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Nonclassical fields and the nonlinear interferometer
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We demonstrate several results for the nonlinear interferometer, that emerge f,rom a formalism which
elegantly describes the output field of the nonlinear interferometer as two-mode entangled coherent states. We
clarify the relationship between squeezing and entangled coherent states, since a weak nonlinear evolution
produces a squeezed output, while a strong nonlinear evolution produces a two-mode, two-state entangled
coherent state. In between these two extremes exist superpositions of two-mode coherent states manifesting
varying degrees of entanglement for arbitrary values of the nonlinearity. The cardinality of the basis set of the
entangled coherent states is finite when the rgftio is rational, wherey is the nonlinear strength. We also
show that entangled coherent states can be produced from product coherent states via a nonlinear medium
withoutthe need for the interferometric configuration. This provides an important experimental simplification
in the process of creating entangled coherent states.

PACS numbe(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION mation of two input states into two output states. In Sec. IlI
we discuss the nature of the interferometer and examine spe-
The nonlinear interferometer exhibits remarkable propercial cases and also the case for an arbitrary value of the
ties, even for semiclassical input fields such as a produdtonlinearity coefficieny. In Sec. IV we derive the result that
coherent statdg),| B), into the two input ports. Despite the & weak value of the nonlinearity coefficient produces
classical nature of the input state, the output state can b¥dueezed state outputs. In Sec. V we show an alternative
highly nonclassical. This nonclassical nature is most appar@PProach to producing entangled coherent states without us-
ent in the manifestation of the entangled coherent states. W89 & nonlinear interferometer. In Sec. VI we present our

develop and apply an entangled coherent states formalism &9nclu5|ons.

obtain results. Firstly, we establish the relationship between Il FORMALISM

entangled coherent states and squeezed states, arising from

weak nonlinearityy, wherey is proportional to the nonlinear The ideal nonlinear interferometer can be described by a

parameter of the medium and to the interaction time in theinitary transformation of the input fields into the output

medium. Strong nonlinearity, in contrast, produces a twofields. There are two input fieldsandb as shown in Fig. 1,

mode, bivalued entangled coherent state, and the output fields are designatedddyandb’. The input
fields and output fields are treated as single-mode fields.

0)p). (1.0 _ For_simplicity we co_nsider the special.case that the two
input fields at the two input ports of the interferometer are

In between these two extreme nonlinearities, the output is §oherent stategs] [a)=D(a)|0) for
general entangled coherent state, which interpolates between A At an
the two-mode bivalued entangled coherent state and the D(a)= explaa’—a"a), (2.3)

squeezed state. Moreover, fgir rational, the output state is  the displacement operator. The coherent field is the closest
a finite sum of product coherent states, andfer irrational,  quantum analogy to the classical coherent field. Its properties

the sum is replaced by an integral. Finally, entangled cohefinclude being in a minimum uncertainty state and being gen-
ent states can be producedthoutthe need for the interfer-

ometer configuration, resulting in a significant simplification
for producing entangled coherent states.

The construction of the nonlinear interferometer is
achieved by placing a nonlinear optical medium along one
internal optical path. For example, a nonlinear medium can
be placed in one or both arms of the Mach-Zehnder interfer-
ometer{1-4]. The ideal nonlinear Mach-Zehnder interferom-
eter is mathematically equivalent to other nonlinear two-
mode interferometers. Loss and phase diffusion are assumed
to be negligible in this treatment.

We treat the nonlinear medium as a classical object which F|G. 1. Nonlinear Mach-Zehnder interferometer. Coherent
enables photon-photon interactions. The input field at eachtates|a) and |B) are injected into the two input ports of a beam
port is treated as a single-mode field. In Sec. || we develop 8plitter (BS), where they pass through a nonlinear medium. The
formal treatment of the interferometer as a unitary transforfields are then recombined at the second BS.

