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Bound states of neutral particles in external electric fields
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Neutral fermions of spir% with magnetic moment can interact with electromagnetic fields through nonmini-
mal coupling. The Dirac-Pauli equation for such a fermion coupled to a spherically symmetric or central
electric field can be reduced to two simultaneous ordinary differential equations by separation of variables in
spherical coordinates. For a wide variety of central electric fields, bound-state solutions of critical energy
values can be found analytically. The degeneracy of these energy levels turns out to be numerably infinite. This
reveals the possibility of condensing infinitely many fermions into a single energy level. For radially constant
and radially linear electric fields, the system of ordinary differential equations can be completely solved, and
all bound-state solutions are obtained in closed forms. The radially constant field supports scattering solutions
as well. For radially linear fields, more energy levéfs addition to the critical oneare infinitely degenerate.

The simultaneous presence of central magnetic and electric fields is discussed.

PACS numbdps): 03.65.Pm

I. INTRODUCTION nal electromagnetic fields, especially when exact solutions
are available. It appears that this problem was not considered
In relativistic quantum theory, a charged fermion of spinin the literature as far as we know. The purpose of this paper
1 moving in a background electromagnetic field is describeds to deal with this problem. It is organized as follows.
by the Dirac equation with minimal coupling to the vector In the next section we consider the Dirac-Pauli equation
potential. In 1941, Pauli extended this equation to include amf a neutral fermion of spig, with massm,, and magnetic
additional nonminimal coupling term which takes into ac- moment Mn, interacting with an external electromagnetic
count the interaction caused by the anomalous magnetic Méeld through nonminimal coupling. For spherically symmet-
ment of the charged particld]. This extended equation is ric or central electromagnetic fields, it can be shown that the
usually called the Dirac-Pauli equation. Many works haveysta| angular momentum is a constant of motion. By separa-
been devoted to the investigation of exact solutions of thigig, of variables in spherical coordinates, the stationary
equation in various electromagnetic fields, say, a constanyirac payli equation in a central electric field, which in-
uniform magnetic field, an electromagnetic plane wave, and, s four partial differential equations, can be reduced to a

more complicated onef2]. A canstant centralspherically system of two coupled ordinary differential equations

symmetrig glectnc field was also .conS|d(.ered_ by some au.'rgODE’s) for two radial wave functions. Given a specific elec-
thors. In this case the Dirac-Pauli equation is separable in-

spherical coordinates; however, exact solutions of the radiai[r'C field, one can in principle solve the system of ODE's to

equation have not been found in closed forf@} In these obtain the radial wave functions_ and Qetermine th_e energy
studies, the nonminimal coupling is conceptually taken adevels for. bound states. For a.W|de var!gty of electric fields,
some correction to the minimal orihough the correction is ©Ne c¢an find bound-state solutions of critical energy vaije
considerable for protonsand the simultaneous presence of O —My in analytic forms. It turns out that these critical
both couplings causes some mathematical difficulty. energy levels are infinitely degenerate. This is interesting
In this paper we consider neutral fermions of spimith ~ because it reveals the possibility of condensing infinitely
magnetic moment. Without electric charges, such particlegany fermions, say, neutrons, into a single energy level.
can still interact with electromagnetic fields through non-Electric fields that support a finite number of critical bound
minimal coupling, and can be well described by the Dirac-states are also discussed. In Sec. Il we study a radially con-
Pauli equation. On the one hand, without the minimal cou-stant field; in this case the system of ODE’s can be com-
pling, the Dirac-Pauli equation is simpler. On the other handpletely solved, and we have scattering as well as bound-state
the interaction solely from nonminimal coupling has not at-solutions. All bound-state solutions are given in closed
tracted enough attention, especially before the discovery dbrms. Only the critical energy level has infinite degeneracy.
the Aharonov-CashdAC) effect[3-5]. Since the AC effect In Sec. IV we deal with radially linear electric fields. The
is a consequence of the nonminimal coupling and has beesystem of ODE'’s is also completely solvable. In this case we
observed in experiment], one may become interested in have only bound-state solutions, and many of the energy
other consequences of the interaction. For instance, it may bdevels are infinitely degenerate. In Sec. V we discuss the
of interest to study bound states of neutral fermions in extersimultaneous presence of central magnetic and electric fields.
In this case separation of variables is still possible in spheri-
cal coordinates. But the reduced system of ODE’s involves
*Electronic addresses: qg_lin@163.net, stdp@zsu.edu.cn four coupled equations for four radial wave functions, and is
"Mailing address. thus much more difficult to solve. Some other remarks and
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discussions, say, the nonrelativistic limit, are also included imave a further conserved quantily=+°(%-L+1) which

