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Decoherence in two Bose-Einstein condensates
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In this paper, decoherence in a system consisting of two Bose-Einstein condensates is investigated analyti-
cally. It is indicated that decoherence can be controlled by manipulating the interaction between the system and
environment. The influence of the decoherence on quantum coherent atomic tunneling~AT! between two
condensates with arbitrary initial states is studied in detail. Analytical expressions of the population difference
~PD! and the AT current between two condensates are found. It is shown that the decoherence leads to the
decay of the PD and the suppression of the AT current.

PACS number~s!: 03.75.Fi, 42.50.Vk, 05.30.Jp, 03.65.Bz
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I. INTRODUCTION

Recently, much attention has been paid to experime
investigations@1–7# and theoretical studies@8–15# of sys-
tems consisting of two and multiple Bose-Einstein cond
sates, since such systems give rise to a fascinating possi
of observing a rich set of new macroscopic quantum p
nomena@16–20# which do not exist in a single condensat
Among important macroscopic quantum effects is the qu
tum coherent atomic tunneling~AT! between two trapped
Bose-Einstein condensates@15–18#. Several authors@19,20#
showed that AT can support macroscopic quantum s
trapping~MQST! due to the nonlinearity of atom-atom inte
actions in condensates. As is well known, no system can
completely isolated from its environment. In fact, in curre
experiments on trapped Bose-Einstein condensates of d
alkali atomic gases, condensate atoms continuously inte
with noncondensate atoms~environment!. Interactions be-
tween a quantum system and an environment cause
types of irreversible effects: dissipation and decohere
@21,22#. Mathematically, the dissipation and decoherence
be understood in the following way. LetĤS and ĤB be
Hamiltonians of the system and environment~bath!, respec-
tively, and ĤI be the interacting Hamiltonian between th
system and environment. When@ĤI ,ĤS#Þ0, which implies
that the energy of the system is not conservative, the in
action ĤI describes the dissipation. When@ĤI ,ĤS#50, the
energy of the system is conservative, so the interactionĤI
describes the decoherence. The dissipation effect, which
sipates the energy of the quantum system into the envi
ment, is characterized by the relaxation time scalet r . In
contrast, the decoherence effect, which can be regarded
mechanism for enforcing classical behaviors in the mac
scopic realm, is much more insidious because the coher
information leaks out into the environment in another tim
scaletd , which is much shorter thant r , as the quantum
system evolves with time. Since macroscopic quantum p
nomena in Bose condensates depend mainly ontd rather
than t r , the discussions in the present paper focus only
the decoherence problem rather than the dissipation ef
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To study the decoherence in Bose-Einstein condensate
not only of theoretical interest but also of importance from
practical point of view, since decohering would always
present in any Bose-Einstein condensate experiments
trapped atoms.

On the aspect of modeling dissipation and decoherenc
trapped Bose-Einstein condensates, some progress@9,23–26#
has been made. In particular, Anglin@23# derived a master
equation for a trapped Bose-Einstein condensate by con
ering a special model of a condensate confined in a deep
narrow spherical square-well potential. In his model the r
ervoir of non-condensate atoms consists of a continuum
unbound modes obtained by the scattering solutions of
potential well. Making use of Anglin’s master equation, R
ostekoski and Walls@24# numerically simulated dissipative
dynamics of a Bose-Einstein condensate in a double-w
potential when the condensate is in the atomic cohe
states, and showed that interactions between condensat
noncondensate atoms make the MQST decay. For a sy
consisting of two trapped weakly connected Bose-Einst
condensates, there is quantum coherent AT between
condensates. Questions that naturally arise are, what is
effect of decoherence on the quantum coherent AT? D
decoherence increase or decrease the AT current betw
them? In this paper, we analytically study the decohere
problem in two Bose-Einstein condensates, and investig
the influence of the decoherence on the quantum cohe
AT between two trapped Bose-Einstein condensates in te
of an exactly solvable Hamiltonian. We will present analy
expressions of the population difference~PD! and the AT
current between two Bose-Einstein condensates, and s
that the decoherence leads to the PD decay and the sup
sion of the AT current.