2_1/2(|0>a’|a>b’+i|_ia’>a’
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erated by a classical current distribution. Coherent field inwhere P,(«) and P,(B) are theP representations for the

puts in egch arm hf?lve proven to be very interestipg as the%@atesﬁa andp, . The output field from the beam splitter is
are precisely the inputs considered for squeezing expergiven by

ments[6] and for obtaining entangled coherent stdies15],
also regarded as superpositions of multimode coherent states | ; d?a d?g 1
[16—19. The unitary transformation operator for the nonlin- Bpa®ppB'= f ?Pa(a)f ?Pb(ﬁﬂz

ear interferometer is designated ByThe transformation is a
sequence of a beam-splitter transformati®ollowed by a
path difference operatak followed by the commuting Kerr X(B+ia))(2 YA B+ia)| (2.9
transformations in each arn$; andsS,, for which [S;,S,]

=0, and then a final beam-splitter transformati&nThe net
transformation is thus

X(a+iB))a(2 Y a+ip)|®|27 Y2

and a mixture of coherent states entering into a beam splitter

is transformed into the obvious mixture of product coherent

states at the output. For nonclassical fields this incoherent

mixture of product states does not hold as we shall see.
After the beam is split a path difference between the two

whereB, 3, andA are discussed below. arms can be mtroduced,Aand this is represented mathemati-
The 50/50 beam-splitter transformation is given[B9— cally by the delay operatak. The delay operator acts on the

26] pro_duct coherent state of ER.6) which leaves the beam

splitter to produce the state

7=B5,5,AB, 2.2

B= explin[a’b+ab’/4). 23 .. - _ o _
ABlayal B)p=12" Y atip))|2" A (BHie)),, (2.9
The Kerr medium transformation in each arm is given by . _ )
[27,2§ A phase shift oA has been effected in arm 2 relative to arm
1 of the interferometer.
Sl — _ioata i at2n? The nonlinear Kerr transformatio(®.4) transforms the
Silxim) = exp—iraiai—ixia; ‘an), @4 coherent state tf27,29
wherei=1,2 anda;=a, a,=b for transformationS;, i

XiT= <
=1,2. The normally ordered interaction is employed rather | ) SO0l )

than the symmetrically ordered form also found in the litera- (ag/x—7)n

ture. In Eq.(2.4) the nonlinearity coefficienj; is propor- = exp(—|a|?/2) X, ——— exp(—ixn?)|n),

tional to the nonlinear coefficient™® of the medium and the o n!

interaction time within the medium. The delay operator is (2.10
A(A)= exp(iAb™D) (2.5  which is henceforth referred to as a “sheared state,” a term

which describes the shearing of the Gaus&afunction for
and introduces the linear phase shift which occurs betweethe coherent state over short timgg7,28. The rotating
the arms of the Mach-Zehnder interferometer. For the Sagframe can be chosen by setting 0. (Alternately, the frame
nac interferometerA=0 and y;= x» iS assumed. for which 7=y is also used.The sheared state)*' "= is a
The interferometer output state Z6a),| 8),. The beam- special case of the generalized coherent states of Titulaer and
splitter transformation given in Eq(2.3) transforms the Glauber[30] and Bialynicka-Birula[31], which can always
product coherent state as follows: be represented as a continuous sum of coherent states
[31,32. Sheared states in particular have been discussed in
B — 1272 o+ i 2-12 g1 j 26 this form by Miranowiczet al [33] and by Gantsog and
|@)al o= (atip)hl (Bria), (29 Tanag[34], and can be expressed as the superposition

for 1 and 2 are the two beam-splitter output fields. Thus the
. | di d f h . o 271'ng .

output state is also a direct product of coherent states at its |a)XiT=0= Tt (@) agix®) (2.11
output given a direct product at the input. In fact this result 2m X
can be generalized for any semiclassical state. A semiclassi-
cal state possesses a well-defined positive-definite Glaubewith
SudarsharP representatiof5,29| that behaves like a prob-
ability distribution on phase space. A semiclassical product ) )

S ~ . . f ()=, expling—iyn?). (2.12
state inputp,® py, for p, the density matrix for state and X =
similar for the input state fob, can be expressed as

[

) The phase function exhibits interesting properties and is dis-
d—BP ()| B)u( Bl cussed further in Ref.35]. For x/7 a rational number the

a P B)IBAL |, integral (2.11) becomes a discrete sum over a finite number
(2.7 of coherent statef33].

