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We investigate the behavior of the fundamental and second-harmonic fields in phase-matched traveling
plane-wave second-harmonic generation, using the full-operator equations of motion. We find that, after a
certain interaction length, both the macroscopic and quantum-statistical properties of the harmonic and funda-
mental fields are qualitatively different from those found in previous analyses. The mean fields do not vary in
a monotonic way, but oscillate with the propagation length, leading to an unexpected periodic revival of the
fundamental field, triggered by the quantum fluctuations always present in the mode. Accordingly, the ampli-
tude noise of the fundamental, previously predicted to be perfectly squeezed for long interaction lengths,
actually reaches a very small minimum for a definite length, then increases again.

PACS numbgs): 42.50.Dv, 42.50.Lc, 42.65k

Second-harmonic generatid®HG) has been studied in predict a very spectacular macroscopic revival of the funda-
great detail since the first years of nonlinear optics, and isnental field that is induced by the quantum noise present in
often taken as the simplest example of a nonlinear opticathe interacting modes.
process. In the simple traveling plane-wave configuration, Let us calla andb the annihilation operators for the fun-
the solution for the generated fields as a function of thedamental and harmonic mode at pamtnd « the effective
propagation lengttz is well known [1,2]. It predicts that, strength of the nonlinear interaction between the light modes
when one starts from a nonzero fundamental field and nin the nonlinear crystal. The exact propagation equations for
second harmonic, one gets a total and irreversible transfer thhese operators afé,11]
the second harmonic mode whegrows to infinity. SHG is
also of great importance for the generation of nonclassical da ~tndb K
states of light, either in an intracavity configurati@-8] or dz @b qzT % @
in the pure propagation cag@—13]. In this second case, the
amount of squeezing present in the fields has been calculategh exact analytical solutions are known for these operator
using the standard linearized fluctuation analysis. In the casgquations. However, it is possible to find numerical solutions
of perfect phase matching, this analyg§ predicts that the py stochastic simulations in the phase-space representations
fundamental field evolves into a perfectly amplitude of quantum optic§15], either exactly in the positive-[16],
Squeezed Vacuum, whereas the second-harmonic field UndQﬁ' approximate|y in the Wigner representat[dﬂyla'
goes a 50% amplitude squeezing, and strong quantum Corre- \yman one replaces the operatarandb by thec num-
lations develop between the two modéd]. However, it is bersa and B, one retrieves the well-known classical propa-

clear that the_ predlctlor_l t_hat a perfectly squ_eezed Vacuum Igation equations of nonlinear optics, which can be solved
generated is in contradiction to the assumption that the quary-

tum fluctuations of the different fields are much smaller th61n:)((§'1)ctel¥lgi Ignt:(]::‘in%l;re SHG case with(z=0)=0 and a(z
mean fields, which is at the basis of the linearization tech- '
nigue. Moreover, there is reason to doubt that the situation
predicted by the classical model, where the second-harmonic - - @
e . _ a({)=a(0)sechty), B({) tanl(¢), (2
field is large and the fundamental is zero, can remain stable V2
whenz tends to infinity. It is well known that, starting with
these values of the mean fields, one finds a growing of thevhere{ =z[ k| «(0)|/\/2]. Setting
fundamental mode by parametric splitting of the second har-
monic triggered by parametric fluorescence. a(d)=a()+sa(?), bO=pO)+b(), (3

In this article, using more accurate approaches that do not
rely on linearization, we show that the behavior both of theand assuming that the fluctuations are small, one can linear-
mean fields and of the quantum fluctuations is qualitativelyize the operator equatiori$) around the classical solutions,
different from the previous results for long interaction which leads to simple analytical expressions for the quadra-
lengths. In particular, we find that the mean fields do notture variances and the correlation functions of the two fields
have a monotonic variation, but oscillate with We thus  [9]. However, the linearization procedure is not valid wifen
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is large, because the phase quadrature fluctuations of the fun- A ‘émdo (a)

damental field are found to diverge exponentially, whereas

the mean field decreases. In this model the mean field and 0 >

the rms fluctuations are equal whér o= 3In[32 «(0)|?], N1

with linearization only being valid wherg<{,,.

