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Optical Galton board
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The conventional Galton board illustrates diffusion in a classical-mechanics context: it is composed of balls
performing a random walk on a downward sloping plane with a grid of pins. We introduce a wave-mechanical
variety of the Galton board to study the influence of interference on the diffusion. This variety consists of a
wave, in our experiments a light wave, propagating through a grid of Landau-Zener crossings. At each crossing
neighboring frequency levels are coupled, which leads to spectral diffusion of the initial level populations. The
most remarkable feature of the spectral diffusion is that below a certain single-crossing transition probability
(around 0.7-0.Bthe initial spectral distribution almost perfectly reappears periodically when the wave pen-
etrates further and further into the grid of crossings. We compare our experimental results with numerical
simulations and with an analytical description of the system based on a paper by ifahysn Rev. A56, 232
(19971

PACS numbe(s): 32.80.Bx, 32.60ti

. INTRODUCTION ing is proportional to (2+ 1), wheren is the quantum num-
ber of the lower level, the energy- or frequency-level spacing

The classical Galton board is illustrated in Figa)l Balls  of the optical Galton board is constant. A proper understand-
are rolling down a sloping board and are scattered by a grighg of this most simple model for spectral diffusion seems
of pins. The random walk performed by the balls leads touseful for a clear understanding of the diffusion properties of
Gaussian diffusion. One can think of several quantum- oimore complicated systems such as the kicked quantum rotor.
wave-mechanical varieties of this model by which the influ-we show experimentally that for the optical Galton board
ence of interference terms on the diffusion can be studiedsuppression of diffusion can occur in the form of almost
We present an optical variety which deals wihectraldif-  perfect recurrences of the initial level population. But, as we
fusion of a light wave. The optical Galton board consist of
frequency levels inside an optical resonator that are periodi-
cally coupled. The coupling is achieved by performing opti-
cal Landau-Zener crossings induced by birefringent crystals
inside the resonator, as illustrated in Fig.12. The resulting
level structure of the optical Galton board is shown in Fig.
1(b).

Spectral diffusion has been studied extensively in the field
of quantum chao$2,3]. In particular the quantum suppres-
sion of spectral diffusion for the kicked quantum rotor re-
ceived a lot of attention, both theoreticall¢] and experi-
mentally [5]. It seems clear that periodic coupling between
discrete energy levels and the preservation of coherence be
tween the levels are necessary to obtain suppression; how _ fr (Hz)
ever, a clear understanding of the phenomenon is still miss 2
ing. In the present context it is worth noting that “quantum
chaos” is maybe more aptly called “wave chaos,” as illus-
trated by the study of microwave billiard§].

Although the optical Galton board is a classical system,
we will show that it can be described by a Safirger equa-
tion and that it fulfills the requirements of periodic coupling
between discrete levels and of preserving coherence
Whereas for the kicked quantum rotor the energy-level spac-

Gauss
distribution

FIG. 1. (a) The classical Galton board, sloping downwards in
the z direction, yields a Gaussian distribution function for the final
*Present address: University of Oxford, Clarendon Laboratoryposition of the particle along theaxis. The dots represent pins at
Parks Road, Oxford OX1 3PU, United Kingdom. which the balls are scattereth) The grid of Landau-Zener cross-
"Present address: Dipartimento di Matematica e Fisica and INFMings which is the quantum- or wave-mechanical analog of the clas-
Universitadegli Studi di Camerino, Via Madonna delle Carceri, sical Galton boardfr indicates the frequency axis, art} is a
62032 CameringMC), ltaly. control parameter which is proportional to time.
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@ m= cros_sings_[?], and compare our results with theory. A con-
m=1 cluding discussion is given in Sec. VII.
K ZI fr m= Il. MODEL OF THE OPTICAL GALTON BOARD
——m=1 The basic idea of the optical Galton board is as follows.
L m=2 Consider a linear optical resonator which has a ladder of
equidistant resonant frequencies, as illustrated in Fig). 2
®) X y X We restrict our attention to the longitudinal cavity modes
‘—1—’ X (labeled withm=0,*+1,*2, ...,wheremis the mode in-
2 dex relative to that of an arbitrarily defined “center” mode
EOM 1 ] fr y Each mode is polarization independent, i.e., each mode has a
y y two-fold polarization degeneracy. This polarization degen-
y eracy is lifted by inserting a birefringent crystal, in the form
0 \4 —_— of an electro-optical modulatgEOM]J), into the resonator.
© X Increasing the birefringence as function of time, which can
Y >< \//\/ V, Const. be done by applying an increasing electric_: voltagé )(
S ~— across EOM1, results in two crossing manifolds of levels
K—‘EOM 1—~EOM 2 )—EI fri > with orthogonal polarizations; andy, as shown in Fig. @).
|~ A second birefringent crystdEOM2) is placed inside the
>\/\ resonator with its axes rotated 45° with respect to the axes of
0 \7 > the first crystal. A constant voltage across EOM2 provides a