Pa® pp= ®

d’a
[ 2@l aysal
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If x/m is a rational number then there exists an integefThe sheared state can be expressed as a superposition of
guantity N, such that coherent states according to expressi®ri0. By substitut-
" ing this result into Eq(3.1), we obtain the formal result

|ayxiT=0= D c,|ae ™y, 213 rdg
n=1 I]a)a|0>b—J 5 1 ¢1)J X2(<P2 )| La(elame

This results because the factor gym(n—1)] in Eq.(2.10 is
periodic wheny/s is rational. Forr,s integers that are rela-
tively prime, andy=2(r/s), we observe that

— ei(A+X2*‘P2))>a, |3ia(e' AT xam¢2)

+ellameny (3.2
[nzzi(nJrN)Z mod 1 (2.14  The output state is a superposition of two-mode product co-
S S herent states.

. ) . ) The simplest case arises for the linear interferometer for

for N=s. If sis not prime, therN<s is possible; for ex- \yhich x1=0=x,. In this case we can show that
ample, Eq(2.14) is satisfied byN=s/2 for s a multiple of 4
[35]. For the special case thgt=n/2 we haver=1, s=4, 5 Ohv=la(l—e®V/2 lia(l+ed) /)., (3.3
andN=2, and we find that N a)a|O)p=|e M2)arlia( 2 (3.3
as expected. The output state is unchangedyfer m= x,
and bothy;=0= y,— 7 andy;— 7=0= y,. A periodic be-
havior is evident iny; — x, parameter space.

The case for whichy,=m/2 and x,=0 is interesting as
well. In this case we find that

|a>)(:'n'/2;7:0:2—1/2(e—i77/4|ia>+ei77/4| —ia)).

(2.1

This superposition statf27,36 has been discussed in the
context of optical analogs to Scliimger’s cat stat¢7,37—
40]. Similar analyses can yield a superposition of phase . i o i
stateg41]. More generally the coefficients of the st&2e13 T a)a|0)p=2""2 "™ |(a(i—€'2)/2)y|ia(i+€')/2)y

are determined by solving thé simultaneous equation81] +i|— ali +eiA)/2) |—iai _eiA)/2>b ]
a/ ).
N (3.9
2 Cn62i77kn/N:ei)(k(k—l) (216)
n=1 For A=7/2, the entangled coherent stafe-15|

for k=0,1,... N—1. Using the method of Gantsog and 5 0).= 2 Y2a-il4r| 0y, Ctil—iada |0 3
Tanas[34], this can be solved to determine that Ha)al0) [10)arl@)or +i[=i@)arlOp] (39

is obtained. HoweverA#0 and therefore this state is not

N—-1
_ . . obtained by a Sagnac interferometer in contrast to the en-
“~N go X —i2rkn/N=ixk(k=1)], (2.17 tangled state of Ref8]. The reason for this difference is the
normal ordering of the nonlinear interaction here as opposed
wheren=1,2, ... N. to the symmetric ordering used in R¢8]. Physically alter-
The output field of the interferometer is given by nate orderings introduce different linear phase shifts.

In fact the more general stat8.4) can be regarded as
5 =Bl27 Y2 +i B2 V2N B+ia))2. (2.1 entangled as well. A superposition of two-mode product co-
Tla)al B)o=Bl2 A atip)}{2 e (pria)y?. (218  eMangled as

-1/2 H X1 —1/2,4iA P X2 .
If thg statgs|2 (a+ip))}* and[27 "% (,8.-Ha)>2 are |a)al Buop+ €| az)al Ba)b (3.6)
semiclassical then the output could be be written as a product
coherent state or a mixture of product coherent states in thig entangled, provided that the inner produgts:;| a,) .| and
way that Eq.(2.8) is written. However, the sheared states, | (8,|B,),| are sufficiently small. As the overlap functions

despite being generalized coherent states, are not semiclasgjr the a andb states of expressiof8.4) are given by
cal states. The nature of the interferometer output states are

considered in the next section. ala(i—e™) 2] —a(i+e?)2),
= exp(—|a|][1—i cosA]/2)
—br<|a(|+elA)/2| |_ IA)/2>br y (37)