We now show that it is possible to obtain a more accurate,
but still approximate, propagation equation for the mean
fields that does not rely on linearization. Lettifj=a'a

and N,=b'b, and using [a(z),a’(z')]=[b(2),b'(z')]

=158(z—2'), we find exact propagation equations for these ®)
two operators, o.8)
aN,  dN, ”
9z Zdz S @ >
& S2RT 4 AT 27 i impli \ ‘ 5
where S=«k[a“b'+a' “b]. Equation (4) implies that N;

o 2 < S a8 10

+2N, is constant in the propagation, as required by energy
conservation. From EqJl), one finds that the evolution of

the operatosS is given by

FIG. 1. (a) The effective semiclassical potential in whidh
moveswith a slightly negative total energyb) Analytical solution
for the proportion of photons in the fundamental mode as a function
of normalized propagation lengih with No=10°.
— =k [NI—4N;N, - N, —2N,]. 5 . . . .
cannot vanish, as, starting frolWy (z=0)= N, with zero ki-
] ) ) - Lo o netic energy (because dN,;/dz=0 when the second-
The energy invariant requires thiib(z) =2[No—N1(2)]),  harmonic field is zerp the total pseudoenergy has a negative
whereNy=N,(0)+2N,(0). We cantherefore write an ex- value, so that the second turning point of the periodic motion
act quantum propagation equation which only involves thes reached at a nonzero valueMf. The minimum value for
operatorsNy(z) andNo, N, is found to be equal ta/Nj.
It is possible to find an exact solution of E®) using the
d?N; pocs o o approximation(7), in terms of Jacobi elliptic functions, as in
P [3NT—2NoN;—No]. (6)  the general classical solution of three-wave mixing found in
[1]. Letting f(£)=N;(2)/Ny with ¢ as in Eq.(2), Eq. (6)
This second-order equation cannot be solved alone, becau8gcomes

it depends on the operatok&(z) andNyN,(z), which obey
other propagation equations that one can also derive from _f: 621 4f+2e 9)
Eq. (4), giving an infinite hierarchy of propagation equations. d? '

In order to get an approximate solution, one must stop this

hierarchy at a given level. The first level of approximation iswheree=1/No. If € is taken equal to zero, one obtains the

d2

to neglect all correlations and write classical limit given in Eq(2). Whene+0, the solution of
- - - . - - Eq.(9) is
(N3(2))=(Ny(2))%,  (Ny(2)Ng)=(N1(2))(No). (7)
The operator equatiof6) is then transformed into an ordi- f(O)=(1—- \/;) cr?(V1+ \/;§)+ \/; (10

nary differential equation for the mean photon number

[N1(Z)=<N1(Z)>]' depending on the initial photon number where cn is the Jacobi cosine-amplituyd®] of modulusk

N,. It is easy to show that there is a quantity conserved in the= V1 —¢€/(1+ Je). This solution is displayed in Figidb).
propagation One observes the expected periodic behavior of the funda-
mental, with full revivals, for any nonzero value ef The
inclusion of €, arising from the commutators of the field
operators, means that we have included some quantum fluc-
tuations, at least in the initial conditions. Thoughmay be
This quantity can be considered as the total mechanical emmost vanishingly small, it has a huge macroscopic effect
ergy for a pseudoparticle of positidd,, with 3(dN,/dz)? on the system dynamics. It is apparent that the quantum
as the kinetic energy andZ(Nf—NoNf—NoNl) as the po- noise, which is always present, causes oscillations between
tential energy, which is shown in Figla). The pseudopar- the regimes of up- and down-conversion, with the period of
ticle will oscillate without damping in this potential well, the oscillations becoming infinite asvanishes.

which means tha; will exhibit full periodic revivals of the The period{y of the revival has a simple expression when
fundamental intensity. We can now understand vixy(z) No>1,
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£r=In(8\No), (19 ‘ ' ' '
09
which is roughly twice the validity length of the linearized

solution. o8r
The approximation made in Eqgé7) consists in neglect-
ing, at first order, the intensity noise of the fundamental field
and the intensity correlations between the field at the consid- °¢;
ered position and the field at its starting point. This obviously |
becomes less valid for large valuesiofwhen the fundamen- =
tal field decreases and the quantum correlations develop. It i: o4f
possible to go further than this approximation by correcting
Eq. (7) with the intensity noise and correlations calculated by
the linearized technique, valid until half of the period. We o2
have numerically calculated the mean field using this
second-order approximation witk,=10°, and found again
a total revival of the fundamental field, shifted to a slightly o . .
larger ¢ value.
. To _solve exactly the Ion_g-range behavior Qf the mean FIG. 2. Proportion of photons in the fundamental mode as a
fields |_n SHG, and_ a!so thel_r quant_um fluctuations, we US§ nction of normalized propagation length given by numerical
numerical stochastic integration. USII’.]g th? method of OP€Ia5imylations using the positive- representatioridotted ling, and
tor correspondence{Q_O], and pr_oceedmg via the master and_the Wigner representatiofiull line), with No=1CF.
Fokker-Planck equations, we find the system of equations in
the positiveP representation,

