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Bound states of neutral particles in external electric fields
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Neutral fermions of spin12 with magnetic moment can interact with electromagnetic fields through nonmini-
mal coupling. The Dirac-Pauli equation for such a fermion coupled to a spherically symmetric or central
electric field can be reduced to two simultaneous ordinary differential equations by separation of variables in
spherical coordinates. For a wide variety of central electric fields, bound-state solutions of critical energy
values can be found analytically. The degeneracy of these energy levels turns out to be numerably infinite. This
reveals the possibility of condensing infinitely many fermions into a single energy level. For radially constant
and radially linear electric fields, the system of ordinary differential equations can be completely solved, and
all bound-state solutions are obtained in closed forms. The radially constant field supports scattering solutions
as well. For radially linear fields, more energy levels~in addition to the critical one! are infinitely degenerate.
The simultaneous presence of central magnetic and electric fields is discussed.

PACS number~s!: 03.65.Pm
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I. INTRODUCTION

In relativistic quantum theory, a charged fermion of sp
1
2 moving in a background electromagnetic field is describ
by the Dirac equation with minimal coupling to the vect
potential. In 1941, Pauli extended this equation to include
additional nonminimal coupling term which takes into a
count the interaction caused by the anomalous magnetic
ment of the charged particle@1#. This extended equation i
usually called the Dirac-Pauli equation. Many works ha
been devoted to the investigation of exact solutions of
equation in various electromagnetic fields, say, a cons
uniform magnetic field, an electromagnetic plane wave,
more complicated ones@2#. A constant central~spherically
symmetric! electric field was also considered by some a
thors. In this case the Dirac-Pauli equation is separabl
spherical coordinates; however, exact solutions of the ra
equation have not been found in closed forms@2#. In these
studies, the nonminimal coupling is conceptually taken
some correction to the minimal one~though the correction is
considerable for protons!, and the simultaneous presence
both couplings causes some mathematical difficulty.

In this paper we consider neutral fermions of spin1
2 with

magnetic moment. Without electric charges, such partic
can still interact with electromagnetic fields through no
minimal coupling, and can be well described by the Dira
Pauli equation. On the one hand, without the minimal c
pling, the Dirac-Pauli equation is simpler. On the other ha
the interaction solely from nonminimal coupling has not
tracted enough attention, especially before the discover
the Aharonov-Casher~AC! effect @3–5#. Since the AC effect
is a consequence of the nonminimal coupling and has b
observed in experiment@5#, one may become interested
other consequences of the interaction. For instance, it ma
of interest to study bound states of neutral fermions in ex

*Electronic addresses: qg_lin@163.net, stdp@zsu.edu.cn
†Mailing address.
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nal electromagnetic fields, especially when exact soluti
are available. It appears that this problem was not conside
in the literature as far as we know. The purpose of this pa
is to deal with this problem. It is organized as follows.

In the next section we consider the Dirac-Pauli equat
of a neutral fermion of spin1

2 , with massmn and magnetic
moment mn , interacting with an external electromagnet
field through nonminimal coupling. For spherically symme
ric or central electromagnetic fields, it can be shown that
total angular momentum is a constant of motion. By sepa
tion of variables in spherical coordinates, the station
Dirac-Pauli equation in a central electric field, which i
volves four partial differential equations, can be reduced t
system of two coupled ordinary differential equatio
~ODE’s! for two radial wave functions. Given a specific ele
tric field, one can in principle solve the system of ODE’s
obtain the radial wave functions and determine the ene
levels for bound states. For a wide variety of electric fiel
one can find bound-state solutions of critical energy valuemn

or 2mn in analytic forms. It turns out that these critica
energy levels are infinitely degenerate. This is interest
because it reveals the possibility of condensing infinit
many fermions, say, neutrons, into a single energy le
Electric fields that support a finite number of critical bou
states are also discussed. In Sec. III we study a radially c
stant field; in this case the system of ODE’s can be co
pletely solved, and we have scattering as well as bound-s
solutions. All bound-state solutions are given in clos
forms. Only the critical energy level has infinite degenera
In Sec. IV we deal with radially linear electric fields. Th
system of ODE’s is also completely solvable. In this case
have only bound-state solutions, and many of the ene
levels are infinitely degenerate. In Sec. V we discuss
simultaneous presence of central magnetic and electric fie
In this case separation of variables is still possible in sph
cal coordinates. But the reduced system of ODE’s involv
four coupled equations for four radial wave functions, and
thus much more difficult to solve. Some other remarks a
©1999 The American Physical Society01-1
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discussions, say, the nonrelativistic limit, are also included
this section.