This paper is organized as follows. In Sec. II, we pres
an approximate analytical solution of the system consist
of two Bose-Einstein condensates with a tunneling coupl
without decoherence. In Sec. III, we introduce a decohere
model and apply it to the two-condensate system; we a
discuss the influence of decoherence on the atomic tunne
Concluding remarks are provided in Sec IV.

II. TWO BOSE-EINSTEIN CONDENSATES
WITH TUNNELING COUPLING

Let us consider a system of two Bose-Einstein cond
sates with weak nonlinear interatomic interactions a
©1999 The American Physical Society08-1
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Josephson-like coupling. Such a condensate system, in
ciple, can be produced in a double trap with two condens
coupled by quantum tunneling and ground collisions, or i
system with two different magnetic sublevels of an atom,
which case the two species of condensates correspond t
two electronic states involved. In the formalism of the se
ond quantization, the Hamiltonian of such a system can
written as

Ĥ5Ĥ11Ĥ21Ĥ int1ĤJos, ~1!

Ĥ i5E dx ĉ i
†~x!F2

\2

2m
¹21Vi~x!

1Ui ĉ i
†~x!ĉ i~x!G ĉ i~x!, ~ i 51,2!, ~2!

Ĥ int5U12E dx ĉ1
†~x!ĉ2

†~x!ĉ1~x!ĉ2~x!, ~3!

ĤJos5LE dx@ĉ1
†~x!ĉ2~x!1ĉ1~x!ĉ2

†~x!#. ~4!

Here i 51 and 2, andĉ i(x) and ĉ i
†(x) are the atomic field

operators which annihilate and create atoms at positionx,
respectively. They satisfy the commutation relati

@ĉ i(x),ĉ j
†(x8)#5d i j d(x2x8). Ĥ1 and Ĥ2 describe the evo-

lution of each species in the absence of interspecies inte
tions. Ĥ int describes interspecies collisions.ĤJos is the
Josephson-like tunneling coupling term. Atoms are confin
in harmonic potentialsVi(x) ( i 51 and 2!. Interactions be-
tween atoms are described by a nolinear self-interaction t
Ui54p\2ai

sc/m and a term that corresponds to the nonline
interaction between different speciesU1254p\2a12

sc/m,
whereai

sc is thes-wave scattering length of speciesi anda12
sc

that between species 1 and 2. For simplicity, throughout
paper we set\51, and assume thata1

sc5a2
sc5asc and

V1(x)5V2(x).
It has been well known that Hamiltonian~1! can reduce to

a two-mode Hamiltonian@27# by the use of an approximatio
of the atomic field operators:ĉ i(x)5âif i(x), where âi

5*dx f i(x)ĉ i(x) are correspondent mode annihilation o
erators with real distribution functionsf i(x) and @ âi ,âi

†#
51. Then Hamiltonian~1! can be reduced to the two-mod
Hamiltonian

Ĥ5v0~ â1
†â11â2

†â2!1q~ â1
†2â1

21â2
†2â2

2!1g~ â1
†â21â2

†â1!

12xâ1
†â1â2

†â2 , ~5!

whereq, x, andg are coupling constants which characteri
the strength of the interatomic interaction in each cond
sate, the interspecies interaction, and the Josephson-like
pling, respectively.

The valid conditions of the two-mode approximation we
demonstrated in Ref.@19#, which indicated that the two
mode approximation is valid for weak many-body intera
tions, i.e., for a small number of condensate atoms.
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shown in Ref.@19#, the two-mode approximation should b
acceptable for the number of atomsN<2000 if the scattering
length is typically taken asa55 nm for a large trap of size
L510 mm.

