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Brillouin-Wigner perturbation methods for coupled oscillators
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We study the use of Brillouin-Wigner perturbation thedByWPT) coupled with Padapproximant summa-
tion techniques to solve problems formulated as coupptbdbatic, adiabatic, “mixed) channels. Several
iterative BWPT schemes are examined. BW perturbation series demonstrate better convergence properties,
making them more practical and efficient than traditional Rayleigh-Siohger perturbation series.

PACS numbd(s): 03.65—w, 02.30.Lt, 02.70-c

There are many quantum-mechanical problems involvingequate for relatively isolated states of moderately coupled
distinctive groups of dynamical variables which may be ap-oscillatorg2]. In the case of stronger couplings, especially in
proached using the formalism of the so-called adiabatic sepdhe case of closer coincidences of the adiabatic states, the
ration. The separation rests on the approximation that thperturbation series either converged slowly or failed to con-
motion associated with one group of variables, saynay be  verge completely. Many of these series, however, have been
be treated as if other variables, sRy were frozen. Under found summable, highly accurately, by means of Pade
this condition, it is convenient to express the total wave funcproximantg 3]. High accuracy of the Padgproximant sum-
tion of the studied problem as a product of a function de-mation of the perturbation series has also been found in the
pending only on theR variables and a function depending case of Morse oscillator4]. But, due to numerical singu-
explicitly on ther variables, but only parametrically on tRe  larities in the differential equations for the perturbation cor-

variables, i.e., rections, the approach collapses in the case of accidentally
coinciding adiabatic energy levels.
JO(r,R)=o(r;R)x(R). (1) To remove these perturbation ‘“resonances,” the ap-

proach has recently been generaliZB¢by introducing the
Relying on this factorization allows one to solve the so-called “mixed” representations which arise from the di-
r-dependent dynamical subproblem separately for each set @batic representation of a given problem
the “parameters”’R so that the corresponding eigenvalues
form effective potential energy functions for the 1 d?
R-dependent dynamical subproblerffer each ‘r state 2u dR2
there is a separatR-dependent potential energy functjon

and the derivatives of the corresponding wave functions with| ang ;. being the unit matrix and reduced mass, respec-

respect td?., the so—cglled nonadiabatic correctior_ns, describqivew) by performing unitary transformations on the perti-
the dynamical coupling between the andr motions. In nent diabatic potential energy matrix,

some cases the corrections are found negligible, and the
whole dynamical problem thus separates into two much less V*=S Y R)VISR). 3
demanding subproblems.

A very important subset of the discussed problems in-The mixedrepresentations acquire the following form:
volves factorization of the total wave function with respect to
a single variable, saR, so that the treatment leads generally 1 d?
to the solution of a system ¢€oupled ordinary Schrdinger HY=—5 —SITVAR+CUR+2F =, 4

. . ST . . M dR dR

equations and, in the last step, i.e., in the adiabd@iwmrn-
Oppenheimerapproximation, even to the solution of single
one-dimensional Schdinger equations. The latter problems
are both easily solvable and very useful for gaining insight. 1 d
Nevertheless, they do not provide quantitative results; to ob- F'=— —S Y{R)=—=S(R) (5)
tain these, one should account for the nonadiabatic cou- 2p dR
plings.

Usually, the nonadiabatic corrections are small, and so ar@nd
well suited to calculation by perturbation theory. Probably )
the best-suited perturbative approach in this direction has Ga:_is—l(R)d_S(R)_ (6)
been suggested by Hutson and Howgtdl This approach 2u dRrR?
has been thoroughly tested, within the framework of the
Rayleigh-Schrdinger perturbation theory, on a system of Obviously, the adiabatic representation is obtained as a spe-
two anharmonically coupled oscillators, and found fairly ad-cial case with purely diagonal potential energy malrik

