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Excitation-assisted inelastic processes in trapped Bose-Einstein condensates
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We find that inelastic collisional processes in Bose-Einstein condensates induce local variations of the
mean-field interparticle interaction, and are accompanied by the creation and annihilation of elementary exci-
tations. The physical picture is demonstrated for the case of three-body recombination in a trapped condensate.
For a high trap barrier the production of high-energy trapped single-particle excitations results in a strong
increase of the loss rate of atoms from the condensate.
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Since the discovery of Bose-Einstein condensation
trapped ultracold atomic gases@1#, inelastic collisional pro-
cesses in these systems have attracted a great deal of
tion. Three-body recombination and two-body spin rela
ation limit achievable densities of trapped clouds@2–7#, and
spin relaxation in atomic Cs even places severe limitati
on achieving the regime of quantum degeneracy@7#. Theo-
retical studies of three-body recombination and two-bo
spin relaxation in ultracold gases provide valuable inform
tion on the mechanisms and rates of these processes~see Ref.
@8# for a review, and Refs.@9,10# for the earlier work in
hydrogen!. These studies rely on a traditional approach
collisional physics in gases: The decay rates are found on
basis of the calculated probability of inelastic transition fo
two- or three-body collision in a vacuum.

In this paper we find that inelastic collisional processes
Bose-condensed gases induce local variations of the m
field interparticle interaction and can become ‘‘excitation
sisted.’’ We demonstrate this phenomenon for the case
three-body recombination. The particles produced in
course of recombination have a high kinetic energy and
mediately fly away from the point of recombination. Ther
fore, each recombination event leads to an instantaneou
cal change of the mean field, i.e., to a change of the fi
acting on the surrounding particles. In this respect the rec
bination leads to a ‘‘shaking’’ of the system: The time sca
on which the Hamiltonian changes is so short that the w
function of the system remains unchanged and, hence,
responds to a superposition of many eigenstates of a
Hamiltonian. For this reason the recombination event can
accompanied by the creation or annihilation of element
excitations.

From a general point of view, the concept of ‘‘shaking
~sudden perturbations! was formulated by Migdal and
Krainov and used for calculating the ionization of an atom
b decay~see, e.g., Ref.@11#!. Sudden perturbations in con
densed systems are accompanied by many-body colle
effects. Dilute Bose-Einstein condensates are unique
amples of gases, as the mean-field interparticle interac

*LKB is a ‘‘unité de recherche de l’Ecole Normale Supe´rieure et
de l’UniversitéPierre et Marie Curie, associe´e au CNRS.’’
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makes their behavior in many aspects similar to that o
solid. To some extent, the picture of inelastic processes
these gases resembles, for example, the absorption of
by impurity particles in solids, where the transfer of impu
ties to an excited state leads to a sudden local change o
polarization of the medium and, hence, to the creation
annihilation of phonons~see, e.g., Ref.@12#!.

A distinct feature of ‘‘shaking’’ in a gaseous condensa
concerns the back action of the shaking-created excitat
on the condensate. This effect can be strongly pronounce
a trapped condensate. For a high trap barrier, created h
energy single-particle excitations are still trapped, and c
lide with condensate particles, removing them from the c
densate. Every collision thus produces two energe
~trapped! atoms which again collide with the condensate, e
As a result, one has a cascade production of nonconde
atoms out of the condensate. Despite a small probability
creating high-energy excitations in the recombination p
cess, this mechanism can significantly increase the total
rate of Bose-condensed atoms.

We will consider the most important channel of thre
body recombination in a trapped Bose-condensed gas, th
the recombination involving three condensate particles. F
single recombination event, the local change of the interp
ticle interaction,dHi , can be obtained by considering th
center of massr i of the recombination-produced fast ato
and molecule as a force center. Just before the event ther
three atoms at the pointr i , and each particlej of the sample
interacts with this point via the potential 3U(r j2r i). After
the event this interaction is equal to zero, since the fast a
and molecule fly away from the area of recombination. W
will use a point approximation for the interaction potentia
U(r )5Ũd(r ), where Ũ54p\2a/m, with a being the
s-wave scattering length andm the atom mass. Then, assum
ing that the condensate densityn0 in the Bose-Einstein con
densates spatial region greatly exceeds the density of
condensed atoms, we obtain

dĤ i523E d3r jĈ
†~r j !U~r j2r i !Ĉ~r j !