We note that the two-mode approximate Hamiltonian h
the same form as that of a two-mode nonlinear optical dir
tional coupler@28#. It cannot be solved exactly, but a close
analytical solution can be obtained under the rotating-w
approximation suggested by Alodjancet al. @29#. The ap-
proximate analytic solution is valid for weak interactions b
tween atoms, but it sheds considerable light on the AT un
consideration.

In order to obtain an approximate analytic solution
Hamiltonian~5!, we introduce a new pair of bosonic oper
tors

Â15
1

A2
~ â11â2!e2 igt, Â25

i

A2
~ â12â2!eigt, ~6!

which satisfy the usual bosonic commutation relatio

@Âi ,Âj
†#5d i j . Then Hamiltonian~5! reduces to the follow-

ing form:

Ĥ5VN̂1g~Â1
†Â12Â2

†Â2!1
1

4
q@~3N̂222N̂!

2~Â1
†Â12Â2

†Â2!2#1
1

2
xN̂22xÂ1

†Â1Â2
†Â21Ĥ8,

~7!

where V5(v02x/2), the total number operatorN̂5â1
†â1

1â2
†â25Â1

†Â11Â2
†Â2 is a conservative constant, andĤ8 is

a nonresonant term which oscillates at the frequency 4g in
the sense of Alodjancet al.’s proposal@29#. The account of
the fast oscillating terms results only in some additional
cillations which play no essential role in the evolution of t
measurable quantities specifying the macroscopic quan
phenomena of the two-condensate system, so that the
resonant terms are fully negligible. This is the rotating-wa
approximation~RWA! in the sense of Ref.@29#. After ne-
glecting the nonresonant termH8, we obtain the approximate
Hamiltonian

ĤA5VN̂1g~Â1
†Â12Â2

†Â2!1
1

4
q@~3N̂222N̂!

2~Â1
†Â12Â2

†Â2!2#1
1

2
xN̂22xÂ1

†Â1Â2
†Â2 . ~8!

It is worthwhile noting that the dynamics of the non
RWA Hamiltonian~5! is often chaotic. A detailed investiga
tion of chaotic behaviors in the two-condensate system
beyond the scope of the present paper, and will be gi
elsewhere. Nevertheless, the RWA Hamiltonian~8! is an in-
tegrable Hamiltonian whose dynamics is regular, and wh
does not exhibit chaos. Hence the terms neglected in
RWA lead to chaos when they are kept in the tw
condensate system. This is very analogous to the case o
8-2
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DECOHERENCE IN TWO BOSE-EINSTEIN CONDENSATES PHYSICAL REVIEW A61 013608
Jaynes-Cummings model~JCM! @30#, which describes the
interaction of a two-level atom with a single-mode elect
magnetic field in quantum optics. It was well known that t
RWA JCM is exactly solvable, but the non-RWA JCM@31#
exhibits chaos. As shown in Ref.@31#, the chaos is a conse
quence of inclusion of terms normally neglected in t
RWA.

Obviously, the HamiltonianĤA is diagonal in the Fock
space of the (Â1 ,Â2) representation defined by

un,m)5
1

An!m!
Â1

†nÂ2
†mu0,0), ~9!

where n and m take non-negative integers. We ha
ĤAun,m)5E(n,m)un,m), with the eigenvalues

E~n,m!5S V2
q

2D ~n1m!1g~n2m!

1
1

4
~3q12x!~n1m!22

q

4
~n2m!22xnm.

~10!

For simplicity, all calculations below shall be carried o
in the (Â1 ,Â2) representation with the basis$un,m),n,m
50,1,2, . . . %, which is related to the (â1 ,â2) representation
with a set of basis $un,m&5â1

†nâ2
†m/An!m! u0,0&,n,m

50,1,2, . . . % through the following relation:

un,m&5(
r 50

n

(
s50

m
@n!m! ~n2r 1s!! ~m2s1r !! #1/2

2(n1m)/2~n2r !! ~m2s!!

