponding Hamilton
system in that they cause the normalization of the rela
probability density for particle position to be conserve
Moreover, they change into the equations for the correspo
ing Hamiltonian system if the energy dissipation is neg
gible.

The derivation of the quantum evolution equations fo
dissipative system is based on the correspondence betw
classical and quantum mechanics. Namely, it can be
served that in the classical limit the hydrodynamic equatio
of quantum mechanics, resulting from the Schro¨dinger equa-
tion, lead to the equations that describe the evolution o
semipure statistical ensemble of copies of the system. On
other hand, the uncertainty principle for particle momentu
and position can be violated by a classical semipure stat
cal ensemble of copies of the system. In order to assure
the uncertainty principle is always satisfied, the formulas
mean values of various physical quantities, including ener
should be modified. Then, if the average energy is requ
to be a constant of motion and the corresponding class
equations are required to be approached in the classical l
the quantum evolution equations are found. Accordingly,
order to obtain the quantum evolution equations for a dis
pative system one needs to derive the equations that des
the evolution of a classical semipure statistical ensemble
copies of that system. Next, if the classical formulas
mean values of various physical quantities are modified
that the uncertainty principle is not violated and a cert
evolution equation for the average energy is postulated,
required equations can be determined.
4-8
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It turns out that the quantum evolution equations fo
dissipative system lead to the Schro¨dinger-Langevin equa
tion in the same manner that the hydrodynamic equation
quantum mechanics lead to the Schro¨dinger equation@17#.
Moreover, the Schro¨dinger-Langevin equation is nonlinea
with the nonlinearity arising directly from the terms descr
ing the dissipation of energy. Therefore, it seems that
Schrödinger equation itself is linear because of the ene
conservation principle. This leads to the general hypoth
that systems obeying the energy conservation principle m
be expected to satisfy linear evolution equations in quan
mechanics. Be constrast, systems in which energy is not
served should satisfy nonlinear equations of motion, with
nonlinear terms due to the dissipation or aggregation of
ergy.
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APPENDIX A

In the present appendix we show that in classical mech
ics Eq.~18! is satisfied for anyn and for any instant of time
t if it is satisfied for anyn at the initial instant of timet0,
provided that the corresponding probability densityf (x,p,t)
satisfies Eq.~9!.

For this purpose we note that in classical mechanics
~13! is satisfied for anyn greater than zero by the function
j (n)(x,t), j (n21)(x,t), and j (n11)(x,t) defined according to
Eq. ~14! if the corresponding probability densityf (x,p,t)
satisfies Eq.~9!. ~This is shown in Sec. III.! Therefore, if the
functionsw(n)(x,t) are defined by

w(n)~x,t !5 j (n)~x,t !2rc~x,t ! vc
n~x,t !, ~A1!

the following evolution equation is satisfied:

]

]t
w(n)~x,t !5n vc

n21~x,t !
]

]x
w(2)~x,t !

1n
F~x!

m
w(n21)~x,t !2

]

]x
w(n11)~x,t !,

~A2!

for any integern greater than one. Of course, the functi
w(1)(x,t) is always equal to zero, according to Eqs.~15! and
~A1!.

If Eq. ~A2! is differentiated with respect to time, we fin
that
02210
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]2

]t2
w(n)~x,t !5n vc

n21~x,t !

3
]

]x

]

]t
w(2)~x,t !1n~n21! vc

n22~x,t !

3
]

]t
vc~x,t !

]

]x
w(2)~x,t !1n

F~x!

m

3
]

]t
w(n21)~x,t !2

]

]x

]

]t
w(n11)~x,t !,

~A3!

where the time derivatives ofw(2)(x,t), w(n21)(x,t), and
w(n11)(x,t) can be replaced with the right-hand side of E
~A2! evaluated forn852, n85n21, andn85n11, respec-
tively. Therefore, if all the functionsw(n)(x,t0) are equal to
zero, the right-hand side of Eq.~A3! vanishes and the
second-order time derivatives ofw(n)(x,t) are equal to zero
at time t0.