Ill. OUTPUT STATES

In order to analyze the output states of the interferometer,
the coherent field with amplitudg is now restricted to the
vacuum state by setting=0. Thus the output state that we
wish to consider is given by the formal expression

the inner products quickly become small |ag?>— . Con-
sequently the staté€3.4) satisfies the criteria for being an
entangled coherent state for all Thus, although the output
A . X Yo state forA=0 differs from that of Ref[8], the output is
T a)qs|0)p=B|a/ \/§>1 lial \/§>2 . 3D nevertheless an entangled coherent state.
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Another special case for the interferometer arisesyfor where the coefficients,, andc, can be calculated from the
=y1=x2 andA=0. This restriction corresponds to the caseapplication of(2.17). This shows that the general output state

generally used in squeezed light experimégfis The output
state is given by

#d(P Zﬁd(p’ 1 i
-_ - - X
oo | TSt el e

T arya|0)p= f:

X (e te—ei¢"y |27 ti(e ¢ +eTi?),, .

(3.8
For the case that=mn/2, we have
Tl @)alO)p=3(la)ar+| = a)a) |0}y +3i|0)a
><(|ia>b/+|—ia>b/). (39)

This state corresponds to an entanglement of a Samger
cat state from porda’ and a vacuum at polt’ with a vacuum
state from pora’ and a Schrdinger cat state from poti’.
However, the Schidinger cat state in expressiqB.9) is
very different from the Schdinger cat state in Eq2.15.

for x, and y, rational is an entangled coherent state with a
finite cardinality for the basis set.

The other interesting parameter regime focorresponds
to x/m a small quantity. This case is important in the
squeezed light experiments and is the subject of the next
section.

IV. WEAK NONLINEARITIES AND SQUEEZING

The weakly nonlinear interferometer is used for squeezed
light [42] experiments and corresponds to small to moderate
lengths of nonlinear material in each arm of the interferom-
eter. The quantity can be set to a very small number. Here
we wish to see how the formal results established in the
preceding sections can be used to understand the weakly
nonlinear interferometer and the phenomenon of squeezing.

In order to understand the weakly nonlinear Mach-
Zehnder interferometer, we must understand the sheared
state|a)X'™ for which y is small. The sheared state can be
expressed as

This difference is most evident in the photon number distri-

bution. The photon number distribution of E§.15 is iden-
tical to the distribution of the coherent stdte), but the
photon number distribution of the state

[2(1+e 2] 12| @) + |~ a))

* a2n
= cosr(|a|2)nzo \/(ZT)I|2n> (3.10

|)¥°=58(x;0)D(a)|0) 4.0
for S(x;0), theshear operatof2.4), andD(«), the displace-
ment operatof2.1). The unitary operators can be rewritten
as

S(x;0)D(a)=D(a)exd —ix(a’+ a*)4(a+a)?].
(4.2

is quite different and is a superposition of even photon numy 2 :
ber states only: hence the nomenclature “even coheren%Uppose that the photon n_umbzezﬂ — and the ”°”"”e<”?r
states”[7,38—4( parametery—0 such thatp= ya“. Consequently, terms in

Other interesting features arise for various values otE 3.|€4i.3ewlg2I(e:ogglmegé?aﬁ; gfr(:ﬁg/c';l:u?gt(ijoﬁr?(?":r 2rnedix
X1:X2, andA, but the interesting states are special cases o gigioie. gating PP

Eqg. (3.2). One of these special cases arises ¥@f 7 and
X2/ rational numbers g,/q; and 2p,/q,, for each pair

pP1, g1 and p,, q,, relatively prime integers that are very
small. Under this condition the sheared state is a superposi-
tion of very few distinguishable coherent states according to

the sum(2.13. That is, for the nonlinearitieg; and y»,
there exist integerM andN such that