3e2 i (2r 23m)p/2un2r 1s,m2s1r ). ~11!

III. INFLUENCE OF DECOHERENCE ON ATOMIC
TUNNELING

We now consider the effect of the decoherence. We u
reservoir consisting of an infinite set of harmonic oscillato
to model the environment of condensate atoms in a trap,
we assume the total Hamiltonian to be

ĤT5ĤA1(
k

vkb̂k
†b̂k1F~$Ŝ%!(

k
ck~ b̂k

†1b̂k!

1F~$Ŝ%!2(
k

ck
2

vk
2

, ~12!

where the second term is the Hamiltonian of the reserv
The last term in Eq.~12! is a renormalization term@32#. The
third term in Eq.~12! represents the interaction between t
system and the reservior with a coupling constantck , where

$Ŝ% is a set of linear operators of the system or their lin
combinations in the same picture as that ofĤA , andF($Ŝ%)
is an operator function of$Ŝ%. In order to show that what the
interaction between the system and environment describ
01360
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decoherence and not dissipation, we require that the lin
operatorŜ commutes with the Hamiltonian of the syste
ĤA . Then the interaction term in Eq.~12! commutes with the
Hamiltonian of the system. This implies that there is no e
ergy transfer between the system and its environment. T
it does describe the decoherence. The concrete form of
functionF($Ŝ%), which may be considered as an experime
tally determined quantity, may be different for different e
vironments. Therefore, the decohering interaction in Eq.~12!
cannot only describe decoherence caused by the effec
elastic collisions between condensate and noncondensa
oms for a Bose-Einstein condensate system, but also s
late decoherence caused by other decoherencing source
properly choosing the operator function of the syste
F($Ŝ%).

Hamiltonian~12! can be exactly solved by making use
the unitary transformation

Û5expF ĤA(
k

ck

vk
~ b̂k

†2b̂k!G . ~13!

Corresponding to Hamiltonian~12!, the total density opera
tor of the system plus reservoir can be expressed as

r̂T~ t !5e2 iĤ AtÛ21e2 i t (kvkb̂k
†b̂kÛ r̂T~0!Û21

3eit (kvkb̂k
†b̂kÛeiĤ At. ~14!

In the derivation of the above solution, we have usedr̂T(t)

5Û21r̂T8(t)Û, where r̂T85e2 iĤ T8 tr̂T8(0)eiĤ T8 t with ĤT8

5ÛĤTÛ21, and r̂T8(0)5Û r̂T(0)Û21, where r̂T(0) is the
initial total density operator.

We assume that the system and reservoir are initially
thermal equilibrium and uncorrelated, so thatr̂T(0)5 r̂(0)
^ r̂R , wherer̂(0) is the initial density operator of the sys
tem, andr̂R the density operator of the reservoir, which c
be written asr̂R5)kr̂k(0), where r̂k(0) is the density op-
erator of thekth harmonic oscillator in thermal equilibrium
After taking a trace over the reservoir, from Eq.~14! we can
obtain the reduced density operator of the system, den
by r̂(t)5tr Rr̂T(t); its matrix elements in the (Â1 ,Â2) rep-
resentation are explicitly written as

r (m8,n8)(m,n)~ t !5r (m8,n8)(m,n)~0!R(m8,n8)(m,n)~ t !

3e2 i [F„$S(m8,n8)%…2F„$S(m,n)%…] t, ~15!

whereF„$S(m,n)%… is an eigenvalue of the operator functio
F($Ŝ%) in an eigenstate ofĤA . R(m8,n8)(m,n)(t) is a
reservoir-dependent quantity given by

R(m8,n8)(m,n)~ t !5e2 i [F2
„$S(m8,n8)%…2F2

„$S(m,n)%…]Q1(t)

3e2[F„$S(m8,n8)%…2F„$S(m,n)%…] 2Q2(t),

~16!

where the two reservoir-dependent functions are given b
8-3
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Q1~ t !5E
0

`

dv J~v!
c2~v!

v2
sin~vt !, ~17!

