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Brillouin-Wigner perturbation methods for coupled oscillators
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We study the use of Brillouin-Wigner perturbation theory~BWPT! coupled with Pade´ approximant summa-
tion techniques to solve problems formulated as coupled~diabatic, adiabatic, ‘‘mixed’’! channels. Several
iterative BWPT schemes are examined. BW perturbation series demonstrate better convergence properties,
making them more practical and efficient than traditional Rayleigh-Schro¨dinger perturbation series.

PACS number~s!: 03.65.2w, 02.30.Lt, 02.70.2c
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There are many quantum-mechanical problems involv
distinctive groups of dynamical variables which may be a
proached using the formalism of the so-called adiabatic se
ration. The separation rests on the approximation that
motion associated with one group of variables, sayr , may be
be treated as if other variables, sayR, were frozen. Under
this condition, it is convenient to express the total wave fu
tion of the studied problem as a product of a function d
pending only on theR variables and a function dependin
explicitly on ther variables, but only parametrically on theR
variables, i.e.,

c0~r ,R!5w~r ;R!x~R!. ~1!

Relying on this factorization allows one to solve th
r -dependent dynamical subproblem separately for each s
the ‘‘parameters’’R so that the corresponding eigenvalu
form effective potential energy functions for th
R-dependent dynamical subproblems~for each ‘‘r state’’
there is a separateR-dependent potential energy functio!
and the derivatives of the corresponding wave functions w
respect toR, the so-called nonadiabatic corrections, descr
the dynamical coupling between theR and r motions. In
some cases the corrections are found negligible, and
whole dynamical problem thus separates into two much
demanding subproblems.

A very important subset of the discussed problems
volves factorization of the total wave function with respect
a single variable, sayR, so that the treatment leads genera
to the solution of a system of~coupled! ordinary Schro¨dinger
equations and, in the last step, i.e., in the adiabatic~Born-
Oppenheimer! approximation, even to the solution of sing
one-dimensional Schro¨dinger equations. The latter problem
are both easily solvable and very useful for gaining insig
Nevertheless, they do not provide quantitative results; to
tain these, one should account for the nonadiabatic c
plings.

Usually, the nonadiabatic corrections are small, and so
well suited to calculation by perturbation theory. Probab
the best-suited perturbative approach in this direction
been suggested by Hutson and Howard@1#. This approach
has been thoroughly tested, within the framework of
Rayleigh-Schro¨dinger perturbation theory, on a system
two anharmonically coupled oscillators, and found fairly a
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equate for relatively isolated states of moderately coup
oscillators@2#. In the case of stronger couplings, especially
the case of closer coincidences of the adiabatic states
perturbation series either converged slowly or failed to c
verge completely. Many of these series, however, have b
found summable, highly accurately, by means of Pade´ ap-
proximants@3#. High accuracy of the Pade´ approximant sum-
mation of the perturbation series has also been found in
case of Morse oscillators@4#. But, due to numerical singu
larities in the differential equations for the perturbation co
rections, the approach collapses in the case of acciden
coinciding adiabatic energy levels.

To remove these perturbation ‘‘resonances,’’ the a
proach has recently been generalized@5# by introducing the
so-called ‘‘mixed’’ representations which arise from the d
abatic representation of a given problem

Hd52
1

2m

d2

dR2
I1Vd~R! ~2!

(I and m being the unit matrix and reduced mass, resp
tively! by performing unitary transformations on the per
nent diabatic potential energy matrix,

Va5S21~R!VdS~R!. ~3!

The mixedrepresentations acquire the following form:

Ha52
1

2m

d2

dR2
I1Va~R!1Ga~R!12Fa

d

dR
, ~4!

where the generalized coupling termsGa andFa are given as

Fa52
1

2m
S21~R!

d

dR
S~R! ~5!

and

Ga52
1

2m
S21~R!

d2

dR2
S~R!. ~6!