M
|a>)(1,7':0: z Cm|aei'n'm/M>, (311)
m=1
N
|a)¥27=0=">" ¢ |ae!™N). (3.12

n=1

By substituting Eqs(3.11) and(3.12) into the interferometer

equation in Eq(3.1), the interferometer output state is found

to be

M N
Na)al0)o= 2 2, CrCyla(e ™M —e™M)12), |

Xia(eiwm/M+eiwn/N)/2>b/ ,

(3.13

, the state(4.1) can be approximated by

@)~ exp(—iA)D(a+8)S(e)S(—e”"e)|0),
4.3

whereé(s) is the squeeze operator

S(e)= exd (s*a?—ea’?)/2], (4.4)
D(p) is the displacement operat¢2.1), and & and A are
complex functions ofa and y given by Egs.(A13) and
(A14), respectively.

It is evident that the stat&t.3) is a vacuum state which
has been squeezed along two different axes, then displaced.
The output state for the weakly nonlinear Mach-Zehnder in-
terferometer is given by E¢3.1), which, by using Eq(4.3),
can be approximated by

T @)l O)p=e " MFAIBD, (wy+ 81) Do wy+ 8,)Si(e1)
XS (—€?7181)S,(e2)S,

X (—e?72,)[04]0,,

(4.5
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where w;=a/\2 andw,=ial\2, andA;, &, ¢, ando; 1
(for i=1,2) are complex functions af, y;, and x,, which
are given by Eqs(B4), (B5), (B7), and(B8), respectively, in
Appendix B.

If x=x1=x2, thene,=—¢; ando,=04. In this case,
Eq. (4.5 can be calculated to find that

Tla),|0yp~e M1 22D, (1) Dy (72)Sar (21) 2 = HX\L HZ
X Sa(—e%711) Sy (—e1) Sy 1

X(ez“’lsl)|0>a,|0)b, , (4.6) FIG. 2. Three nonlinear media elements used to create an en-
tangled coherent state.

where y; is a complex function otr and y and is given by

Eq. (B11) (for i=1,2). could in fact be created by directing a single coherent beam
Thus, wheny,= x», the output state is a product state of into a peam splitter with a product coherent state output.
the squeezed coherent state at portand an orthogonally In this type of arrangement, the total operator of Eql)

squeezed coherent state at poft If we adopt assumptions 'S then reduced to the form

about strong coherent fields and weak nonlinearities then the A Aga Aga

treatment of squeezed coherent states from each port is valid. S12= eXp(—4ixa;2188). (5.2
It is interesting to note that foj,= y, the two coherent
states enter the two input ports of the interferometer and ex
again as two squeezed states. The output state is a prod

or two coherent state inputs, the output in the Fock state
&sis is

state as well. " “ ~
|, BY1’=8"(x,0)D1(a)D,()|0)0),
V. TWO-FIELD INTERACTION AND ENTANGLED 2 P cZ amﬂn Dy
COHERENT STATES = (a™IADR2 Y S ———e 4xmm),|n),,
m=0 n=0 \m!n!
In Sec. Il it was shown that the nonlinear Mach-Zehnder (5.3

interferometer with coherent state inputs in general results in
an output of entangled coherent states. Here, it is shown thgjhich is a generalization of expressi¢h1). This can also
entangled coherent states can also be created using only ga expressed in the coherent state basis as
ideal Kerr nonlinearity with two coherent state inputs, with-
out the need for an interferometer. o 2nd@ (27de _ _

The Kerr transformation for a single field input was given |a,8)fy" "= | 5| 50l 0,¢)|e”'a)le”'¥B),,
by Eqg.(2.4). When two input fields, 1 and 2, simultaneously 0 0 (5.4
enter into the Kerr cell, the Kerr transformation is given by ’