Q2~ t !52E
0

`

dv J~v!
c2~v!

v2
sin2S vt

2 D cothS bv

2 D . ~18!

Here we have taken the continuum limit of the reserv
modes,(k→*0

`dv J(v), whereJ(v) is the spectral density
of the reservoir,c(v) is the corresponding continuum ex
pression forck , and b51/kBT, with kB and T being the
Boltzmann constant and the temperature, respectively.

It is well known that the decoherence corresponds to
decay of off-diagonal elements of the reduced density ma
of a quantum system. For the case under consideration
degree of decoherence is determined by the decaying fa
in Eq. ~16!. It is interesting to note that if we choose a prop
operator function F($Ŝ%) to make F„$S(m8,n8)%…
5F„$S(m,n)%… for (m8,n8)Þ(m,n), then we find that

r (m8,n8)(m,n)~ t !5r (m8,n8)(m,n)~0!, ~19!

which indicates that the quantum system maintains its in
quantum coherence, that is, the time evolution
decoherence-free of the quantum system is realized. Th
fore, we conclude that one can control decoherence by
nipulating the interaction functionF($Ŝ%).

Equations~15! and ~16! indicate that the interaction be
tween the system and its environment induces a phase
and a decaying factor in the reduced density operator of
system. We now consider the PD between the two cond
sates in the presence of the decoherence, defined byp(t)
[N1(t)2N2(t) with Ni5^âi

†âi&. We find that

p~ t !522(
r

(
s

As~r 11!ur (r 11,s21)(r ,s)~0!u

3sin@u rs2v rs
2
„t2v rs

1Q1~ t !…#e2(vrs
2)2Q2(t), ~20!

where we have introduced the symbols

r (r 11,s21)(r ,s)~0!5ur (r 11,s21)(r ,s)~0!ueiurs, ~21!

v rs
65F„$S~r 11,s21!%…6F„$S~r ,s!%…. ~22!

From Eq.~20! we see that if we do not take the influen
of the decoherence into account, i.e., setQ1(t)5Q2(t)50,
then we obtain an expression of the PD between two c
densates:

p~ t !522(
r

(
s

As~r 11!ur (r 11,s21)(r ,s)~0!u

3sin~u rs2v rs
2t !, ~23!

which implies that the time evolution of the PD is period
In particular, if we takeF($Ŝ%5ĤA , we find that when
2g/(q2x)5K ~being an integer!, we have a nonzero time
average value of the PD:
01360
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r

A~r 2K11!~r 11!ur (r 11,r 2K)(r ,r 2K11)~0!u

3sin~u rr 2K11!, ~24!

which means that the two-condensate system under con
eration exhibits the MQST@18,19# when decoherence is ab
sent.

The coherent AT current between the two condensa
defined byI (t)[Ṅ1(t)2Ṅ2(t), is given by

I ~ t !52(
r

(
s

As~r 11!v rs
2ur (r 11,s21)(r ,s)~0!u

3$„12v rs
1Q̇1~ t !…cos@u rs2v rs

2
„t2v rs

1Q1~ t !…#

1v rs
2Q̇2~ t !sin@u rs2v rs

2
„t2v rs

1Q1~ t !…#%e2(vrs
2)2Q2(t).

~25!

From Eqs.~18!, ~20!, and~25!, we can immediately draw
one important qualitative conclusion: sinceQ2(t) is positive
definite, the existence of the decoherence is always to ten
suppress the PD and the AT current between the two c
densates. This answers the question ‘‘Does the decoher
increase or decrease the AT?.’’

From Eqs.~17!, ~18!, ~20!, and~25!, we see that all nec-
essary information about the effects of the environment
the PD and the AT current is contained in the spectral d
sity of the reservoir. To proceed further let us now special
to the Ohmic case@33# with the spectral distributionJ(v)
5@hv/c2(v)#e2v/vc, wherevc is the high-frequency cut-
off, andh is a positive characteristic parameter of the res
voir. With this choice, at low temperature the functio
Q1(t) andQ2(t) are given by the following expressions:

Q1~ t !5h tan21~vct !, ~26!