II. NEUTRAL FERMIONS IN CENTRAL ELECTRIC
FIELDS

We work in ~311!-dimensional space-time and use na
ral units where\5c51. Consider a neutral fermion of spi
1
2 with massmn and magnetic monmentmn , moving in an
external electromagnetic field described by the field stren
Fmn . The fermion is described by a four-component spin
rial wave functionC obeying the Dirac-Pauli equation.@2,6#

S igm]m2
1

2
mns

mnFmn2mnDC50, ~1!

wheregm5(g0,g) are Dirac matrices satisfying

$gm,gn%52gmn, ~2!

with gmn5diag(1,21,21,21) and

smn5
i

2
@gm,gn#. ~3!

It can be shown that

1

2
smnFmn5 i a•E2S•B, ~4!

whereE is the external electric field andB the magnetic one
a5g0g, andSk5 1

2 eki js i j whereeki j is totally antisymmet-
ric in its indices ande12351. If both E andB are indepen-
dent of the timet, one may set

C~ t,r !5e2 iEtc~r !, ~5!

and obtain a stationary Dirac-Pauli equation forc:

Hc5Ec, ~6a!

where the HalmiltonianH is given by

H5a•p1 imng•E2mng
0S•B1g0mn , ~6b!

wherep52 i“ or pk52 i ]k .
Now let us consider spherically symmetric or cent

fields

E5E~r !er , B5B~r !er , ~7!

wherer is one of the spherical coordinates (r ,u,f) ander is
the unit vector in the radial direction. As usual we define
the orbital angular momentumL5r3p. It is not difficult to
calculate the commutator@L ,H# and it turns out that
@L ,H#Þ0 even for free particles. For central fields, howev
it can be shown that the total angular momentumJ5L1S
whereS5 1

2 S is a conserved quantity, i.e.,@J,H#50. Thus
one can have a common set of eigenstates for (H,J2,Jz).
BecauseS25 3

4 is a constant operator, it is also a conserv
quantity. Unfortunately,L2 is not conserved and cannot ha
a common set of eigenstates with (H,J2,Jz). If B(r )50, we
02210
n

-

th
-

l

e

,

d

have a further conserved quantityK5g0(S•L11) which
commutes with bothH and J. In this case one can have
common set of eigenstates for (H,J2,Jz ,K,S2).

To solve the Dirac-Pauli equation, one should choos
specific representation for theg matrices. Here we use th
Dirac representation@6#. In this representation we haveS
5diag(s,s) wheres are Pauli matrices, andJ5diag(j ,j )
where j5L1 1

2 s is a 232 matrix. In this section we only
consider a central electric field. The simultaneous prese
of a central magnetic field will be discussed in Sec. V. W
define c5(w,x)t, wheret denotes transpose, and bothw
andx are two-component spinors. The stationary Dirac-Pa
equation~6! then takes the form

s•~p2 imnEer !w5~E1mn!x, ~8a!

s•~p1 imnEer !x5~E2mn!w. ~8b!

Here four partial differential equations are involved. We a
going to simplify these equations by separation of variab
in spherical coordinates. Let us define the two-compon
spinors

f lm
1 ~u,f!5S Al 1m11

2l 11
Ylm~u,f!

A l 2m

2l 11
Yl ,m11~u,f!

D ,

l 50,1,2, . . . ; m52~ l 11!,2 l , . . . ,l ; ~9a!

f lm
2 ~u,f!5S Al 2m11

2l 13
Yl 11,m~u,f!

2Al 1m12

2l 13
Yl 11,m11~u,f!

D ,

l 50,1,2, . . . ; m52~ l 11!,2 l , . . . ,l . ~9b!

