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Continuous-probe solutions for self-similar pulses in four-level systems
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We propose the use of a copropagating probe pulse in experimental tests of correlated pulse theory. We
present formulas for amplitudes and velocities of a self-similar pulse trio propagating in a medium with energy
levels in the configuration of the letter N. Remarkably, in contrast to previous theoretical studies, we find that
the inclusion of the probe pulse lifts a rigid restriction on the oscillator strengths of the transitions.

PACS number~s!: 42.50.Md, 42.50.Hz, 42.65.Tg
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Since the discovery of simulton propagation@1# the vari-
ety of resonant phenomena employing correlated multip
of short optical pulses has expanded significantly~simultons
are simultaneous different-wavelenth solitons!. Experimental
progress has been reviewed recently by Harris@2#. Theoret-
ical work has clarified a number of issues, and applicati
have been proposed@3–8#. In particular, the behavior o
pulses in quantum systems ofL, double-L, and V type is
now much better understood. The effects of the finite li
time of the excited state of theL system on pulse propaga
tion are well described@9,10#. A new factorization procedure
provides exact inclusion of inhomogeneous broadening@11#
and Rahman has proposed a two-pulse ‘‘area theorem’’@12#.
A family of exact solutions describing self-similar pulses
five-level ‘‘M’’ systems has been described by Hioe a
Grobe@13#. A new type of adiabaticity condition was discov
ered@14# and recently shown to persist even in the abse
of a second pulse if quantum decay interference occurs@15#.
Pulse shaping and cloning in a coherently prepared ato
system~phaseonium or an ensemble of phase-coherent at
@16#! have been elucidated@17,18#. Some of this progress ha
been made numerically and some by the use of rigorous
lytical techniques based on Ba¨cklund transformations@19# or
inverse scattering methods@3,20–22#.

However, in one important respect all self-induced tra
parency~SIT!-like extensions of the McCall-Hahn discove
of the first self-similar optical pulse@23,24# are constrained
by an assumption of limited validity. The existence of se
similar pulses has been established only under the cond
that the oscillator strengthsf of all transitions are equal
While not forbidden to occur by any selection rule, such
equality would usually require special arrangements to
realized experimentally. We have discovered what appea
be the first exception to this rule, and in this paper we pres
an example of self-similar short-pulse propagation in wh
this restriction can be lifted, potentially opening the way f
extensive experimental testing of predicted long-range m
tipulse correlation effects.

We will demonstrate exact three-correlated-pulse so
tions appropriate to the ‘‘N system’’ of four coupled qua
tum states shown in Fig. 1. To obtain a solution for an o
number of self-similar correlated pulses is new itself. Mu
more important, however, appears to be the discovery
the addition of the third pulse~here referred to as the probe!
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permits lifting of the rigid equal-f restriction. Given the pres
ence of the probe, we show that the positive-definite cha
ter of pulse energy imposes inequalities rather than equal
among thef numbers of the three transitions.

Let us consider the N system shown in Fig. 1, which c
be realized in most popular optical absorbers. Our mod
two lower levels can be realized, for example, in the tw
hyperfine components of an alkali-metal ground stateF
51 andF52 states of the ground state of sodium, say! and
the two upper levels can be the fine-structure component
the P state (3P1/2 and 3P3/2 again in sodium!. The fields
have pulse envelopesEWc , EWv , and EW f , where EW a(z,t)
5EWa(z,t)ei (kaz2vat)1c.c. The pulses act, respectively, o
the transitionsei, v i , ande f, as shown. We are assumin
that the rotating-wave approximation holds so that ea
pulse interacts with only one transition@25#. The envelopes
EWa and hence the Rabi frequenciesVa52dW a•EWa /\ are as-
sumed slowly varying in space and time on the scale of
k’s andv ’s. HeredW a is the dipole moment matrix element o
theath transition. For simplicity we temporarily assume th
all the fields are nominally resonant with their respect
transitions. Theiv transition can be thought of as a runnin
probe of theL system made of thef e andei transitions.

