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Nonclassical fields and the nonlinear interferometer

Barry C. Sanders and Dien A. Rice
Department of Physics, Macquarie University, Sydney, New South Wales 2109, Australia

~Received 1 September 1998; published 10 December 1999!

We demonstrate several results for the nonlinear interferometer, that emerge f,rom a formalism which
elegantly describes the output field of the nonlinear interferometer as two-mode entangled coherent states. We
clarify the relationship between squeezing and entangled coherent states, since a weak nonlinear evolution
produces a squeezed output, while a strong nonlinear evolution produces a two-mode, two-state entangled
coherent state. In between these two extremes exist superpositions of two-mode coherent states manifesting
varying degrees of entanglement for arbitrary values of the nonlinearity. The cardinality of the basis set of the
entangled coherent states is finite when the ratiox/p is rational, wherex is the nonlinear strength. We also
show that entangled coherent states can be produced from product coherent states via a nonlinear medium
without the need for the interferometric configuration. This provides an important experimental simplification
in the process of creating entangled coherent states.

PACS number~s!: 42.50.Dv, 03.65.Bz
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I. INTRODUCTION

The nonlinear interferometer exhibits remarkable prop
ties, even for semiclassical input fields such as a prod
coherent state,ua&aub&b into the two input ports. Despite th
classical nature of the input state, the output state can
highly nonclassical. This nonclassical nature is most app
ent in the manifestation of the entangled coherent states.
develop and apply an entangled coherent states formalis
obtain results. Firstly, we establish the relationship betw
entangled coherent states and squeezed states, arising
weak nonlinearityx, wherex is proportional to the nonlinea
parameter of the medium and to the interaction time in
medium. Strong nonlinearity, in contrast, produces a tw
mode, bivalued entangled coherent state,

221/2~ u0&a8ua&b81 i u2 ia&a8u0&b8). ~1.1!

In between these two extreme nonlinearities, the output
general entangled coherent state, which interpolates betw
the two-mode bivalued entangled coherent state and
squeezed state. Moreover, forx/p rational, the output state i
a finite sum of product coherent states, and forx/p irrational,
the sum is replaced by an integral. Finally, entangled coh
ent states can be producedwithout the need for the interfer
ometer configuration, resulting in a significant simplificati
for producing entangled coherent states.

The construction of the nonlinear interferometer
achieved by placing a nonlinear optical medium along o
internal optical path. For example, a nonlinear medium
be placed in one or both arms of the Mach-Zehnder inter
ometer@1–4#. The ideal nonlinear Mach-Zehnder interferom
eter is mathematically equivalent to other nonlinear tw
mode interferometers. Loss and phase diffusion are assu
to be negligible in this treatment.

We treat the nonlinear medium as a classical object wh
enables photon-photon interactions. The input field at e
port is treated as a single-mode field. In Sec. II we develo
formal treatment of the interferometer as a unitary trans
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mation of two input states into two output states. In Sec.
we discuss the nature of the interferometer and examine
cial cases and also the case for an arbitrary value of
nonlinearity coefficientx. In Sec. IV we derive the result tha
a weak value of the nonlinearity coefficient produc
squeezed state outputs. In Sec. V we show an alterna
approach to producing entangled coherent states withou
ing a nonlinear interferometer. In Sec. VI we present o
conclusions.

II. FORMALISM

The ideal nonlinear interferometer can be described b
unitary transformation of the input fields into the outp
fields. There are two input fieldsa andb as shown in Fig. 1,
and the output fields are designated bya8 andb8. The input
fields and output fields are treated as single-mode fields

For simplicity we consider the special case that the t
input fields at the two input ports of the interferometer a
coherent states@5# ua&5D̂(a)u0& for

D̂~a!5 exp~aâ†2a* â!, ~2.1!

the displacement operator. The coherent field is the clo
quantum analogy to the classical coherent field. Its proper
include being in a minimum uncertainty state and being g

FIG. 1. Nonlinear Mach-Zehnder interferometer. Cohere
statesua& and ub& are injected into the two input ports of a bea
splitter ~BS!, where they pass through a nonlinear medium. T
fields are then recombined at the second BS.
©1999 The American Physical Society05-1
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erated by a classical current distribution. Coherent field
puts in each arm have proven to be very interesting as th
are precisely the inputs considered for squeezing exp
ments@6# and for obtaining entangled coherent states@7–15#,
also regarded as superpositions of multimode coherent s
@16–19#. The unitary transformation operator for the nonli
ear interferometer is designated byÎ. The transformation is a
sequence of a beam-splitter transformationB̂ followed by a
path difference operatorD̂ followed by the commuting Kerr
transformations in each arm,Ŝ1 and Ŝ2, for which @ Ŝ1 ,Ŝ2#