Here Ylm(u,f) are spherical harmonics as defined in R
@7#. Both of them are common eigenstates of (j2, j z ,L2,S2)
with eigenvalues

XS l 1
1

2D S l 1
3

2D ,m1
1

2
,l ~ l 11!,

3

4
C

and

XS l 1
1

2D S l 1
3

2D ,m1
1

2
,~ l 11!~ l 12!,

3

4
C,

respectively. It can be shown that

s•er f lm
6 ~u,f!5 f lm

7 ~u,f! ~10!

and

s•L f lm
1 ~u,f!5 l f lm

1 ~u,f!, ~11a!

s•L f lm
2 ~u,f!52~ l 12! f lm

2 ~u,f!. ~11b!

The relation
1-2
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BOUND STATES OF NEUTRAL PARTICLES IN . . . PHYSICAL REVIEW A61 022101
s•p52 i ~s•er !] r1
i

r
~s•er !~s•L ! ~12!

is also useful in the following. With these preparations
can simplify Eq.~8! for two different kinds of solutions.

The first kind of solution to Eq.~8! is c15(w1,x1)t,
where

w1~r ,u,f!5u1~r ! f lm
1 ~u,f!,

x1~r ,u,f!5 iv1~r ! f lm
2 ~u,f!. ~13!

Note thatc1 is a common eigenstate of (J2,Jz ,K,S2) with

eigenvalues„( l 1 1
2 )( l 1 3

2 ),m1 1
2 ,l 11,3

4 …, but it is not an
eigenstate ofL2. Using the relations~10!–~12!, it is not dif-
ficult to show that Eq.~8! now reduces to a system of firs
order ODE’s for the radial wave functionsu1(r ) andv1(r ):

du1

dr
1mnEu12

l

r
u152~E1mn!v

1, ~14a!

dv1

dr
2mnEv11

l 12

r
v15~E2mn!u

1. ~14b!

Becauseu andf are not defined at the origin, the approp
ate boundary conditions foru1 andv1 are

uu1~0!u,` ~ l 50!, u1~0!50 ~ lÞ0!, ~15a!

v1~0!50 ; l . ~15b!

Of course they should also satisfy appropriate boundary c
ditions at infinity. For the bound-state solutions to be cons
ered below, they should fall off rapidly enough whenr→`
such thatc1 is square integrable. For the scattering proble
they should be finite at infinity. Given a specific form fo
E(r ), one can solve Eq.~14! at least numerically. This is
much simpler than dealing with Eq.~8!. For EÞ2mn , one
can expressv1 in terms ofu1 by using Eq.~14a!, and sub-
stitute it into Eq.~14b! to obtain a second-order ODE sole
for u1:

d2u1

dr2 1
2

r

du1

dr
1FE 22mn

21mn

dE

dr
2mn

2E212~ l 11!mn

E

r

2
l ~ l 11!

r 2 Gu150. ~16!

This is similar to the radial Schro¨dinger equation in a centra
potential. It can be exactly solved for some specific form
E(r ). This will be studied in the subsequent sections. Wh
Eq. ~16! is solved, it is easy to obtainv1. If E52mn , one
can directly solve Eq.~14! without difficulty.

The second kind of solution to Eq.~8! is c2

5(w2,x2)t, where

w2~r ,u,f!5u2~r ! f lm
2 ~u,f!,

x2~r ,u,f!5 iv2~r ! f lm
1 ~u,f!. ~17!
02210
n-
-

,

f
n

Note thatc2 is also a common eigenstate of (J2,Jz ,K,S2)

with eigenvalues„( l 1 1
2 )( l 1 3

2 ),m1 1
2 ,2( l 11),3

4 …, As be-
fore, Eq.~8! reduces to a system of first-order ODE’s for th
radial wave functionsu2(r ) andv2(r ):

du2

dr
1mnEu21

l 12

r
u252~E1mn!v

2, ~18a!

dv2

dr
2mnEv2

l

r
v25~E2mn!u

2. ~18b!

This is similar to Eq.~14!. If EÞmn , one can solve Eq.~18b!
for u2, and substitute it into Eq.~18a! to obtain a second-
order ODE solely forv2:

d2v2

dr2 1
2

r

dv2

dr
1FE 22mn

22mn

dE

dr
2mn

2E222~ l 11!mn

E

r

2
l ~ l 11!

r 2 Gv250. ~19!