coupling between the crossing levels of orthogonal polariza-
FIG. 2. (a) Sketch of a linear optical resonator which has equi-tlon and turr_1$ ?ach Ieyel Crossmg ,",“O an avouﬂbalnday-
distant longitudinal modes nf=0,+1,=2). (b) Including a Zene) crossing; see Fig.(2). T_h_e |n_|t|al state pf the optical
electro-optic modulatotfEOMY) inside the resonator, and increas- Galton board is prepared by injecting laser light at one spe-

ing the voltageV, across the modulator, leads to crossing levelsCific resonant frequency and polarization into the resonator.
with orthogonal polarizations andy. (c) Including a second modu- AS soon as the intensity inside the resonator exceeds a cer-
lator (EOM2) inside the resonator, rotated over 45° with respected@in value, the injection laser is switched off and the voltage
to the optical axis of EOM1 and with a constant applied voltageacross EOML1 is linearly increased while the voltage across
(V,), turns each level crossing into an avoided crosglmndau- EOM2 is kept constant. In this way the initial mode popula-
Zener crossing tion will be coupled via the avoided crossings to more and
more modes, which results in @herentdiffusion process.

will see, even for the optical Galton board the diffusion prop- 1 NiS spectral diffusion can be monitored by analyzing the
erties turn out to be rather complicated and some featur all fraction of I'ght, that is leaking out of the resonator
still lack a qualitative understanding. through one of the mirrors. . .

Since for the optical Galton board the number of popu-. W& now employ the Jones-matrix formalism to present
lated levels increases at each step into the grid of crossingﬁ_e optical .Galton board. In a more formal Wm.l’ll._la' ".‘
the amplitudes in the outermost levels can never interferd!iS formalism the polarization of the population in a single
and are in general nonzero. Therefore, the observed recu¢avity mode is represented fa 2 vector(t) = (x(t),y(t)),
rences of the initial level population can never be perfect anavherex(t) andy(t) are slowly varying(with respect to the
it is not obvious that “imperfect” recurrences should be ex-optical frequency amplitudes of thex andy polarization
pected. In fact, whether or not recurrences are present déomponents. Each polarization-changing optical element in-
pends on the transition probability at the avoided crossing, aside the resonator is represented byx&@2matrix which acts
shown theoretically by Harmifi7]. Above a certain transi- on E(t). EOM1 and EOM2 are represented by
tion probability, around 0.7-0.8, the recurrences cease to

exist! In a recent paper by Tmait was suggested that this ez o

change in dynamics is similar to a phase transition in the Bl(t):( 0 e“¢1’2)’

Ising model[8]. Beside its relation to the study of quantum

or wave diffusion, the optical Galton board could be of prac- o (1)
tical interest to the study of selective-field ionization of :( cos,/2) i sm(¢2/2))
Rydberg atoms where strong Stark splitting of the Rydberg 2 —isin(¢,/2) cogp,/2) |’

levels creates similar grids of Landau-Zener crossj@gEd].

In Sec. Il we present the model for the optical Galtonrespectively, wherep; and ¢, are the phase differences
board. The experimental set up is presented in Sec. lll. Thavhich the two orthogonal polarizations along the axis of bi-
experimental results together with the numerical calcularefringence obtain by passing EOM1 and EOM2. One can
tions, based on the theoretical model, are collected in Secsonstruct a round-trip matrik (t) by multiplying the matri-

IV and V. In Sec. VI we give a brief review of the theory by ces representing all the optical elements that the light passes
Harmin on quantum diffusion on a grid of Landau-Zenerduring one round trip. In the case of the optical Galton board
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there are two EOM'’s which are passed twice for each round trip in the linear cavity. Neglecting optical losses, the round-trip
matrix is given by