50, and then a final beam-splitter transformationB̂. The net
transformation is thus

Î5B̂Ŝ1Ŝ2D̂B̂, ~2.2!

whereB̂, Ŝ1, andD̂ are discussed below.
The 50/50 beam-splitter transformation is given by@20–

26#

B̂5 exp~ ip@ â†b1âb†#/4!. ~2.3!

The Kerr medium transformation in each arm is given
@27,28#

Ŝi~x;t!5 exp~2 i tâi
†âi2 ix i âi

†2âi
2!, ~2.4!

where i 51,2 and â15â, â25b̂ for transformationŜi , i
51,2. The normally ordered interaction is employed rat
than the symmetrically ordered form also found in the lite
ture. In Eq.~2.4! the nonlinearity coefficientx i is propor-
tional to the nonlinear coefficientx (3) of the medium and the
interaction time within the medium. The delay operator is

D̂~D!5 exp~ iDb̂†b̂! ~2.5!

and introduces the linear phase shift which occurs betw
the arms of the Mach-Zehnder interferometer. For the S
nac interferometer,D50 andx15x2 is assumed.

The interferometer output state isÎua&aub&b . The beam-
splitter transformation given in Eq.~2.3! transforms the
product coherent state as follows:

B̂ua&aub&b5u221/2~a1 ib!&1u221/2~b1 ia!&2 ~2.6!

for 1 and 2 are the two beam-splitter output fields. Thus
output state is also a direct product of coherent states a
output given a direct product at the input. In fact this res
can be generalized for any semiclassical state. A semicla
cal state possesses a well-defined positive-definite Glau
SudarshanP representation@5,29# that behaves like a prob
ability distribution on phase space. A semiclassical prod
state inputr̂a^ r̂b , for r̂a the density matrix for statea and
similar for the input state forb, can be expressed as

r̂a^ r̂b5F E d2a

p
Pa(a)ua&a^auG ^ F E d2b

p
Pb(b)ub&b^buG ,

~2.7!
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where Pa(a) and Pb(b) are theP representations for the
statesr̂a and r̂b . The output field from the beam splitter i
given by

B̂ra^ rbB †5E d2a

p
Pa~a!E d2b

p
Pb~b!u221/2

3~a1 ib!&a^2
21/2~a1 ib!u ^ u221/2

3~b1 ia!&b^2
21/2~b1 ia!u ~2.8!

and a mixture of coherent states entering into a beam spl
is transformed into the obvious mixture of product coher
states at the output. For nonclassical fields this incohe
mixture of product states does not hold as we shall see.

After the beam is split a path difference between the t
arms can be introduced, and this is represented mathem
cally by the delay operatorD̂. The delay operator acts on th
product coherent state of Eq.~2.6! which leaves the beam
splitter to produce the state

D̂B̂ua&aub&b5u221/2~a1 ib!&1u221/2eiD~b1 ia!&2 , ~2.9!

A phase shift ofD has been effected in arm 2 relative to ar
1 of the interferometer.

The nonlinear Kerr transformation~2.4! transforms the
coherent state to@27,28#

ua&x;t[Ŝ~x!ua&

5 exp~2uau2/2! (
n50

`
~aei (x2t)!n

An!
exp~2 ixn2!un&,

~2.10!

which is henceforth referred to as a ‘‘sheared state,’’ a te
which describes the shearing of the GaussianQ function for
the coherent state over short times@27,28#. The rotating
frame can be chosen by settingt50. ~Alternately, the frame
for which t5x is also used.! The sheared stateua&x;t50 is a
special case of the generalized coherent states of Titulaer
Glauber@30# and Bialynicka-Birula@31#, which can always
be represented as a continuous sum of coherent s
@31,32#. Sheared states in particular have been discusse
this form by Miranowiczet al. @33# and by Gantsog and
Tanaś@34#, and can be expressed as the superposition

ua&x;t505E
0

2pdw

2p
f x~w!uaei (x2w)& ~2.11!

with

f x~w!5 (
n50

`

exp~ inw2 ixn2!. ~2.12!

