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Vortex line and ring dynamics in trapped Bose-Einstein condensates
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Vortex dynamics in inhomogeneous Bose-Einstein condensates are studied numerically in two and three
dimensions. We simulate the precession of a single vortex around the center of a trapped condensate, and use
the Magnus force to estimate the precession frequency. Vortex ring dynamics in a spherical trap are also
simulated, and we discover that a ring undergoes oscillatory motion around a circle of maximum energy. The
position of this locus is calculated as a function of the number of condensed atoms. In the presence of
dissipation, the amplitude of the oscillation will increase, eventually resulting in self-annihilation of the ring.

PACS number~s!: 03.75.Fi, 05.30.Jp, 67.40.Vs
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I. INTRODUCTION

Among the most important phenomena associated w
Bose-Einstein condensation~BEC! is the quantization of vor-
ticity, which is intimately connected with the existence
persistent currents and superfluidity in quantum fluids. St
of quantized vortices has been confined mainly to liq
He II @1#, where detailed comparison to mean-field theory
complicated by strong interactions between atoms. Howe
such considerations are much less important for the rece
achieved BEC in atomic vapors@2–5#. In this case the con
densate can be accurately described by the Gross-Pitae
~GP! equation, an example of a nonlinear Schro¨dinger equa-
tion, whose properties are well known. This equation adm
vortex solutions, where a nonzero circulation is accompan
by a zero in the condensate density. The density varia
defines the vortex core, with a size of;1 mm ~cf. ;1 Å in
He II!. Thus, vortices may be directly observable by abso
tion imaging@2,6# or other detection schemes@7–10#. Apart
from their intrinsic interest, vortices play an important role
the breakdown of superflow in Bose fluids@1,11,12#.

Experimental progress@13# has recently culminated in th
observation of a vortex state in a two-component condens
where angular momentum is imparted during a control
excitation between the two states@14#. Other theoretical pro-
posals have also focused on rotating a single conden
@15,16# at a rate exceeding a critical angular velocity@17–
19#, creating a singly quantized vortex line along the axis
rotation@20,21#. Larger angular velocities might be expect
to produce vortices with higher quanta of circulation. Ho
ever, theoretical studies@22,23# suggest that such vortices a
unstable, leading to arrays of singly charged vortices@24,25#
similar to those found in HeII @1#.

A separate but complementary idea is to use a tigh
focused far-off resonant laser beam@26#, which creates vor-
tex pairs when dragged through the condensate. A re
experiment, demonstrating evidence of dissipation abov
critical velocity, may be linked to this mechanism@27#. Al-
ternatively, by stirring, angular momentum is transferred a
a single vortex may be drawn into the condensate@28#. Fi-
nally, a vortex ring may be formed by translating one co
densate through another@29#, or by three-dimensional~3D!
soliton decay@30,31#.
1050-2947/99/61~1!/013604~7!/$15.00 61 0136
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Experimentally, the Bose-condensed gas is usually c
fined in a magnetic trap, often modeled by a harmonic
tential. This profoundly alters the condensate properties
many ways@17,32#, the most apparent of which is its spati
inhomogeneity. This results in a variation of vortex ener
as a function of position, with a maximum at the center o
nonrotating trap. As a consequence, a single vortex prece
around the condensate center@8,33,34#. In addition, the vor-
tex is thermodynamically unstable, and dissipation at fin
temperatures leads to its expulsion from the cloud@35,36#.
The instability is also apparent in the excitation spectru
with the existence of a mode possessing negative en
with respect to the ground state@23,37,38#.

In this paper we study the motion of vortices in trapp
Bose condensates, by numerical solution of the GP equa
As discussed in Sec. II, this equation is valid in the limit
low temperatures, and describes the conservative motion
vortex. Section III presents measurements of the preces
frequency of a single vortex in two and three dimensio
and compares the results to analytical expressions. We u
Magnus force argument to estimate the precession freque
in two dimensions~2D!. In Sec. IV we study vortex rings
and find that they perform a cyclical motion. A stationa
state can be found which corresponds to a ring with ma
mum energy. This point of unstable equilibrium is equivale
to that of a single vortex in the center of a nonrotating co
densate. Finally, we summarize in Sec. V and briefly disc
finite-temperature effects.