This is similar to Eq.~16!. Note that the appropriate bound
ary conditions foru2 andv2 at the origin are

u2~0!50 ; l , ~20a!

uv2~0!u,` ~ l 50!, v2~0!50 ~ lÞ0!. ~20b!

Thus Eqs.~16! and ~19! have the same boundary condition
at the origin. Also note that they interchange ifE(r )
→2E(r ). If E5mn , Eq. ~19! is invalid, and one can solve
Eq. ~18! directly.

Using the completeness relation of the spherical harm
ics, it can be shown that the two-component spin
f lm

1 (u,f) and f lm
2 (u,f) constitute a complete set on th

sphere. More specifically, we have

(
l 50

`

(
m52( l 11)

l

@ f lm
1 ~u,f! f lm

1†~u8,f8!

1 f lm
2 ~u,f! f lm

2†~u8,f8!#5d~cosu2cosu8!d~f2f8!.

~21!

Therefore all possible forms of solutions to Eq.~8! are in-
cluded in Eqs.~13! and ~17!.

In the subsequent sections we are going to solve Eqs.~16!
and ~19! for radially constant and radially linear electr
fields. Before dealing with these specific cases, we wo
like to give some special bound-state solutions for more g
eral forms of the electric field. We assume thatE(r ) behaves
like r 211d1 when r→0 and liker 211d2 when r→` where
d1 and d2 are positive numbers, and is regular everywhe
except possibly atr 50. If mnE(r ).0 for r .r 1 wherer 1 is
some finite radius, we have the following solution to Eq.~14!
with energy levelE5mn :

ul
1~r !5Al

1r lexpF2E
0

r

mnE~r 8!dr8G , v l
1~r !50,

~22!
1-3
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QIONG-GUI LIN PHYSICAL REVIEW A 61 022101
whereAl
1 is a normalization constant. This obviously sat

fies the boundary conditions~15! at the origin. It is a bound-
state solution because it falls off rapidly enough to be squ
integrable. It is remarkable that the energy eigenvalue d
not depend on the quantum numbersl andm ~or j 5 l 1 1

2 and
mj5m1 1

2 ). Thus the degeneracy of this energy level is n
merably infinite. This is somewhat similar to the situation
a charged particle in a magnetic field with infinite flux in tw
dimensions@8#. To our knowledge other similar situation
were not encountered previously in realistic thre
dimensional space. This is interesting because it reveals
possibility of condensing infinitely many fermions, say, ne
trons, into a single energy level. IfmnE(r ),0 for r .r 2

wherer 2 is some finite radius, then we have the followin
solution to Eq.~18! with energy levelE52mn :

ul
2~r !50, v l

2~r !5Al
2r l expF E

0

r

mnE~r 8!dr8G , ~23!

whereAl
2 is a normalization constant. This is also a boun

state solution, and the energy level is infinitely degener
Here we have a negative-energy solution, and will have m
in the following sections. The presence of negative-ene
eigenvalues and eigenstates is a quite general feature of
tivistic quantum mechanics. Though these solutions are n
physical in the one-particle theory, it is well known that th
correspond to antiparticles after second quantization. Th
fore we will not exclude these solutions in this paper.

If E(r );k/r for large r wherek is a constant, the situa
tion is of special interest. In this case the nonvanishing co
ponent of the critical solutions@ul

1(r ) for mnk.0 or v l
2(r )

for mnk,0# does not fall off exponentially at larger, but
behaves liker l 2umnku. To be normalizable, one should hav
l ,umnku2 3

2 . Therefore to have at least one critical bou
state, one should haveumnku. 3

2 . Whenumnku2 3
2 is a natural

number, we haveumnku2 3
2 critical bound states~degeneracy

over m has not been taken into account!. Whenumnku2 3
2 is

not a natural number, the number of critical bound state
@ umnku2 1

2 #, where the square brackets denote the integ
part of a number. This is similar to the situation of a charg
particle in a magnetic field with finite flux in two dimension
@8#.

For a specific electric field, critical bound states withE
5mn and those withE52mn do not appear simultaneously
This spectral asymmetry is also similar to that of a charg
particle in a magnetic field in two dimensions. Therefo
vacuum polarization similar to those in two dimensions
charged particles@9–11# or neutral ones@12# may be ex-
pected for the present system after second quantization.

