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Decoherence in two Bose-Einstein condensates
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In this paper, decoherence in a system consisting of two Bose-Einstein condensates is investigated analyti-
cally. It is indicated that decoherence can be controlled by manipulating the interaction between the system and
environment. The influence of the decoherence on quantum coherent atomic turi@dlingetween two
condensates with arbitrary initial states is studied in detail. Analytical expressions of the population difference
(PD) and the AT current between two condensates are found. It is shown that the decoherence leads to the
decay of the PD and the suppression of the AT current.

PACS numbgs): 03.75.Fi, 42.50.Vk, 05.30.Jp, 03.65.Bz

[. INTRODUCTION To study the decoherence in Bose-Einstein condensates is
not only of theoretical interest but also of importance from a
Recently, much attention has been paid to experimentdtractical point of view, since decohering would always be
investigations[1—7] and theoretical studieg8—15] of sys- Present in any Bose-Einstein condensate experiments of
tems consisting of two and multiple Bose-Einstein condenirapped atoms.

sates, since such systems give rise to a fascinating possibility ©n the aspect of modeling dissipation and decoherence in

of observing a rich set of new macroscopic quantum phellaPPed Bose-Einstein condensates, some profz3-24

nomena 16—20 which do not exist in a single condensate. has b_een made. In particular, _Ang[l_ﬁi{l derived a master _
Among important macroscopic quantum effects is the quant_aq_uatlon for a trapped Bose-Einstein condensate by consid-
tum coherent atomic tunnelingAT) between two trapped ering a special model of a condensate confined in a deep but

. . narrow spherical square-well potential. In his model the res-
Bose-Einstein condensatgks—-18. Several authorfl9,20] P d P

ervoir of non-condensate atoms consists of a continuum of

showed that AT can support macroscopic quantum Selfynh6nd modes obtained by the scattering solutions of the

trapping(MQST) due to the nonlinearity of atom-atom inter- otantial well. Making use of Anglin's master equation, Ru-
actions in condensates. As is well known, no system can bgstekoski and Wall$24] numerically simulated dissipative
completely isolated from its environment. In fact, in currentdynamics of a Bose-Einstein condensate in a double-well
experiments on trapped Bose-Einstein condensates of diluigotential when the condensate is in the atomic coherent
alkali atomic gases, condensate atoms continuously interastates, and showed that interactions between condensate and
with noncondensate atomi@nvironmenkt Interactions be- noncondensate atoms make the MQST decay. For a system
tween a quantum system and an environment cause twepnsisting of two trapped weakly connected Bose-Einstein
types of irreversible effects: dissipation and decoherenceondensates, there is quantum coherent AT between two
[21,22. Mathematically, the dissipation and decoherence cagondensates. Questions that naturally arise are, what is the
be understood in the following way. Lélis and Hg be effect of deco_herence on the quantum coherent AT? Does
Hamiltonians of the system and environmépath), respec- decoherence increase or decrease the AT current between

el di. be the i ing Hamiltonian b h them? In this paper, we analytically study the decoherence
tively, andH, be the interacting Hamiltonian between the , ohlem in two Bose-Einstein condensates, and investigate

system and environment. Whéhl, ,Hg]#0, which implies  the influence of the decoherence on the quantum coherent
that the energy of the system is not conservative, the interAT between two trapped Bose-Einstein condensates in terms
action H, describes the dissipation. WheR, ,Hs]=0, the  of an exactly solvable Hamiltonian. We will present analytic
energy of the system is conservative, so the interadilpn €XPressions of the population differengeD) and the AT

describes the decoherence. The dissipation effect, which di§U"Tent between two Bose-Einstein condensates, and show

sipates the energy of the quantum system into the environt-r_‘at the decoherence leads to the PD decay and the suppres-

ment, is characterized by the relaxation time scale In ~ Sion of the AT current.
contrast, the decoherence effect, which can be regarded as a ' "iS paper is organized as follows. In Sec. II, we present
mechanism for enforcing classical behaviors in the macro@n @PProximate analytical solution of the system consisting

scopic realm, is much more insidious because the coheren@ WO Bose-Einstein condensates with a tunneling coupling
information leaks out into the environment in another timewnhout decoherence. In Sec. lll, we introduce a decoherence

scale 74, which is much shorter tham, , as the quantum model and apply it to the two-condensate system; we also

system evolves with time. Since macroscopic quantum phec_iiscuss the influence of decoherence on the atomic tunneling.

nomena in Bose condensates depend mainlyrpmather ~ Concluding remarks are provided in Sec IV.
than 7., the discussions in the present paper focus only on

S IIl. TWO BOSE-EINSTEIN CONDENSATES
the decoherence problem rather than the dissipation effect.