this section. commutes with bottH and J. In this case one can have a
common set of eigenstates fdd (J2,J,,K,S?).
Il. NEUTRAL FERMIONS IN CENTRAL ELECTRIC To solve the Dirac-Pauli equation, one should choose a
FIELDS specific representation for thg matrices. Here we use the

Dirac representatiofi6]. In this representation we hau®
=diag(o, o) where o are Pauli matrices, andi=diag(,j)
wherej=L+ 30 is a 2x2 matrix. In this section we only

I . . consider a central electric field. The simultaneous presence
external electromagnetic field described by the field strengt}af a central magnetic field will be discussed in Sec. V. We
F ... The fermion is described by a four-component spino- o

. : . . ) . define y=(¢,x)", where r denotes transpose, and bath
rial wave functiond obeying the Dirac-Pauli equatiof2,6] andy are two-component spinors. The stationary Dirac-Pauli

equation(6) then takes the form

We work in (3+1)-dimensional space-time and use natu-
ral units whereh =c=1. Consider a neutral fermion of spin
3 with massm, and magnetic monmeni,, moving in an

1
iy*d,— = upo*’F ,,—m, | ¥ =0, (1) .
po2mm e T o (P—ipEe)e=(E+myx, (8a)
where y*=(4°,y) are Dirac matrices satisfying o (p+ipEe)x=(E—mye. (8b)
{v*,y"}=29"", (2 Here four partial differential equations are involved. We are

going to simplify these equations by separation of variables

TR .
with g diag(1~1,~1,~1) and in spherical coordinates. Let us define the two-component

i spinors
o=zl ®
/I+m+1Y (0.6)
It can be shown that . 21+1 M7
flm( 01¢): |_m y
1
50"F,,=ia-E-X-B, (4) Vg m+1(0,9)

whereE is the external electric field art8ithe magnetic one, 1=012...0 m=—(+1),=l...1; (9a)

a=7y, andX k=3¢l wheree ! is totally antisymmet- —]
ric in its indices ande?*=1. If both E andB are indepen- -

H YI+1,m( 0!¢)
dent of the timet, one may set 21+3

_ fim(0:)= l+m+2 '
W(t,r)=e""Ey(r), (5 - WYHl,erl(av‘ﬁ)

and obtain a stationary Dirac-Pauli equation fior

1=0,1,2...; m=—(+1),—1,...]. (9b)
Hiy=¢&y, (63 : . o
Here Y|,(0,®) are spherical harmonics as defined in Ref.
where the HalmiltoniaH is given by [7]. Both of them are common eigenstates i j,,L2,S?)
with eigenvalues
H:a"p_"i/-’vn')"E_ﬂn702'8+70mn1 (6b)
1 3 1 3
wherep=—iV or p*=—id. ( |+§) I+5 ,m+§,|(|+1).z)
Now let us consider spherically symmetric or central
fields and
E=E(r)e, B=B(r)e, (7) 1 3 1 3
( I+2 I+2 ,m+2,(l+1)(l+2),4),

wherer is one of the spherical coordinates ¢, ¢) ande; is
the unit vector in the radial direction. As usual we define therespectively. It can be shown that

the orbital angular momentuiln=r X p. It is not difficult to B

calculate the commutatofL,H] and it turns out that o-ef (0,0)=1.(0,0) (10
[L,H]+#0 even for free particles. For central fields, however,

it can be shown that the total angular momentislL + S and

whereS=33 is a conserved quantity, i.€.J,H]=0. Thus L (0B =1f (0 11

one can have a common set of eigenstates FyJt,J,). o LTim(6,4)=Tin(6. ), (113
2_ 3 . - .