Obviously, the adiabatic representation is obtained as a
cial case with purely diagonal potential energy matrixVa.
©1999 The American Physical Society02-1
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Different representations provide different zeroth order
genvalues and eigenvectors. Thus, in principle, switch
from a given representation to another one may remove
cidental energy resonances~i.e., numerical singularities in
the pertinent perturbation equations!, and may be thus use
to improve the accuracy and stability of the perturbation c
culations, especially in the case of closely coinciding ene
levels. The approach has been probed by actual calcula
with realistic models for two interacting states exhibitin
avoided crossings, and, highly accurate results have been
tained for all the probed energy levels. Nevertheless, for s
eral of these levels the perturbation series diverged
strongly that their accurate summation required working w
very high-accuracy arithmetic~the actual series were pro
cessed using the symbolic languageMAPLE @6#!.

A possible alternative to the suggested Rayleig
Schrödinger~RS! approach to the perturbational calculatio
is to use the Brillouin-Wigner~BW! perturbation theory@7#.
Unlike the RS approach, the BW approach accounts for
contribution to the correction function from the referen
state and thus may be expected to have a larger radiu
convergence than that of the RS approach and, conseque
less ‘‘prohibitive’’ requirements. In the BW treatment of ou
problem, the exact wave functions,C jn(r ,R), and energies
Ejn , satisfy the following perturbation equation:

~Ejn2H0!C jn~r ,R!5H8C jn~r ,R!, ~7!

where

H0$x jn~R!w j~r ;R!%5H j j
0 $x jn~R!%w j~r ;R! ~8!

and

H8$x jn~R!w j~r ;R!%5(
iÞ j

H j i8 $x jn~R!%w j~r ;R!, ~9!

and the eigenfunctionsC jn(r ,R) are assumed to be ex
pressed as the following sums:

C jn~r ,R!5c jn
0 ~r ,R!1F jn~r ,R!, ~10!

where the unknown~correction! functionsF jn(r ,R) are or-
thogonal to thec jn

0 (r ,R) functions from Eq.~1!.
The correction functions may be expressed as the foll

ing expansions:

F jn~r ,R!5 (
k50

wk~r ;R!Cjn;k~R!, ~11!

where the unknown expansion coefficientsCjn;k satisfy the
following implicit equations~for details see Ref.@7#!:

@Ejn2Hmm
0 #Cjn;m~R!5@~12d jm!H jm8 2Ejn8 d jm#x jn~R!

1 (
kÞm

Hkm8 $Cjn;k~R!% ~12!

and where
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Ejn8 5(
iÞ j

^H ji8 $x jn~R!%,Cjn; i~R!&R . ~13!

To solve Eq.~12!, two iterative schemes have been su
gested in the literature@7#:

@Ejn
(p)2Hmm

0 #Cjn;m
(p11)5@~12d jm!H jm8 2Ejn8

(p)d jm#x jn~R!

1 (
kÞm

Hkm8 $Cjn;k
(p) ~R!% ~14!

and

@Ejn
(p)2Hmm

0 #Cjn;m
(p11)5@~12d jm!H jm8 2Ejn8

(p)d jm#x jn~R!

1 (
k.m

Hkm8 $Cjn;k
(p11)~R!%

1 (
k,m

Hkm8 $Cjn;k
(p) ~R!%, ~15!

where

Ejn
(p11)5Ejn

0 1(
iÞ j

^H ji8 $x jn~R!%Cjn; i
(p11)~R!&R . ~16!

The latter scheme was found in Ref.@7# to provide better
convergence. However, in the course of iterating the corr
tion functionsCjn,k

(p) (R) become nonorthogonal with respe
to the functionsx jn(R) and, to keep calculations numerical
stable, the orthogonality should be reestablished at eac
eration step.

Usually, both schemes, say BW1 and BW2, provide oscil-
lating corrections. Thus, a more rapid convergence may
expected for the following modification of the iterativ
schemes~it gives rise to the BW3 and BW4 schemes!:

2Ejn
(p11)5Ejn

(p)1Ejn
0 1(

iÞ j
^H ji8 $x jn~R!%Cjn; i

(p11)~R!&R .