—isin(¢y)+cog ¢1)cog ¢,)  —icog ¢hq)sin(¢py)

M (t)=B,(t)B4(t)B(t)B,(t)= . . o . (2
(V= BoUBIOBAUBADZ] i coq gysinihy) i s hs)+ cosl hy)cos )

|

We assume that the round-trip matrix is approximately con- cog ;) Sin(b5,)

stant during a single round-trip tinie This implies that the tanf=— sy 9

change in birefringence of the EOM'’s per round trip should !

be much smaller than2 Under this condition the time evo- _

lution of E(t) is governed by from which one can derivé/2, which is the adiabatic cou-
pling strength between the two frequency levels with or-

E(t+T)=M(t)E(t). (3)  thogonal polarizationfd].
A description of a regular grid of Landau-Zener crossings
The evolution of E(t) can be cast in the form of a IS obtained by superimposing the two-level structure to a

Schralinger-like equation ladder of equally spaced angular frequency levels. As illus-
trated above in Fig. 2, an optical resonator has intrinsically

dE T such a multilevel structure with spacing-sg equal to 2r

9t ThE (4)  times the free spectral randgsg=c/2L, wherec is the ve-

locity of light and L is the length of the linear resonator. We

where the elements dfl are expressed in phase shifts perIabel the polarization amplitudes of the two levels for each
round-trip timeT, in anticipation to the relation df with the  longitudinal modem by x, andy,. The full time evolution

round-trip matrixM. Equation(4) yields an alternative ex- for these amplitudes, including the coupling between all lev-
pression for Eq(3) els, can be found in Refl13]. The complete model can,

however, be simplified under the assumption that coupling is
R i [t+T . restricted to the neighboring levels onlgrrow 2 in Fig. 3
E(HT):EXP[ - TJ’ H(t") dt'] E(t). (5) indicates such a couplingThis amounts to neglecting the
! influence of fast rotating terms, i.e. the coupling between
levels separated in angular frequency by at leasig (ar-
rows 1 and 3 in Fig. 3 indicate such couplingeinder our
experimental conditiongsee Sec. I, such an approxima-

The case in whichH is approximately constant during a
round-trip time leads to

M(t)=exp{—iH(1)}. (6)
Angular
Equationg’5) and(6) map the classical optical system onto a frequency
guantum-mechanical system. Rdi(t) given by Eq.(2) we f W
obtain the Hamiltonian u=1 I

H(t = e(t) [ sin(¢q) COS{qSl)sin(qsz)) .
~sing(t) | cog ¢y)sin(¢y)  —sin(¢y) )’

where ¢(t) = arccogcos(p;)cos(p,)) [1]. The eigenvalues of
H(t) are = ¢(t) and for a constant value ap,, they are
plotted as a function o, in Fig. 3 (thick lines. Note that
when ¢;=at and ¢,=A, with ¢,(mod 27)<27 and ¢,
<27, the model reduces to the Landau-Zefier) Hamil-
tonian[14,15 given by

m=0

8

at A
Hiz= A —at)’

These conditions are fulfilled in the neighborhood of each i, 3. Adiabatic levels of the optical Galton board. The thick

avoided crossing, as _shown in the dashed square in Fig. 3. {hes indicate a single two-level system. In our optical experiment
Secs. IV and V we will use the parametersndA to char-  we make use of a ladder of such two-level systems which are

acterize the settings of the optical Galton board. equally spaced by thersg which is 27 times the free spectral
For the following discussion it is convenient to introduce range. The arrows 1, 2, and 3, indicate couplings between angular-
the parameter frequency levelgsee text
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M1 Hﬂ DELAY LINE light injected into the resonator is the first order deflected
;ﬂ beam(80 MHz shifted with respect to the zeroth-order b¢am
] PZT from an acousto-optic modulatdAOM). As soon as the
intra cavity intensity has built up to about a few mW the
AOM is switched off, hence no more light is injected into the
resonator. From that moment on we have the cavity decay
time, which was measured to be aboutg) to perform the
I NPBS actual experiment. A linear voltage ramp is applied across
AOM ofi EOML (typical value for the sweep rate is=3x10° s 1),
APD v while the voltage applied across EOM?2 is kept consteot-
responding typically taA=0.27 for a transition probability
FIG. 4. Schematic drawing of the optical part of the setup. Thearound 0.3, so that the light inside the resonator passes
end mirrors of the resonator are indicated Ijl andM2. The  through the grid of Landau-Zener crossings. After a certain
acronyms used are AOM for the acousto-optic modul®dor the  number of steps into the grid the voltage ramp across EOM1
polarizer, EOM for the electro-optic modulator, PZT for the piezojg stopped, and the voltage is fixed at its final value. From
element, NPBS for the nonpolarizing beam splitter, and APD forihat time on the system is in a stationary state so that we can
the avalanche photodiode. analyze over which levels the light has been distributed.
) N ) i i To determine the final spectral distribution, i.e., the popu-
tion seems justified sina~0.6<(<)2m [13]. This approXi-  |ation of the cavity modes after the diffusion, we beat the
mation results in the following set of equations for the Ievellight leaking out of the resonator through mirfd2 with the