The phase function exhibits interesting properties and is
cussed further in Ref.@35#. For x/p a rational number the
integral ~2.11! becomes a discrete sum over a finite numb
of coherent states@33#.
5-2
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If x/p is a rational number then there exists an inte
quantityN, such that

ua&x;t505 (
n51

N

cnuaeipn/N&. ~2.13!

This results because the factor exp@ixn(n21)# in Eq. ~2.10! is
periodic whenx/p is rational. Forr ,s integers that are rela
tively prime, andx52(r /s)p, we observe that

r

s
n25

r

s
~n1N!2 mod 1 ~2.14!

for N5s. If s is not prime, thenN<s is possible; for ex-
ample, Eq.~2.14! is satisfied byN5s/2 for s a multiple of 4
@35#. For the special case thatx5p/2 we haver 51, s54,
andN52, and we find that

ua&x5p/2;t505221/2~e2 ip/4u ia&1eip/4u2 ia&).
~2.15!

This superposition state@27,36# has been discussed in th
context of optical analogs to Schro¨dinger’s cat state@7,37–
40#. Similar analyses can yield a superposition of pha
states@41#. More generally the coefficients of the state~2.13!
are determined by solving theN simultaneous equations@31#

(
n51

N

cne2ipkn/N5eixk(k21) ~2.16!

for k50,1, . . . ,N21. Using the method of Gantsog an
Tanaś@34#, this can be solved to determine that

cn5
1

N (
k50

N21

exp@2 i2pkn/N2 ixk~k21!#, ~2.17!

wheren51,2, . . . ,N.
The output field of the interferometer is given by

Îua&aub&b5B̂u221/2~a1 ib!&1
x1u221/2eiD~b1 ia!&2

x2 . ~2.18!

If the statesu221/2(a1 ib)&1
x1 and u221/2eiD(b1 ia)&2

x2 are
semiclassical then the output could be be written as a pro
coherent state or a mixture of product coherent states in
way that Eq.~2.8! is written. However, the sheared state
despite being generalized coherent states, are not semic
cal states. The nature of the interferometer output states
considered in the next section.

III. OUTPUT STATES

In order to analyze the output states of the interferome
the coherent field with amplitudeb is now restricted to the
vacuum state by settingb50. Thus the output state that w
wish to consider is given by the formal expression

Îua&au0&b5B̂ua/A2&1
x1u ia/A2&2

x2 . ~3.1!
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The sheared state can be expressed as a superpositi
coherent states according to expression~2.10!. By substitut-
ing this result into Eq.~3.1!, we obtain the formal result

Îua&au0&b5E
0

2pdw1

2p
f x1

~w1!E
0

2pdw2

2p
f x2

~w2!u 1
2 a~ei (x12w1)

2ei (D1x22w2)!&a8u
1
2 ia~ei (D1x22w2)

1ei (x12w1)&b8 . ~3.2!

The output state is a superposition of two-mode product
herent states.

The simplest case arises for the linear interferometer
which x1505x2 . In this case we can show that

Îua&au0&b5ua~12eiD!/2&a8u ia~11eiD!/2&b8 ~3.3!

as expected. The output state is unchanged forx15p5x2
and bothx1505x22p andx12p505x2 . A periodic be-
havior is evident inx12x2 parameter space.

The case for whichx15p/2 andx250 is interesting as
well. In this case we find that

Îua&au0&b5221/2e2 ip/4@ u~a~ i 2eiD!/2&a8u ia~ i 1eiD!/2&b8

1 i u2a~ i 1eiD!/2&a8u2 ia~ i 2eiD!/2&b8].

~3.4!

For D5p/2, the entangled coherent state@7–15#

Îua&au0&b5221/2e2 ip/4@ u0&a8ua&b81 i u2 ia&a8u0&b8] ~3.5!

is obtained. However,DÞ0 and therefore this state is no
obtained by a Sagnac interferometer in contrast to the
tangled state of Ref.@8#. The reason for this difference is th
normal ordering of the nonlinear interaction here as oppo
to the symmetric ordering used in Ref.@8#. Physically alter-
nate orderings introduce different linear phase shifts.