Repeating this step, we can show that the time derivati
of w(n)(x,t) of all orders are equal to zero at timet0 if all
w(n)(x,t0) vanish, in which case all functionsw(n)(x,t) must
not evolve. On the other hand, all the functionsw(n)(x,t0)
vanish if Eq.~18! is satisfied at timet0 for any n. Hence, if
Eq. ~18! is satisfied at timet0 for any n, all functions
w(n)(x,t) vanish for anyt, which means that Eq.~18! is
satisfied for anyn and for anyt. Thus the proof is complete

APPENDIX B

We have stated in Sec. IV that two statistical ensemb
of copies of the systemsA andsB must be semipure so tha
another semipure statistical ensemble can be obtained
mixture of sA andsB. Moreover, the corresponding velocit
fields vc

A(x,t) andvc
B(x,t) must be equal for this purpose.

In order to show this, we consider a statistical ensem
of copies of the system described by the probability den
f (x,p,t), which is given by Eq.~20!, and calculate the quan
tity

W~x,t !5 j (2)~x,t !2
@ j (1)~x,t !#2

rc~x,t !
, ~B1!

whererc(x,t) is defined according to Eq.~21! and j (1)(x,t)
and j (2)(x,t) are given by Eq.~22! for n51 andn52, re-
spectively. We note thatW(x,t) must vanish so that the sta
tistical ensemble under consideration is semipure.

We first observe that Eq.~B1! can be transformed in the
following manner:

rc~x,t ! W~x,t !5@a rc
A~x,t !1b rc

B~x,t !#

3@a j A
(2)~x,t !1b j B

(2)~x,t !#

2@a j A
(1)~x,t !1b j B

(1)~x,t !#2, ~B2!
4-9
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with the help of Eqs.~21! and ~22!. Therefore, becaus
rc(x,t) is nonnegative and normalized to unity, the righ
hand side of Eq.~B2! must vanish so thatW(x,t) is equal to
zero.

Next, we recalculate the right-hand side of Eq.~B2! in
such a manner that

rc~x,t ! W~x,t !5@a rc
A~x,t !1b rc

B~x,t !#

3@a WA~x,t !1b WB~x,t !#

1a bFArc
A~x,t !

rc
B~x,t !

j B
(1)~x,t !

2Arc
B~x,t !

rc
A~x,t !

j A
(1)~x,t !G 2

, ~B3!

where the quantitiesWA(x,t) and WB(x,t) are defined in
analogy withW(x,t) for the statistical ensemblessA andsB,
respectively.

Now, we note that the functionsWA(x,t) andWB(x,t) are
not less than zero, which is shown in Appendix C. Moreov
they vanish if and only if the corresponding statistical e
sembles of copies of the system are semipure. Conseque
if any of the statistical ensemblessA andsB are not semipure
there is a spatial coordinatex for which the right-hand side o
Eq. ~B3! is greater than zero. Then, the quantityW(x,t) is
not equal to zero and the corresponding statistical ensem
of copies of the system is not semipure. Thus the statist
ensemblessA andsB must be semipure so that any mixture
them can be a semipure statistical ensemble of copies o
system.

We now assume that the statistical ensemblessA and sB

are semipure. Then, according to Eq.~B3!, we find that

rc~x,t ! W~x,t !5a bFArc
A~x,t !

rc
B~x,t !

j B
(1)~x,t !

2Arc
B~x,t !

rc
A~x,t !

j A
(1)~x,t !G 2

. ~B4!

Next, we observe that the right-hand side of Eq.~B4! van-
ishes if and only if

j B
(1)~x,t !

rc
B~x,t !

5
j A
(1)~x,t !

rc
A~x,t !

, ~B5!

which means that the velocity fieldsvc
A(x,t) and vc

B(x,t)
must be equal so that the right-hand side of Eq.~B4! can
vanish. However, ifvc

A(x,t) andvc
B(x,t) are equal, we have

rc~x,t ! vc~x,t !5 j (1)~x,t !