II. THEORY

A. The Gross-Pitaevskii equation

In experiments on atomic vapors@2–4#, evaporative cool-
ing can be extended to very low effective temperatures, s
that the noncondensate fraction is very small. The dens
are sufficiently low that interactions can be represented b
pseudopotential of the formU0d(r2r8), where U0
54p\2a/m, and a is the s-wave scattering length. This
leads to the Gross-Pitaevskii~GP! equation@39,40# for the
condensate wave function,C(r,t), given by

i\
]C

]t
5S 2

\2

2m
¹21V1NU0uCu2DC, ~1!
©1999 The American Physical Society04-1
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whereN is the number of atoms, each of massm. Conse-
quently,NuCu2 is the condensate number density, which s
isfies the normalization condition

E uC~r,t !u2 d3r 51. ~2!

The harmonic trapping potential is denoted byV(r)
5m(vx

2x21vy
2y21vz

2z2)/2.
It is convenient to scale Eq.~1! in dimensionless units

We use harmonic-oscillator units~h.o.u.! @41#, where the
units of length, time, and energy are (\/2mvx)

1/2, vx
21 , and

\vx , respectively. We also consider a frame rotating ab
the z axis with angular velocityV, where the angular-
momentum operator is given byLz5 i (y]x2x]y). Retaining
the normalization condition~2!, Eq. ~1! becomes

i ] tC5~2¹21Ṽ1CuCu22VLz!C, ~3!

where Ṽ5 1
4 (x21hy21ez2) and the anisotropy paramete

are defined ash5vy
2/vx

2 and e5vz
2/vx

2 . The interaction
parameter is given byC5(NU0 /\vx)(2mvx /\)a/2, where
a is the number of dimensions. In 2D, where atoms
confined in thex-y plane,N represents the number of atom
per unit length alongz.

Equation~3! can be integrated by various numerical me
ods @42#. As in our previous work@26,29#, we utilize a fast
Fourier transform~FFT! technique. Stationary solutions o
Eq. ~3! can be represented byC(r,t)5C(r)e2 imt wherem is
the chemical potential. They are found by propagating a t
wave function~e.g., a Gaussian solution forC50) in imagi-
nary time, t→2 i t̃ . In contrast to real time, the resultin
evolution operator is nonunitary, so the wave function m
be renormalized after each time step. The ratio of nor
provides a convenient estimate for the chemical poten
m5(2Dt)21ln@^uC(t)u2&/^uC(t1Dt)u2&#. In imaginary time,
excitations are exponentially damped, and bothC and m
rapidly converge to a stationary solution, providing accur
initial conditions for time-dependent simulations.

The free energy per particleE is given by

E5E S u¹Cu21ṼuCu21
C

2
uCu42VC* LzC Dd3r , ~4!

where for a stationary solution it can be shown that

E5m2
C

2E uCu4 d3r . ~5!

Imaginary-time propagation minimizes the chemical pot
tial m.

B. The vortex state

Using the Madelung transformation@1#, the condensate
wave function can be represented in terms of its den
r(r,t)5uC(r,t)u2 and phaseS(r,t) by C5AreiS. The su-
perfluid velocity is given byvs5\(C* ¹C2C¹C* )/ imr
5(\/m)¹S. So, the circulation around an arbitrary clos
loop is
01360
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m R
C
¹S•dl5

nh

m
, ~6!

where the property of a single-valued wave function restr
n to an integer value. From Eq.~6!, “3vs5( i2pnid(r
2r0i), and the superfluid is irrotational everywhere exce
for vortices atr5r0i . We define a circulation vectork on the
vortex axis, which has magnitudeuku5k and direction
“3vs .