In fact the more general state~3.4! can be regarded a
entangled as well. A superposition of two-mode product
herent states

ua1&aub1&b1eiwua2&aub2&b ~3.6!

is entangled, provided that the inner productsza^a1ua2&az and
zb^b1ub2&bz are sufficiently small. As the overlap function
for the a andb states of expression~3.4! are given by

a8^a~ i 2eiD!/2u2a~ i 1eiD!/2&a8

5 exp~2uau2@12 i cosD#/2!

5b8^ ia~ i 1eiD!/2u2 ia~ i 2eiD!/2&b8 , ~3.7!

the inner products quickly become small asuau2→`. Con-
sequently the state~3.4! satisfies the criteria for being a
entangled coherent state for allD. Thus, although the outpu
state forD50 differs from that of Ref.@8#, the output is
nevertheless an entangled coherent state.
5-3
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Another special case for the interferometer arises fox
[x15x2 andD50. This restriction corresponds to the ca
generally used in squeezed light experiments@6#. The output
state is given by

Îua&au0&b5E
0

2pdw

2p
f x~w!E

0

2pdw8

2p
f x8~w!u221aeix

3~e2 iw2e2 iw8&a8u2
21i ~e2 iw81e2 iw&b8 .

~3.8!

For the case thatx5p/2, we have

Îua&au0&b5 1
2 ~ ua&a81u2a&a8)u0&b81

1
2 i u0&a8

3~ u ia&b81u2 ia&b8). ~3.9!

This state corresponds to an entanglement of a Schro¨dinger
cat state from porta8 and a vacuum at portb8 with a vacuum
state from porta8 and a Schro¨dinger cat state from portb8.
However, the Schro¨dinger cat state in expression~3.9! is
very different from the Schro¨dinger cat state in Eq.~2.15!.
This difference is most evident in the photon number dis
bution. The photon number distribution of Eq.~2.15! is iden-
tical to the distribution of the coherent stateua&, but the
photon number distribution of the state

@2~11e22uau2!#21/2~ ua&1u2a&)

5 cosh~ uau2! (
n50

`
a2n

A~2n!!
u2n& ~3.10!

is quite different and is a superposition of even photon nu
ber states only: hence the nomenclature ‘‘even cohe
states’’ @7,38–40#.

Other interesting features arise for various values
x1 ,x2, andD, but the interesting states are special case
Eq. ~3.2!. One of these special cases arises forx1 /p and
x2 /p rational numbers 2p1 /q1 and 2p2 /q2, for each pair
p1 , q1 and p2 , q2, relatively prime integers that are ver
small. Under this condition the sheared state is a superp
tion of very few distinguishable coherent states according
the sum~2.13!. That is, for the nonlinearitiesx1 and x2,
there exist integersM andN such that

ua&x1 ,t505 (
m51

M

cmuaeipm/M&, ~3.11!

ua&x2 ,t505 (
n51

N

cnuaeipn/N&. ~3.12!

By substituting Eqs.~3.11! and~3.12! into the interferometer
equation in Eq.~3.1!, the interferometer output state is foun
to be

Îua&au0&b5 (
m51

M

(
n51

N

cmcnua~eipm/M2eipn/N!/2&a8u

3 ia~eipm/M1eipn/N!/2&b8 , ~3.13!
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where the coefficientscm andcn can be calculated from the
application of~2.17!. This shows that the general output sta
for x1 andx2 rational is an entangled coherent state with
finite cardinality for the basis set.

The other interesting parameter regime forx corresponds
to x/p a small quantity. This case is important in th
squeezed light experiments and is the subject of the n
section.

IV. WEAK NONLINEARITIES AND SQUEEZING

The weakly nonlinear interferometer is used for squee
light @42# experiments and corresponds to small to moder
lengths of nonlinear material in each arm of the interfero
eter. The quantityx can be set to a very small number. He
we wish to see how the formal results established in
preceding sections can be used to understand the we
nonlinear interferometer and the phenomenon of squeez

In order to understand the weakly nonlinear Mac
Zehnder interferometer, we must understand the she
stateua&x;t for which x is small. The sheared state can
expressed as

ua&x;0[Ŝ~x;0!D̂~a!u0& ~4.1!

for Ŝ(x;0), theshear operator~2.4!, andD̂(a), the displace-
ment operator~2.1!. The unitary operators can be rewritte
as

Ŝ~x;0!D̂~a!5D̂~a!exp@2 ix~ â†1a* !2~ â1a!2#.
~4.2!