BecauseS = 7 is a constant operator, it is also a conserved o Li(0,6)=—(1+2)f.(0,0). (11b)

quantity. Unfortunatelyl_? is not conserved and cannot have
a common set of eigenstates witH ,J2,J,). If B(r)=0, we  The relation
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. i Note thaty~ is also a common eigenstate af(J,,K,S?)
o-p=—i(o-&)d+ (o-&)(o-L) 12 \ith eigenvalues((l +2)(1+2),m+3,—(1+1),2), As be-
fore, EQ.(8) reduces to a system of first-order ODE'’s for the
is also useful in the following. With these preparations weradial wave functionsi—(r) andv —(r):
can simplify Eq.(8) for two different kinds of solutions.

The first kind of solution to Eq(8) is ¢ =(o",x)7, du” o +2 ,
where a8 Is 7 =(e"x) S FHeEU = —uT=—(Erm)vT, (189
¢+(r101¢)=u+(r)f¢n(0!¢)i dV7 7| -~ B
W_/-LnEV FV =(E—mn)u . (18b)
xF(r.0,¢)=iv(r)f(6,¢). (13

L , o This is similar to Eq(14). If £#m,, one can solve Eq18b)
Note thaty" is a common eigenstate 083, K,S%) with o = “and substitute it into Eq(18a to obtain a second-

eigenvalues((I +3)(1+3).m+3,1+13), but it is not an  order ODE solely fow ~:
eigenstate of 2. Using the relation§10)—(12), it is not dif-

ficult to show that Eq(8) now reduces to a system of first- d?v~  2dv" dE E
o ¢ e g~ WAE- 204 Dy

order ODE'’s for the radial wave functions (r) andv *(r): arZ Trar
du* L . I+ 1)]
ar +uEut - -u =—(E+myv T, (148 |V =0. (19
dvt |42 This is similar to Eq(16). Note that the appropriate bound-
W_MnEV++ TV+=(5— myu™. (14b  ary conditions foru™ andv ™ at the origin are
Becaused and ¢ are not defined at the origin, the appropri- u (0)=0 vl, (209
it + +
ate boundary conditions far™ andv™ are IV (0)|<= (I1=0), v (0)=0 (1%0). (20b)

+ — +00) =

uT(O)] < (1=0), u™(0)=0 (I1+0), (153 Thus Eqgs(16) and(19) have the same boundary conditions

(15b) at the origin. Also note that they interchange Ef(r)
——E(r). If £&=m,, Eq. (19) is invalid, and one can solve

Of course they should also satisfy appropriate boundary cord- (18) directly. , _

ditions at infinity. For the bound-state solutions to be consid- USing the completeness relation of the spherical harmon-

ered below, they should fall off rapidly enough whess o ICf, it can beﬁ shown that_ the two-component spinors

such thaty* is square integrable. For the scattering problem/fim(¢:¢) and f,,(6,¢) constitute a complete set on the

they should be finite at infinity. Given a specific form for SPhere. More specifically, we have

E(r), one can solve Eql4) at least numerically. This is |

vi(0)=0 VI.