A stationary state exists for a single vortex line atr0
50. If, for simplicity, we assume a nonrotating isotrop
trap in thex-y plane, then this state can be represented
C(r ,f,z)5Ar(r ,z)einf. Substitution into Eq.~1! gives

]2f

] r̃ 2
1

1

r̃

] f

] r̃
1

]2f

] z̃ 2
2

n2f

r̃ 2
2

\2vx
2

4m
~ r̃ 21e z̃ 2! f 1 f 2 f 350,

~7!

where r̃ 5(2mm)1/2r /\, z̃5(2mm)1/2z/\, and f
5(NU0r/m)1/25(r/r0)1/2. Equation~7! yields the follow-
ing asymptotic forms:

r.r0S r

j D 2n2

, r !j, ~8!

r.r0F12S nj

r D 2

2S r

R'
D 2

2S z

Rz
D 2G , j!r ,R' , ~9!

and r50 for r>R' and uzu>Rz , where R'
2 52m/mvx

2

and Rz
252m/mvz

2 . The parameter j5\/(2mm)1/2

5(8pr0a)21/2 is the coherence length in the center of t
condensate@17#, and determines the size of the vortex co
Equation~9! is presented in@18,20,35# and is analogous to
the well-known Thomas-Fermi~TF! approximation for the
ground state, valid for largeNU0. In this limit, r0 corre-
sponds to the density in the center of the ground-state c
densate.

For the special casen51, Eqs.~8! and ~9! can be inter-
polated by a simple function, which generalized to a straig
off-axis vortex line atr0 is

r'r0S ur2r0u2

ur2r0u21j2D F12S r

R'
D 2

2S z

Rz
D 2G , ~10!

wherer50 when the right-hand side is negative. We co
pare Eq.~10! to the numerical solution of the GP equation
Fig. 1. The latter is found by imaginary time propagatio
imposing a phase variation of 2p around the vortex line a
each time step. Equation~10! provides a good estimate es
pecially in the high-N limit, in a similar way to the TF ap-
proximation to the ground state.

III. SINGLE VORTEX MOTION

A. Two dimensions

In this section we study the dynamics of a singly qua
tized (n51) vortex line in a nonrotating condensat
4-2



If

s
im

of
d
e

ng

eti-

-
ring

lar
x

-
v

y-

wo
en-

r
a

h

nd

T
cle:

f in-

the
nd

ith
r to
us
y

te.
ow
ting

a

ne
lin
im

e

sh

VORTEX LINE AND RING DYNAMICS IN TRAPPED . . . PHYSICAL REVIEW A61 013604
Imaginary-time propagation of the GP equation~3! is used to
provide an initial condition for the real-time simulation.
we consider a vortex at positionr0 relative to the axis of a
nonrotating trap, then the free energy of the system, Eq.~4!,
is found to attain a maximum whenr050 ~see Fig. 2!. So, a
vortex initially at the origin will remain stationary, but i
unstable to infinitesimal displacements. The GP equation
plies that the system is Hamiltonian, and therefore an
axis vortex will follow a path of constant energy correspon
ing to precession around the trap center. The presenc

FIG. 1. Cross section through a singly quantized vortex li
showing condensate density as a function of position. The solid
plots the exact 3D wave function as calculated from imaginary-t
propagation of Eq.~3!, for C54000, V50, and e5h51. The
dashed line represents the analytic approximation~10!, with r0

.2.44331023, j.0.3199,r 050, andR'5Rz.6.252. These pa-
rameters are calculated from the chemical potentialmTF

5(15Ce1/2/64p)2/5, given by the normalization condition of th
ground-state Thomas-Fermi wave function.

FIG. 2. EnergyE as a function ofn51 vortex displacement, in
a 2D condensate rotating with angular frequency,V (C51000,h
51). The top solid curve corresponds toV50, whereV increases
in steps of 0.05 as one moves towards the lowest curve. The da
line marks the energy of the condensate without a vortex.
01360
-
f-
-
of

dissipation will lead to drift towards lower energies, causi
the vortex to spiral out of the condensate@35,36#.