Suppose that the photon numberuau2→` and the nonlinear
parameterx→0 such thath5xa2 . Consequently, terms in
Eq. ~4.2! with coefficients of orderh/uau and smaller are
negligible. Relegating details of the calculation to Append
A, the state~4.1! can be approximated by

ua&x;0' exp~2 iL!D̂~a1d!Ŝ~«!Ŝ~2e2is«!u0&,
~4.3!

whereŜ(«) is the squeeze operator

Ŝ~«!5 exp@~«* â22«â†2!/2#, ~4.4!

D̂(r) is the displacement operator~2.1!, and d and L are
complex functions ofa and x given by Eqs.~A13! and
~A14!, respectively.

It is evident that the state~4.3! is a vacuum state which
has been squeezed along two different axes, then displa
The output state for the weakly nonlinear Mach-Zehnder
terferometer is given by Eq.~3.1!, which, by using Eq.~4.3!,
can be approximated by

Îua&au0&b'e2 i ~L11L2)B̂D̂1~v11d1!D̂2~v21d2!Ŝ1~«1!

3Ŝ1~2e2is1«1!Ŝ2~«2!Ŝ2

3~2e2is2«2!u01u02 , ~4.5!
5-4
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NONCLASSICAL FIELDS AND THE NONLINEAR . . . PHYSICAL REVIEW A 61 013805
wherev15a/A2 andv25 ia/A2, andL i , d i , « i , ands i
~for i 51,2) are complex functions ofa, x1, andx2, which
are given by Eqs.~B4!, ~B5!, ~B7!, and~B8!, respectively, in
Appendix B.

If x[x15x2, then «252«1 and s25s1 . In this case,
Eq. ~4.5! can be calculated to find that

Îua&au0&b'e2 i (L11L2)D̂a8~g1!D̂b8~g2!Ŝa8~«1!

3Ŝa8~2e2is1«1!Ŝb8~2«1!Ŝb8

3~e2is1«1!u0&a8u0&b8 , ~4.6!

whereg i is a complex function ofa andx and is given by
Eq. ~B11! ~for i 51,2).

Thus, whenx15x2, the output state is a product state
the squeezed coherent state at porta8 and an orthogonally
squeezed coherent state at portb8. If we adopt assumptions
about strong coherent fields and weak nonlinearities then
treatment of squeezed coherent states from each port is v
It is interesting to note that forx15x2 the two coherent
states enter the two input ports of the interferometer and
again as two squeezed states. The output state is a pro
state as well.

V. TWO-FIELD INTERACTION AND ENTANGLED
COHERENT STATES

In Sec. III it was shown that the nonlinear Mach-Zehnd
interferometer with coherent state inputs in general result
an output of entangled coherent states. Here, it is shown
entangled coherent states can also be created using on
ideal Kerr nonlinearity with two coherent state inputs, wit
out the need for an interferometer.

The Kerr transformation for a single field input was giv
by Eq. ~2.4!. When two input fields, 1 and 2, simultaneous
enter into the Kerr cell, the Kerr transformation is given
@43,44#

Ŝ12~x,t!5 exp@2 i t~a1
†a11a2

†a2!2 ix~a1
†2a1

21a2
†2a2

2

14a1
†a1a2

†a2!#. ~5.1!

The terma1
†a1a2

†a2 in the exponential represents the nonli
ear two-field interaction which occurs where the two inp
fields superpose in the nonlinear cell. The effect of this i
phase-shift dependent on the photon numbers of both fie
which leaves the photon number of each field unchang
This property enables the two-field nonlinear interaction
be used as a quantum nondemolition measurement of ph
number@43–45#, where one field provides the signal and t
other field is used for the measurement.

A simple form of the entangled coherent state can be
tained by using three nonlinear cells, one for the interact
preceded by two to cancel the shearing effect on the sta
phase space without canceling the interaction term, as sh
in Fig. 2. ~The more complicated result, when only one no
linear cell is used, is calculated in Appendix C.! The two
input coherent states, injected into the pair of nonlinear ce
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could in fact be created by directing a single coherent be
into a beam splitter with a product coherent state output.

In this type of arrangement, the total operator of Eq.~5.1!
is then reduced to the form

Ŝ128 5 exp~24ixâ1
†â1â2

†â2!. ~5.2!