WITH TUNNELING COUPLING

Let us consider a system of two Bose-Einstein conden-
*Corresponding address. sates with weak nonlinear interatomic interactions and
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Josephson-like coupling. Such a condensate system, in prishown in Ref[19], the two-mode approximation should be
ciple, can be produced in a double trap with two condensatescceptable for the number of atofss< 2000 if the scattering
coupled by quantum tunneling and ground collisions, or in dength is typically taken aa=5 nm for a large trap of size
system with two different magnetic sublevels of an atom, inL=10 um.
which case the two species of condensates correspond to the We note that the two-mode approximate Hamiltonian has
two electronic states involved. In the formalism of the sec-the same form as that of a two-mode nonlinear optical direc-
ond quantization, the Hamiltonian of such a system can béonal coupler28]. It cannot be solved exactly, but a closed
written as analytical solution can be obtained under the rotating-wave
o R approximation suggested by Alodjamt al. [29]. The ap-
H=H;+H+Hint Hyos, (1)  proximate analytic solution is valid for weak interactions be-
tween atoms, but it sheds considerable light on the AT under

2 consideration.
fdx d" V Vil In order to obtain an approximate analytic solution of
Hamiltonian(5), we introduce a new pair of bosonic opera-
5 - - : tors
U 0 i() | (0, (i=1,2), 2)

" 1 . . ) R [
Ai=—=(a;+ap)e 9, A=—=(a;—ay)e?, (6)

AUz e H00B0B0T0, @) 2 2

which satisfy the usual bosonic commutation relation:

|:|Jos=AJ dX[ (%) (%) + gy (X) Prh(X) 1. @ A ,Af]z&ij. Then Hamiltonian(5) reduces to the follow-
ing form:

Herei=1 and 2, and}i(x) and zAﬁiT(x) are the atomic field . . o 1 . A
operators which annihilate and create atoms at position H=QN+g(AIA1—A£A2)+ ZQ[(BNZ_ZN)
respectively. They satisfy the commutation relation

[4(%), 9] (x')]=8;8(x—x"). H; andH, describe the evo- cin e o ata apn o
lution of each species in the absence of interspecies interac- —(AlAL1=AZAr) ]+§XN ~XAIALA AT H,
tions. H,,, describes interspecies collisionbl;.s is the @)
Josephson-like tunneling coupling term. Atoms are confined

in harmonic potent|als{i(x) (i=1 ar_ld 2. Inter_acnons. be- where = (wo ¥12), the total number operatcN alal
tween atoms are described by a nolinear self-interaction term ~tn e

U;=4r#%a’%m and a term that corresponds to the nonllnear+ aja,=AjA;+AJA; is a conservative constant, ahtl is
mteractlon between different specield ,— 4% 2ass a nonresonant term which oscillates at the frequengyind
wherea’® is thes-wave scattering length of speciieandaSC the sense of Alodjanet al’s proposal[29]. The account of

that between species 1 and 2. For S|mpI|C|ty, throughout thlthe fast oscillating terms results only in some additional os-
sc Rillations which play no essential role in the evolution of the
paper we seti=1, and assume thaai°=a3°=a°° and

V(%) = Va(X) measurable quantities specifying the macroscopic quantum
1 2\ %/ — henomena of the two-condensate system, so that the non-
It has been well known that Hamiltonidfh) can reduce to b Y

de Hamiltoniaf2 7! by th f U resonant terms are fully negligible. This is the rotating-wave
a two-mode Hamiltoniafi27] by the use of an approximation approximation(RWA) in the sense of Ref29]. After ne-

of the atomic field operatorsy;(x)=a;¢;(x), wherea;  glecting the nonresonant tefif, we obtain the approximate
= [dx ¢;(X);(x) are correspondent mode annihilation op- Hamiltonian

erators with real distribution functiong;(x) and [a; ,ai]

=1. Then Hamiltonian(1) can be reduced to the two-mode HA QN+g(A A1 ATA2)+ q[(3N2 2N)
Hamiltonian