To conclude this section we write down the normalizati
condition for bound-state~or so-called square integrable! so-
lutions:

E dr c6†~r !c6~r !5E
0

`

@u6~r !#2r 2dr1E
0

`

@v6~r !#2r 2dr

51. ~24!
02210
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The normalization constants in Eqs.~22! and~23!, and those
in the following sections, are to be determined by this co
dition.

III. RADIALLY CONSTANT ELECTRIC FIELDS

In this section we consider radially constant electric fie
E(r )5E0 where E0 is a constant. As pointed out befor
Eqs.~16! and ~19! interchange whenE(r )→2E(r ). So we
need only consider a positiveE0 or a negativeE0. For con-
venience we assume thatmnE0.0. Now Eq.~16! takes the
form

d2u1

dr2 1
2

r

du1

dr

1FE 22mn
22mn

2E0
21

2~ l 11!mnE0

r
2

l ~ l 11!

r 2 Gu150.

~25!

This has the same form as the radial Schro¨dinger equation in
an attractive Coulomb field. The difference is that the ‘‘Co
lomb field’’ ~the next to the last term in the square bracke!
here depends on the quantum numberl. Thus the energy
levels will depend onl as well as a principal quantum num
ber or a radial quantum number. As Eq.~25! is familiar in
quantum mechanics, we will give the solutions only. R
member that Eq.~25! is invalid for E52mn . We have the
bound-state energy levels

E0l5mn , nr50, ~26a!

Enr l 6
56Fmn

21mn
2E0

2~nr1 l 11!22~ l 11!2

~nr1 l 11!2 G1/2

,

nr51,2, . . . . ~26b!

Herenr is a radial quantum number. Whennr50 we have a
positive critical energy level given in Eq.~26a!. Though it is
independent ofl, we keep the subscriptl to make a clear
correspondence to the corresponding wave functions be
For nrÞ0 we have positive- and negative-energy levels,
dicated by the subscript6 in Eq. ~26b!. The corresponding
radial wave functions are

unr l 6
1 ~r !5Anr l 6

r le2r/2Lnr

2l 11~r!, ~27a!

vnr l 6
1 ~r !5Anr l 6

mnE0

~nr1 l 11!~Enr l 6
1mn!

r l 11e2r/2Lnr21
2l 13~r!

~27b!

for nrÞ0 and

u0l
1~r !5A0lr

le2r/2, ~27c!

v0l
1~r !50 ~27d!

for nr50, where
1-4
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r5anr l
r , anr l

5
2~ l 11!mnE0

~nr1 l 11!
, ~28!

andLnr

2l 11(r), etc., are Laguerre polynomials defined in R

@13#, which are different from those used in Ref.@7#. Note
that the superscript1 indicates the first kind of solution
~13!, while the subscript6 indicates the sign of the energ
levels. It is seen from Eq.~27! that negative- and positive
energy solutions have the same functional form, but the
efficients are different. The normalization constants are

Anr l 6
5

~mnE0!3/2

~nr1 l 11!2 F 2~ l 11!3nr !

~nr12l 11!! G
1/2S Enr l 6

1mn

Enr l 6
D 1/2

~29a!

for nrÞ0 and

A0l5
~2mnE0!3/2

A~2l 12!!
~29b!

for nr50. The degeneracy of the energy levelEnr l 1
or Enr l 2

is 2l 12. As the energy levelE0l5mn is actually independen
of l, its degeneracy is numerably infinite. Indeed, the solut
~28! is a specific realization of the solution~22! discussed
before.

When E52mn , Eq. ~25! is invalid. In this case one
should deal with Eq.~14! directly. It is easy to show that thi
energy value corresponds to a trivial solution. Thus all fir
kind solutions are included in Eq.~27!, and the correspond
ing energy levels are given by Eq.~26!. Note that all energy
levels have absolute values less thanAmn

21mn
2E0

2. WhenuEu
exceeds this value, we have scattering solutions to Eq.~25!.
This will not be discussed here.

Now we turn to Eq.~19!, which in the present case be
comes

d2v2

dr2 1
2

r

dv2

dr
1FE 22mn

22mn
2E0

22
2~ l 11!mnE0

r

2
l ~ l 11!

r 2 Gv250. ~30!