5@a rc
A~x,t !1b rc

B~x,t !#vc
A~x,t !

5rc~x,t ! vc
A~x,t !, ~B6!
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according to Eqs.~15!, ~21!, and ~22!. Hence, the velocity
field vc(x,t) is then equal tovc

A(x,t) andvc
B(x,t). Therefore,

if the statistical ensemblessA andsB are semipure, the cor
responding velocity fieldsvc

A(x,t) andvc
B(x,t) must be equal

so that any mixture ofsA and sB is a semipure statistica
ensemble of copies of the system, in which case the resu
velocity field is equal tovc

A(x,t) andvc
B(x,t).

Finally, we can state that the statistical ensemblessA and
sB must be semipure and the corresponding velocity fie
vc

A(x,t) andvc
B(x,t) must be equal so that any mixture ofsA

and sB is a semipure statistical ensemble of copies of
system. Moreover, if a semipure statistical ensemble of c
ies of the system is a mixture ofsA andsB, the correspond-
ing velocity field is equal tovc

A(x,t) andvc
B(x,t). Thus the

proof is complete.

APPENDIX C

In the present appendix we show that for any statisti
ensemble of copies of a classical single-particle syst
which is described by a probability densityf (x,p,t), there is
a nonnegative quantityW(x,t) defined by

W~x,t !5 j (2)~x,t !2
@ j (1)~x,t !#2

rc~x,t !
, ~C1!

where rc(x,t) is given by Eq. ~10! and j (1)(x,t) and
j (2)(x,t) are given by Eq.~14! for n51 andn52, respec-
tively.

For this purpose we observe that

W~x,t !5E dp F p

m
2vc~x,t !G2

f ~x,p,t !, ~C2!

where the velocity fieldvc(x,t) is defined according to Eq
~15!. Namely, we have

E dpF p

m
2vc~x,t !G2

f ~x,p,t !

5E dp
p2

m2
f ~x,p,t !1vc

2~x,t !E dp f~x,p,t !

22 vc~x,t !E dp
p

m
f ~x,p,t !, ~C3!

which can be transformed so that

E dpF p

m
2vc~x,t !G2

f ~x,p,t !5 j (2)~x,t !2vc
2~x,t ! rc~x,t !,

~C4!

with the help of Eqs.~10!, ~14!, and~15!. Of course, accord-
ing to Eq.~15!, the right-hand side of Eq.~C4! is equal to the
right-hand side of Eq.~C1!. Therefore, because the left-han
side of Eq.~C4! is never less than zero, the functionW(x,t)
is nonnegative and the proof is complete.
4-10
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APPENDIX D

We have stated in Sec. V that the equation describing
evolution of the probability density for particle position is
continuity equation in classical mechanics as well as in
case in which the uncertainty principle for particle positi
and momentum is satisfied. Moreover, in either case the
lated mean value of particle velocity is given by Eq.~27!,
wherer(x,t) and v(x,t) denote the probability density fo
particle position and the corresponding velocity field, resp
tively.

In order to show this, we first observe that in classi
mechanics Eq.~11! is satisfied by the probability densit
rc(x,t). Therefore, the average particle position and the
erage particle velocity satisfy the equation

d

dt
^x& t5^v& t , ~D1!

which is verified by multiplying Eq.~11! by x and integrating
over it with the help of Eq.~12!. Of course, the mean value
of particle position and velocity can be determined indep
dently, and this means that the uncertainty principle sho
not have an effect on Eq.~D1!. Consequently, Eq.~D1!
ought to be satisfied when the uncertainty principle is.

We now suppose that the formula for the average part
velocity is modified in order to avoid violating the unce
tainty principle. Then, we have

d

dt
^x& t5^v& t

c2E dx x Q~x,t !, ~D2!

where the classical average particle velocity is denoted
^v& t

c and the additional term is given by the spatial integ
on the right-hand side of the equation. Hence, we find th

]

]t
r~x,t !52

]

]x
j (1)~x,t !2Q~x,t !, ~D3!

where r(x,t) is a counterpart of the classical quanti
rc(x,t) and j (1)(x,t) is defined by Eq.~15! with rc(x,t)
substituted for by its counterpartr(x,t).