N oS DAL o ~t252 at2n2 Ata L Ata SN 1 . MiA Aan
H=wq(aja;+asa,) +q(a;"aj+ay“as)+g(a;a+aya,) —(AIAl—A;Az)Z]ﬁLEXNZ—XAIAlAZAz- ®)

It is worthwhile noting that the dynamics of the non-
whereq, x, andg are coupling constants which characterizeRWA Hamiltonian(5) is often chaotic. A detailed investiga-
the strength of the interatomic interaction in each condention of chaotic behaviors in the two-condensate system is
sate, the interspecies interaction, and the Josephson-like cobeyond the scope of the present paper, and will be given
pling, respectively. elsewhere. Nevertheless, the RWA Hamilton{@his an in-

The valid conditions of the two-mode approximation weretegrable Hamiltonian whose dynamics is regular, and which
demonstrated in Ref19], which indicated that the two- does not exhibit chaos. Hence the terms neglected in the
mode approximation is valid for weak many-body interac-RWA lead to chaos when they are kept in the two-
tions, i.e., for a small number of condensate atoms. Axondensate system. This is very analogous to the case of the
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Jaynes-Cummings modélCM) [30], which describes the decoherence and not dissipation, we require that the linear

interaction of a two-level atom with a Slngle mode electro- Operators commutes with the Hamiltonian of the System
magnetic field in quantum optics. It was well known that theHA Then the interaction term in E{L2) commutes with the
RWA JCM is exactly solvable, but the non-RWA Jqg] Hamiltonian of the system. This implies that there is no en-

exhibits cr]:a_os.l AS. shov;/ntln ReB1], the” chaosl |sta dco_ns?r-] ergy transfer between the system and its environment. Thus
quence ot Inclusion o terms normally negiected In € qn65 describe the decoherence. The concrete form of the

RWA. function F({é}) which may be considered as an experimen
ObV'OUSIV’Ath‘? HamiltoniarH, is diagonal in the Fock tally determined quantity, may be different for different en-
space of the&;,A;) representation defined by vironments. Therefore, the decohering interaction in (&g)
cannot only describe decoherence caused by the effect of
1 AIAI™0,0) ) elastic collisions between condensate and noncondensate at-
Jnim B0 R oms for a Bose-Einstein condensate system, but also simu-
late decoherence caused by other decoherencing sources by
where n and m take non-negative integers. We have properly choosing the operator function of the system
H aln,m)=E(n,m)|n,m), with the eigenvalues F{S}H.
Hamiltonian(12) can be exactly solved by making use of
the unitary transformation

ozex;{m; Z—kk@—ak)} a3

[n,m)=

E(n,m)= (n+m)+g(n—m)

q
Q-3

1 2 aq 2
+Z(3q+2)()(n+m) - Z(n— m)“— ynm.
Corresponding to Hamiltonia(lL2), the total density opera-
(109 tor of the system plus reservoir can be expressed as
For simplicity, all calculations below shall be carried out

in the (A;,A,) representation with the basf{gn,m),n,m pr(t) pr(0)

=0,1,2 ...}, which is related to theg;,a,) representation X eitZkendPi() iFat (14)
with a set of basis{|n,m)=al"a}™ /n'm!|0,0),n,m
=0,1,2 ...} through the following relation: In the derivation of the above solution, we have upqe(i)
- " =01 (t)U where pi= e"HT‘p’(O)e'HTt with A}
In,m) 2 2 [n'mi(n—r+s)I(m—s+r)!] =UHTU , and p;(0)=Up(0)U 1, where p1(0) is the
=0$=0 20EmM2(n ) (m—s)! initial total density operator.

We assume that the system and reservoir are initially in
thermal equilibrium and uncorrelated, so ths{0)=p(0)
®pr, Wherep(0) is the initial density operator of the sys-
tem, andpg the density operator of the reservoir, which can

be written aSpR Hkpk(O) wherepk(O) is the density op-
We now consider the effect of the decoherence. We use arator of thekth harmonic oscillator in thermal equilibrium.
reservoir consisting of an infinite set of harmonic oscillatorsAfter taking a trace over the reservoir, from Et4) we can
to model the environment of condensate atoms in a trap, anobtain the reduced density operator of the system, denoted

we assume the total Hamiltonian to be by p(t)=trrpr(t); its matrix elements in the(;,A,) rep-
resentation are explicitly written as