much simpler than dealing with E¢8). For £+ —m,,, one 000 &
can express * in terms ofu™ by using Eq.(149, and sub- <0 m:20+1) [Fim(0,6)Tim (67, 67
stitute it into Eq.(14b) to obtain a second-order ODE solely N o ) )
foru™: T Him(0.8) 1, (6",¢")]= 5(cosé—cose’) S(d— ).
21
du* 2du” [ , dE , E @)
arz Py ar T8 T Mt gy T MaE +2(1+ D Therefore all possible forms of solutions to H8) are in-
cluded in Eqs(13) and (17).
_1d+1) U =0 (16) In the subsequent sections we are going to solve @6s.
r? ' and (19 for radially constant and radially linear electric

fields. Before dealing with these specific cases, we would
This is similar to the radial Schdinger equation in a central like to give some special bound-state solutions for more gen-
potential. It can be exactly solved for some specific form oferal forms of the electric field. We assume tE4t) behaves
E(r). This will be studied in the subsequent sections. Whenike r ~1* %1 whenr—0 and liker 1792 whenr —« where
Eqg. (16) is solved, it is easy to obtawm®. If £&=—m,, one 61 and &, are positive numbers, and is regular everywhere

can directly solve Eq(14) without difficulty. except possibly at=0. If u,E(r)>0 forr>r, wherer , is
The second kind of solution to EQ(8) is ¢~ some finite radius, we have the following solution to Eif)
=(¢ ,x )7, where with energy levelf=m,:
(r,0,0)=u"(nNf,(0,4), '
¢ (1.0.¢) () fim( 6, uﬁ(r)=Aﬁr'ex;{—J waE(rHdr'|, v, (r)=0,
o 0
X (r,0,¢)=iv (nfi(0,¢). (17) (22)
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whereA," is a normalization constant. This obviously satis- The normalization constants in Eq22) and(23), and those
fies the boundary conditior(45) at the origin. It is a bound- in the following sections, are to be determined by this con-
state solution because it falls off rapidly enough to be squardition.

integrable. It is remarkable that the energy eigenvalue does

not depend on the quantum numbkesidm (or j=1+ 7 and Ill. RADIALLY CONSTANT ELECTRIC FIELDS

m;=m-+ 3). Thus the degeneracy of this energy level is nu- i i . . o
merably infinite. This is somewhat similar to the situation of _ I this section we consider radially constant electric fields
a charged particle in a magnetic field with infinite flux in two E(r)=Eo where E, is a constant. As pointed out before,
dimensions[8]. To our knowledge other similar situations Eds-(16) and(19) interchange whei(r)— —E(r). So we
were not encountered previously in realistic three-N€ed only consider a positiv&, or a negatives,. For con-
dimensional space. This is interesting because it reveals th¢enience we assume thatEq>0. Now Eq.(16) takes the
possibility of condensing infinitely many fermions, say, neu-form

trons, into a single energy level. J&,E(r)<<0 for r>r_ o 4 n

wherer _ is some finite radius, then we have the following d_u E di

solution to Eq.(18) with energy levelf=—m,: dr® " r dr

20+ ke 1(1+1
(4o 041,

(25

whereA, is a normalization constant. This is also a bound-This has the same form as the radial Sdmger equation in
state solution, and the energy level is infinitely degenerate? attractive Coulomb field. The difference is that the “Cou-
Here we have a negative-energy solution, and will have mor mb field” (the next to the last term in the square brackets
in the following sections. The presence of negative-energy'€"® depends on the quantum numbefThus the energy
eigenvalues and eigenstates is a quite general feature of retgVe!S Will depend on as well as a principal quantum num-
tivistic quantum mechanics. Though these solutions are nor€" OF & radial quantum number. As HS) is familiar in
physical in the one-particle theory, it is well known that they duantum mechanics, we will give the solutions only. Re-
correspond to antiparticles after second quantization. Therdle€mber that Eq(29) is invalid for £=—m,. We have the
fore we will not exclude these solutions in this paper. bound-state energy levels

