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Factorized representation for parity-projected Wigner dj
„b… matrices
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An alternative representation for the parity-projected Wignerdj (b) rotation matrix is derived as the product
of two triangular matrices composed of Gegenbauer polynomials with negative and positive upper indices,
respectively. We relate this representation fordj (b) to the one presented by Matveenko@Phys. Rev. A59,
1034 ~1999!#, which, in contrast with our result, requires for its evaluation a matrix inversion. In addition,
identities for bilinear sums of Gegenbauer polynomials are derived. This work is based on our recently
introduced invariant representations for finite rotation matrices@Phys. Rev. A57, 3233~1998!#.

PACS number~s!: 03.65.Ca, 03.65.Fd
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I. INTRODUCTION

Finite rotation matrices~FRM! Rkm
j (V) and especially

their parametrization by Euler anglesV5(a,b,g) @in which
case one speaks of Wigner functions,Dkm

j (a,b,g)# are fun-
damental objects of the quantum theory of angular mom
tum @1#. They describe the transformation of an irreducib
tensor of rankj ~such as, e.g., the wave function of a qua
tum system having total angular momentumj ) under a rota-
tion V of the coordinate frame. These objects have an in
disciplinary interest and new results have an evid
importance and usefulness in various applications. The n
trivial parts of the Wigner functions are theb-dependent
dj (b) matrices, defined by

Dkm
j ~a,b,g!5exp~2 ika!dkm

j ~b!exp~2 img!,

where2 j <k,m< j . These have well-known representatio
in terms of trigonometric, hypergeometric, or Jacobi polyn
mial functions ofb @1#. For physical problems having defi
nite parity ~or exchange symmetry, e.g., in the case of tw
electron wave functions!, the so-called parity-projecte
FRM’s or Wigner functions are convenient. These functio
are symmetrized with respect to the first~k! or second~m!
lower index. The symmetrized combinations of Wigner fun
tions were introduced for the first time by Fano@2# in his
analysis of real representations for finite rotation matric
The usefulness of parity-projected Wigner functions
many-body problems was demonstrated by Bhatia
Temkin @3#, who analyzed the angular dependence of tw
electron wave functions. Various authors have used slig
different phase and normalization conventions for su
parity-projected functions~see, e.g., Refs.@3–6#!. Recently,
Matveenko@6# derived a new analytic expression for parit
projected combinations of Wignerdj (b) matrices as a fac
torized product of two matrices, one of which is defined
terms of ~renormalized! associated Legendre polynomial
and the other is the inverse of a similarly defined matrix.
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this paper we employ the invariant representations
FRM’s introduced in Ref.@5# to obtain a simple form for
parity-projected Wigner functions as the product of two t
angular matrices, each of which is given explicitly in term
of well-known classical~Gegenbauer! polynomials. In addi-
tion, we are able to give an alternative, simple derivation
Matveenko’s result@6#, thereby also establishing a relatio
between our result and his. As noted by Matveenko@6#, fac-
torized representations of the parity-projected Wigner ro
tion matrices should prove useful in the theoretical analy
and representation of interacting three-body states.

II. PARITY-PROJECTED ‘‘MINIMAL’’ BIPOLAR
HARMONICS AND FRM’S

In order to present our results in the most compact way
is useful to first rewrite some of the key results of Ref.@5# in
more symmetric forms. Parity-projected FRM’s, denoted
Rkm

j 6(V), were defined in Ref.@5# as follows:

Rkm
j 1~V!5R2km

j ~V!1~21!kRkm
j ~V!, ~1!

Rkm
j 2~V!52 i @R2km

j ~V!2~21!kRkm
j ~V!#, k.0. ~2!