X (2 =3m72in ¢ 45 m—s+r). (11

IIl. INFLUENCE OF DECOHERENCE ON ATOMIC
TUNNELING

Hr=HA+ D wbib+F{SHY, c (bi+b,)

T A 2k KEkEk { } 2k Kk k P(m’,n’)(m,n)(t):P(m’,n’)(m,n)(o)R(m’,n’)(m,n)(t)

- CE ><e—i[F({S(m',ﬂ')})—F({S(m,ﬂ)})]t' (15)
+F({S}H ; o7 (12)

whereF ({S(m,n)}) is an eigenvalue of the operator function

where the second term is the Hamiltonian of the reservo'rre(iesr}\ao|rmde?)r(l.nc?;%etnqsljgtneut;g}l\?en E)(/m'v“')(mv“)(t) IS a
The last term in Eq(12) is a renormalization terrf82]. The

third term in Eq.(12) represents the interaction between the
system and the reservior with a coupling consgntwhere
{é} is a set of linear operators of the system or their linear ><ef[F({S(m’,n')})fF({S(m,n)})lez(t),
combinations in the same picture as thatf, andF({S}) (16)

is an operator function dfS}. In order to show that what the
interaction between the system and environment describes vghere the two reservoir-dependent functions are given by

2 2
Rinn (i (1) = € [0S0 )= F2(Sma 1@y ()
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© 2 _
Ql<t>=f do I(w) S sin( 1), 17 P=—23 JT—KF D+ Dlpgs 1k 1(0)]
0 w r
2 X SIN(Orr —k+1), (24
(" cX(w) -nz(“’t) r(ﬁw) o
Qz(t)—ZJO do J(w)75| 7 cotl 7 . ( )

which means that the two-condensate system under consid-

Here we have taken the continuum limit of the reservoire(r;?]ttIon exhibits the MQST18,19] when decoherence is ab-

modes 2y— Jodw J(w), whereJ(w) is the spectral density ~"rpe coherent AT current between the two condensates,

of the reservoirc(w) is the corresponding continuum ex- ) N - .

pression forc,, and 8=1/kgT, with kg and T being the defined byl (1) =N.(t) = N(1), is given by

Boltzmann constant and the temperature, respectively.
It is well known that the decoherence corresponds to the B

decay of off-diagonal elements of the reduced density matrix! (1) =227 2 V(I + DVrglp(+ 15— 1r.5)(0)]

of a quantum system. For the case under consideration, the e

degree of decoherence is determined by the decaying factor X {(1—V;2Q1(1))cog 05— Vis(t—VEQ4(1)]

in Eq. (16). It is interesting to note that if we choose a proper

operator function F({S}) to make F({S(m’,n")}) v O5(1)SIM Gy — Vo (t—v Q4 (1) The ™ (Vr9)*Qa®),
=F({S(m,n)}) for (m’,n’)#(m,n), then we find that 5
p(m’,n’)(m,n)(t):P(m’,n’)(m,n)(o)r (19

From Eqs.(18), (20), and(25), we can immediately draw
l)ne important qualitative conclusion: sin@g(t) is positive

, ) definite, the existence of the decoherence is always to tend to
decoherence-free of the quantum system is realized. Therguppr(_:,SS the PD and the AT current between the two con-

fore, we conclude that one can control decoherence by Majansates. This answers the question “Does the decoherence
nipulating the interaction fUﬂCtiOﬁ({S}). increase or decrease the AT?.”

Equations(15) and (16) indicate that the interaction be- From Egs.(17), (18), (20), and(25), we see that all nec-
tween the system and its environment induces a phase shifssary information about the effects of the environment on
and a decaying factor in the reduced density operator of thghe PD and the AT current is contained in the spectral den-
system. We now consider the PD between the two condersity of the reservoir. To proceed further let us now specialize
sates in the presence of the decoherence, defined()y to the Ohmic cas¢33] with the spectral distributiod(w)

which indicates that the quantum system maintains its initia
guantum coherence, that is, the time evolution of