If E(r)~«/r for larger wherek is a constant, the situa- . —0 26
tion is of special interest. In this case the nonvanishing com- o= M, M=, (263
ponent of the critical solutioniu;” (r) for w,«>0 orv; (r)
for u,x<0] does not fall off exponentially at large but Eyja=F mﬁ+,u
behaves liker' ~I“n*l. To be normalizable, one should have '
| <|unk|— 3. Therefore to have at least one critical bound
state, one should hayg x| > 2. When|u«|— 3 is a natural n=12.... (26b)
number, we havéu x| — 3 critical bound statesdegeneracy _ _
over m has not been taken into accountvhen|u«x|—32 is ~ Heren, is a radial quantum number. Whep=0 we have a
not a natural number, the number of critical bound states i@0sitive critical energy level given in E26a. Though it is
[| k| — 1], where the square brackets denote the integrafdependent of, we keep the subscrigtto make a clear
part of a number. This is similar to the situation of a chargedcorrespondence to the corresponding wave functions below.
particle in a magnetic field with finite flux in two dimensions FOr n#0 we have positive- and negative-energy levels, in-
[8]. dlcqted by the sqbscrlpt in Eq. (26b). The corresponding

For a specific electric field, critical bound states with ~radial wave functions are
=m, and those wittf=—m, do not appear simultaneously.

+

r Ez—mﬁ—MﬁEg+
u; (r)=0, vl(r)=Alr'exp“ MnE(r’)dr'}, (23
0

5 z(nr+|+1)2_(|+1)2 1/2
"0 (n+1+1)? ’

This spectral asymmetry is also similar to that of a charged u;rlt(r):An,Itple ’lel-ﬁlrﬂ(P), (279
particle in a magnetic field in two dimensions. Therefore
vacuum polarization similar to those in two dimensions for mnEo 41— o2y 2143
charged particle§9—11] or neutral oneg12] may be ex- Vnrlt(r):Aant(n 0 L amy P © S {(2))
pected for the present system after second quantization. ' el " 27

To conclude this section we write down the normalization
condition for bound-statéor so-called square integralpleo- for n.=0 and
lutions: '

Ugi(r)=Agip'e™"", (279
=1 * — * 2,2 * 2.2

J' dr =1 (r)¢ (r)—f0 [u=(r)]°r errfO [v=(r)]eredr vi(r)=0 (270)

=1. (24)  for n,=0, where

022101-4



BOUND STATES OF NEUTRAL PARTICLES IN.. .. PHYSICAL REVIEW /1 022101

2(1+ 1) uEo We take|Eo|=5.15x 10" V/m, the electric field strength at
(28)  the Bohr radius of the hydrogen atom. For neutrons, we have
a5,1=9.5>< 10~* m. This is a macroscopic length scale but

: . . dially constant central electric field with the above magni-
[13], which are different from those used in RgT]. Note . X
that the superscript- indicates the first kind of solutions tude in the laboratory. We do not know whether there exists

(13), while the subscriptt indicates the sign of the energy some such field somewhere in the universe.
levels. It is seen from Eq27) that negative- and positive-

energy solutions have the same functional form, but the co- IV. RADIALLY LINEAR ELECTRIC FIELDS
efficients are different. The normalization constants are

O (R ES VI

In this section we turn to another exactly solvable field,
12 the radially linear electric fieldE(r) = Br where is a con-

32 3 12 L+
I (#nEo) 2(1+1)"n,! <5n,| M stant. The electric charge density that produces this field is
T (D)2 (204 1)) Enyl+ pe=3pBl4 in Gaussian units, which is a constant. To realize
(299  the above central field, however, the electric charge density
should become zero outside some large sphere where the
for n,#0 and particle under consideration cannot reach practically. Other-
D E32 wise the electric field would be zero everywhere. In the re-
0|=( nEo) (29b) gion of interest(inside the large spherahe field is then
V(21+2)! radially linear. For reasons given earlier, we need only con-
sider one sign of3. For convenience we assume th@,
for n,=0. The degeneracy of the energy Ie\‘qu,\rI,+ or Snr|, >0. Equation(16) then takes the form

is 21+ 2. As the energy levefy =m, is actually independent
of I, its degeneracy is numerably infinite. Indeed, the solution ~ d?u® 2 du*

(28) is a specific realization of the solutiof22) discussed ozt T ar TS mat (2043) B B pgr?
before.