[43,44 with

Sio(x,7)=exd —ir(ala;+ala,) —iy(al%a?+al?aZ , o | | |
: 2 e 9,(0,¢)= > explidp+ieq—4ixpq). (5.5
+4aja;ala,)]. (5.1) p.q=0

i ) . The output staté5.4) is an entangled coherent state.
The terma;a,a,a; in the exponential represents the nonlin- ¢ /. is 4 rational number s, a finite entangled sum of
ear two-field mte(actlon wh|_ch occurs where the two _'”PUtcoherent states results,
fields superpose in the nonlinear cell. The effect of this is a
phase-shift dependent on the photon numbers of both fields, N N
which leaves the photon number of each field unchanged. |, B)%0= > > ¢, /e2™™Na),|e2™"Ng), (5.6)
This property enables the two-field nonlinear interaction to m=1n=1
be used as a quantum nondemolition measurement of photoq1 ) ) , )
number[43—45, where one field provides the signal and the\[;vosesri%l':z;;]cn;isinqr;eacrge;ﬁ::?ggy aﬁgr%%ngnb? s<oslvilzg
othzrsl;lrtralld is used for the measurement. the N? simultaneous equations n

ple form of the entangled coherent state can be ob*
tained by using three nonlinear cells, one for the interaction, N N
preceded by two to cancel the shearing effect on the state in E E c.. @2mkm/Ng2miIn/N _ o~ 4ixmn (5.7)
phase space without canceling the interaction term, as shown A1y M ' '
in Fig. 2. (The more complicated result, when only one non-
linear cell is used, is calculated in Appendix)The two  Solving these equations using an extension of the method of
input coherent states, injected into the pair of nonlinear cellsGantsog and Tand84] gives the result
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g NZiNT? that produced by a nonlinear Mach-Zehnder interferometer
Crn=— 2 2 exd — 2i(mkm/N+ 7rIn/N+ 2 xkl)]. since in the former case, both inputs must not be in the
N® k=0 T=0 vacuum state. If one of the input states is the vacuum state,

(5.8 the other coherent state input passes through unchanged.

The factor exp{-4iykl) in the above expression is the non-
linear interaction term. The presence of this factor means that
the general output is an entangled sum of coherent states,

APPENDIX A: APPROXIMATING THE
DISPLACEMENT-SHEAR UNITARY OPERATOR

unless Z/ is an integer. In the latter case, explixkl) Recall from Eq.(4.2) that
=1 and the output will be a product state.
For y=/4, the resulting output state is S(x;0)D(a@)=D(a)ex —ix(aT+a*)2(a+ a)?],

: (A1)

la, B)¥°=3[a)1(|B)ot|=B)2) +|—a)i(IB)o— 1= B)2)]
and that we have introduced the quantit
=3[(la)1t]=a))[B) ot (|a)1—]—a)1)|— B)al. a Y
(5.9) n=xa?, (A2)

This is an entangled state, comparable to those in 8. and we allowy—0 and|a|?>— such that» remains con-
and(3.9. stant.

A difference between the entangled coherent state in Eq. Expanding the exponential (A1) and keeping only those
(5.9 and the entangled coherent statg$) from the nonlin-  « terms of order 2 or greater produces the result
ear interferometer can be seen if one of the input states in Eq.
(5.9 is in the vacuum state. If we s@=0, then the output S(x;0)D(a)~D(a)exp —4i|7|?a’a—2ia* pa'
for the Kerr cell becomes R R R

_ —2ian*a—ina?—in*a’—iy|al?.
|@,0)15=|@)1|0),. (5.10 A3)

Unlike the entangled coherent states produced in the nonlin-
ear interferometer in Eq$3.6) and (3.9), for a single Kerr
cell an entangled coherent state only results when both inpu
are not in the vacuum state.