populations: zeroth-order beam from the AONWwhich is present even if
d the AOM is switched off. In order to detect botlkx- and
—Xp(H)=—i| m+ £ wpspXm(t) y-polarized modes the zeroth-order beam is circularly polar-
dt 2m ized by using a\/4 wave plate. Measuring in the stationary

9 si 9 si state a time trace of a fews, using a fast digital oscillo-
sine) t)— — Mymﬂ(t), (10)  scope(HP 54522A which can resolve frequencies up to 500

2 ¢ m 2 o—m MHz, yields after a Fourier decomposition the spectral dis-
) tribution. The originally populated frequency level appears
d ] @ 0 sin( @) in the Fourier decomposition at the AOM frequency of 80
qtym= —|(m— E)wFSRYm(t)+ 2 ¢ Xm(t MHz. There are three experimental points which do not in-
fluence the main idea of implementing an optical variety of
0 sin(g) the Galton board but which are of crucial importance for the

T2 o 1(t). (1) actual realization.

(i) EOM1 has a maximum range in birefringence corre-

The first term on the right-hand sides of E¢s0) and(11)  sponding approximately to ar3rad phase shift between
represents the adiabatic frequency levels, as illustrated igndy polarized light. Since the distance between the avoided

Fig. 3. The second and third term on the right-hand side§rossings corresponds torad, it seems that a sequence of
describes the coupling between neighboring levels. no more than three crossings can be obtained. To circumvent

this limitation we sweep EOM1 back and forth over the in-
terval [0,27] (see Fig. 5 Each round-trip voltage sweep
corresponds to the passage of four Landau-Zener crossings.
Figure 4 is a schematic drawing of the optical set up tha®fter the first round-trip voltage sweep, light initially in-
realizes the optical Galton boar1 andM2 indicate the jected at level O can be present in level8 to 2. In Fig. 5
two end mirrors of the linear optical resonator. Besides thehree out of the 16 possible light trajectories have been
two electro-optical modulatol€OM1 and EOM2, the reso-  drawn by thick lines. Aften round-trip voltage sweeps, lev-
nator includes an optical delay line and an optical gain meels —(2n+1) to 2n can be populated. This method of popu-
dium. The latter compensates almost completely the opticdhting several levels is similar to the rf excitation scheme for
losses; in fact, the system shown in Fig. 4 is a laser preciselRydberg atom$16]. Note that since each crossing is passed
at threshold. The total resonator length is approximately 10@wice in succession it should be possible to observe interfer-
m which yields a mode spacing of 1.52 MHz and a round-ence effects associated with Skelberg oscillation$17,18|.
trip time T of 0.7 us. Due to the aperturing by the HeNe gain The main feature of the optical Galton board, i.e., enabling
capillary and the EOMSs, the lowest-loss transverse mode ofvave-mechanical diffusion over a manifold of levels, is un-
our resonator is the only one that is significantly excitihis  affected by this since each double pass will effectively act as
has been checked by studying the output spectrum of the single coupling between neighboring levels.
system when the gain was set slightly above thresh@de (ii) The optical losses due to the EOM’s and the leakage
mirror is placed on a piezo element in order to tune one othrough the mirrors are compensated for by the gain me-
the longitudinal resonator modéby definition this is the dium, in our case a polarization-independent He-Ne ampli-
mode m=0) to the frequency of the linearly polarized fier tube(A=633 nm [12]. Since the amplifying He-Ne me-
single-frequency He-Ne injection lasék=633 nm. The dium has a limited bandwidth of approximately 1.5 GHz, all