When £=—m,,, Eq. (25 is invalid. In this case one I(+1)] |
should deal with Eq(14) directly. It is easy to show that this Tz | =0. (32)

energy value corresponds to a trivial solution. Thus all first-

kind solutions are included in E§27), and the correspond- Thjs is not valid for€=—m,. In the latter case one can
ing energy levels are given by E(®6). Note that all energy  5qye Eq.(14) directly and obtain a trivial solution. Thus all
levels have absolute values less thanj+ u3E5. When|€]  nontrivial solutions of the first kind are those arise from Eq.
exceeds this value, we have scattering solutions to(Es}.  (32). Equation(32) has the same form as the radial Schro

This will not be discussed here. dinger equation for an isotropic harmonic oscillator. The dif-
Now we turn to Eq.(19), which in the present case be- ference is that the “energy” here depends on the quantum
comes numberl. Thus the dependence of the energy levels on the
5 B guantum numbers will be different from that of the isotropic
d_V+ EdLJr 22— u2E2 2(1+1) pnEo harmonic oscillator. Since E¢32) is also familiar in quan-
dr? " r dr n~ Hn=o r tum mechanics, we will give the solutions only. There are
1(1+1) only bound-state solutions. The energy levels are
————|v =0. 30
r 30 Eg=m,, n=0, (339

Since u,E(>0, this is equivalent to the radial Schiinger . 5
equation in a repulsive Coulomb field. In this case only scat- En x=F VM +4An Bu,, n=12,..., (33b
tering solutions are available. These scattering solutions have

energye> \my+ upEg or E< — ymy+ pupEo. If £=m,, Ed. wheren, is a radial quantum number. Note that the super-
(30) is invalid. Then we may deal with E¢18) directly. It script + for £ indicates the first kind of solutions, while the
turns out that this energy value corresponds to a trivial solusubscript+ indicates the sign of the energy. As before, we
tion. We thus conclude that there is no bound state of th¢ave negative- as well as positive-energy levels. The corre-

second kind in the present case. sponding radial wave functions are
To finish this section we estimate the “Bohr radius” of

the neutron in this radially constant field. It is roughly equal
to a,i. For the critical-energy staten,=0, and ag’

=(2unEo) . In the mks system it reads

2
ug (N =Agp'e ?2,  vg(r)=0 (34)

for n,=0 and

fc?
—-1__ _ 2
= By @D U (N=A7 . ple P LR ) (359
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2VBwn p|+1e—p2/2|_|n+3

vEL(N)=AT . 312 2
n,l,( ) nrl,gr.:.ri_'_mn P 1(P )
(35b)
for n,#0, where
p=NBunf (36)
and L|+1/2
nr

in Sec. Il but the argument here j&. The normalization
constants are determined by E84) and are given by

+ \/E(B,’Jvn)gl4

A =—1 n =0’ 37
o ra+sn)’ e
/ n,! w2 Ey . +m, e
+ 3 : —
Ani:=(Bun) A[p(nrju|+3/2)} Ens ’
nr:]_,Z, e (37b)

(p?), etc., are Laguerre polynomials as employedThe energy levelg'y, and&y_

PHYSICAL REVIEW A 61 022101

wherep is given by Eq(36), andn,=0,1,2 . . . is theradial
guantum number. The normalization constants are given by

12 e~ _pm |12
A= B ™ i e
el VT (n+1+302) Ene ’
n=012.... (41)

depend only on the princi-
pal quantum numbeN. Given N, | may vary from 0 toN.
For a givenl, there are P+ 2 different solutions. Therefore
the degeneracy of the levél,, or £y _ is

N
dN=|20(2I+2)=(N+1)(N+2). (42)

In conclusion, in the radially linear electric field, we have
two sets of bound-state energy levels. The first set is given in
Eqg. (33), corresponding to the first kind of solutions. The
second set is given in E439), corresponding to the second
kind of solutions. There is no scattering solution here. In
contrast, the radially constant electric field studied in Sec. Ill

Itis remarkable that all the above energy levels are indepengdmits both scattering and bound-state solutions, though

dent of the quantum numbérand thus all of them are infi-
nitely degenerate. The critical-energy soluti@d) is another
realization of the solutiori22).