We note that the spatial integral ofQ(x,t) must be equal
to zero, since otherwise the normalization ofr(x,t) is not
conserved, in which caser(x,t) cannot be treated as a pro
ability density function. Moreover, we can safely assu
that Q(x,t) is not singular. Therefore, the function

j q~x,t !5E
x0

x

dq Q~q,t !, ~D4!

wherex0 is an arbitrary fixed spatial coordinate, is well d
fined for any spatial coordinatex. Consequently, we are abl
to define the currentj (x,t) in the following manner:

j ~x,t !5 j (1)~x,t !1 j q~x,t !, ~D5!

and the corresponding velocity fieldv(x,t) can be defined
according to Eq.~15!. Then, if Eq.~D3! is multiplied by x
and integrated over it and the resulting equation is compa
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with Eq. ~D1!, we state that the average particle velocity
given by Eq.~27!. Of course, once the velocity field is rede
fined, the evolution equation for it must be modified acco
ingly. However, we can show that if the corresponding cl
sical statistical ensemble of copies of the system is semip
the relevant modification can be be made by adding a n
term to the right-hand side of this equation.

For this purpose we observe that ifj q(x,t) vanishes for
(\/m) tending to zero, the following equation must be va
in the classical limit:

]

]t
j ~x,t !5

F~x!

m
2

]

]x
@r~x,t ! vc

2~x,t !#, ~D6!

wherevc(x,t) is defined according to Eq.~15! for the prob-
ability densityr(x,t) and the currentj (1)(x,t). @Of course,
in that casevc(x,t) satisfies Eq.~8!.# Therefore, in general
the currentj (x,t) should satisfy the equation

]

]t
j ~x,t !5

F~x!

m
2

]

]x
@r~x,t ! vc

2~x,t !#1S~x,t !, ~D7!

where S(x,t) vanishes for (\/m) tending to zero. On the
other hand, the right-hand side of Eq.~D7! is given by

]

]t
j ~x,t !5r~x,t !

]

]t
v~x,t !2v~x,t !

]

]x
@r~x,t ! v~x,t !#.

~D8!

Thus, if the spatial derivative of the product ofr(x,t) and
v2(x,t) is added to both sides of Eq.~D7!, we obtain that

r~x,t !
]

]t
v~x,t !1r~x,t ! v~x,t !

]

]x
v~x,t !

5
F~x!

m
1S~x,t !2

]

]x
$r~x,t ! vq~x,t !

3@vq~x,t !12 vc~x,t !#%, ~D9!

wherevq(x,t) is defined according to Eq.~15! for the current
j q(x,t) and the probability densityr(x,t). Consequently, if
the functionT(x,t) is defined so that

]

]x
T~x,t !52S~x,t !1

]

]x
$r~x,t ! vq~x,t !

3@vq~x,t !12 vc~x,t !#%, ~D10!

it vanishes in the classical limit, and the system of equati
~D3! and ~D9! can be represented as Eqs.~31! and ~32!.

We can conclude that any modification of the formula f
the average particle velocity is irrelevant as far as the un
tainty principle is concerned, since the velocity field can
ways be changed so that Eq.~27! is satisfied. Moreover, any
modification of the right-hand side of the continuity equati
can be compensated by a change of the right-hand side o
evolution equation for the velocity field. Therefore, we c
assume that the average particle velocity is given by Eq.~27!
and that Eq.~31! is valid when the uncertainty principle fo
particle momentum and position is satisfied.
4-11
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APPENDIX E

In the present appendix we show that Eq.~25! is satisfied
if Eq. ~28! is, which means that Eq.~28! can be treated as
sufficient condition for the satisfaction of the uncertain
principle for particle momentum and position.