SincemnE0.0, this is equivalent to the radial Schro¨dinger
equation in a repulsive Coulomb field. In this case only sc
tering solutions are available. These scattering solutions h
energyE.Amn

21mn
2E0

2 or E,2Amn
21mn

2E0
2. If E5mn , Eq.

~30! is invalid. Then we may deal with Eq.~18! directly. It
turns out that this energy value corresponds to a trivial so
tion. We thus conclude that there is no bound state of
second kind in the present case.

To finish this section we estimate the ‘‘Bohr radius’’ o
the neutron in this radially constant field. It is roughly equ
to anr l

21 . For the critical-energy state,nr50, and a0l
21

5(2mnE0)21. In the mks system it reads

a0l
215

\c2

2mnE0
. ~31!
02210
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We takeuE0u55.1531011 V/m, the electric field strength a
the Bohr radius of the hydrogen atom. For neutrons, we h
a0l

2159.531024 m. This is a macroscopic length scale b
rather small. However, it might be not easy to realize a
dially constant central electric field with the above mag
tude in the laboratory. We do not know whether there ex
some such field somewhere in the universe.

IV. RADIALLY LINEAR ELECTRIC FIELDS

In this section we turn to another exactly solvable fie
the radially linear electric fieldE(r )5br whereb is a con-
stant. The electric charge density that produces this fiel
rc53b/4p in Gaussian units, which is a constant. To real
the above central field, however, the electric charge den
should become zero outside some large sphere where
particle under consideration cannot reach practically. Oth
wise the electric field would be zero everywhere. In the
gion of interest~inside the large sphere! the field is then
radially linear. For reasons given earlier, we need only c
sider one sign ofb. For convenience we assume thatbmn
.0. Equation~16! then takes the form

d2u1

dr2 1
2

r

du1

dr
1FE 22mn

21~2l 13!bmn2b2mn
2r 2

2
l ~ l 11!

r 2 Gu150. ~32!

This is not valid forE52mn . In the latter case one ca
solve Eq.~14! directly and obtain a trivial solution. Thus a
nontrivial solutions of the first kind are those arise from E
~32!. Equation~32! has the same form as the radial Schr¨-
dinger equation for an isotropic harmonic oscillator. The d
ference is that the ‘‘energy’’ here depends on the quant
numberl. Thus the dependence of the energy levels on
quantum numbers will be different from that of the isotrop
harmonic oscillator. Since Eq.~32! is also familiar in quan-
tum mechanics, we will give the solutions only. There a
only bound-state solutions. The energy levels are

E 0
15mn , nr50, ~33a!

Enr6
1 56Amn

214nrbmn, nr51,2, . . . , ~33b!

wherenr is a radial quantum number. Note that the sup
script 1 for E indicates the first kind of solutions, while th
subscript6 indicates the sign of the energy. As before, w
have negative- as well as positive-energy levels. The co
sponding radial wave functions are

u0l
1~r !5A0l

1r le2r2/2, v0l
1~r !50 ~34!

for nr50 and

unr l 6
1 ~r !5Anr l 6

1 r le2r2/2Lnr

l 11/2~r2!, ~35a!
1-5
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vnr l 6
1 ~r !5Anr l 6

1
2Abmn

E nr6
1 1mn

r l 11e2r2/2Lnr21
l 13/2~r2!

~35b!

for nrÞ0, where

r5Abmnr ~36!

andLnr

l 11/2(r2), etc., are Laguerre polynomials as employ

in Sec. III but the argument here isr2. The normalization
constants are determined by Eq.~24! and are given by

A0l
15

A2~bmn!
3/4

AG~ l 13/2!
, nr50, ~37a!

Anr l 6
1 5~bmn!

3/4F nr !

G~nr1 l 13/2!G
1/2S E nr6

1 1mn

E nr6
1 D 1/2

,

nr51,2, . . . . ~37b!

It is remarkable that all the above energy levels are indep
dent of the quantum numberl, and thus all of them are infi
nitely degenerate. The critical-energy solution~34! is another
realization of the solution~22!.

Now we consider the second kind of solutions~17!. It is
easy to show that Eq.~18! gives a trivial solution whenE
5mn . Thus all nontrivial solutions arise from Eq.~19! which
is valid for EÞmn and in the present case becomes

d2v2

dr2 1
2

r

dv2

dr
1FE 22mn

22~2l 13!bmn2b2mn
2r 2

2
l ~ l 11!

r 2 Gv250. ~38!