IIl. EXPERIMENTAL SETUP
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FIG. 5. The thick lines indicate three possible light trajectories,
starting from level O, which can be traced during the first round-trip Level Level

voltage sweep. The time it takes to pass a single col@shaded . .
. . FIG. 6. Experimental test of the coherence quality of the system.
area of Landau-Zener crossings is, and the angular frequenc - . .
2 9 9 q y After the initial population of level 1 the grid parametersand A

separation between two subsequent crossings within a column Is L .
eqzal tow 4 9 were tuned such that each individual Landau-Zener crossing had a
FSR*

transition amplitude of approximately 0.5 and each double crossing

. . o . (back and forth through the same crossing as illustrated in Fig. 5
modes accessible via the spectral diffusion should be withifag a transition amplitude close to [k=3x10° 7%, A=(0.2

100 MHz around line center in order to have approximately-0.02#]. The spectral distributions aftéa) eight, (b) 16, and(c)
equal(iS%) CaVity lifetimes. If we restrict the diffusion to 32 columns of crossings are shown. Gragdis (e), and (f) show
about 30 modes, the spacing between them must be less thi@ corresponding numerical results, based on the treatment of the
3 MHz. This is the reason that we use the delay line ofoptical Galton board as an array of pointlike beamsplitters in the
approximately 100 m inside the resonator. spectral domain. The dashed lines indicate the outermost levels

(i) The photon cavity lifetime obtained in the experi- which can be populated.
ments is approximately 7@s, which is about 100 times
longer then the_ cavity round-trip time=0.7 us. In order to IV. COHERENCE QUALITY
populate sufficiently many modésay 30, some 30 columns
in the Landau-Zener grid must be passed. Each Landau- In Sec. Il we mentioned the presence of &telberg os-
Zener crossing should therefore be performed within thregillations due to the fact that each crossing is passed twice in
cavity round-trip times. This condition is in conflict with the succession. If, for example, the transition probability for
assumption in the derivation of E@6) that there are no each crossing is 0.fr=3x10° s™*, A=(0.2+0.02 ], and
significant changes in the optical system during a singlef the distance between the two successive crossings is tuned
round-trip time. Experimentally we observed, however, thatproperly it should be possible to exchange the populations of
Eg. (6) remains valid even if a Landau-Zener crossing isthe two levels which perform the double crossing. If we ini-
performed within a time as short ag 3We will gratefully tially populate one level and then perform a single crossing
make use of this property to implement numerical simula-followed by a sequence of double crossings and end with
tions where the dynamics is treated as a succession of tw@nother single crossing, it should be possible to observe that
level interactions, at each Landau-Zener crossing, followe@nly the two outermost levels on each side of the possible
by adiabatic evolution. range of levels will be populated, provided the grid is tuned

To analyze the experimental results of the following sec-properly and coherences are maintained throughout the evo-
tions it is important to introduce a relative phade,between lution. The observation of this effect will be a sensitive test
crossings within a single Landau-Zener column, i.e., betweefor the coherence properties of the optical system. We per-
crossings which form a vertical ladder in Fig. 5. Two subseformed this test experimentally by properly adjusting the
quent crossings on the ladder are separated in angular freoupling strengthA and the sweep rate [see Eq.(8)] to
quency bywesgr, see Fig. 5; hence the light passing throughmeet the conditions given above. The experimentally ob-
the higher crossing obtains the additional dynamical phasetained distributions after passing eight, 16, and 32 columns
of crossings are shown in Figs(ap, 6(b), and Gc¢), respec-
tively.

Interference completely dominates the dynamics and re-
sults in population of the outermost levels in accordance with
compared to the light passing through the lower crossingthe theoretical prediction based on coherent evolution. Note
Here 7 is the time it takes to pass a single column. that the corresponding incoherent or classical situations