Now we consider the second kind of solutiods). It is
easy to show that Eq18) gives a trivial solution wherf
=m, . Thus all nontrivial solutions arise from E@.9) which
is valid for £#m, and in the present case becomes

d>v-  2dv-

a7 T g €2 M (2143) Bun— Buar?
(+1)]
- ——|v =0, (39)

This is very similar to Eq(32). The only difference lies in

there exists no bound state of the second kind. Finally we
estimate the “Bohr radius” of the neutron in the present
case. This is roughly equal tQBg,) 2 or (3/4mpun)*?
wherep, is the electric charge density producing the field. In
the mks system this reads

Sh 1/2
(47TM0PcMn) '

where ug is the permeability of the vacuum. We take
=e/a8 where e is the electron charge amal is the Bohr
radius of the hydrogen atom. For neutrons the above “Bohr
radius” has the value 4X410°8 m. This is rather small.
However, it may be difficult to achieve the above electric
charge density.

the sign of the third term in the square brackets. This differ-

ence, however, will render the energy levels quite different

V. SUMMARY AND DISCUSSION

from those obtained above. As before, we only give the re-

sults here. The energy levels are

Ens=F M2+ (4N+6)Bu, N=n,+1=012...,

(39

wheren,=0,1,2 ... is aradial quantum number ard is a
principal quantum number. The superscriptof £ indicates
the second kind of solutions, while the subscripindicates

In the preceding sections we have studied the Dirac-Pauli
equation of a neutral fermion with nonminimal coupling to a
central electric field. By separation of variables in spherical
coordinates, the stationary Dirac-Pauli equation which in-
volves four partial differential equations can be reduced to a
system of ODE’s which involves two coupled first-order
ODE'’s for two radial wave functions. There are two different
kinds of solutions, and thus two independent systems of

the sign of the energy. The spectrum obtained here has nODE's. Bound states of critical energy values can be ob-
overlap with that in Eq(33). The corresponding radial wave tained analytically for a quite general class of electric fields,

functions are

~ _ 2\ B _
Uy =(F)=—A, e ————p!tle

2
) PPy 1+302 2)
' gN:_mn '

(402

_ _ _ 2
Vo i=(D=Ay p'e P PLYA(p?), (40b)

where the degeneracy of the critical energy level turns out to
be numerably infinite. This reveals the possibility of con-

densing infinitely many fermions into a single energy level.

We also discussed a special form of the electric field that
supports a finite number of critical bound states. Two spe-
cific electric fields, one radially constant and the other radi-
ally linear, are studied in detail and all the bound-state solu-
tions are obtained in closed forms. In the first case bound
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states exist only for the first kind of solutions, while scatter-ODE’s in Eq.(45) are coupled to each other. It seems diffi-
ing states exist for both kinds. Scattering states are not diszult to solve them even for a pure magnetic field. We will not
cussed in detail. In the second case, we have two sets @b into further details of these equations here.
discrete energy levels corresponding to the two kinds of so- Let us briefly discuss the nonrelativistic limit of the
lutions. There is no scattering state. It turns out that the enbirac-Pauli equation. Consider the stationary case with a
ergy levels in the first set are all infinitely degenerate. In bothpure electric field. We can solve E@a) for y and substitute
fields we have negative- as well as positive-energy levelst into Eg. (8b) to obtain an equation fop:
Critical energy levels are also admitted in both cases, which
may be positive or negative depending on the signgof [ (p+iE) ][0 (p—iuE)e=(E2~m))e. (46)
and the electric fields. Note that the two critical energy levels_ ) ]
are not admitted at the same time, however. This spectraiNis holds for any value of except&é=—mj, and is valid
asymmetry may likely lead to vacuum polarization after sec—fo_r po_ncgnt_ral eIectrlc_: fields as we_II_. To discuss the nonrel-
ond quantization. ativistic limit we consider only positiv€ and set