However, it is more convenient for our present purposes
define slightly different matrices, denoted byRkm

j lp(V), hav-
ing a unified form for both1 and2 cases~corresponding,
respectively, tolp50,1):

Rkm
j lp~V!5S 12

d0,k

2 D @R2km
j ~V!1~21!k1lpRkm

j ~V!#,

~3!

wherek>lp . In Eqs.~47! and ~48! of Ref. @5#, the FRM’s
Rkm

j 6(V) are presented as expansions on ‘‘minimal’’ bipol
harmonics~MBH! depending on two noncolinear unit vec
tors,n andn8:

Y jm
s ~n,n8!5$Yj 2s~n! ^ Ys~n8!% jm , ~4!
©2000 The American Physical Society03-1
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wheres50,1, . . . ,j . Yaa denotes the spherical harmonic, a
standard definitions of angular-momentum techniques
used@1#. The unit vectorn is directed along thez axis of the
‘‘old’’ ~fixed! frameK; n8 lies in thezx plane ofK; andu is
the angle betweenn andn8(0,u,p). Thus, the three rea
parameters of the rotation,V ~such as, e.g., the Euler angle
for the Wigner representation of the FRM!, in our approach
are determined by angular coordinates of vectorsn andn8 in
the ‘‘new’’ ~rotated! frameK8. Moreover, in Ref.@5# differ-
ent sets of MBH,

Y jm
s ~n,n8! and $@n3n8# ^ Yj 21

s ~n,n8!% jm ,

enter the expansion ofRkm
j 1(V) and Rkm

j 2(V), respectively.
The identity@see Eq.~B.6! of Ref. @7##

$@n3n8# ^ Yj 21
s ~n,n8!% jm5 i A j 11

~2s13!~2 j 22s11!

3$Yj 2s~n! ^ Ys11~n8!% jm ,

~5!
th
f
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e-

s

02210
re
allows us to introduce a unified basis set of parity-projec
MBH’s,

Y jm
slp~n;n8!5$Yj 2s~n! ^ Ys1lp

~n8!% jm

5(
ab

Cj 2s a s1lpb
jm Yj 2s a~n!Ys1lpb~n8!,

~6!

for both cases, i.e.,lp50 (or1) andlp51 (or2), where
the Caabb

cg denote Clebsch-Gordan coefficients.
Using definitions in Eqs.~3! and~6!, Eqs.~47! and~48! of

Ref. @5# for the FRM’s Rkm
j 6(V) may be written in the fol-

lowing compact form in terms ofRkm
j lp(V) andY jm

slp(n;n8):

Rkm
j lp~V!5

4p

~sinu!k (
s50

k2lp

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!Y jm
slp~n;n8!,

~7!

wherek>lp , and the factorA is given by
Aks
(lp)

52~k!12lp
~k1s1lp21!!

~2k21!!!
A ~ j 1lp!! ~ j 2s2lp!! ~2 j 21!!!

s! ~ j 1k!! ~ j 2k!! ~2 j 22s11!!! ~2s12lp11!!!
,

-

ive
whereA00
(lp)

[d0,lp
and where theC k2s2lp

(1/2)2k (cosu) are Gegen-

bauer polynomials with negative upper indices@8#.
It is important to note that the set of (2j 11) MBH’s in

Eq. ~6! with lp50,1 ands50, . . . ,j 2lp form a basis set of
irreducible tensors with integer rankj @5,7# and that Eq.~7! is
an example of an expansion in this basis@9#. For lp50, the
MBH’s in Eq. ~6! are polar tensors, while forlp51 they are
axial tensors~pseudotensors!. In the terminology of Ref.@6#,
Rkm

j lp(V) with lp50 (lp51) is said to have ‘‘normal’’
~‘‘abnormal’’! parity. Equation~7! is the simplest form of
the invariant representations for FRM’s derived in Ref.@5#.
In what follows, we analyze the algebraic properties of
representation~7! and utilize it for various special choices o
the parameteru.