This is very similar to Eq.~32!. The only difference lies in
the sign of the third term in the square brackets. This diff
ence, however, will render the energy levels quite differ
from those obtained above. As before, we only give the
sults here. The energy levels are

E N6
2 56Amn

21~4N16!bmn, N5nr1 l 50,1,2, . . . ,
~39!

wherenr50,1,2, . . . is aradial quantum number andN is a
principal quantum number. The superscript2 of E indicates
the second kind of solutions, while the subscript6 indicates
the sign of the energy. The spectrum obtained here ha
overlap with that in Eq.~33!. The corresponding radial wav
functions are

unr l 6
2 ~r !52Anr l 6

2
2Abmn

E N6
2 2mn

r l 11e2r2/2Lnr

l 13/2~r2!,

~40a!

vnr l 6
2 ~r !5Anr l 6

2 r le2r2/2Lnr

l 11/2~r2!, ~40b!
02210
n-

-
t
-

no

wherer is given by Eq.~36!, andnr50,1,2, . . . is theradial
quantum number. The normalization constants are given

Anr l 6
2 5~bmn!

3/4F nr !

G~nr1 l 13/2!G
1/2S E N6

2 2mn

E N6
2 D 1/2

,

nr50,1,2, . . . . ~41!

The energy levelsE N1
2 andE N2

2 depend only on the princi-
pal quantum numberN. Given N, l may vary from 0 toN.
For a givenl, there are 2l 12 different solutions. Therefore
the degeneracy of the levelE N1

2 or E N2
2 is

dN5(
l 50

N

~2l 12!5~N11!~N12!. ~42!

In conclusion, in the radially linear electric field, we hav
two sets of bound-state energy levels. The first set is give
Eq. ~33!, corresponding to the first kind of solutions. Th
second set is given in Eq.~39!, corresponding to the secon
kind of solutions. There is no scattering solution here.
contrast, the radially constant electric field studied in Sec.
admits both scattering and bound-state solutions, tho
there exists no bound state of the second kind. Finally
estimate the ‘‘Bohr radius’’ of the neutron in the prese
case. This is roughly equal to (bmn)

21/2 or (3/4prcmn)
1/2

whererc is the electric charge density producing the field.
the mks system this reads

S 3\

4pm0rcmn
D 1/2

,

where m0 is the permeability of the vacuum. We takerc

5e/a0
3 where e is the electron charge anda0 is the Bohr

radius of the hydrogen atom. For neutrons the above ‘‘B
radius’’ has the value 4.431028 m. This is rather small.
However, it may be difficult to achieve the above elect
charge density.

V. SUMMARY AND DISCUSSION

In the preceding sections we have studied the Dirac-P
equation of a neutral fermion with nonminimal coupling to
central electric field. By separation of variables in spheri
coordinates, the stationary Dirac-Pauli equation which
volves four partial differential equations can be reduced t
system of ODE’s which involves two coupled first-ord
ODE’s for two radial wave functions. There are two differe
kinds of solutions, and thus two independent systems
ODE’s. Bound states of critical energy values can be
tained analytically for a quite general class of electric fiel
where the degeneracy of the critical energy level turns ou
be numerably infinite. This reveals the possibility of co
densing infinitely many fermions into a single energy lev
We also discussed a special form of the electric field t
supports a finite number of critical bound states. Two s
cific electric fields, one radially constant and the other ra
ally linear, are studied in detail and all the bound-state so
tions are obtained in closed forms. In the first case bou
1-6
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states exist only for the first kind of solutions, while scatt
ing states exist for both kinds. Scattering states are not
cussed in detail. In the second case, we have two set
discrete energy levels corresponding to the two kinds of
lutions. There is no scattering state. It turns out that the
ergy levels in the first set are all infinitely degenerate. In b
fields we have negative- as well as positive-energy lev
Critical energy levels are also admitted in both cases, wh
may be positive or negative depending on the signs ofmn
and the electric fields. Note that the two critical energy lev
are not admitted at the same time, however. This spec
asymmetry may likely lead to vacuum polarization after s
ond quantization.