For two coherent state inputs, the output in the Fock s
basis is

ua,b&12
x,0[Ŝ8~x,0!D̂1~a!D̂2~b!u0&1u0&2

5e2(uau21ubu2)/2(
m50

`

(
n50

`
ambn

Am!n!
e24ixmnum&1un&2 ,

~5.3!

which is a generalization of expression~4.1!. This can also
be expressed in the coherent state basis as

ua,b&12
x;t505E

0

2p du

2pE0

2pdw

2p
gx8~u,w!ue2 iua&1ue2 iwb&2 ,

~5.4!

with

gx8~u,w!5 (
p,q50

`

exp~ iup1 iwq24ixpq!. ~5.5!

The output state~5.4! is an entangled coherent state.
If x/p is a rational number 2r /s, a finite entangled sum o

coherent states results,

ua,b&x;05 (
m51

N

(
n51

N

cmnue2p im/Na&1ue2p in/Nb&2 , ~5.6!

where N5s if r and s are relatively prime, andN,s is
possible otherwise. The coefficientscmn are found by solving
the N2 simultaneous equations

(
m51

N

(
n51

N

cmne
2p ikm/Ne2p i ln /N5e24ixmn. ~5.7!

Solving these equations using an extension of the metho
Gantsog and Tanas´ @34# gives the result

FIG. 2. Three nonlinear media elements used to create an
tangled coherent state.
5-5
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cmn5
1

N2 (
k50

N21

(
l 50

N21

exp@22i ~pkm/N1p ln/N12xkl !#.

~5.8!

The factor exp(24ixkl) in the above expression is the no
linear interaction term. The presence of this factor means
the general output is an entangled sum of coherent sta
unless 2x/p is an integer. In the latter case, exp(24ixkl)
51 and the output will be a product state.

For x5p/4, the resulting output state is

ua,b&x;05 1
2 @ ua&1~ ub&21u2b&2)1u2a&1~ ub&22u2b&2)]

5 1
2 @~ ua&11u2a&1)ub&21~ ua&12u2a&1)u2b&2].

~5.9!

This is an entangled state, comparable to those in Eqs.~3.6!
and ~3.9!.

A difference between the entangled coherent state in
~5.9! and the entangled coherent states~3.6! from the nonlin-
ear interferometer can be seen if one of the input states in
~5.9! is in the vacuum state. If we setb50, then the output
for the Kerr cell becomes

ua,0&12
x;05ua&1u0&2 . ~5.10!

Unlike the entangled coherent states produced in the non
ear interferometer in Eqs.~3.6! and ~3.9!, for a single Kerr
cell an entangled coherent state only results when both in
are not in the vacuum state.

There are a number of advantanges to this alternative
proach to creating entangled coherent states. An interfer
eter uses nonlinear cells, mirrors, and beam splitters.
approach here, using two coherent inputs into a nonlin
cell, produces entangled coherent states without the nee
mirrors or beamsplitters. Thus, many technical difficulties
interferometry are eliminated.

VI. CONCLUSION

The formalism that has been presented here has clar
that for coherent state inputs, the general output of the n
linear Mach-Zehnder interferometer consists of entangled
herent states. For weak nonlinear evolution, a squeezed
output results. At the other extreme of high values of
nonlinear Kerr coefficient,x5p/2, the entangled coheren
state 221/2(u0&aua&b1 i u2 ia&au0&b) results for a single co-
herent state input into one port of the interferometer, an
vacuum state entering the other port. For states in betw
these two extremes, in general a type of entangled cohe
state will be produced.

It has also been demonstrated that entangled cohe
states can also be produced using only an ideal Kerr non
earity without the need for an interferometer. For two coh
ent input statesua& and ub& into an ideal Kerr nonlinearity,
the interaction between the two states produces the entan
coherent state output 221@ ua&a(ub&b1u2b&b)1u2a&a
(ub&b2u2b&b)]. While still an entangled state, this en
tangled state produced by a nonlinear Kerr cell differs fr
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that produced by a nonlinear Mach-Zehnder interferome
since in the former case, both inputs must not be in
vacuum state. If one of the input states is the vacuum st
the other coherent state input passes through unchange

APPENDIX A: APPROXIMATING THE
DISPLACEMENT-SHEAR UNITARY OPERATOR

Recall from Eq.~4.2! that

Ŝ~x;0!D̂~a!5D̂~a!exp@2 ix~ â†1a* !2~ â1a!2#,
~A1!

and that we have introduced the quantity

h5xa2, ~A2!

and we allowx→0 and uau2→` such thath remains con-
stant.