=N, (t) —N,(t) with N;=(a'a;). We find that =[npw/c*(w)]e”““c, where w, is the high-frequency cut-
off, and » is a positive characteristic parameter of the reser-
_ voir. With this choice, at low temperature the functions
p(t)= 22 2;4 VS(r+1)[p(r+15-1)(r,9(0)| Q,(t) andQ,(t) are given by the following expressions:
- —vo(t—v* ~(v;9?Qa(t)
><SIr{‘grs Vrs(t VrsQl(t))]e 2, (20) Ql(t)=77tan_1(wct), (26)
where we have introduced the symbols
i 1 t
P(r+1,sfl)(r,s)(0) = |P(r+1,&‘.71)(r,s)(0)|eI 0'51 (21 Qu(t) =17 Eln[l+ (a)ct)z]+ In %sinl-(%) } ] . (27

Vi=F({S(r+1s—LN=F{S(r,s)}). (22)

From Eq.(20) we see that if we do not take the influence lis
of the decoherence into account, i.e., €(t) =Q,(t) =0,
then we obtain an expression of the PD between two co

Recent experimen{d,7] on two condensates have estab-
hed a typical time scale at which the two condensates pre-
serve coherence. The value of the typical time scale is
"f=100 ms. In the meaningful domain of timagt>1 which

densates: requiresw.>10 Hz, which can be easily satisfied for a typi-
cal reservoir [34,32,33, at zero temperature we have
p(t) = —22 ES) VS(r+1)|pgr+15-1)(r.9(0)| O4() = 7/ (w.t?), andQ,(t) = 7 In(wg): then we find

X SN fs—Viat), (23)

p<t>=—22 g VS(r+1)|pr+15-1)¢r.(0)]

which implies that the time evolution of the PD is periodic.

In particular, if we takeF({Sl=H,, we find that when Loy 2
29/(q— x) =K (being an integer we have a nonzero time- XS rs = Vrs(t=VsQu(t)](@ct) '
average value of the PD: (28
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B current becomes more complicated than that of the PD due to
|(t)=22 z VS(r+ DVl p(r+ 15-1)(r,9(0)| the factor (v,i/w)t~2 before the cosine function in Eq.
(3D).
>< {
We have presented a decoherence model which is exactly
1 _ n 2 solvable, and applied it to study decoherence in two Bose-
Fvist s Brs—vrs(t—vrSQl(t))]} (o) =7, Einstein condensates. We have indicated that one can control
decoherence by manipulating the interaction between a quan-

(29 tum system and environment. We have investigated the in-

which indicate that the PD and the AT current decay accordfluence of decoherence on guantum coherent AT between

ina to the * law.” wh h ted that the d two trapped Bose-Einstein condensates with arbitrary initial
Ing 1o the “power faw, - where we have noted that the de- giatag "and shown that the decoherence suppresses the PD
caying factors cannot be taken outside the summation on thgnd the AT current between two condensates. We have ob-

N
MWrs _ _
1-—=t 2)cos{ Ors— Vrs(t—Vv,sQ1(1)] IV. CONCLUDING REMARKS

c

right-hand sides of Eq$28) and(29) [34]. tained analytical expressions for the PD and the AT current,
At finite temperature, we hav@(t)= 7/(wt?), and  and found that for the reservoir-spectral density of the Ohmic
Q,(t)=7y[In(Bw/27) + (mt/B)], so that case the PD and the AT current decay due to the power law
at zero temperature; at finite temperature, the PD decays due
p(t) = _22 2 \/W|p(r+l,sfl)(r,s)(0)| to thg exponential Iaw,. while the decay of the AT current
r s contains both exponential-law and power-law components. It

o is worthwhile to note that our results are obtained for arbi-
. _ N Bwg| ™ "Vrs) trary initial states of the two condensates, and our entire
XSin frs = Vis(t=VsQu()]| 5 — analysis is carried out without invoking the assumption of
Bose-Einstein-broken symmetry which has recently been
N(Vee)?m shown to be unnecessary for a Bose-Einstein condensate of
Xexpg — 5 t trapped atom$35]. Also, it should be pointed out that these
results are obtained under the RWA in the sense of Alodjanic
et al's proposal, and they are valid for interatomic weak
|(t)=22 ES VS(r + 1)Vl p(r+15-1)(r,9)(0) | nonlinear interactions in two condensates. The RWA essen-
tially changes the two-condensate system into an integrable

; (30

W B . system; hence it suppresses the chaotic behaviors of the two-
x| 1=t 21 cod 05—V (t—Vv,5Qa(1))] condensate system.
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