where the generalized coupling ter@$ andF* are given as
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Different representations provide different zeroth order ei-
genvalues and eigenvectors. Thus, in principle, switching E,-’n=2_ (Hii{xjn(R)},Cjn;i(R))r- (13
from a given representation to another one may remove ac- 7
cidental energy resonancéise., numerical singularities in To solve Eq.(12), two iterative schemes have been sug-
the pertinent perturbation equationand may be thus used gested in the literaturg7]:
to improve the accuracy and stability of the perturbation cal-
culations, especially in the case of closely coinciding energy [E(”)— mm]C(FHl)_[(l Sim)H E’ p)5Jm]X1n(R)
levels. The approach has been probed by actual calculations
with realistic models for two interacting states exhibiting ,
avoided crossings, and, highly accurate results have been ob- +k;m Hkm{C(p)k( R)} (14)
tained for all the probed energy levels. Nevertheless, for sev-
eral of these levels the perturbation series diverged sand
strongly that their accurate summation required working with
very high-accuracy arithmetitthe actual series were pro-  [EfR)—Hp 1CPV=[(1— 8jm)H|n—E[P 8im]xjn(R)
cessed using the symbolic languagerLE [6]).

A possible alternative to the suggested Rayleigh- n 2 HY {C(p+l)(R)}
Schralinger(RS) approach to the perturbational calculations K KMk
is to use the Brillouin-Wigne(BW) perturbation theory7].
Unlike the RS approach, the BW approach accounts for the 1 s ~(p)
contribution to the correction function from the reference +k§m Hiand Cimi(R)}, a9
state and thus may be expected to have a larger radius of
convergence than that of the RS approach and, consequentiyhere
less “prohibitive” requirements. In the BW treatment of our
problem, the exact wave function%,;,(r,R), and energies (p+1)_ 0 Ty (p+1)
Ejn. satisfy the following perturbaticj)n equation: Ein E'“+i2 (Hiilxin(RIClni “(RNr- (16

(Ejn— HO)\Ifjn(r,R)z H'W,(r,R), (7) The latter scheme was found in RET] to provide better
convergence. However, in the course of iterating the correc-
where tion functlonsC(”)k(R) become nonorthogonal with respect
to the functlons(m(R) and, to keep calculations numerically
H%xin(R) @ (1R} =H {xjn(R)} ¢;(r:R) (8)  stable, the orthogonality should be reestablished at each it-
eration step.
and Usually, both schemes, say Bvdnd BW,, provide oscil-
lating corrections. Thus, a more rapid convergence may be
, . expected for the following modification of the iterative
H' Dan(R)ey(riR)} = =y Hiitxin(R)}¢;(5R), - (9) schemedit gives rise to the BW and BW, schemep

and the eigenfunctiona;,(r,R) are assumed to be ex- (p+1)_ E(P) 4 EO (p+1)
pressed as the following sums: 2Ejn Ejn +E; +2 <HJ'{X1“(R)}CJ” i (R)r.
(17)

To get insight into the practical prospects of the discussed
where the unknowmcorrectmr) functions®;,(r,R) are or-  BW approach, and to compare it with the previously used RS

\Pjn(r!R):w?n(r!R)Jrq)jn(rrR)! (10)

thogonal to thep (r,R) functions from Eq(1). approach, we have performed the same model calculations as
The correction functions may be expressed as the followin our previous studief3—5]. Namely, we have considered a
ing expansions: set of problems for the following Hamiltonian8,4]:

142 1 1 42

1
j— . = —_— — — —_— 2___
®jn(rRI= 2, @(1R)ICini(R), (12) = e T2 2 Tty (8

where the unknown expansion coefficietg, . satisfy the P 52
following implicit equations(for details see Ref.7]): HP=— P +V, (1—exgd — wx])2— P
X y
0 —T(1— 8 " _E' S Ty
Hmm]Cjn;m(R)_[(l 5Jm)Hjm Ejnéjm]XJn(R) +Vy(1—exp[—wyy])2+ny(l—eX[[—wXX])
+ E Hém{cjn;k(R)} (12) X(l_exq_wyy])’ (19)
k#m
and the “diabatic” problem froni5] with parameters taken
and where from Ref.[8]:
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TABLE I. Brillouin-Wigner energy estimates for tH®,2] and
[2,0] states of thed® Hamiltonian. Case CNaw, is the number of
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TABLE llI. Brillouin-Wigner perturbation series for thgl,2]
state of theH® Hamiltonian (Case A.V,,=—150) (BW is the