V= Twrsr (12
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would yield a Gaussian distribution centered around level 10 @ 10

m=0 [Fig. 1(a)]. We have compared the experimental re- g 08 03

sults with numerical simulations based on the assumptiors 06 0.6

that the optical Galton board is perfectly stable and free of & 04 0.4

dissipation, and that each avoided crossing can be considere 02 02

as an isolated Landau-Zener crossings with a transition prob 0 ——5 ) = 0 = o "
ability of 0.5. The simulations take into account the fact that 03 o 05 ©

each crossing is passed twice in succession. The resultof thg . 04

simulations are shown in Figs(d, 6(e), and &f); they are § | 03

in reasonable agreement with the experimental results. Sinc & o, 02

we deal with a complicated interference process, which is N1~ 0.1 ||n| |I
sensitive to small changes in the system, the assumption 0 5™ 0 4 10" 005 04 10
used in the simulation are too crude to expect perfect agree 02 g 03 1

ment between the experiments and the simulation. However 5

the simulations are adequate for demonstrating the main feag 02

tures of the coherent evolution. The same remark will apply g ) 01

to the numerical results that will be presented in Sec. V. On ] I.JJJ

the basis of the material shown in Fig. 6, we can conclude 0 i 0 ull |0” L

. . 10
that the optical system suffers little decoherence and can b %8 [ 10 15

used to study coherent diffusion on an optical Galton board.g 038
E 0.6
E- 04 04
V. RECURRENCES 0.2
wa st Ll ; 1 ;
Whereas in Sec. IV the values @efandA were tuned such 037 o 0 10 16 07 10 0 10 16
that each double crossing resulted in a complete populatior Lol Lol
EVEl CVE|

transfer between each pair of crossing levels, we now con-
sider the case that andA are tuned such that each double  FIG. 7. Experimentally obtained spectral distributions afer
crossing has a transition probability of about 0.5. This situzero, (b) eight, (c) 16, and(d) 32 columns of crossings, for a semi-
ation constitutes the optical Galton board. periodic grid such that the initial distribution of a single populated
Our main experimental result is shown in Fig&)#7(d). level revives after 32 columns of crossings. The transition probabil-
Figure 7a) shows the distribution corresponding to the ini- ity for each double crossing is approximately 0.5. The correspond-
tial state of the optical Galton board. Clearly, only a singleing numerical simulations are shown in grapi@—(h); they are
mode of the optical system is populated. Figu(b) Bhows based on the treatment of the optical Galton board as an array of
how the population has spread out over the neighboring lewrointlike beamsplitters in the spectral domain.
els after passing eight columns of crossiigfectively four
layers of beamsplitters in the spectral domairhe evolution  optical Galton board, and since residual intracavity birefrin-
of the populations resembles classi@atoherent diffusion,  gence causes an experimental error of about 5% in measur-
and it is only in the large fluctuations in neighboring leveling A, our observation of the recurrences is a rather qualita-
populations that the presence of interference can be inferretive one. We performed two types of numerical simulations
Figure 7c) shows the distribution after 16 columns of cross-to support and quantify the experimental observation.
ings. Again there is no evidence that a collective interference The first type is a simulation based on the naive modeling
effect takes place. Yet we know form the test measuremertf each crossing as a pointlike beamsplitter in the frequency
shown in Sec. IV that coherences are preserved throughodbmain, as already introduced in Sec. IV. The result of this
the evolution. Therefore, on first sight, Figgafand 1b)  simulation is displayed in Figs.(&—7(h) and confirms the
seem to indicate that interferences play a minor role in thgresence of the recurrences. The second type of simulations
diffusion. However, the experimentally obtained distributionis based on numerical integration of E¢$0) and(11), and
after passing 32 columns of crossings, as shown in K@), 7 the results shown in Fig. 8 again confirm the recurrences. As
leads to the complete opposite conclusion. Apparently thenentioned in Sec. IV, no detailed agreement between the
initially populated level is almost completely repopulatedexperimental and numerical data can be expected since the
which can only be the result of some dominant interferencesimulations are based on simplified models of the experi-
effect. ment, and the fluctuations between neighboring level popu-
To obtain such a clear recurrence after 32 columns ofations depend critically on the exact model. However, inter-
crossings, we had to tune the parameters of the grid carestingly the collective intereference effect, i.e., the
fully. By changing the grid parametetsand A slightly (so  recurrences, turns out to be robgste belowwhat justifies
that the transition probability after each double crossing washe presentation of the numerical results.
still between 0.4 and O)pwe could obtain recurrences after  Since in the experiment the initial distribution revives af-
any number of columns of crossings, as far as the experimener 32 columns(Fig. 7) it is expected that further revivals
tal conditions allow for. Since changes of a few percent inwill occur after 64, 96. . . columns. Because the cavity life-
the values okx andA completely change the dynamics of the time sets an upper limit to the number of avoided crossings
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1
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0 -10-504 10 FIG. 9. The grid of crossings resulting from the overlapping of
two manifolds of diabatic levels; the horizontal axis represents time.
0.2 The shaded area corresponds to the dynamical phase associated
g with the path, marked by arrows, connectiifig0] to [m,m’].
= 01 VI. ANALYTICAL EXPLANATION
(=¥
& In a recent paper by Harniran analytical expression is
0 given for the propagation of a wave through a grid of
-10 0 10 Landau-Zener crossingg]. From this paper we extracted
0.8 the arguments needed to explain the observed recurrences
and present them here in a form adapted to our specific op-
§ tical system. The level structure of the optical system con-
= 0.4 sists of two manifolds of crossing diabatic levels, given by
&,
s a
0 al Em(t)= ?t_mwFSRa m=0,12..., (14
-17-10 0 1016
Level a
En(t)=— ?H—m’ wpsg, M=012.... (15