Q2~ t !5hH 1

2
ln@11~vct !

2#1 lnF b

pt
sinhS pt

b D G J . ~27!

Recent experiments@1,7# on two condensates have esta
lished a typical time scale at which the two condensates
serve coherence. The value of the typical time scale
t8100 ms. In the meaningful domain of timevct@1 which
requiresvc@10 Hz, which can be easily satisfied for a typ
cal reservoir @34,32,33#, at zero temperature we hav
Q̇1(t)8h/(vct

2), andQ2(t)8h ln(vct); then we find

p~ t !522(
r

(
s

As~r 11!ur (r 11,s21)(r ,s)~0!u

3sin@u rs2v rs
2
„t2v rs

1Q1~ t !…#~vct !
2h(vrs

2)2
,

~28!
8-4
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I ~ t !52(
r

(
s

As~r 11!v rs
2ur (r 11,s21)(r ,s)~0!u

3H S 12
hv rs

1

vc
t22D cos@u rs2v rs

2
„t2v rs

1Q1~ t !…#

1hv rs
2t21 sin@u rs2v rs

2
„t2v rs

1Q1~ t !…#J ~vct !
2h(vrs

2)2
,

~29!

which indicate that the PD and the AT current decay acco
ing to the ‘‘power law,’’ where we have noted that the d
caying factors cannot be taken outside the summation on
right-hand sides of Eqs.~28! and ~29! @34#.

At finite temperature, we haveQ̇1(t)8h/(vct
2), and

Q2(t)8h@ ln(bvc/2p)1(pt/b)#, so that

p~ t !522(
r

(
s

As~r 11!ur (r 11,s21)(r ,s)~0!u

3sin@u rs2v rs
2
„t2v rs

1Q1~ t !…#S bvc

2p D 2h(vrs
2)2

3expF2
h~v rs

2!2p

b
tG , ~30!

I ~ t !52(
r

(
s

As~r 11!v rs
2ur (r 11,s21)(r ,s)~0!u

3H S 12
hv rs

1

vc
t22D cos@u rs2v rs

2
„t2v rs

1Q1~ t !…#

1
hpv rs

2

b
sin@u rs2v rs

2
„t2v rs

1Q1~ t !…#J
3S bvc

2p D 2h(vrs
2)2

expF2
h~v rs

2!2p

b
tG , ~31!

which indicate that at finite temperature the PD decays
cording to the ‘‘exponential law,’’ and the decay of the A
ll,

ll

.P

e

.S
n

-

01360
-

he

c-

current becomes more complicated than that of the PD du
the factor (hv rs

1/vc)t
22 before the cosine function in Eq

~31!.

IV. CONCLUDING REMARKS

We have presented a decoherence model which is exa
solvable, and applied it to study decoherence in two Bo
Einstein condensates. We have indicated that one can co
decoherence by manipulating the interaction between a q
tum system and environment. We have investigated the
fluence of decoherence on quantum coherent AT betw
two trapped Bose-Einstein condensates with arbitrary ini
states, and shown that the decoherence suppresses th
and the AT current between two condensates. We have
tained analytical expressions for the PD and the AT curre
and found that for the reservoir-spectral density of the Ohm
case the PD and the AT current decay due to the power
at zero temperature; at finite temperature, the PD decays
to the exponential law, while the decay of the AT curre
contains both exponential-law and power-law components
is worthwhile to note that our results are obtained for ar
trary initial states of the two condensates, and our en
analysis is carried out without invoking the assumption
Bose-Einstein-broken symmetry which has recently be
shown to be unnecessary for a Bose-Einstein condensa
trapped atoms@35#. Also, it should be pointed out that thes
results are obtained under the RWA in the sense of Alodja
et al.’s proposal, and they are valid for interatomic we
nonlinear interactions in two condensates. The RWA ess
tially changes the two-condensate system into an integr
system; hence it suppresses the chaotic behaviors of the
condensate system.