523ŨĈ†~r i !Ĉ~r i !. ~1!
©1999 The American Physical Society05-1
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The field operator of atoms,Ĉ5C01Ĉ8, where C0

5n0
1/2 is the condensate wave function, andĈ8 is a noncon-

densed part of the operator. This part refers to quasipar
excitations, and we linearizedĤ i with respect toĈ8. Omit-
ting the term23n0Ũ, which is decoupled from the quas
particle excitations, we obtain

dĤ i523ŨC0~Ĉ8†~r i !1Ĉ8~r i !!. ~2!

The force center represents a sort of a ‘‘hole’’ in the c
ordinate space. It has a mass 3m and can undergo a transla
tional motion. Therefore, the recombination-induced~sud-
den! change of the HamiltonianĤ0 of the excitations can be
written as

dĤ5E dr iF̂
†~r i !$dĤ i2~\2/6m!D%F̂~r i !, ~3!

whereF̂(r ) is the field operator of the force center. The fir
term on the right-hand side of Eq.~3! is related to the inter-
particle interaction, and the second term to the motion of
force center.

We assume that the kinetic energy of fast particles p
duced in the recombination process greatly exceeds
other energy scale in the problem, and hence the creatio
annihilation of excitations does not influence the energy c
servation law for the recombination. Then, according to
general theory of sudden perturbations@11#, in each recom-
bination event the probability of transition of the excitatio
subsystem to a new statef, characterized by a different set o
quantum numbers for the excitations, is given bywi f
5u^ i u f &u2. The symbol̂ i u f & stands for the overlap integra
between the wave function of the initial statei, which is an
eigenstate of the HamiltonianĤ0, and the wave function o
the statef which is an eigenstate of the new Hamiltonia
Ĥ01dĤ. As ( fwi f 51, the creation and annihilation of ex
citations does not change the total recombination rate.

In Thomas-Fermi condensates, most important is the
ation of excitations with energies of the order of the chem
cal potentialm or larger ~see below!. These excitations are
essentially quasiclassical, and their de Broglie wavelengt
much smaller than the spatial size of the condensate. He
the probability of recombination accompanied by the c
ation and annihilation of the excitations can be found in
local-density approximation. In other words, as well as
recombination without production of excitations, this proce
occurs locally at a given pointr characterized by local value
of the chemical potentialm and condensate densityn0.
Hence one can use the Bogolyubov transformation for
spatially homogeneous case, and representC† and C in
terms of the creation and annihilation operatorsb̂k

† andb̂k of
excitations characterized by momentumk:

Ĉ8†~r i !1Ĉ8~r i !5
1

AV
(

k
S Ek

ek
D 1/2

~ b̂k
†1b̂2k!exp~2 ikr i !.

~4!
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HereEk5\2k2/2m is the energy of a free particle,ek5(Ek
2

12n0ŨEk)
1/2 is the Bogolyubov energy of an excitation

andV is the normalization volume. The field operator of th
force center can be represented in the formF̂(r )
5(1/AV)(qâqexp(iqr ), whereâq is the creation operator fo
the center. Then, using Eqs.~2! and ~4!, Eq. ~3! is trans-
formed to

dĤ52
1

AV
(
k,q

hk b̂k
†1b̂2k)âq2k

† âq1(
q

\2q2

6m
âq

†aq ,

~5!

where

hk53Ũn0
1/2~Ek /«k!

1/2. ~6!

The first term on the right-hand side of Eq.~5!, originat-
ing from the interparticle interaction, couples the motion
the force center with the excitation subsystem and is resp
sible for creating and annihilating excitations in the reco
bination process. Considering this term as a small pertu
tion, we see that a single recombination event can
accompanied by the creation and annihilation of one exc
tion. Initially the momentum of the force centerq50, and
after the creation of the excitation with momentumk ~anni-
hilation of the excitation with momentum2k) the center
acquires the momentum2k and the kinetic energyEk/3. In
a single recombination event, the probabilities of creat
and annihilating the excitation with momentumk are given
by

w~Nk→Nk11!5
1

V

uhku2~11Nk!

~«k1Ek/3!2

w~Nk→Nk21!5
1

V

uhku2Nk

~«k2Ek/3!2
,

whereNk5@exp(ek /T)21#21 are the equilibrium occupation
numbers for the excitations at a given temperatureT. Then,
for the rate constant of recombination accompanied by
creation of excitations, we obtain

aex5aE d3k

~2p!3
uhku2H 11Nk

~ek1Ek/3!2
2

Nk

~ek2Ek/3!2J ,

~7!

with a being the total~event! rate constant of recombination
The first term on the right-hand side of Eq.~7! corresponds
to spontaneous and stimulated creation of excitations,
the second term to their annihilation.