FIG. 8. Simulation of the recurrence phenomenon based on nu-

merical integration of Eqg.10) and (11). L . .
g as10 o= We draw a schematic view of the optical Galton board in

that can be passed during a single run, these higher-ord&ig. 9 in order to clarify the notation, according to which any

revivals are out of experimental reach; they were, however-andau-Zener crossing is labeled by a pair of coordinates

observed in our numerical simulations. [m,m’']. We assume that the dynamics of mode amplitudes
We explored in our numerical simulations the robustnesgonsists of a series of isolated pairwise interactions, taking

of the recurrences as function of the grid parametend place at each avoided crossing, followed by free evolution

A. By changingA, which effectively changes the transition during which they acquire only a dynamical phase factor. An

probability at the crossings in the Galton board while  avoided crossing can be represented ax 2 @nitary matrix,

= Twggr FfeMains constant, we observed that the position of

the recurrences remain unchanged up to a transition prob- —-d a

ability around 0.7-0.8. Above this transition amplitude the a d

dynamics is so diabatic that most of the population ends up

in the outermost levels without ever returning to the initial with a and d related, respectively, to the adiaba#icand

level population. By changing, which effectively changes diabaticD transition probabilities

both the transition probabilities and the value Bf (7 is

: (16)

proportional tow), we deduced the following empirical rule: ) A?
when D=d=expg —27—|, (17)
aT
\p:%g, (13 A=a?=1-D. (18)

with p andq integers and relatively prime, recurrences occur
after passing @ columns in the grid of crossings. An expla- Our experiments were performed before the publication of Ref.
nation for this result will be given in Sec. VI. [7].
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The parameterd and a have been defined in E¢8). The Am’ ¥ =0 mod 2r; (25)
phase shift accumulated along an arbitrary path in the array
of levels, Connecting the initial Stat[@,O] with the point for example, if¥ =27 g/p, with p andq integers and rela-
[m,m/], is calculated with respect to the reference patn|ve|y prime’ the recurrences take p|ace an'n’:p peri_
[0,0]—=[0,m"]—[m,m"], ods of crossings. Since the orderof the Bessel function
must be kept constant, the incrementsiandm’ are equal,
<I>0=fmlrdt’ Eo(t’)-l—f(erm’)Tdt’ E.(t'), (19 and the recurrences involve points on the grid which are
0 m’ 7 parallel to the time axigsee Fig. 9. This is in agreement
with the experimental and numerical results; the initial popu-
wherer is the time interval between two adjacent crossingsiation distribution|AS)| reappears id\AE)Tp’| after passing @
ACCOfding to th|S deﬁnition the dynamical phase Of eVeryco|umns Of Crossing@f‘fectiveh/p periods of Crossings
path is simply the area between that specific path and the
reference one: this amounts to an integer number of cells in
the array of avoided crossings with elementary area
= Topsr. Note that this quantityV” is the same phase as  We have performed optical and numerical experiments in
defined in Eq(12) which we studied a wave-mechanical analog of classical dif-
One may distinguish between the probability to reach gusion on a Galton board. Our specific system consists of a
given pointfm,m’] from below(along an up going levebr  grid of Landau-Zener crossings produced inside an optical
above(following a down going level to this end we define resonator and leads to spectral diffusion of light inside the
AfnTzn, andAE#r)n, which represent, respectively, the probability resonator. Although the system is completely within the do-
amplitude to arrive afm,m’] from [m,m’—1] and from  main of classical optics, the observed wave-mechanical dy-
[m—1,m’]. The evolution from an avoided crossing to the namics can be described by a Safinger-like equantion
next one can then be summarized by the recursion relationissee Eqs(4)—(6)], and could as well be observed in quantum
systems with similaenergyj level structures. The optical