III. FACTORIZED FORM OF d j

The right-hand side of Eq.~7! is the product of two ma-
trices: one of them, involving Gegenbauer polynomials,
~lower left! triangular form; the other one has matrix el
ments which are components of a MBH@cf. Eq. ~6!# with
indicess and m. Although for an arbitrary parameteru the
factorized form of the FRM is rather complicated, it is po
sible to find a simple factorized form for the Wignerdj (b)
matrix by considering the~auxiliary! rotation fromK to K8
described by the Euler anglesa5g50, b5u. For such a
rotation, Eq.~7! reduces to
e

s

-

dkm
j lp~u!5

4p

~sinu!k (
s50

smax

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!

3Y jm
slp~2u,0;0,0!, ~8!

wheresmax5min(k2lp , j2m) and the parity-projected com
bination of dj matrices is defined by Eq.~3!, taking into
account the relationRkm

j (0,u,0)5dkm
j (u). The MBH on the

right-hand side of Eq.~8! may be calculated explicitly as

4pY jm
slp~2u,0;0,0!5A4p~2s12lp11!

3Cj 2s m s1lp 0
jm Yj 2s m~2u,0!

5Bsm
(lp)P j 2s

m ~cosu!. ~9!

HerePj 2s
m (cosu) is an associated Legendre polynomial@1#,

which is related to a Gegenbauer polynomial with posit
upper index by the identity

P a
a~cosu!5~2a21!!! ~2sinu!aC a2a

(1/2)1a~cosu!,

a>0.

The coefficientBsm
(lp) in Eq. ~9! is defined by
3-2
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Bsm
(lp)

5
~21!mmlp

~ j 2s1m!!
A~2s12lp11!!! ~ j 2s2lp!! ~2 j 22s11!!! ~ j 2m!! ~ j 1m!!

s! ~ j 1lp!! ~2 j 21!!!
. ~10!
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For the simplest presentation of results, it is convenien
introduce the renormalized matrixd̃km

j lp(u), where

dkm
j lp~u!5A~ j 1m!! ~ j 2m!!

~ j 1k!! ~ j 2k!! S sinu

2 D m2k

d̃km
j lp~u!. ~11!

Substituting Eq.~11! into Eq.~8!, the matrixd̃ is obtained as
the product of two triangular matrices,

d̃j lp~u!5C( j ,lp)~u!•P( j ,lp)~u!, ~12!

where the matrix elements of the lower left triangular mat
C and the upper left triangular matrixP are defined by

Cks
( j ,lp)

~u!5
~k2lp!! ~k1s21!!

~s2lp!! ~2k21!!
C k2s

(1/2)2k~cosu!, ~13!

Psm
( j ,lp)

~u!5
~2m!! ~ j 2s!!

~m2lp!! ~ j 2s1m1lp!!
C j 2s2m1lp

(1/2)1m ~cosu!

5S 22

sinu D m mlp~ j 2s!!

~ j 2s1m1lp!!
P j 2s1lp

m ~cosu!,

~14!

where in these equationslp<k,m,s< j , andC00
( j ,lp)(u)51.

Equations.~11!–~14! are the principal result of this pape
We note the surprisingly simple form and the intrinsic bea
of this new factorized form fordj : matrix elements of both
triangular matrices are well-known classical~Gegenbauer!
polynomials in cosu with rational coefficients; diagonal ele
ments ofC( j ,lp) andP( j ,lp) are equal to unity, i.e.,

Ckk
( j ,lp)

~u!5Pm j2m1lp

( j ,lp)
~u!51. ~15!

Note that matrix elements ofC( j ,lp) and P( j ,lp) do not de-
pend on the value ofj; rather, only their dimension depend
02210
o

y

on j. Indeed, both indicesj ands enter Eq.~14! only in the
combination (j 2s), which determines the dimensions of th
matrices entering Eq.~12!. These dimensions arej and j
11 for lp51 andlp50, respectively. As a consequence
the independence of the matrix elements onj, the matrices
C( j 11,lp) and P( j 11,lp) @and obviously thedj 11,lp(b) func-
tions# can be calculated by simply adding one addition
~lowest! row to C( j ,lp) and one additional~highest! row to
P( j ,lp), as we illustrate in the example below, in which w
present explicit forms for the matricesC( j ,lp) andP( j ,lp) for
j <3. The results forlp51 are

C(2,1)~u!5S 1 0

2cosu 1D , ~16!