For T!m the annihilation and stimulated emission of e
citations can be omitted. One can putNk50, and Eq.~7!
yields

aex'26a~n0a3!1/2. ~8!

Even with a small value for the parameter (n0a3) the large
numerical factor in front of expression~8! may imply that
5-2
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the creation of excitations in the course of three-body reco
bination cannot be neglected@13#. At the highest densities
n0'331015 cm23 of the MIT sodium experiment@3# @Eq.
~8!# givesaex/a'0.2.

With increasing temperature, the role of annihilation
the excitations increases. However, our calculations from
~7! show that even atT;m the annihilation and stimulate
emission of excitations give a small correction to Eq.~8!.
Only at T.10m does the annihilation dominates over t
emission, andaex @Eq. ~7!# becomes negative.

The most dramatic is the influence of created excitati
on the loss rate of Bose-Einstein-condensed atoms, which
will discuss for temperaturesT&m @14#. For a high trap
barrier single-particle excitations with energiesek@m are
still trapped and collide with the condensate. In a spher
trap the fast atom penetrates the condensate once per h
the oscillation periodp/v @15#. A characteristic time which
a fast atom with velocityvk spends inside the condensate
;R/vk , whereR5(2m/mv2)1/2 is the Thomas-Fermi radiu
of the condensate. Hence the rate of elastic collisions of
fast atom with condensate atoms is;n0svk(vR/vk)
;n0scs , with s58pa2 being the elastic cross section, an
cs5(m/m)1/2 the sound velocity. In each elastic collision th
fast atom transfers on average a half of its energy to
collisional partner, and removes it from the condensate. O
then has to deal with two energetic atoms, and so on.
time dependence of the energy of the fast atoms is gove
by the equationė52(e/2)n0scs and, hence, is given by
e(t)5ek exp(2n0scst/2). This cascade process continues u
til the excitation energy becomes of the order of the chem
potentialm. Accordingly, the number of lost condensate
oms will be;ek /m, and the characteristic time of the ca
cade process,t'2(n0scs)

21ln(«k /m). At realistic densities
the timet is much smaller than the characteristic recom
nation timet r;(an0

2)21.
The behavior of the excitations produced in the casc

process depends on the ratioT/m. At T!m their damping
time strongly increases at energies well belowm ~the decay
rate is at least much smaller thanm(n0a3)1/2;n0scs @16#!
and is likely to exceed the recombination timet r . Therefore,
these excitations mostly remain undamped and no longe
fluence the number of atoms in the~partially destroyed! con-
densate.

Thus one has a nonequilibrium ‘‘boiling’’ Bose-Einstein
condensed sample: High-energy single-particle excitatio
created in the recombination process, initiate a signific
destruction of the condensate and the formation of a n
equilibrium noncondensed cloud. The corresponding l
rate of condensate atoms,n5*Ln0

3d3r , is determined by the
rate of recombination-induced production of excitations w
energiesek@m. As a single-particle excitation with energ
ek generatesek /m noncondensed atoms out of the conde
sate, the rate constantL is given by Eq.~7!, with Nk50 and
the integrand multiplied by;e/m,

L5aE d3k

~2p!3 U hk

ek1Ek/3
U2 ek

m
g, ~9!
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where the numerical coefficientg;1. A precise value ofg
depends on a detailed behavior of damping rates of the
citations and, hence, on the trapping geometry.

The integral in Eq.~9! is divergent at high energies, an
one should put an upper boundek5EB , whereEB is the trap
barrier. The inequalityEB@m justifies that Eq.~9! indeed
gives the loss rate due to the production of high-energy
citations («k@m). From Eq.~9! we obtain

L5a~n0a3!1/2
81

A2p
S EB

m D 1/2

g. ~10!

As m5n0mŨ, wheren0m is the maximum condensate de
sity, the rate constantL is independent of the number o
Bose-Einstein-condensed atoms.

The generated noncondensed cloud has energy;m per
particle, and occupies the volume which is of order t
Thomas-Fermi volume of the condensate. Similarly to
condensate, this cloud decays due to three-body recomb
tion and, in this respect, the quantityn describes extra losse
of ~condensate! atoms from the sample.

The direct loss rate of Bose-Einstein-condensed ato
due to three-body recombination isn05*3an0

3d3r , as three
atoms disappear immediately in each recombination ev
Then, using Eq.~10! and the Thomas-Fermi density profi
n0(r )5n0m(12r 2/R2), we express the total loss rate o
Bose-Einstein-condensed atoms,n t5n01*Ln0

3d3r , through
n0:

n t5n0F11
216

11A2p
~n0ma3!1/2S EB

m D 1/2

gG . ~11!