Expanding the exponential in~A1! and keeping only those
a terms of order 2 or greater produces the result

Ŝ~x;0!D̂~a!'D̂~a!exp~24i uhu2â†â22ia* hâ†

22iah* â2 ihâ†22 ih* â22 ixuau4!.

~A3!

On the other hand, the termŜ(«)D̂(a)R̂(r)D̂†(a)Ŝ†(«)
can be expanded so that

Ŝ~«!D̂~a!R̂~r!D̂†~a!Ŝ†~«!

5 expF isS â†coshU«U1â
«

u«u
sinhU«U2a* D

3S â coshU«U1â†
«*

u«u
sinhU«U2a D G . ~A4!

Therefore, Eq.~A3! can be reexpressed as

ua&x;0' exp@ ixuau42 is~sinh2u«u1uau2!#

3D̂~a!Ŝ~«!D̂~r!R̂~s!D̂†~r!Ŝ†~«!u0&,

~A5!

whereD̂(r) is the displacement operator~2.1!, Ŝ(«) is the
squeeze operator~4.4!, and R̂(s) is the rotation operator
R̂(s)5 exp(isâ†â), as long as the following simultaneou
equations hold:

s cosh 2u«u524uhu2, ~A6!

s
«

u«u
sinh 2u«u522h* , ~A7!

and

sS 2r* coshU«U2r
«

u«u
sinh U«U D522ah* . ~A8!
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Solving these equations gives the resultant expressions

r5
2a* h

s
coshu«u2

2ah*

s

«*

u«u
sinh u«u, ~A9!

«5
1

2

h*

uhu
tanh21S 1

2uhu D , ~A10!

and

s524uhu2A12
1

4uhu2
. ~A11!

Equation~A5! can be further simplified to obtain the re
sult

ua&x;0' exp~2 iL!D̂~a1d!Ŝ~«!Ŝ~2e2is«!u0&,
~A12!

whered andL are given by

d5 coshu«ur~12eis!2~«/u«u!sinhu«ur* ~12e2 is!
~A13!

and

L5xuau41s~sinh2u«u1uau2!1uru2sins2Im$ad* %.
~A14!

The expression~A12! is obtained by using the relation

R̂~s!D̂†~r!Ŝ†~«!5D̂†~eisr!Ŝ†~e2is«!R̂~s! ~A15!

as well as the property for the displacement operator@46#

D̂~a!D̂~b!5D̂~a1b!exp~ i Im$ab* %! ~A16!

and the commutation relation forD̂ and Ŝ @46# .

APPENDIX B: THE OUTPUT OF THE NONLINEAR
INTERFEROMETER WITH A WEAK NONLINEARITY

The output state for the weakly nonlinear Mach-Zehn
interferometer was given in Eq.~4.5!, which was

Îua&au0&b'e2 i (L11L2)B̂D̂1~v11d1!D̂2~v21d2!Ŝ1~«1!

3Ŝ1~2eis1«1!Ŝ2~«2!Ŝ2~2e2is2«2!u0&1u0&2 .

~B1!

In this equation,v1 andv2 are given by

v15a/A2, ~B2!

v25 ia/A2, ~B3!

andL i andd i are given by

L i5xuv i u41s i~sinh2u« i u1uv i u2!1ur i u2 sin s i2Im$v id i* %,
~B4!
01380
r

d i5 coshu« i ur i~12eis i !2~« i /u« i u!sinhu« i ur i* ~12e2 is i !,
~B5!

with r i given by

r i5
2v i* h i

s i
coshu« i u2

2v ih i*

s i

« i*

u« i u
sinhu« i u, ~B6!

and« i ands i are given by

« i5
1

2

h i*

uh i u
tanh21S 1

2uh i u
D , ~B7!

s i524uh i u2A12
1

4uh i u2
, ~B8!

with h i given by

h i5x iv i
2 ~B9!

for i 51,2.
If x[x15x2, then Eq.~B1! can be calculated to obtai

the result given in Eq.~4.6!, which was

Îua&au0&b'e2 i (L11L2)D̂a8~g1!D̂b8~g2!Ŝa8~«1!