There are a number of advantanges to this alternative ap-

On the other hand, the ter(e)D («)R(p)DT(a)S'(¢)
gan be expanded so that

S(e)D(@)R(p)DT(a)S'(e)

proach to creating entangled coherent states. An interferom- R e
eter uses nonlinear cells, mirrors, and beam splitters. The = ex;{ia aTcos%s +aﬁsinr+s —a*)
approach here, using two coherent inputs into a nonlinear &
cell, produces entangled coherent states without the need for ~ L. e*
mirrors or beamsplitters. Thus, many technical difficulties of X| acoshe +aTmsm —a> . (A4)
interferometry are eliminated.
Therefore, Eq(A3) can be reexpressed as
VI. CONCLUSION
. " X0~ exfi x| a|*—io(sintf|e|+|a|?
The formalism that has been presented here has clarified @) Hixlal o lef+1al®)]

that for coherent state inputs, the general output of the non- xD(a)8(e)D(p)R(0)D(p)S'(&)|0),
linear Mach-Zehnder interferometer consists of entangled co-
herent states. For weak nonlinear evolution, a squeezed state (A5)

output results. At the other extreme of high values of the . .

nonlinear Kerr coefficienty=/2, the entangled coherent WhereD(p) is the displacement operat@®.1), S(e) is the
state 2 Y2(]0),|a)p+i| —ia),|0),) results for a single co- squeeze operato@.4), and R(o) is the rotation operator
herent state input into one pOI’t of the interferometer, and @(0-): equo—éTé), as |0ng as the fo”owing simultaneous
vacuum state entering the other port. For states in betweegyuations hold:

these two extremes, in general a type of entangled coherent

state will be produced. o cosh 2e|=—4|7|?, (AB)
It has also been demonstrated that entangled coherent

states can also be produced using only an ideal Kerr nonlin- e

earity without the need for an interferometer. For two coher- o— sinh 2&|=—-27*, (A7)

ent input statesa) and |g) into an ideal Kerr nonlinearity, el

the interaction between the two states produces the entangledﬂ d
coherent state output 2[|a)a(|B)p+|—B)p) +|— a)a
(IBY—|—B)p)]. While still an entangled state, this en-

tangled state produced by a nonlinear Kerr cell differs from a( —p* cosh|e

—p% sinh|e >=—2a7]*. (A8)
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Solving these equations gives the resultant expressions

* 2 * *
p= cosh|a|—Tmsmh|s|, (A9)

17* ( 1 )
e=—— tanh Y = |, A10
2Tl 217 (A0

and

4ln)2\/[1 ! (A11)

g=— n - .

4|9

Equation(A5) can be further simplified to obtain the re-
sult

|a)¥ O~ exp(—iA)D(a+8)S(e)S(—e?7¢)|0),
(A12)

whered and A are given by

6= coshe|p(1—€'7)—(el|e|)sinHe|p* (1—e~'7)
(A13)

and

A=x|a|*+ a(sintt|e| + | a|?) +]|p|?sinoc— Im{a*}.
(A14)

The expressioriAl2) is obtained by using the relation
R(0)D'(p)S'(e)=D"(e!"p)S'(e*"e)R(0) (A15)

as well as the property for the displacement operpt6t
D(a)D(B)=D(a+pexpilm{as*})  (A16)

and the commutation relation f@ andS [46] .

APPENDIX B: THE OUTPUT OF THE NONLINEAR
INTERFEROMETER WITH A WEAK NONLINEARITY

The output state for the weakly nonlinear Mach-Zehnder

interferometer was given in E¢4.5, which was
L a)a|0)p=e M1 ADBD (w1 + 81)Da(ws+ 55)Si(e1)

><él(_eiolsl)éz(Sz)éz(_92i0282)|0>1|0>2-

(B1)

In this equationw; and w, are given by
w1=al\2, (B2)
w,=ial\2, (B3)

andA; and ; are given by

Ai= x| wi|*+ oi(sintP|e ;| + | wi|®) +|pi] * sin oy — Im{w; 5]},
(B4)
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8= coste | pi(1—€'71) = (si/|ei|)sinns;|pf (1—e7'),

(B5)
with p; given by
20] 7, 207y &f
i= coshe;|— —— — sinh g, B6
Pi o ﬁ || o |8i| H || (B6)
ande; ando; are given by
17 ( 1 )
gi== — tanh | =— |, B7
T2l O 2 &7
4lp2\/1 ! (B8)
g;= — i - y
| l 4| 77i|2
with #; given by
7= Xi0f (B9)

fori=1,2.
If x=x1=x2, then Eq.(B1) can be calculated to obtain
the result given in Eq(4.6), which was