The situation is the same atT;m, if the cascade produc
tion of excitations with energies«;m makes the quasiparti
cle distribution strongly nonequilibrium and prevents t
damping of these excitations caused by their interaction w
each other and with the thermal cloud. The number of ex
tations produced in one cascade process is;EB /m, and the
number of thermal quasiparticles with«;m is Nm
;(m/\v)3. Thus, under the conditionEB.mNm one also
has a nonequilibrium ‘‘boiling’’ Bose-Einstein-condense
sample, and the loss rate of condensate atoms will be de
mined by Eq.~11!.

Our calculations assume thes-wave scattering limitkuau
!1 @17#, and hence the maximum trap barrier for which th
are valid isEB'\2/2ma2. In the case of87Rb, the triplet
scattering length isa55.8 nm, andEB575 mK. Assuming
g'1, this givesLt'3L0 and shows a qualitative signifi
cance of our mechanism: the loss rate of Bose-Einst
condensed atoms is essentially magnified by the creatio
high-energy excitations and their destructive influence on
condensate. To be more quantitative, one has to conside
kinetics of excitations produced in the sample by the initia
high-energy~trapped! atom.

In ongoing Bose-Einstein condensation~BEC! experi-
ments, a characteristic temperature of a Bose-Einst
condensed sample is in the range from 100 nK to 1mK and,
hence, the above estimated magnification of the loss rat
5-3
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the condensate atoms~factor 3 for EB'75 mK) practically
corresponds to switching off the evaporative cooling. W
evaporative cooling on, the ratioEB /m for temperatures
smaller thanm is in practice ranging from 2 to 5. Then, a
typical densitiesn0;1014 cm23, Eq. ~11! only gives a 10%
increase of the total loss rate of Bose-Einstein-conden
atoms compared toL0. To some extent this explains th
recent experiments@18#, where a strong increase of the thre
body losses in the condensate has been observed
switching off the evaporative cooling.

For T;m one can also think of the situation, where t
cascade production of excitations with energies of ordem
does not significantly destroy the equilibrium distribution
quasiparticles in the sample. This should be the case ifEB
!mNm . Then the damping of these excitations comes i
play, continuously decreasing their energy and partially
filling the condensate. This damping originates from~inelas-
tic! scattering of a thermal excitation on a given excitatio
which transfers them to the condensate particle and the t
mal excitation with higher energy@16,19#. A characteristic
damping rate is of order«(n0a3)1/2, and even for the lowes
excitations (e;\v) it can be larger than the rate of recom
bination.

Consequently, one can conclude that the energy of e
tations produced in the recombination process is thermal
in the gas. The Bose-Einstein-condensed sample will b
quasiequilibrium, with a continuously increasing tempe
ture. This provides extra losses of Bose-Einstein-conden
atoms. Due to refilling the condensate in the course of da
ing of the excitations, these losses will be smaller than
extra losses described by Eq.~10! in the case of a non
equilibrium ‘‘boiling’’ condensate.

The rate of energy transfer from the excitations, produ
in the recombination process, to the thermal cloud de
-
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mines the increase of the internal energyU of the gas. One
can write it asU̇5*Wn0

3d3r , where the quantityW is ob-
tained in the same way as Eq.~9!:

W5aE d3k

~2p!3 U hk

ek1Ek/3
U2

ek . ~12!

Relying on Eq.~12! and the known expressions forU and the
number of Bose-Einstein-condensed atomsN0 as functions
of T and the total number of particles~see Ref.@16#!, we
have calculated the extra losses of condensate at
u]N0 /]TuṪ, related to the increase of temperature. At init
densityn0;1014 cm23 they do not exceed 10%.

In conclusion, we have found that inelastic collision
processes in Bose-Einstein condensates can be accomp
by the creation of elementary excitations. It is worth me
tioning that this phenomenon is not related to BEC in and
itself. It originates from the presence of the mean-field int
particle interaction, and will also occur in a noncondens
ultracold gas, as soon as the parameterna3 is not extremely
small. We have revealed the influence of the production
high-energy excitations in the course of three-body recom
nation on the loss rate of atoms from a trapped condens
This effect is especially pronounced for a high trap barr
EB , and it would be valuable to perform a systematic expe
mental investigation of the loss rate of condensed atoms
function of EB .
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