~17!

To get insight into the practical prospects of the discus
BW approach, and to compare it with the previously used
approach, we have performed the same model calculation
in our previous studies@3–5#. Namely, we have considered
set of problems for the following Hamiltonians@3,4#:

Ha52
1

2

]2

]x2
1

1

2
vx

22
1

2

]2

]y2
1

1

2
vy

21ax2y2, ~18!

Hb52
]2

]x2
1Vx~12exp@2vxx# !22

]2

]y2

1Vy~12exp@2vyy# !21Vxy~12exp@2vxx# !

3~12exp@2vyy# !, ~19!

and the ‘‘diabatic’’ problem from@5# with parameters taken
from Ref. @8#:
2-2
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Hc5S 2
1

2m

d2

dR2
1V11~R! V12~R!

V21~R! 2
1

2m

d2

dR2
1V22~R!

D .

~20!

According to the actual calculations~performed in the adia-
batic representation forHa and Hb and in themixed repre-
sentations forHc), the BW approach appears to be nume
cally superior to the RS approach.

~1! Similarly to the RS approach, it provides highly acc
rate results for all the levels which are away from any ac
dental ‘‘resonances’’ with other levels, even in the case
strong and very strong perturbation couplings; the conv
gence of the perturbation series may be efficiently acce
ated using the Pade´ approximant summation technique~see
Table I!.

~2! Unlike the RS approach, in the cases of two clos
coinciding levels it either converges safely or provid

TABLE I. Brillouin-Wigner energy estimates for the@0,2# and
@2,0# states of theHa Hamiltonian. Case C (NBWi

is the number of
iterations necessary to get eigenvalues accurate to one part in 18 in
the i th BW iterational scheme; integers given in parentheses g
the degrees of the diagonal Pade´ approximants which are necessa
to get the same accuracy in the case of diverging, or very slo
converging, perturbation series!.

a NBW1
NBW2

NBW3
NBW4

E(BW)

State@0,2#
0.3 176 40 34 15 3.18300240
0.7 182 22 40 17 3.36332862
1.1 264 16 58 19 3.50966275

State@2,0#
0.5 89 ~10! 17 15 3.51563617
0.9 68 ~12! 27 13 3.75859467
1.3 56 ~9! 46 15 3.94960343

TABLE II. Brillouin-Wigner estimates of the energies of th
adiabatically crossing levels of theH (NBWi

is the number of itera-
tions necessary for to get eigenvalues accurate to one part in 18 in
the i th BW iterational scheme! Hamiltonian.

a NBW2
NBW3

NBW4
E(BW)

Case A: State@0,5#
0.2 193 19 15 4.93170392
0.214585 a 39 34 4.96151640
0.25 46 18 13 5.03386237

Case A: State@2,1#
0.2 29 19 13 4.86125864
0.214585 78 35 32 4.88635244
0.25 20 15 15 4.94184811

aConverging, from a broad set of estimates, to the value assigne
the @2,1# state.
01410
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asymptotic perturbation series that are accurately summ
~see Tables II and III!. The perturbation series exhibit pro
found dependence on the ‘‘zeroth order’’ energy estima
and it may be used to improve their summabilities especi
in the case of the BW1 and BW3 schemes. The only limiting
problem arises due to the fact that, in the case of exa
coinciding states, the iteration processes may converg
only one of the two sought eigenvalues.

~3! It appears also that the BW approach may efficien
work even in the case of multiple energy intercrossin
where the RS approach fails completely; for instance, in
case of the@3,6#, @5,3#, and @6,2# states of the Hamiltonian
Ha ~the degree of coincidence of these states may be see
Fig. 3 of Ref.@3#!. In the case of the two last states, the B
approach~especially the BW2 and BW4 schemes! provides
strongly converging series for a wide range of values of
coupling constanta, and, in the case of the@3,6# state, it
gives very accurately summable asymptotic series~see Table
IV !.