C(3,1)~u!5S 1 0 0

2cosu 1 0

1

4
~3 cos2u11! 22 cosu 1

D , ~17!

P(2,1)~u!5S cosu 1

1 0D , ~18!

P(3,1)~u!5S 1

4
~5 cos2u21! 2 cosu 1

cosu 1 0

1 0 0

D , ~19!

and we recall from Eq.~15! that the diagonal elements ar
unity, so that the 131 matricesC(1,1) andP(1,1) are trivially
unity. As noted above, we see thatC(2,1) and P(2,1) are the
upper left and lower left parts of the matricesC(3,1) and
P(3,1), respectively. The result forj 53,lp50 is
~20!
3-3
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The marked internal 232 and 333 matrices in these equa
tions are the results forj 51, lp50 and j 52, lp50, re-
spectively. We observe thatC(1,0)5C(2,1) andP(1,0)5P(2,1).

IV. RELATION TO THE RESULT OF MATVEENKO

Matveenko’s derivation@6# of a factorized form for the
parity-projected combinations ofdj (b) matrices exploits a
nontrivial technique of hyperspherical harmonics in terms
Jacobi vectorsX andx of the three-body problem. In order t
establish the connection of these results@6# with our results
presented above, let us consider the transformation of
MBH in Eq. ~6! under the auxiliary rotationV5(0,u,0)
from the frameK to K8, i.e., the same type of rotation a
considered in Eq.~8!. Under this rotation, the irreducibl
tensor in Eq.~6! is transformed using the parity-projecteddj

matrix according to the relation

Y jm
slp~2u,0;0,0!5 (

k5lp

s1lp

Y j 2k
slp ~0,0;u,0!dkm

j lp~u!. ~22!

This equation may be written as a matrix identity

B( j ,lp)~2u!5B( j ,lp)~u!•dj lp~u!, ~23!

where matrix elements of the upper left triangular mat
B( j ,lp)(2u) are defined above by Eq.~9! and coincide with
matrix elements ofP( j ,lp)(u) @which are defined by Eq.~14!#
up to numerical coefficients:

Bsm
( j ,lp)

~2u!5Bsm
(lp)P j 2s

m ~cosu!. ~24!

The lower left triangular matrixB( j ,lp)(u) is defined by an
interchange of the rows ofB( j ,lp)(2u), namely

Bsm
( j ,lp)

~u!5Bj 2s2lp m
( j ,lp)

~2u!. ~25!

Thus, both matricesB( j ,lp)(2u) and B( j ,lp)(u) are com-
posed of associated Legendre polynomials~or, equivalently,
of Gegenbauer polynomials with positive half-integer upp
indices!. Equation~23! is equivalent to Eqs.~26! and~29! of
Ref. @6#. The main difference between Eq.~23! and the result
in Eq. ~12! is that the calculation of thedj lp matrix as the
solution of the matrix equation~23! requires the inversion o
the matrixB( j ,lp)(u). Note that there are some evident d
ferences in the notation between the results in this paper
those of Ref.@6#. These differences stem from the fact th
we consider the rotation of the coordinate frame~because it
02210
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provides the standard definition for rotation matrices@1#!,
while Ref. @6# considers the rotation of the body-fixed fram
~because it is convenient for the three-body problem!. The
relation between our matricesd

m8m

j lp (u) and the slightly dif-

ferent matricesdmm8
jp (u) of Ref. @6# is

d
m8m

j lp ~u!5~21!lp1m8A 11d0,m

11d0,m8

dm8m
jp

~u!. ~26!