iterations necessary to get eigenvalues accurate to one paftin 10 BW iteration scheme used to get the particular correcjions

theith BW iterational scheme; integers given in parentheses give
the degrees of the diagonal Paajgproximants which are necessary Order
to get the same accuracy in the case of diverging, or very sIowI;I(

converging, perturbation serjes

o N BW, N BW, N BWj, Npw 4 E(BW)
State[0,2]
0.3 176 40 34 15 3.18300240
0.7 182 22 40 17 3.36332862
11 264 16 58 19 3.50966275
State[2,0]
0.5 89 (10 17 15 3.51563617
0.9 68 (12 27 13 3.75859467
1.3 56 9 46 15 3.94960343
L & +V11(R) ViAR)
YT 1
2pudre Y
He=
2
Voi(R ———+Vy(R
21(R) T 2(R)
(20

According to the actual calculatiorfperformed in the adia-
batic representation fdr? and H® and in themixedrepre-

sentations foH®), the BW approach appears to be numeri-

cally superior to the RS approach.

(1) Similarly to the RS approach, it provides highly accu-

BW,

12 7 8 7
552.951080 552.951074 552.951074 552.951074
552.951073 552.951074 552.951074 552.951074

BW, BW, BW,

[i/i]
[i/i+1]

asymptotic perturbation series that are accurately summable
(see Tables Il and I}l The perturbation series exhibit pro-
found dependence on the ‘“zeroth order” energy estimates
and it may be used to improve their summabilities especially
in the case of the BWand BW; schemes. The only limiting
problem arises due to the fact that, in the case of exactly
coinciding states, the iteration processes may converge to
only one of the two sought eigenvalues.

(3) It appears also that the BW approach may efficiently
work even in the case of multiple energy intercrossings
where the RS approach fails completely; for instance, in the
case of thd3,6], [5,3], and[6,2] states of the Hamiltonian
H?2 (the degree of coincidence of these states may be seen in
Fig. 3 of Ref.[3]). In the case of the two last states, the BW
approach(especially the BW and BW, schemep provides
strongly converging series for a wide range of values of the
coupling constanty, and, in the case of thg3,6] state, it
gives very accurately summable asymptotic seiseg Table
V).

The performance of the BW approach may also be im-
proved using themixedrepresentations. As a matter of fact,
the approach has allowed very accurate determination of all

rate results for all the levels which are away from any accithe probed states of the Hamiltoni&ff. Although most of
dental “resonances” with other levels, even in the case ofthe sought energies were obtainable within the framework of
strong and very strong perturbation couplings; the converthe adiabatic representa_tion, in some cases, such as i_n the
gence of the perturbation series may be efficiently accelercase of the three lowep0,i | states, we had to go beyond its

ated using the Padapproximant summation techniqusee
Table ).

scope(see Table V.
Unlike the standard variational approaches, the perturba-

(2) Unlike the RS approach, in the cases of two closelytion procedure accounts automatically for contributions from
coinciding levels it either converges safely or providesthe continuum states and yields energy corrections directly in

TABLE Il. Brillouin-Wigner estimates of the energies of the
adiabatically crossing levels of thé (NBWi is the number of itera-
tions necessary for to get eigenvalues accurate to one part iim 10
theith BW iterational schemeHamiltonian.

a Naw, New, Negw, E(BW)
Case A: Stat¢0,5]

0.2 193 19 15 4.93170392

0.214585 a 39 34 4.96151640

0.25 46 18 13 5.03386237
Case A: Stat¢2,1]

0.2 29 19 13 4.86125864

0.214585 78 35 32 4.88635244

0.25 20 15 15 4.94184811

&Converging, from a broad set of estimates, to the value assigned ta

the[2,1] state.

terms of the relevant quantum numbers. Thus, the procedure
appears as a promising tool for a broad class of practical
applications. For instance, it may be used to eval(atel
directly assigh all reasonably isolated states of the light,
loosely bound molecular complexes. Recently, the procedure
has provided very accurate energies and unambiguous as-