The performance of the BW approach may also be
proved using themixedrepresentations. As a matter of fac
the approach has allowed very accurate determination o
the probed states of the HamiltonianHc. Although most of
the sought energies were obtainable within the framework
the adiabatic representation, in some cases, such as in
case of the three lowest@0,i # states, we had to go beyond i
scope~see Table V!.

Unlike the standard variational approaches, the pertur
tion procedure accounts automatically for contributions fro
the continuum states and yields energy corrections directl
terms of the relevant quantum numbers. Thus, the proce
appears as a promising tool for a broad class of pract
applications. For instance, it may be used to evaluate~and
directly assign! all reasonably isolated states of the ligh
loosely bound molecular complexes. Recently, the proced
has provided very accurate energies and unambiguous

e

ly

to

TABLE III. Brillouin-Wigner perturbation series for the@1,2#
state of theHb Hamiltonian ~Case A;Vxy52150) (BWi is the
BW iteration scheme used to get the particular corrections!.

Order BW1 BW1 BW2 BW2

i 12 7 8 7
@ i / i # 552.951080 552.951074 552.951074 552.9510
@ i / i 11# 552.951073 552.951074 552.951074 552.9510

TABLE IV. Brillouin-Wigner perturbation series for the@3,6#
state of theHa Hamiltonian @Case A (BWi is the BW iteration
scheme used to get the particular corrections!#.

Order a50.4(BW2) a50.5(BW4) a50.6(BW2)

i 9 8 11
@ i / i # 13.39062451 13.62422204 14.52530711
@ i / i 11# 13.39062451 13.62421907 14.52530711
Vara 13.390625 13.624224 14.525322

aVariational calculation with a basis set of 900 functions.
2-3
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signment of all the bound vibrational states of the Na..
van der Waals molecule in a full accord with a large sc
variational calculation@9#. In some favorite situations, suc
as the one illustrated by Fig. 1, the procedure may e
allow for evaluation of the positions and lifetimes of th
quasibound states by means of the stabilization method@10#.
Though the ‘‘periodic’’ discontinuities in the stabilizatio
diagrams~arising due to mathematical singularities in t
perturbation equations! can make these diagrams incomple
the ‘‘incomplete’’ diagrams may still provide sufficiently ac
curate estimates of the sought characteristics. Interestin
positions of the discontinuities differ for different mixed re
resentations.

Of course, despite its promising features, the sugge
BW approach is not free of all the typical drawbacks of t
perturbation theory. Apart from the obvious fact that it is n

TABLE V. Estimates of the@0,i # eigenvalues of the Hamil-
tonianHc @Ai is the value of the rotational parameterA providing
optimal convergence of the perturbation series~see Ref.@5#!; Ni is
the number of iterations necessary to get eigenvalues accura
one part in 108 in the i th BW iterational scheme;Pi is the degree of
the diagonal Pade´ approximant necessary to get eigenvalues ac
rate to one part in 108#.

State Energy A2 N2 P2 A4 N4 P4

@0,0# 20.65249310 0.32 23 10 0.32 23 9
@0,1# 20.63739737 1.63 25 8 1.65 23 8
@0,2# 20.62356479 1.64 a 7 0.36 a 18
@0,3# 20.60788555 1.10 a 9 1.08 a 6
@0,4# 20.59604250 1.09 a 9 1.00 a 7

aConverging, but not converged forN,40.
B.
e
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suitable for describing clusters of closely coinciding stat
its usefulness is limited mostly by the fact that there is
general procedure which would allow evaluation of accur
wave functions from diverging perturbation series@11#. The
latter problem and the phenomenon of the ‘‘periodic’’ di
continuities in the stabilization diagrams are scheduled to
addressed in our future studies.
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FIG. 1. The stabilization diagram for the resonance state
NaFH containing 446 cm21 of energy: plot of the adiabatic ener
gies~solid lines! and BW perturbative energies~points! obtained as
functions of the distance between Na and the center of mass o
FH fragment (E in cm21 andR in Å ).
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