Taking account of this relation, Eq.~23! for lp50 and for
lp51 coincides with the basic Eqs.~26! and~29! of Ref. @6#.

V. APPLICATION TO INVERSION OF A MATRIX
COMPOSED OF CLASSICAL POLYNOMIALS

From Eqs.~12! and ~23!, it follows that there must exis
appropriate algebraic formulas for explicitly inverting a tr
angular matrix composed of Gegenbauer~or associated Leg-
endre! polynomials. Indeed, such formulas can be deriv
from Eq. ~7! by considering a zero rotation,V5(0,0,0). On
the one hand, we must haveRkm

j (0)5dk,m , but, on the other
hand, the direct use of Eq.~7! gives

Rkm
j lp~0!5

4p

~sinu!k (
s50

smax

Aks
(lp)C k2s2lp

(1/2)2k ~cosu!Y jm
slp~0,0;u,0!,

~27!

wherek>lp . Calculating the MBH on the right-hand sid
of Eq. ~27! explicitly @cf. Eq. ~9!#, we arrive at the identity
~for both lp50 and 1)

dk,m52k (
s5m

k
~k1s21!!

~s1m!!
C k2s

(1/2)2k~cosu!C s2m
(1/2)1m~cosu!.

~28!

We believe Eq.~28! to be a new result. Equation~28! can
also be written in the matrix form

I5C( j ,lp)~u!•P( j ,lp)~u!, ~29!

whereI is the diagonal unit matrix, and the matrixP( j ,lp)(u)
is defined by an interchange of the rows ofP( j ,lp)(u),
3-4
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Psm
( j ,lp)

~u!5Pj 2s1lp m
( j ,lp)

~u!.

Noting the fact that if the product of two matrices is the u
matrix I , then these matrices are commuting, we obtain fr
Eq. ~29! one additional interesting relation@cf. Eq. ~12!#:

I5P( j ,lp)~u!•C( j ,lp)~u!, ~30!

whereI is the ‘‘quasidiagonal’’ unit matrix

I5S 0 0 . . . 0 1

0 0 . . . 1 0

••• ••• ••• ••• •••

1 0 . . . 0 0

D .

Matrix identities~12!, ~29!, and~30! allow us to write the
chain of equalities

d̃j lp~u!•d̃j lp~u!5C( j ,lp)
•P( j ,lp)

•C( j ,lp)
•P( j ,lp)

5C( j ,lp)I•P( j ,lp)5C( j ,lp)
•P( j ,lp)5I .

~31!

Thus, we have proved thatdj lp(u)•dj lp(u)5I . This identity
can be proved also using unitarity properties of Wigner fu
tions. It is important that Eq.~30! can be used to control th
accuracy of numerical calculations of matricesP( j ,lp)(u) and
C( j ,lp)(u). Namely, if the calculated matrix product on th
right-hand side of Eq.~30! differs from the exact matrixI ,
then one loses precision in one’s calculations.

The identity ~29! demonstrates the unexpected fact th
for a triangular matrix composed of Gegenbauer polynom
C n

(1/2)2k(cosu) or C n
(1/2)1k(cosu) ~or of associated Legendr

polynomials!, the explicit form of the inverse matrix exists
again in terms of Gegenbauer polynomials whose upper
dices have the opposite sign to those of the initial~nonin-
verted! matrix. In particular, we have

@B( j ,lp)~u!#ms
215

Ams
(lp)

~sinu!m
C m2s2lp

(1/2)2m ~cosu!. ~32!

Thus, matrix elements of the matrix@B( j ,lp)(u)#21 coincide
with matrix elements ofC @cf. Eqs. ~13! and ~32!# up to
some coefficients. Using Eqs.~24! and ~32!, the expression
for dj lp(u),

dj lp~u!5@B( j ,lp)~u!#21
•B( j ,lp)~2u!,

is easily transformed to the form in Eqs.~11!–~14!. This
result gives an independent proof of our basic result in
i,

02210
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~12! and establishes the connection of our result with tha
Ref. @6#.