In the slowly varying envelope approximation, the res
nant coupled Maxwell-Schro¨dinger equations are

i
]

]t
Ce52

V f

2
Cf2

Ve

2
Ci ,

FIG. 1. Schematic diagram of the energy levels and the tra
tions among them. The pulse envelopes and field frequencies
denoted byE’s andv ’s and the detunings are given byD ’s. In the
absence of the fields, the atomic population is in the stateu i &. Note
that the transitions sketched are similar to those responsible fo
D lines in alkali-metal atoms, if levelsf and i are interpreted as the
two hyperfine components of the ground state.
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i
]

]t
Cv52

Vv

2
Ci , ~1!

i
]

]t
Ci52

Ve*

2
Ce2

Vv*

2
Cv ,

i
]

]t
Cf52

1

2
V f* Ce ,

]

]z
V f5 im fCeCf* ,

]

]z
Ve5 imeCeCi* , ~2!

]

]z
Vv5 imvCvCi* .

HereCa (a5e,v,i , f ) represents the probability amplitud
of finding the atom in the stateua&. We follow the standard
practice of excluding any relaxation terms in Eq.~1!, i.e., we
work under the conditions that the pulse widths are sma
than the relaxation times. Many of such approximations
discussed in text books~see, for example, Ref.@24#, p. 81!.
The coordinatest andz measure time relative to pulse ce
ter. They are related to space-time coordinatesz and t via t
5t2(z/c), z5z. The parameterm is given by

ma[
4pNudau2va

\c
5

2pe2Nf a

mc
,

whereN is the density of the atoms andf a is the oscillator
strength for the transition of frequencyva . Note thatm has
the dimensions frequency (distance)21.

We will search for self-similar~shape-preserving! solu-
tions, i.e., solutions which are functions of only one varia
X5(qz2Gt). The parameterG21 will give the pulse dura-
tion andq andG will be related via the pulse velocity in th
medium. We will assume that all the atomic population is
the stateu i & before the interaction with the pulses. Note th
the self-similar solutions have to be consistent with
boundary conditions and the conservation laws. Guided
analogy to three-levelL and V cases@1,7,22#, we make the
following ansatz:

Ve5AesechX, Vv5AvsechX, V f5Af tanhX,

Ci5tanhX, Cv5bvsechX, ~3!

Cf5bfsechX, Ce5besechX.

Using the ansatz~3! we can find consistency conditions o
all the parameters and amplitudes. Wesummarizethe results
here:

2qG5mv , ~4!
01340
r
e

t
e
y

uAvu254G2S 12
me

m f
D , uAf u254G2S me

mv
21D ,

uAeu254G2
me

2

mvm f
, ~5!

be5
iqAe

me
, bv5

iqAv

mv
, bf52

Af* me

Ae* m f

. ~6!

These new solutions have a feature not seen in previous
herent multipulse studies—they permit a range of values
them coefficients~i.e., of the oscillator strengths!. While not
fixed as previously, thef values are still mildly constrained
It is clear by inspection that the positive definite character
the pulse intensities requires the inequalitiesm f>me>mv ,
or

f f> f e> f v . ~7!

We can make the following observations to help clar
the solution formulas.

~a! If me5mv5m f , thenAv5Af50, bv5bf50, and we
recover the standard sech solution@23,24# for the two-level
ei system.

~b! If me5mv , thenAf50,bf50,

uAvu254G2S 12
me

m f
D , uAeu254G2

me

m f
. ~8!

Here m f acts like a free parameter such that@(me /m f),1#
and it determines the relative magnitude of the two pul
Vv and Ve . We recover the previously derived results f
the V system@11#.

~c! If me5m f , then Av50, bv50, uAf u254G2@(me /
mv21#, and uAeu254G2(me /mv). Now we have to impose
the condition on the free parametermv: me /mv.1. In this
case we recover the solutions@11# for L systems.