For this purpose we first assume that Eq.~28! is satisfied
and observe that, according to it, the square of the left-h
side of Eq.~25! is given by

sx
2 sv

25sx
2F E dx v2~x! r~x!2^v&2G

1sx
2 \2

4m2E dx
1

r~x! F ]

]x
r~x!G2

, ~E1!

where the irrelevant time dependence of all quantities is
glected. We also note that the average particle velocity
given by Eq.~27!, according to the discussion presented
Appendix D.

Next, we show that the first term on the right-hand side
Eq. ~E1! is never less than zero. Namely, we observe th
according to Eq.~27!, the following equation is satisfied:

E dx @v~x!2^v&#2r~x!5E dx v2~x! r~x!2^v&2,

~E2!

since the probability densityr(x) is normalized to unity.
Hence, because the first term on the right-hand side of
~E1! is a product ofsx

2 and of the right-hand side of Eq
~E2!, it cannot be negative. This means, however, that

sx
2 sv

2>sx
2 \2

4m2E dx
1

r~x! F ]

]x
r~x!G2

. ~E3!

Therefore, the proof will be complete if we show that t
right-hand side of Eq.~E3! is not less than (\2/4m2).

In order to show this, we consider the quantityZ(j) de-
fined by @17#

Z~j!5E dxH F ]

]x
2j ~x2^x&!GAr~x!J 2

, ~E4!

and find that

Z~j!5sx
2 j21j1

1

4E dx
1

r~x! F ]

]x
r~x!G2

, ~E5!

since r(x) vanishes on the system boundaries. Hence,
cause the quadratic formZ(j) cannot be negative, accordin
to Eq. ~E4!, we have

D512sx
2E dx

1

r~x! F ]

]x
r~x!G2

<0. ~E6!

Consequently, we can state that

sx
2 \2

4m2E dx
1

r~x! F ]

]x
r~x!G2

>
\2

4m2
, ~E7!
02210
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which is the required result, since the left-hand side of t
inequality is the right-hand side of Eq.~E3!.

APPENDIX F

In the present appendix we provide the entire derivat
of Eq. ~34!, which begins with differentiating Eq.~30! with
respect to time.

For this purpose we first transform Eq.~30! in the follow-
ing manner:

U@r~x,t !#5
\2

2mE dxF ]

]x
R~x,t !G2

, ~F1!

whereR(x,t)5Ar(x,t). Then, if Eq.~F1! is differentiated
with respect to time, we find that

d

dt
U@r~x,t !#5

\2

mE dx
]R

]x

]

]x S ]R

]t D52
\2

mE dx
]2R

]x2

]R

]t
,

~F2!

where the resulting equation is integrated by parts with
assumption thatr(x,t) as well as its spatial derivative vanis
on the system boundaries.

Next, if the continuity equation, Eq.~4!, is used for elimi-
nating the time derivative of the functionR(x,t) from Eq.
~F2! and the resulting equation is integrated by parts,
obtain that

d

dt
U@r#52

\2

2mE dx v r
]

]x S 1

R

]2R

]x2 D , ~F3!

which can be represented by means of the functionsr(x,t)
andv(x,t), i.e.,

d

dt
U@r#52

\2

2mE dx v r
]

]x F 1

2r

]2r

]x2
2

1

4r2 S ]r

]xD 2G .

~F4!

Finally, we observe that there is the following identi
which holds for an arbitrary three-times-differentiable fun
tion f (x):

f
d

dxF 1

2 f 2 S d f

dxD 2

2
1

f

d2f

dx2G5
d

dxF1

f S d f

dxD 2

2
d2f

dx2G , ~F5!

and apply it to the probability densityr(x,t). Hence, with
the help of Eq.~F4! we obtain the required result, Eq.~34!.

APPENDIX G

In classical mechanics, if a system is described by
~38! and there is a statistical ensemble of copies of this s
tem that can be described by means of a probability den
f (x,p,t), the corresponding functionsrc(x,t) and j (n)(x,t),
defined by Eqs.~10! and~14!, respectively, satisfy Eqs.~11!
and ~39!, respectively.