07 b

03

AR

The behavior of the mean fields, obtained by averaging
da 10000 computed trajectories, is shown in Fig. 2, for values
szaTﬂJr \/@m(z), of Ng=1C°. The tw_o r_nethods give results tha_t are in good

agreement. One still finds an oscillatory behavior in the pho-
ton number, although the first revival is no longer total. The

dd;"ZT:KaBTJF VBT 75(2), minimum value forN; found here is~30% less than the
value predicted by expressid8). For comparison, we have
(12 also plotted the semiclassical solution, which gives a revival
g« , for almost the same value ¢f but is obviously not accurate
4z 2% for very long interaction lengths.
Figure 3 gives the computed variance of the amplitude
dg’ K oo quadratureX=a-+a'. We observe that it reaches a nonzero
dz 295 minimum, then suddenly increases drastically to give a large

where a and o', as well asg and 8", are independent
c-number variables that are not complex conjugate except ir os
the average over a large number of trajectories. The noist
sources are real and correlated : %;(2) »;(z') = 8 6(z .
-7'). ‘
The differential equation found for the Wigner quasiprob- os
ability distribution has third-order derivatives, which means
that there is no Fokker-Planck equation in this representag '
tion. As there is no simple way to deal with third-order de- °4
rivatives in a stochastic differential equatifd2i], we find an 03
approximate equation by truncating these third-order terms
This leaves us with the same equations found by lineariza-
tion, but with one very important difference: the initial con- s
ditions for each stochastic trajectory are found from the e inearisad
Wigner distribution for a coherent state. The advantage of
the Wigner distribution is that the numerical simulations are 1, 1 2 3
generally more stable than with the positirerepresenta-
tion, but we must remember that the truncation means that FG. 3. variance of the amplitude quadrature of the fundamental
higher-order nonlinear effects are partially neglected. Theys a function of normalized propagation lengthcalculated using
advantage of the positive-representation is that, where the the positiveP representatioridotted ling, and the Wigner repre-
integration converges, it gives exact solutions for the fullsentation(full line), with No=1f. The linearized solution is shown
operator equations. for comparison.
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degree of excess noise when the revival begins. This is Note that the propagation equation that we have obtained,
analogous to, but more drastic than a result previously foundnd its analytical solution, can also be used in other physical
with the optical parametric oscillat¢22], where increasing situations. For example, this equation also describes para-
fluctuations in the phase quadrature fed back into thdnetric down-conversion, when one starts from the second-
squeezed amplitude quadrature, and the quantum noise sufarmonic field without any fundamental wave, because the
pression had a maximum at a particular pumping value. Théitial quantum noise of spontaneous parametric fluorescence
Y=—i(a—a') quadrature always exhibits a noise largeriS directly builtin. This is not the case for the classical equa-
than the standard quantum limit for as far as we have run odfons of nonlinear optics, which will not describe down-
simulations. It is apparent that the solution for the mearfonversion without the artificial addition of fluctuations in

fields found from Eq(6) becomes inaccurate at just the pointthelr]:unr‘éa"rnfnt?l'di t actual experimental data for h mac-
where the quantum noise increases. order 1o predict actual experimental data for such mac
In conclusion, by solving the quantum propagation equa_roscoplc chqnges induced by very small quantum effects. in

’ SHG, one first needs to extend our analysis to Gaussian

. . X "IYeams instead of simple plane waves. We expect that the
from the classical solution of SHG for long interaction main conclusions drawn in this paper will remain valid as

lengths, and also that the linearization procedure previous%ng as the revival length is small compared to the Rayleigh

used to determine the quantum fluctuations breaks dowpngth of the light beams. Such a situation can be encoun-
relatively quickly. This is a distinct signature of the effect of (oo using very powerful laser systems.

guantum noise on the macroscopic behavior, with the reviv-

als found not being possible without the inclusion of the This research was supported by FAPESP, by the
small (1Ng) term in the propagation equation. We have alsoOCOFECUB-USP cooperation project UC57/98, by the EC
found that the analytical solutiof10) has a restricted region ESPRIT IV program ACQUIRE 20029, and by the Marsden

of validity. The full quantum evolution of the mean fields Fund of the Royal Society of New Zealand. We would also
diverges from it when the quantum noise increases drastiike to thank Arun Roy for helpful discussions. Laboratoire

cally. In particular, the full periodic revivals of the funda- Kastler Brossel, of the Ecole Normale Superieure and Uni-
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