If the trap is rotated with angular velocityV, then the
energy of a central vortexErot decreases such thatErot5En
2nV @23#. The appearance of a vortex becomes energ
cally favorable whenErot,E0 ~whereE0 is the grand-state
energy! so that the critical angular velocity is simply

Vc5
En2E0

n\
. ~11!

In the TF limit @18,33,43#:

Vc5
5\2

8m
~vx

21vy
2!lnS R'

j D . ~12!

For uVu.Vc , an on-axis vortex attains global stability; how
ever, there remains an energy barrier for vortices ente
from the edge@25# ~see Fig. 2!.

Inspection of Fig. 2 also reveals that above an angu
velocity Vm , the vortex attains a local minimum, so a vorte
is metastable whenVm,uVu,Vc . In the TF limit, Vm
53Vc/5 @33#, while in the noninteracting limitVm→Vc
@44#. In both the weak- and strong-coupling limits,Vm.
2va , whereva is the frequency of the so-called ‘‘anoma
lous’’ mode obtained from the solution of the Bogoliubo
equations@33,37,38,44#. It is thought thatva corresponds to
the frequency of vortex precession, thus linking vortex d
namics and instability.

First, we consider the simplest case of a vortex in t
dimensions, which corresponds experimentally to a cond
sate confined in an axisymmetric cylindrical trap~wheree
→0,h51). For V50, simulations show that an off-cente
vortex accelerates from its initial condition, soon attaining
near-constant angular velocityv around the trap center, suc
that the instantaneous velocity isvL5vk̂3r. The angular
velocity v is plotted as a function of interaction strength a
initial position in Fig. 3. For smallC, v is averaged over a
few cycles ~e.g., three revolutions forC5200). However,
for higher C, numerical instabilities arising from the FF
method can restrict the simulations to less than a half-cy
the error bars reflect the resulting uncertainty.

The precession frequency decreases as a function o
creasing interaction strengthC. An intuitive semianalytical
argument for this behavior can be formulated in terms of
Magnus effect, familiar from classical hydrodynamics, a
in superfluids and superconductors@45,46#. When the back-
ground fluid flows past the circulating fluid connected w
the vortex, a pressure imbalance is created perpendicula
the direction of the background flow. The resulting Magn
force must balance the force due to the variation of energE
with position, i.e.,]E/]r 05mrk3vL , wherevL is the ve-
locity of the vortex line relative to the ambient condensa
Note that the Magnus force can also be produced by a fl
of the condensate around a stationary vortex, as in a rota
trap. So, one expects thatv.Vm .

We find E by evaluating the functional, Eq.~4!, with a
wave function grown in imaginary time withV50. Using
the Madelung transformation, the first term splits into

,
e
e

ed
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‘‘quantum pressure’’ and a ‘‘kinetic energy’’ term:u¹Cu2

5(¹Ar)21r(¹S)2. A numerical differentiation ofE with
respect tor 0 gives an estimate forv using the Magnus force
argument~plotted as triangles in Fig. 3!. However, these es
timates are sensitive to small numerical errors in the ene

To obtain an analytical estimate, we observe thatm is
approximately constant at smallr 0 and highC. This may
be shown by using the decompositionC(x,y)
5F(x,y)Q(x,y), where an off-set vortex core (F) is im-
printed on the TF ground state (Q), as implied by Eq.~10!.
Starting from the GP equation~1!, and noting that in the TF
limit Q is slowly varying, then it is simple to show that

2
\2

2m
¹2F1mTFuFu2F5mF, ~13!

wheremTF is the chemical potential ofQ. As the Laplacian
is spatially invariant, it follows thatm is independent of the
offset at smallr 0. This can also be justified numerically
though the approximation only becomes valid at highC. Us-
ing Eq. ~5! it follows that

]E

]r 0
'2

C

2

]

]r 0
F E r2 d2rG . ~14!