TABLE IV. Brillouin-Wigner perturbation series for thg3,6]
state of theH? Hamiltonian[Case A (BW is the BW iteration
scheme used to get the particular correctigns

Order a=04(BW,) a=05(BW,)  a=0.6(BW,)

i 9 8 11

[i/i] 13.39062451  13.62422204  14.52530711

[i/i+1] 13.39062451  13.62421907  14.52530711
ard 13.390625 13.624224 14.525322

avariational calculation with a basis set of 900 functions.
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TABLE V. Estimates of thg 0,i] eigenvalues of the Hamil- E
tonianH® [A, is the value of the rotational parame#&providing
optimal convergence of the perturbation sef®se Ref[5]); N; is
the number of iterations necessary to get eigenvalues accurate to
one part in 18 in theith BW iterational scheme®; is the degree of
the diagonal Padapproximant necessary to get eigenvalues accu-
rate to one part in 1.

State Energy A, N, P, Ay Ny, Py

[00] —0.65249310 032 23 10 032 23 9

[01] —0.63739737 163 25 8 165 23 8

[0,2] —0.62356479 164 2 7 036 2 18

[03] —0.60788555 110 @ 9 108 2 6 .

[0,4 —059604250 1.09 & 9 100 & 7 aas4

FIG. 1. The stabilization diagram for the resonance state of
NaFH containing 446 cm' of energy: plot of the adiabatic ener-
gies(solid lineg and BW perturbative energiépoints obtained as
signment of all the bound vibrational states of the Na..FHfunctions of the distance between Na and the center of mass of the
van der Waals molecule in a full accord with a large scalg™H fragment E in cm™* andRin A).
variational calculatiof9]. In some favorite situations, such
as the one illustrated by Fig. 1, the procedure may eve
allow for evaluation of the positions and lifetimes of the
guasibound states by means of the stabilization mefthog
Though the “periodic” discontinuities in the stabilization
diagrams(arising due to mathematical singularities in the
perturbation equationgan make these diagrams incomplete
the “incomplete” diagrams may still provide sufficiently ac-
curate estimates of the sought characteristics. Interestingly, This work was supported by a Natural Sciences and En-
positions of the discontinuities differ for different mixed rep- gineering Research Council of Canada Grant in Aid of Re-
resentations. search and by the Grant Agency of the Academy of Sciences

Of course, despite its promising features, the suggestedf the Czech Republi¢Grant No. A4040806 We are also
BW approach is not free of all the typical drawbacks of theindebted to Professor F. O. Goodman for a critical reading
perturbation theory. Apart from the obvious fact that it is notand improving the manuscript.

&Converging, but not converged for<40.

suitable for describing clusters of closely coinciding states,
fls usefulness is limited mostly by the fact that there is no
general procedure which would allow evaluation of accurate
wave functions from diverging perturbation serjé4]. The
latter problem and the phenomenon of the “periodic” dis-
continuities in the stabilization diagrams are scheduled to be
’addressed in our future studies.

[1] J. M. Hutson and B. J. Howard, Mol. Phy&l, 1113(1980. [7]J. G. Frey and B. J. Howard, Chem. Ph98, 427 (1985.
[2] J. G. Frey and S. J. Holdship, Mol. Phy!, 191(1988. [8] J. Broeckhove, M. Claessens, L. Lathouwers, P. Van Leuven,
[3] V. Spirko and J. Gzek, J. Chem. Phy<.02, 8906(1995. E. Deumens, and Y. k@n, J. Chem. Phy€3, 8945(1990.
[4] V. Spirko, J. dzek, and L. Skk, J. Chem. Phys102, 8916 [9] V. Spirko, P. Piecuch, and O. Bludskynpublished

(1995. . [10] V. A. Mandelshtam, T. R. Ravuri, and H. S. Taylor, Phys. Rev.
[5] V. Spirko and J. GZek, J. Chem. Physl06, 6338(1997). Lett. 70, 1932(1993.

[6] B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. [11] T, Hatsuda, T. Kunihiro, and T. Tanaka, Phys. Rev. Lgs.
Monaga, and S. M. WattMaple V, Language Reference 3229(1997.

Manual (Springer, New York, 1991

014102-4