ACKNOWLEDGMENTS

L.M.K. would like to acknowledge the Abdus Salam In
ternational Center for Theoretical Physics, Trieste, Ita
where part of this work was done for its hospitality. Th
work was supported in part by the climbing project of Chin
NSF of China, NSF of Hunan Province, special project
NSF of China via the Institute of Theoretical Physics, Ac
demia Sinica.
ev.

r,

.

nd

.V.

A

@1# D.S. Hall, M.R. Matthews, C.E. Wieman, and E.A. Corne
Phys. Rev. Lett.81, 1543~1998!; M.R. Matthews, B.P. Ander-
son, P.C. Haljan, D.S. Hall, C.E. Wieman, and E.A. Corne
preprint, cond-mat/9908209.

@2# H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger, S. Inouye, A
Chikkatur, and W. Kettler, Phys. Rev. Lett.82, 2228 ~1998!;
D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, S. Inouy
J. Stenger, and W. Ketteler,ibid. 83, 661 ~1999!.

@3# L. Deng, E.W. Hagley, J. Wen, M. Trippenbach, Y. Band, P
Julienne, J.E. Simsarian, K. Helmerson, S.L. Rolston, a
W.D. Phillips, Nature~London! 398, 218 ~1999!.

@4# B.P. Anderson and M.A. Kasevich, Science282, 21686
~1998!.

@5# D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. In
,

.

,

.
d

ouye, H.-J. Miesner, J. Stenger, and W. Kettler, Phys. R
Lett. 80, 2027 ~1998!; M.-O. Mewes, M.R. Andrews, D.M.
Kurn, D.S. Durfee, C.G. Townsend, and W. Ketteler,ibid. 78,
582 ~1997!; M.R. Andrews, C.G. Townsend, H.-J. Miesne
D.S. Duefee, D.M. Kurn, and W. Ketterle, Science275, 637
~1997!.

@6# C.J. Myatt, E.A. Burt, R.W. Ghrist, E.A. Cornell, and C.E
Wieman, Phys. Rev. Lett.78, 586 ~1997!.

@7# D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, a
E.A. Cornell, Phys. Rev. Lett.81, 1539~1998!.

@8# A. Sinatra, P.O. Fedichev, Y. Castin, J. Dalibard, and G
Shlyapnikov, Phys. Rev. Lett.82, 251 ~1999!.

@9# E. Timmermans, Phys. Rev. Lett.81, 5718~1998!.
@10# C.K. Law, H. Pu, N.P. Bigelow, and J.H. Eberly, Phys. Rev.
8-5



.
,

d

e
n.

v
-

e

n,

s.

J.

v.

A.

P.

KUANG, TONG, OUYANG, AND ZENG PHYSICAL REVIEW A61 013608
58, 531 ~1998!; C.K. Law, H. Pu, and N.P. Bigelow, Phys
Rev. Lett. 81, 5257 ~1998!; E.V. Goldstein and P. Meystre
Phys. Rev. A59, 1509 ~1999!; M. Trippenbach, Y.B. Band,
and P.S. Julienne, Opt. Express3, 530 ~1998!.

@11# J. Ruostekoski and D.F. Walls, Phys. Rev. A59, R2571
~1999!.

@12# P. Villain and M. Lewenstein, Phys. Rev. A59, 2250~1999!.
@13# J.A. Dunningham and K. Burnett, Phys. Rev. Lett.82, 3729

~1999!.
@14# P. Horak and S.M. Barnett, preprint, quant-ph/9903024.
@15# J. Williams, R. Walser, J. Cooper, E. Cornell, and M. Hollan

Phys. Rev. A59, R31 ~1999!.
@16# R.J. Ballagh, K. Burnett, and T.F. Scott, Phys. Rev. Lett.78,

1607 ~1997!; J. Javanainen and S.M. Yoo,ibid. 76, 161
~1996!; J. Javanainen and M. Wilkens,ibid. 78, 4675~1997!.