3Ŝa8~2eis1«1!Ŝb8~2«1!

3Ŝb8~e2is1«1!u0&a8u0&b8 . ~B10!

In Eq. ~B10!, g i is a complex function ofa andx which is
given by

g i5
1

A2
FcoshU«1UG i2

«1

u«1u
G i* G , ~B11!

for i 51,2, with

G15@coshu«1u~v11d1!1~«1 /u«1u!~v11d1!*

1 i @coshu«1u~v21d2!1~eis1«1 /u«1u!

3~v21d2!* #%/~sinh2u«1u!, ~B12!

and

G25$ i @coshu«1u~v11d1!1~«1 /u«1u!~v11d1!* #

1coshu«1u~v21d2!1~eis1«1 /u«1u!

3~v21d2!* %/~sinh2u«1u!. ~B13!

In the above calculation to obtain Eq.~B10!, we have used
the commutation relationship forD̂ andŜ @46#, as well as the
relationship@47#

B̂abŜa~«!Ŝb~2«!D̂a~a!D̂b~b!

5Ŝa~«!Ŝb~2«!D̂a~@a1 ib#/A2!D̂b~@b1 ia#/A2!B̂ab .

~B14!
5-7
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APPENDIX C: PRODUCING ENTANGLED COHERENT
STATES WITH A SINGLE NONLINEAR CELL

In Sec. V it was demonstrated how entangled coher
states could be produced with three nonlinear cells, with
the need for an interferometer. One nonlinear cell is used
the nonlinear interaction, and the other two are used to
verse shear the state in each output. However, a single
linear cell, without the other two reverse-shearing cells,
be used by itself to create entangled coherent states, th
the nature of the output state has more complicated repre
tation.

In the Fock state basis, the output from a nonlinear c
with two coherent state inputs can be calculated using
nonlinear transformation in Eq.~5.1!. The result is

Ŝua&1ub&2ut505e2(uau21ubu2)/2(
m50

`

3 (
n50

`

e2 ixm(m21)e2 ixn(n21)e24ixmn

3
am

Am!

bn

An!
um&1un&2 . ~C1!

The output in Eq.~C1! can also be expressed as a super
sition of product coherent states. This can be done to ob
the result

Ŝua&1ub&2ut505E
0

2p du

2pE0

2pdw

2p
gx~u,w!u

3aei (x2u)&1ubei (x2w)&2 , ~C2!

where

gx~u,w!5 (
p,q50

`

exp@2 i ~xp22up1xq22wq14xpq!#.

~C3!

If x/p is a rational number 2r /s, thenua,b&x,t50 can be
expressed as a finite sum of product coherent states,
t-
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Ŝua&1ub&2ut505 (
m51

N

(
n51

N

cmnuei2pm/Na&1uei2pn/Nb&2 . ~C4!

As was true in Eq.~5.6!, N5s if r ands are relatively prime,
and N,s is possible otherwise. The coefficientscmn are
found by solving the simultaneous equations,

(
m51

N

(
n51

N

cmne
i2pkm/Nei2p ln/N5e2 ix[k(k21)1 l ( l 21)14kl] ~C5!

for k,l 50,1, . . . ,N21. This gives the result

cmn5
1

N2 (
k50

N21

(
l 50

N21

exp$2 i2p~km1 ln !/N2 ix@k~k21!

1 l ~ l 21!14kl#%. ~C6!

If 2x/p is an integer, the output will be a product sta
otherwise the output will be an entanglement of coher
states.

Whenx5p/2, we expect the output to be a product sta
Using Eqs.~C4! and ~C6! yields the product state

Ŝ~p/2,0!D̂1~a!D̂2~b!u0&1u0&2

52
i

2
~ u ia&11 i u2 ia&1)~ u ib&21 i u2 ib&2).

~C7!

For the case of a single nonlinear cell, the simplest entang
coherent state output is obtained forx5p/4:

Ŝ~p/4,0!D̂1~a!D̂2~b!u0&1u0&2

5
1

4
@ i ~ ua&12u2a&1)~ ub&22u2b&22eip/4u ib&2

2eip/4u2 ib&2)1e2 ip/4~ u ia&11u2 ia&1)~ ub&22u

2b&21eip/4u ib&21eip/4u2 ib&2)]. ~C8!
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