T)@)a|O)p=e A1 22D 1, (1) Dy (72)Sar(£1)
XS, (—€1e1)Sy (— 1)
X Sy (€7'7161)|0)4/|0)yy -

In Eq. (B10), v; is a complex function ofr and y which is

given by
cos%sl },

F1=[C05ﬂ81|(w1+ 5l)+(81/|81|)(w1+ 51)*

(B10)

€1 %
r——1T; (B11)
|81|

1
yi:ﬁ

for i=1,2, with

+i[coshe|(wa+ &) + (€718, /|e4])
X (wpt &) * T}/ (sintFe4]), (B12)
and
I'y={i[coshey|(w1+ 61) +(e1/|e1]) (w1 + 61)* ]
+cosHey|(w+ &)+ (€181 /]£4])
X (wp+ 8)* H(sintt|eq]). (B13)

In the above calculation to obtain E(B10), we have used

the commutation relationship f& andS[46], as well as the
relationship[47]

BanSa(8)Sy(— £)Da(@)Dp(B)

=5,(e)Sy(—&)Da([a+iBl2)Dy([ B+ial/\2)B,p.
(B14)
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APPENDIX C: PRODUCING ENTANGLED COHERENT NN
STATES WITH A SINGLE NONLINEAR CELL Sla)i|B)al—0= > D, Cmnl€2™™Na),|e27Ng), - (C4)
m=1n=1

In Sec. V it was demonstrated how entangled coherent
states could be produced with three nonlinear cells, WithOUAS was true in Eq(56)' N=sif r ands are re|ative|y prime
the need for an interferometer. One nonlinear cell is used foand N<s is possible otherwise. The coefficients,, are
the nonlinear interaction, and the other two are used to refound by solving the simultaneous equations,
verse shear the state in each output. However, a single non-
linear cell, without the other two reverse-shearing cells, canN N
be used by itself to create entangled coherent states, thougly, >, c,e'2™<MNei2mn/N= g=ixlk(k-1)+1(-1)+4I] ()
the nature of the output state has more complicated represefi=* "=1
tation.

In the Fock state basis, the output from a nonlinear celfor k.I=0,1,... N=1. This gives the result
with two coherent state inputs can be calculated using the

N—1 N—-1
nonlinear transformation in E@5.1). The result is . .
’ Con= 2 kgo ;o exp{ —i2a(km+In)/N—iyx[k(k—1)
3 — e (al?+|B)2
Sla)1l Bzl -0=¢ 2 11— 1)+4KIT}. (C8)

X E efiXm(mf1)efan(nfl)ef4ian
n=0

If 2x/7 is an integer, the output will be a product state,
otherwise the output will be an entanglement of coherent
states.

am g When y=/2, we expect the output to be a product state.

X—— —|m)4|n),. C1 Using Egs.(C4) and (C6) yields the product state

The output in Eq(C1) can also be expressed as a superpo- S(m/2,0)D1(@)D2(8)[0)1]0),
sition of product coherent states. This can be done to obtain

the result = (i) +il-ia))(iB)+il-18)).

- 2nd@ (2nd
S|a)1|,8)2|720=f0 EJ‘O %gx(ﬂ,qoﬂ (C7)

(=) (= 0) For the case of a single nonlinear cell, the simplest entangled

Xae'W" )|, (CD coherent state output is obtained fpr m/4:
where N . .
S(7/4,0)D1(@)D(8)[0)4]0),

— i 2_ 2_ 1 .
9(0:9)= 2, L= i(xp= 0P+ X"~ ¢a+ 4xpO)] = 2l |- (182~ ~Br=e ™),

(C3

_ei'n'/4_i +e—i77/4 i +|—i _
If x/m is a rational number @s, then|a,8)*7=° can be [=i6)2) (i)t =) ()]

expressed as a finite sum of product coherent states, = B),+e ™ B),+ e ™ —iB),)]. (C8)
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