In order to show this we consider a subset ofN copies of
the system, selected from the statistical ensemble descr
4-12
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by f (x,p,t), and define the function

rN~x,t !5
1

N (
j 51

N

d@x2xj~ t !#, ~G1!

whered(x) is the Diracd distribution and the functionsxj (t)
describe the time dependence of positions of particles in
corresponding copies of the system. Of course, the funct
xj (t) satisfy Eq.~38!.

Now, if the current j N(x,t) is defined in the following
manner:

j N~x,t !5
1

N (
j 51

N

v j~ t ! d@x2xj~ t !#, ~G2!

where v j (t)5(dxj /dt), and rN(x,t) is differentiated with
respect to time, we find that

]

]t
rN~x,t !52

]

]x
j N~x,t !. ~G3!

Similarly, if the functionsj N
(n)(x,t) are defined by

j N
(n)~x,t !5

1

N (
j 51

N

v j
n~ t ! d@x2xj~ t !#, ~G4!

and differentiated with respect to time, we get

]

]t
j N
(n)~x,t !5

n

N (
j 51

N

aj~ t ! v j
n21~ t !

3d@x2xj~ t !#2
]

]x
j N
(n11)~x,t !, ~G5!

whereaj (t)5(d2xj /dt2). Therefore, because the function
xj (t) satisfy Eq.~38!, we obtain that

]

]t
j N
(n)~x,t !5n

F~x!

m
j N
(n21)~x,t !2n g j N

(n)~x,t !

2
]

]x
j N
(n11)~x,t !. ~G6!

We now note that the functionsrc(x,t) and j (n)(x,t) are
approximated by rN(x,t) and j N

(n)(x,t), respectively.
Namely, one can define the quantity

PN~x,t !5E
x0

x

dq rN~q,t !, ~G7!

wherex0 is an arbitrary fixed spatial coordinate, which is
staircase function ofx having jump discontinuities@20#.
Then, the continuous functionP(x,t), defined by

P~x,t !5E
x0

x

dq rc~q,t !, ~G8!

is approximated byPN(x,t). The greater the numberN, the
better the approximation. Therefore, the functionP(x,t) can
02210
e
ns

be treated as a limit of a sequence of functionsPN(x,t) for N
tending to infinity, since any continuous function can be a
proximated by staircase functions with arbitrary precisi
@20#. Accordingly, the functionrc(x,t) can be treated as
limit of a sequence of functionsrN(x,t) for N tending to
infinity. Of course, similar arguments can be applied to
functions j N

(n)(x,t) and j (n)(x,t).
Finally, we observe that Eqs.~G3! and ~G6! are linear

with respect to the functionsrN(x,t) and j N
(n)(x,t). There-

fore, they are satisfied in the limit ofN tending to infinity.
Consequently, Eqs.~11! and~39! are satisfied byrc(x,t) and
j (n)(x,t) and the proof is complete.

APPENDIX H

In the present appendix we show that in classical mech
ics Eq.~18! is satisfied for anyn and for any instant of time
t if it is satisfied for anyn at the initial instant of timet0,
provided that the underlying single-particle system is d
scribed by Eq.~38!.

For this purpose we observe that if the underlying syst
is described by Eq.~38!, Eqs.~11! and ~39! are satisfied by
the functionsrc(x,t) and j (n)(x,t), defined by Eqs.~10! and
~14!, respectively, which is shown in Appendix G. Ther
fore, if the functionsw(n)(x,t) are introduced according to
Eq. ~A1!, we find that

]

]t
w(n)~x,t !5n

F~x!

m
w(n21)~x,t !2n g w(n)~x,t !

1n vc
n21~x,t !

]

]x
w(2)~x,t !2

]

]x
w(n11)~x,t !.

~H1!