Substituting Eq.~10! for r then gives an estimate for th
precession frequency~to logarithmic accuracy!:

uvu'
\vx

2

m F lnS R'

j D2
5

4G . ~15!

FIG. 3. Vortex precession frequencyv in a 2D condensate a
r 050.5, as a function of interaction parameterC58pNa. Filled
circles show the results of numerical simulations. The triangles
dicate the Magnus force estimates, obtained from the gradient o
numerical values ofE0. The analytical Magnus force estimate, E
~15!, and Eq.~16! are plotted with dot-dashed and dashed lin
respectively. The TF vortex metastability frequency,3

5 DE, is plot-
ted as a solid line. Inset:v as a function of vortex positionr 0, for
C51000.
01360
y.

This result may be compared to the expression obtai
by Svidzinsky and Fetter@33#, using a time-dependent varia
tional analysis:

uvu5
3\vx

2

4m
lnS R'

j D , ~16!

again valid for smallr 0. These expressions are plotted t
gether with the numerical results in Fig. 3. In addition, w
plot Vm5 3

5 DE, whereDE is the energy difference betwee
the ground andn51 vortex states. Recall that one expec
that v.Vm in the TF limit. The numerical results lie be
tween the results of Eq.~16! and the metastability curve. Al
of the curves reproduce the correct functional dependenc
high C. Note that these expressions are only valid for sm
r 0; the vortex precesses faster as it nears the edge of
condensate, as shown in Fig. 3~inset!.

Compressibility effects become important when the v
tex is accelerating or when the velocity is an apprecia
fraction of the speed of the sound,cs5(rNU0 /m)1/2. In an
infinite compressible fluid, phonons may be emitted by
moving vortex, leading to a drift of the vortex to lower en
ergies @47#. However, in a finite condensate where exci
tions remain confined in the region of the vortex, no net d
is expected. At the beginning of the simulations, we obse
an increase in radius of precession, together with excita
of an elliptical center-of-mass mode at the trap frequency
addition, surface waves are created when the vortex is n
the condensate edge. However, as expected we do no
serve a sustained vortex drift~for T up to 110, corresponding
to approximately six full cycles forC5200). A drift to
lower energies would be expected where a thermal cl
damps the motion~i.e., at finite temperatures!. Nevertheless,
the vortex lifetime is expected to be long, especially for lar
numbers of atoms@36#.

B. Three dimensions

Vortex dynamics become more complex in 3D, as t
vortex line can deform along its length. In classical a
quantum fluids, this can result in the propagation of heli
waves along the line—so-called Kelvin modes@1,39#. In
simulations of 3D vortex motion, we have observed line d
formation and oscillations. However, the inhomogeneity
the condensate complicates matters, and the motion is d
cult to resolve into simple Kelvin waves characteristic of t
bulk condensate. The amplitude of the oscillations are ty
cally small, and as a consequence helical waves are likel
be difficult to detect experimentally. Moreover, it is wor
noting that the energy of the vortex increases as it length
Hence, in the presence of the dissipation the line will tend
straighten, effectively damping the Kelvin modes.

Figure 4 compares numerically measured values of
precessional frequency with the TF result of Svidzinsky a
Fetter Eq.~16! @33#. It can be seen that the frequency depe
dence is well described; however, the numerical results
significantly higher (;20%), but converge slowly to the
analytical expression towards highC. This disparity may be
due to effects resulting from the curvature of the line, whi

-
he

,
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will modify predictions that assume a rigid line motion. N
merical values of the TF metastability frequency,3

5 DE, are
also found to be lower than the observed precession freq
cies.

IV. VORTEX RING MOTION

The motion of a vortex ring in a trapped BEC may
understood in terms of a sum of two contributions to t
velocity of each element in the ring. First, the precession
to the inhomogeneity of the condensate, as discussed f
single vortex in Sec. III, and second, the velocity induced
the remainder of the ring,v in , which is directed along its
axis ~defined as thez axis!. For a spherical condensate, th
total velocity on each element is given by

v5v inẑ1vk̂3r, ~17!