VII. CONCLUDING DISCUSSION

Afjlzn, =[—d Afgzn, _,ta Afor)n_l]eim‘I’, (20 system allowed for a study of coherent dynamics of light for
a time span as long as 1Q&ec.
Afﬁ%r:aAﬁ’_ L Hd A&)_lm, . (22) ' .'.I'he main res'ult.ls t.he observat.|on of recurrences of the
initial spectral distribution for special values ®. Here W
The extra exponential factor in ER0) with respect to Eq. = T@rsr, With 7 the time between two Landau-Zener cross-

(21) takes into account the increased phase difference of thB9s andwrsg equal to 2r times the free spectral range. As
path leading upwards compared to the down going onethe initial distribution we populated a single level. However,
These equations, together with the initial conditisg=1,  Since the system is linear it is expected that any arbitrary
contain the essential information to solve the problem. initial distribution will show recurrences. The requirement
Making use of generating functions and an expansion if°f the recurrences to occur after passpgeriods in the
powers ofd, as shown in the Appendix, one obtains in the 97d Of crossings igi) that =2q/p, with p andq integers
near adiabatic regimedf<1) the formal solution and relatively prime; andi) that the transition probabilities
at the crossings are less than about 0.8. Since any vailfe of

P, (27 is arbitrarily close to a fraction of two integers that are rela-
Aﬂﬂn,(\P)= > dx’ tively prime, there will always be such recurrences, provided
mJo that the transition amplitude is smaller than about 0.8. Hence

sin(m’ ¥/2) an important conclusion is that the diffusion on a wave-
><exp{i 2d Wsinx’ﬂm—m’)x’ ] mechanical Galton board is in general strongly suppressed

compared to classical diffusion.
(22 Our experimental results are consistent with the numerical
simulations and with the analytical results based on the
where @, is an overall phase factor. A similar expressiontheory by Harmin7]. Note that the theory presented above
holds forAfnizn,(\P). Equation(22) is the integral representa- was performed under the adiabatic assumption, that is, the

tion of a Bessel function of integer orde=m—m’: transition probabilities are assumed to be much smaller than
1. However, from our experimental and numerical result we
M | sin(m’W/2) can conclude that the recurrences persist for transition prob-
A | =134 2d G072~ (23 abilities up to 0.8. Qualitatively it is obvious that in the di-
abatic regimétransition probabilities close to onthe recur-
From the property of Bessel functions rences will have to disappear, since only the outermost levels
will have significant populations. It is, however, far from
J,(—x)=(—1)"J,(x), (24) obvious at what value of the transition amplitude the recur-

rences should vanish. Analytical calculations in the diabatic
one can predict the periodicity in the probability distribution. limit can be found in Ref[7], and they show that diffusion
The population ifm+Am,m’+Am’] is equal to the one in in the diabatic regime has the special form of narrow peaks
[m,m’], when in the distribution which move away from the position of the
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initial peak in the distribution function. Further experimental which can be solved to give

effort is needed to observe this dynamics. The transition )

from diffusion in the adiabatic regime to diffusion in the T elxrkY) g

diabatic regime is still an unexplored area although it has Fm'(x):kﬂl 1_dexikn’ (A5)
been suggested that the transition is similar to a phase tran- N €

sition in a two-dimensional Ising modgs].

G (x)=

———F (%) (AB)
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APPENDIX: GENERATING FUNCTIONS

By introducing the generating functions wzexm(2+x+ kW) (A8)
1—d el xtk¥) '
Fo ()= 2 Al) ™, (A1) sin(x+ kW)
m=0 ®=arcta+m —(X+ k\I’) (Ag)
G (X)= % A%zn elmx (A2)  This form is more convenient because it lends itself to an
m=0 expansion in powers ofl; in the nearly adiabatic regime

(d?<1) one can retain just the first term
O=dsin(x+kW¥). (A10)

' Inserting Eqs(A8) and(A10) into Eq.(A7) leads to the final
G (xX)=e*[aF(x)+d Gy (x)], (A4)  result given in Eq(22) (for details, see Ref.7]).

the system of coupled equatiof®)) and(21) turns into
Fn(X)=—dF_1(X+V)+a G, _1(x+V), (A3)
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