Hence, if Eq.~H1! is differentiated with respect to time, w
obtain an equation that is very similar to Eq.~A2!. Accord-
ingly, the right-hand side of this equation can be transform
by eliminating the time derivatives ofw(n)(x,t) with the help
of Eq. ~H1!. Consequently, if all the functionsw(n)(x,t0) are
equal to zero, the right-hand side of this equation vanis
and the second-order time derivatives ofw(n)(x,t) are equal
to zero at the timet0.

Repeating this step we can show that the time derivati
of w(n)(x,t) of all orders are equal to zero at timet0 if all
w(n)(x,t0) vanish, in which case all functionsw(n)(x,t) must
not evolve. On the other hand, all the functionsw(n)(x,t0)
vanish if Eq.~18! is satisfied at the timet0 for anyn. Hence,
if Eq. ~18! is satisfied at timet0 for any n, all functions
w(n)(x,t) vanish for anyt, which means that Eq.~18! is
satisfied for anyn and for any t. Therefore, the proof is
complete.

APPENDIX I

In classical mechanics, if a system is described by
~38!, the average particle energy relative to a statistical
semble of copies of this system is given by Eq.~23!. There-
fore, the average energy satisfies Eq.~44!.
4-13
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In order to show this, we differentiate Eq.~23! with re-
spect to time and obtain that

]

]t
^E& t5

m

2 E dx
]

]t
j (2)~x,t !1E dx V~x!

]

]t
r~x,t !.

~I1!

Then, according to Eqs.~11! and ~39!, we get

]

]t
^E& t5E dx F~x! j (1)~x,t !2m gE dx j(2)~x,t !

2E dx V~x!
]

]x
j (1)~x,t !. ~I2!

Next, integrating by parts and using the observation t
j (1)(x,t) vanishes on the system boundaries, we find that
last term on the right-hand side of Eq.~I2! is equal to the first
term on the right-hand side of it with the opposite sign. Co
sequently, we have

]

]t
^E& t52m gE dx j(2)~x,t !, ~I3!

which is the required result, Eq.~23!.

APPENDIX J

The Schro¨dinger-Langevin equation obtained in Sec. V
has the important property that for a two-particle system
can be factorized into two equations having the form of E
~62! if there is no correlation between the motion of the tw
particles@21#. Thus, for such a system, the wave functi
satisfying the Schro¨dinger-Langevin equation is separable.
turns out that the corresponding factorization occurs in c
sical mechanics for a semipure statistical ensemble of co
of the two-particle system.

In order to show this, we proceed in analogy with t
discussion presented in Sec. VI. Namely, we first consid
statistical ensemble of copies of the two-particle system
scribed by the following Newton equations of motion:

d2x1

dt2
52g

dx1

dt
1

F~x1!

m1
,

d2x2

dt2
52g

dx2

dt
1

F~x2!

m2
,

~J1!

where x1(t), x2(t), and m1 , m2 denote the positions an
masses of the particles, respectively. We assume that
statistical ensemble of copies of the system can be descr
by means of the probability density functio
f (x1 ,p1 ,x2 ,p2 ,t), wherep1 , p2 are the momenta of the tw
particles. Then we define the probability densityr(x1 ,x2 ,t)
and the functionsj (n,m)(x1 ,x2 ,t) in the following manner:

r~x1 ,x2 ,t !5E dp1 dp2 f ~x1 ,p1 ,x2 ,p2 ,t !, ~J2!
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j (n,m)~x1 ,x2 ,t !5
1

m1
n m2

mE dp1 dp2 p1
n p2

m f ~x1 ,p1 ,x2 ,p2 ,t !.

~J3!

Next, we observe that these functions satisfy the equatio

]

]t
r~x1 ,x2 ,t !52

]

]x1
j (1,0)~x1 ,x2 ,t !2

]

]x2
j (0,1)~x1 ,x2 ,t !,

~J4!

]

]t
j (n,m)~x1 ,x2 ,t !

5n
F~x1!

m1
j (n21,m)~x1 ,x2 ,t !2n g j (n,m)~x1 ,x2 ,t !