where k̂ defines the direction of the circulation at the e
ment, andv is the precession frequency. In a homogene
Bose fluidv in5(\/2mRr)@ ln(8Rr /j)20.615# @48#, whereRr
is the ring radius. Consider a ring atz50,r 5Rr . If the ra-
dius is small, the induced velocity dominates and the r
moves in the1 ẑ direction, while ifRr is large the precessio
dominates and it travels backwards. In addition, the prec
sional term leads to ring expansion forz.0 and contraction
for z,0. Thus, the two terms produce an oscillatory moti
of the ring.

One can also understand the ring motion as a trajec
around an energy maximum, in analogy with the single l
vortex. To demonstrate this, in Fig. 5 we plot the energy
an on-axis ring as a function of its radiusr and z position.
Without dissipation one would expect the ring motion
follow an energy contour; however, as is apparent in Fig
this is not exactly true. Acceleration of the ring at the beg
ning of its motion results in a back-action on the condens
exciting a center-of-mass mode, and the subsequent ring

FIG. 4. Vortex line frequencyv in an oblate, spheroidal 3D
condensate (h51,e59) at r 050.5, plotted as a function of inter
action parameter,C58pNa(2mv/\)1/2. Squares display numeri
cal results, while the dashed line plots Eq.~16!. The solid line with
triangles shows the calculated TF metastability frequency,3

5 DE.
01360
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namics are complicated by the underlying motion of the c
densate. In addition, for smallC we observe a decay of th
ring to lower energies over the first cycle of its motion. A
for a single vortex, this effect is associated with the co
pressibility, which results in acoustic emission from t
moving ring @49#.

The energy maximum atr 5Req,z50, corresponds to the
point where the two velocity contributions in Eq.~17! are
equal and opposite, leading to a ring in unstable equilibriu
To obtain an analytical estimate for this position, we a
proximate the ring energy by taking the energy of a sin
2D vortex,Ev , and integrating around a circle of radiusRr ,
such thatEr52pRrEv . The dominant contribution toEv is
given by the kinetic energy, soEv5(m/2)*rvs

2 d3r . Taking
vs5k3r/2pr 2, where we translate the cylindrical coord
nate system so that the origin lies on the vortex axis, a
using Eq.~10! gives

Er'
2p2\2r0Rr

m F S 12
r 0

2

R'
2 D lnSAR'

2 2r 0
2

j
D 1

r 0
2

R'
2

2
1

2G ,

~18!

neglecting terms of orderj2 and higher. For a ring of radius
Rr at z0 , r 0

25Rr
21z0

2 . This expression describes the qualit
tive features of Fig. 5; however, it tends to over estimate
energy near to the peak (;10% atC52000) and is a poor
approximation asRr→0. Nevertheless, we can obtain an e
timate for the equilibrium position from Eq.~18!, which
yields z050 and

Req'R'A ln~bR'
4 !21

3 ln~bR'
4 !24

, ~19!

FIG. 5. Vortex ring energy in a cylindrically symmetric conde
sate (h5e51,C52000) as a function of radiusr and z position.
The energy contours are equally spaced between 5.6179
6.1159. The bold line shows the motion of one element of
vortex ring, where the circles represent the position at equ
spaced times~everyT51). The ring begins at (1.5,0), marked b
an arrow, and cycles around the energy maximum in a clockw
direction.
4-5
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where b5(mv/\)2. In the TF limit (R'→`), Req

'R' /A3.0.577R' , which is close to the results from nu
merical solution, whereReq;0.54R' at highC ~Fig. 6!.

An experimental technique for ring production was pr
posed in Ref.@29#. The method utilizes a two-compone
BEC, such that when the smaller componentu2& is translated
with respect to the other, vortex rings are created in
larger condensateu1&.