In Sec. Il we have shown that the total angular momen-
tum J is a conserved quantity in the simultaneous presence

of a central magnetic field and a central electric field. But Wl hen& <m. we get the nonrelativistic limit of Eq(46):
have not discussed the solutions of the Dirac-Pauli equation " o
(47)

in this case. In the Dirac representation, the stationary Dirac-
Pauli equation(6) takes the form
This has essentially the same form as &), and thus the
same solutions. However, it should be remarked that even
when|uE|<m,, Eq.(47) is not valid for those£’ compa-
rable with m,. For example, in the radially constant field
with | w,Eo|<m,, Eg. (47) is good for all bound states, but
not for scattering ones with larggé say,£=2m,. On the
other hand, even ifE| is unbounded, Eq47) is still valid
for small &'. For example, in the radially linear field, Eq.
(47) may be good for lower levels {fBu,|<m,. Since Eq.
(47) is not simpler, it is more convenient to deal with Eq.
(46) directly. The nonrelativistic limit with both magnetic
and electric fields can be similarly discussed, though the situ-
ation is more complicated. We will not give further details
here.
We have pointed out in Sec. Il that the radially constant
. electric field admits scattering solutions of both kinds.
du +uEut— I_u+ = (E+mvF+ BV Though Egs(25) and(30) can be solved to give partial wave
dr " r " e solutions, the scattering problem is difficult to handle in this
(459 case since these equations involve long-range “Coulomb po-
tentials.” An easier situation for the scattering problem may

E=m,+¢&".

[o-(pFiunE) ][0 (p—inE) Je=2mnE ¢.

(433
(43b

o (p—ipnEe)e=(E+my—uBo-&)x,

o (ptipEe)x=(E-—mytuBo-e)e.

These equations are similar to £§) but more complicated.
They are still separable in spherical coordinates. We set

o(r,0,¢)=u"(Nfin(6,4)+u"(Nfin(6,4), (443

X(r.0,)=iv(Nfi(6,¢) +iv (Nfn(6,¢).
(44p)

Substituting thesénsadze into Eq. (43) and using the rela-
tions(10)—(12) we obtain the following system of ODE’s for
the four radial wave functions:

dv™

[+2
W—MnEVJr‘F TV+:(5_ myut+u,Bu,
(45b

du” [+2
— 4+ uEu+ —uT= —(&+my)v +uBv’,

be the fieldE(r)or ~ 1. This will be studied subsequently.

In this paper we have dealt witl8+ 1)-dimensional prob-
lems. The Dirac-Pauli equatiqd) has a much simpler form
in a (2+1)-dimensional space-time. Indeed, the situation for
the AC effect is equivalent to @-+1)-dimensional problem
because of the specific field configuration. Recently, we have

dr

(450 calculated the probability of neutral particle-antiparticle pair
creation in the vacuum by external electromagnetic fields in
2+1 dimensions, based on nonminimal coupliig]. Both
scattering and bound-state problems in external fields are
easier in 21 dimensions. These and other consequences of

the nonminimal coupling will also be studied subsequently.

dv™

I
T—/.LnEV— FV*:((CJ’— myu_ +u,Bu’.

(450
If B(r)=0, one may seti” =v~ =0 which reduces Eq45)
to Eq. (14) for the first kind of solutions, or sat*=v*
=0 which reduces Ed45) to Eq.(18) for the second kind of
solutions. This is what we have done before for a pure elec-

tric field. When a magnetic field is present at the same time, The author is grateful to Professor Guang-jiong Ni for
this is not allowed, however. The essential reason iskhat  support. This work was supported by the National Natural
no longer a conserved quantity in this case. All the fourScience Foundation of China.
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