1m
F~x2!

m2
j (n,m21)~x1 ,x2 ,t !2m g j (n,m)~x1 ,x2 ,t !

2
]

]x1
j (n11,m)~x1 ,x2 ,t !2

]

]x2
j (n,m11)~x1 ,x2 ,t !, ~J5!

which can be shown in analogy with the discussion presen
in Appendix G.

We now note that, according to the discussion presen
in Sec. IV, the statistical ensemble of copies of the syst
under consideration is semipure if the functio
j (n,m)(x1 ,x2 ,t) are given by

j (n,m)~x1 ,x2 ,t !5v1
n~x1 ,x2 ,t ! v2

m~x1 ,x2 ,t ! r~x1 ,x2 ,t !,
~J6!

where the velocity fieldsv1(x1 ,x2 ,t) and v2(x1 ,x2 ,t) are
defined in the manner of Eq.~15!. Hence, if the considered
statistical ensemble of copies of the system is semipure,
have

]

]t
r~x1 ,x2 ,t !1

]

]x1
@r~x1 ,x2 ,t ! v1~x1 ,x2 ,t !#

1
]

]x2
@r~x1 ,x2 ,t ! v2~x1 ,x2 ,t !#50, ~J7!

]

]t
v1~x1 ,x2 ,t !52v1~x1 ,x2 ,t !

]

]x1
v1~x1 ,x2 ,t !

2v2~x1 ,x2 ,t !
]

]x2
v1~x1 ,x2 ,t !

2g v1~x1 ,x2 ,t !1
F~x1!

m1
, ~J8!
4-14



he
t

-
tem
in-
ticle
re-

QUANTUM EQUATIONS OF MOTION FOR A . . . PHYSICAL REVIEW A61 022104
]

]t
v2~x1 ,x2 ,t !52v1~x1 ,x2 ,t !

]

]x1
v2~x1 ,x2 ,t !

2v2~x1 ,x2 ,t !
]

]x2
v2~x1 ,x2 ,t !

2g v2~x1 ,x2 ,t !1
F~x2!

m2
. ~J9!

Finally, we observe that the two particles of which t
underlying system consists are independent. Therefore,
probability densityf (x1 ,p1 ,x2 ,p2 ,t) can be factorized into
two probability density functions:

f ~x1 ,p1 ,x2 ,p2 ,t !5 f 1~x1 ,p1 ,t ! f 2~x2 ,p2 ,t !, ~J10!

since the two pairs of random variablesx1 , p1 and x2 , p2
are then statistically independent@20#. Consequently, accord
ing to Eqs.~J2! and ~J3!, we obtain that

r~x1 ,x2 ,t !5r1~x1 ,t ! r2~x2 ,t !, ~J11!

j (1,0)~x1 ,x2 ,t !5 j 1~x1 ,t ! r2~x2 ,t !, ~J12!
02210
he

j (0,1)~x1 ,x2 ,t !5r1~x1 ,t ! j 2~x2 ,t !, ~J13!

in which case the velocity fieldv1(x1 ,x2 ,t) is independent
of x2 and the velocity fieldv2(x1 ,x2 ,t) is independent ofx1.
Thus, because Eq.~J7! can be transformed in the following
manner:

H ]

]t
r2~x2 ,t !1

]

]x2
@r2~x2 ,t ! v2~x2 ,t !#J

52
r2~x2 ,t !

r1~x1 ,t ! H ]

]t
r1~x1 ,t !1

]

]x1
@r1~x1 ,t ! v1~x1 ,t !#J ,

~J14!

we find that each of the two pairs of functionsr1(x1 ,t),
v1(x1 ,t) andr2(x2 ,t), v2(x2 ,t) satisfies Eqs.~42! and~43!.
Therefore, if the statistical ensemble of copies of the sys
under consideration is semipure, it can be split into two
dependent statistical ensembles of copies of single-par
systems, and this corresponds to the factorization of the
lated Schro¨dinger-Langevin equation.
ng.
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