To model the two condensates, a pair of coupled
equations are solved for the wave functionsC1(r,t) and
C2(r,t):

i ] tC i5@2¹21Vi1C~ uC i u21uC j u2!#C i , ~20!

where i , j 51,2 (iÞ j ) @50#. The initial states of the simula
tions are created by imaginary-time propagation as pr
ously, where the normalizations are set so that a varia
fraction of atoms are in each condensate,x
5^uC1u2&/^uC2u2& and ^uC1u2&1^uC2u2&51. Our simula-
tions then follow the creation and subsequent dynamics
the vortex ring, an example of which is shown in Fig. 7. T
trajectories roughly follow a contour of constant energy~see
Fig. 5!. The ring is created from zero radius att'1.6 and
y'1.8. It then expands and travels forward, before turn
and progressing backwards along the edge of the conden
Finally, it turns again and collapses to a point, where the r
is annihilated. The annihilation produces a sound wa
which decreases in amplitude as it propagates along tz
direction. The sound wave then disappears at the edge o
cloud.

In the presence of dissipation, annihilation will eventua
occur for any ring as a culmination of a decay to low
energies. This is equivalent to the instability mechanism
a single vortex line~Sec. III!.

FIG. 6. The equilibrium ring radiusReq as a function of a non-
linear parameter,C58pNa(2mv/\)1/2, in a spherically symmetric
condensate. The lower plot shows the ratio ofReq to the Thomas-
Fermi radius,RTF[R'5(2mTF /mv2)1/2, where the chemical po
tential is given by the normalization condition of the TF wave fun
tion, such thatmTF5(15C/64p)2/5.
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Vortex ring detection is likely to present considerab
challenges to experimentalists. The simplest and most wid
used method of condensate imaging is by measuremen
probe laser absorption, after release of the condensate
the trap. The subsequent ballistic expansion results in an
fective magnification of a vortex line, which should then
visible as a density ‘‘hole’’@6#. However, for rings the den
sity minima are obscured by the rest of the condensate a
any line of sight. One solution is to view slices of the co
densate after ballistic expansion, using light sheets. An a
native method is to study the center-of-mass motion
coupled condensates, yielding details of the mutual drag
reveal vortex ring formation@29#. Collective excitations are
also utilized in another scheme, proposed in@9,10#, where a
vortex line splits the degeneracy of the quadrupole mode
the condensate. However, further work is needed to ext
this analysis to vortex rings.

V. SUMMARY

We have studied the motion of vortex lines and rings
Bose-Einstein condensates in harmonic traps, by nume
solution of the Gross-Pitaevskii equation. We considere
single vortex in two and three dimensions. At the center o
nonrotating condensate the vortex state possesses maxi
energy, corresponding to unstable equilibrium, while an o
center vortex undergoes precession around this maxim
The precession frequency was measured and compare
theoretical models.

Vortex rings were also found to undergo an oscillato
motion. For a particular radius, the ring energy is a ma
mum, corresponding to a state of unstable equilibrium.
lower energy ring precesses around the locus of maxim
energy. Also, a ring which is created at a point will even
ally collapse to a point, resulting in self-annihilation.

The study of dissipative vortex dynamics at finite tem

-

FIG. 7. Vortex ring motion in a condensate (h5e51) after
creation from an object. The trajectory of the ring is determined
solving Eq.~20!, with v51.75,C51100, andx510/11. The upper
plot shows the ring radius~solid line! andz coordinate~dashed! as
a function of time, while a parametric plot~bottom! displays the
ring radiusr against positionz.
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peratures is particularly interesting. In this case, interac
of the vortex with the thermal cloud leads to a transfer
energy, and consequently a decay of the vortex state.
can consider this to be due to anisotropic scattering of th
mal excitations@36#, where the momentum transfer is appa
ent as a frictional force on the vortex. The transverse co
ponent of this force results in expulsion of the vortex fro
the condensate. A full microscopic model of vortex dyna
et

A

ett

rn

A

e

ys
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ics is needed to describe this behavior and will form t
focus of future work.
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