In Sec. II we have shown that the total angular mom
tum J is a conserved quantity in the simultaneous prese
of a central magnetic field and a central electric field. But
have not discussed the solutions of the Dirac-Pauli equa
in this case. In the Dirac representation, the stationary Di
Pauli equation~6! takes the form

s•~p2 imnEer !w5~E1mn2mnBs•er !x, ~43a!

s•~p1 imnEer !x5~E2mn1mnBs•er !w. ~43b!

These equations are similar to Eq.~8! but more complicated
They are still separable in spherical coordinates. We set

w~r ,u,f!5u1~r ! f lm
1 ~u,f!1u2~r ! f lm

2 ~u,f!, ~44a!

x~r ,u,f!5 iv1~r ! f lm
2 ~u,f!1 iv2~r ! f lm

1 ~u,f!.
~44b!

Substituting theseAnsätze into Eq. ~43! and using the rela-
tions~10!–~12! we obtain the following system of ODE’s fo
the four radial wave functions:

du1

dr
1mnEu12

l

r
u152~E1mn!v

11mnBv2,

~45a!

dv1

dr
2mnEv11

l 12

r
v15~E2mn!u

11mnBu2,

~45b!

du2

dr
1mnEu21

l 12

r
u252~E1mn!v

21mnBv1,

~45c!

dv2

dr
2mnEv2

l

r
v25~E2mn!u

21mnBu1. ~45d!

If B(r )50, one may setu25v250 which reduces Eq.~45!
to Eq. ~14! for the first kind of solutions, or setu15v1

50 which reduces Eq.~45! to Eq.~18! for the second kind of
solutions. This is what we have done before for a pure e
tric field. When a magnetic field is present at the same ti
this is not allowed, however. The essential reason is thatK is
no longer a conserved quantity in this case. All the fo
02210
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ODE’s in Eq.~45! are coupled to each other. It seems dif
cult to solve them even for a pure magnetic field. We will n
go into further details of these equations here.

Let us briefly discuss the nonrelativistic limit of th
Dirac-Pauli equation. Consider the stationary case with
pure electric field. We can solve Eq.~8a! for x and substitute
it into Eq. ~8b! to obtain an equation forw:

@s•~p1 imnE!#@s•~p2 imnE!#w5~E 22mn
2!w. ~46!

This holds for any value ofE exceptE52mn , and is valid
for noncentral electric fields as well. To discuss the nonr
ativistic limit we consider only positiveE and set

E5mn1E8.

WhenE8!mn we get the nonrelativistic limit of Eq.~46!:

@s•~p1 imnE!#@s•~p2 imnE!#w52mnE8w. ~47!

This has essentially the same form as Eq.~46!, and thus the
same solutions. However, it should be remarked that e
when umnEu!mn , Eq. ~47! is not valid for thoseE8 compa-
rable with mn . For example, in the radially constant fie
with umnE0u!mn , Eq. ~47! is good for all bound states, bu
not for scattering ones with largeE, say,E52mn . On the
other hand, even ifuEu is unbounded, Eq.~47! is still valid
for small E8. For example, in the radially linear field, Eq
~47! may be good for lower levels ifubmnu!mn . Since Eq.
~47! is not simpler, it is more convenient to deal with E
~46! directly. The nonrelativistic limit with both magneti
and electric fields can be similarly discussed, though the s
ation is more complicated. We will not give further deta
here.

We have pointed out in Sec. III that the radially consta
electric field admits scattering solutions of both kind
Though Eqs.~25! and~30! can be solved to give partial wav
solutions, the scattering problem is difficult to handle in th
case since these equations involve long-range ‘‘Coulomb
tentials.’’ An easier situation for the scattering problem m
be the fieldE(r )}r 21. This will be studied subsequently.

In this paper we have dealt with~311!-dimensional prob-
lems. The Dirac-Pauli equation~1! has a much simpler form
in a ~211!-dimensional space-time. Indeed, the situation
the AC effect is equivalent to a~211!-dimensional problem
because of the specific field configuration. Recently, we h
calculated the probability of neutral particle-antiparticle p
creation in the vacuum by external electromagnetic fields
211 dimensions, based on nonminimal coupling@14#. Both
scattering and bound-state problems in external fields
easier in 211 dimensions. These and other consequence
the nonminimal coupling will also be studied subsequent
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