VI. CONCLUSIONS

Invariant representations of FRM’s@5# @such as, e.g., Eq
~7!# are powerful tools of angular-momentum algebra. U
lizing these results for special Euler rotations, we have fou
in this paper a simple form for the parity-projected Wign
dj lp matrices as the product of two triangular matrices. Bo
matrices are presented here explicitly in terms of well-kno
classical polynomials. The use of Eqs.~12!–~14! in problems
having definite paritylp is much more convenient than th
standard representation fordj matrices in terms of Jacob
polynomials or hypergeometric functions@1#. Indeed, for
fixed j andlp , according to Eq.~12! one needs to calculat
only ( j 2lp)( j 2lp11) different Gegenbauer polynomia
instead ofj (2 j 11) different Jacobi or hypergeometric poly
nomials. Furthermore, Eq.~12! is especially convenient fo
numerical evaluation ofdj lp matrices having different rank
j, because, as mentioned above, matrix elements ofC andP
do not depend onj, and hence the matrices forj 85 j 11 may
employ results calculated forj without recalculation. Con-
cerning applications of the present results in analyses
many-body problems, we note that the angleu in Eq. ~7! is
an arbitrary parameter, which may be considered, e.g., as
angle between a Jacobi vector pairX andx of the three-body
problem @6#, choosingn and n8 as the corresponding un
vectors X̂ and x̂. In this case the set of parity-projecte
MBH’s in Eq. ~6!, i.e., a basis set of irreducible tensors wi
integer rankj, may be useful in the construction of a conv
nient angular basis for the three-body problem similar to
three-body angular basis discussed in Ref.@6#.

We note finally that both our results here and those in R
@6# are applicable for integerj, which is the most importan
case for a number of applications. Invariant representati
for FRM’s for half-integerj may also be derived using th
formal similarity of vectors to spinors with rank 1/2, thereb
generalizing the results of Ref.@5#. Based on such a gene
alization, the factorized form ofdj matrices can be derived
for half-integerj also and will be published elsewhere.

ACKNOWLEDGMENTS

This work has been supported in part by the Russ
Foundation for Basic Research under Grant No. 98-
16111, by INTAS-RFBR Grant No. IR-97-673, and by th
National Science Foundation under Grant No. PH
9722110.
s.

B

@1# D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonski
Quantum Theory of Angular Momentum~World Scientific,
Singapore, 1988!.

@2# U. Fano, J. Math. Phys.1, 417 ~1960!.
@3# A.K. Bhatia and A. Temkin, Rev. Mod. Phys.36, 1050~1964!.
@4# V.N. Ostrovsky and S.I. Nikitin, J. Phys. B18, 4349~1985!.
@5# N.L. Manakov, A.V. Meremianin, and A.F. Starace, Phy

Rev. A 57, 3233~1998!.
@6# A.V. Matveenko, Phys. Rev. A59, 1034~1999!.
@7# N.L. Manakov, S.I. Marmo, and A.V. Meremianin, J. Phys.
3-5



i,
t
.

is
dy

ys.

MANAKOV, MEREMIANIN, AND STARACE PHYSICAL REVIEW A 61 022103
29, 2711~1996!.
@8# A. Erdelyi, W. Magnus, F. Oberhettinger, and F. G. Tricom

Higher Trancendental Functions,Bateman Manuscript Projec
~McGraw-Hill, New York, 1953!, Vol. II, Chap. 10, Sec. 10.9
02210
@9# This basis was used implicitly for the first time in the analys
of higher angular momentum eigenfunctions for the three-bo
problem in Hylleraas-Breit coordinates by C. Schwartz, Ph
Rev.123, 1700~1961!.
3-6