@17# J. Javanainen, Phys. Rev. Lett.57, 3164~1986!; S. Grassmann
and M. Holthaus, Z. Naturforsch. A: Phys. Sci.50, 323~1995!;
I. Zapata, F. Sols, and A.J. Leggett, Phys. Rev. A57, R28
~1998!.

@18# A. Smerzi, S. Giovanazzi, and S.R. Shenoy, Phys. Rev. L
79, 4950~1997!; Le-Man Kuang and Zhao-Yang Zeng, Chi
Phys. Lett.15, 703 ~1998!.

@19# G.J. Milburn and J. Corney, Phys. Rev. A55, 4318 ~1997!;
M.J. Steel and D.F. Walls,ibid. 57, 3805~1998!; E.M. Wright,
T. Wong, M.J. Collett, S.M. Tan, and D.F. Walls,ibid. 56, 591
~1997!.

@20# C.K. Law, H. Pu, N. P. Bigelow, and J. H. Eberly, Phys. Re
Lett. 79, 3105 ~1997!; Th. Busch, J.I. Cirac, V.M. Perez
Garcia, and P. Zoller, Phys. Rev. A56, 2978~1997!; H. Pu and
N.P. Bigelow, Phys. Rev. Lett.80, 1130 ~1998!; 80, 1134
~1998!; R. Graham and D. Walls, Phys. Rev. A57, 484~1998!;
B.D. Esry and C.H. Greene,ibid. 57, 1265~1998!; B.D. Esry,
C.H. Greene, J.P. Burke Jr., and J.L. Bohn, Phys. Rev. L
78, 3594~1997!.
01360
,

tt.

.

tt.

@21# W.H. Zurek, Phys. Today44~10!, 36 ~1991!; I.L. Chuang, R.
Laflamme, P.W. Shor, and W.H. Zurek, Science270, 1633
~1991!.

@22# C.P. Sun, H. Zhan, and X.F. Liu, Phys. Rev. A58, 1810
~1998!; J. Shao, Mo-Lin Ge, and Hu Cheng, Phys. Rev. E53,
1243 ~1996!; Le-Man Kuang, Xin Chen, Guang-Hong Che
and Mo-Lin Ge, Phys. Rev. A56, 3139~1997!.

@23# J. Anglin, Phys. Rev. Lett.79, 6 ~1997!.
@24# J. Ruostekoski and D.F. Walls, Phys. Rev. A58, R50 ~1998!;

56, 2996~1997!.
@25# C.W. Gardiner and P. Zoller, Phys. Rev. A58, 536 ~1998!.
@26# R. Graham, Phys. Rev. Lett.81, 5262~1998!.
@27# J.I. Cirac, M. Lewenstein, K. Molmer, and P. Zoller, Phy

Rev. A 57, 1208 ~1998!; M. Steel and M.J. Collett,ibid. 57,
2920 ~1998!.

@28# N. Korolkova and J. Perina, Opt. Commun.136, 135 ~1996!.
@29# A.P. Alodjanc, S.M. Arakeljan, and A.S. Chirkin, Zh. E´ksp.

Teor. Fiz.108, 63 ~1995! @JETP81, 34 ~1995!#.
@30# E.T. Jaynes and F.W. Cummings, Proc. IEEE51, 89 ~1963!;

also see a topical review by B.W. Shore and P.L. Knight,
Mod. Opt.40, 137 ~1989!.

@31# P.W. Milonni, J.R. Ackerhalt, and H.W. Galbraith, Phys. Re
Lett. 50, 966 ~1983!; 51, 1108~E! ~1983!; R. Graham and M.
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