In addition to pulse intensity, the uniform group veloci
v is also determined by our solutions. From Eq.~4! we can
derive the group velocity asX5qz2Gt5qz2G@ t2(z/c)#
5z@q1(G/c)#2Gt[G@(z/v)2t#, where

1

v
5

1

c
1

q

G
, ~9!

which upon using Eq.~4! becomes

1

v
2

1

c
5

mv

2G2
. ~10!

As the pulses become shorter (G gets larger!, the group ve-
locity approaches the background medium velocity, as
pected.

We will next examine the physically more realistic situ
tion in which detunings are nonzero and again ask if sha
preserving solutions are possible. We consider the interes
4-2
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partially resonant case when the fieldsVe and V f are de-
tuned by the same amount, i.e.,De5D f , but the detuningDv
is left arbitrary:

De5vei2ve5ve f2v f ,
~11!

Dv5vv i2vv .

Again, theiv transition will be regarded as a running pro
of the f e-ei L system, but now we haveDv available as an
adjustable independent probe parameter.

We find that the first two equations in Eqs.~1! are modi-
fied to

i
]

]t
Ce52

V f

2
Cf2

Ve

2
Ci1DeCe ,

~12!

i
]

]t
Cv52

Vv

2
Ci1DvCv ,

and the following modified ansatz is now appropriate@11#:

Ve5Ae~sechX!eiQz, Vv5Av~sechX!eiQz,

V f5Af tanhX, Ci5bi tanhX1a,
~13!

Cf5bf~sechX!eiQz, Cv5bv~sechX!eiQz,

Ce5be~sechX!eiQz.

The new phaseQz signals a modification of the index o
refraction that will depend on the detunings, anda[1
2bi .

Using this second ansatz in the Schro¨dinger-Maxwell
equations~1!, ~2!, and~12!, we can still find a set of condi
tions under which shape-preserving pulses are possible:

Dv /De5mv /me , ~14!

bi5
G

G1 iDv
, a5 i

Dv

G1 iDv
, ~15!

q5
mv

2G
ubi u25

mv

2

G

Dv
21G2

, ~16!

Q5q
Dv

G
5

mv

2

Dv

Dv
21G2

. ~17!
.
y,

01340
Clearlyq andQ appear as absorptive and dispersive parts
bi , and we will give their effect on the group and pha
velocities below.

The amplitudesAe , Av , and Af are still given by Eqs.
~5!, but now the levels’ probability amplitudes depend
probe detuning factors and are given in terms of field am
tudes as follows:

be5
iAemv

2Gme

1

11 iDv /G
, bv5

iAv

2G

1

11 iDv /G
,

bf52S Af

Ae
D * me

m f

1

11 iDv /G
. ~18!

The shape-preserving solutions~13! are valid under condi-
tion ~14! on the two detunings and condition~7! on thef ’s. It
can be checked that(auCau2[1, as required. The phase an
group velocities are determined byq andQ. We find

1

v
2

1

c
5

mv/2

Dv
21G2

, ~19!

andQ5dk5dn(v/c), where the modification of the inde
of refraction is therefore

dn5
mvc

2v

Dv

Dv
21G2

. ~20!

In summary, we have found that a near-resonant ‘‘N
medium permits shape-preserving solutions for an odd n
ber of copropagating correlated pulses, apparently the
such example since the McCall-Hahn discovery of SIT. P
tentially much more important, however, is the discove
that the presence of the probe pulse significantly mitiga
the formerly rigid equal-oscillator-strength condition. W
have focused on the case of a continuously probed t
photon-resonantL system, and have given pulse amplitude
atomic probablity amplitudes, and group and phase veloci
in terms of the probe detuningDv and inverse pulse length
G. We emphasize that the relaxation of the restriction
equal oscillator strengths in all transitions opens self-sim
correlated-pulse propagation theory to flexible experimen
test.
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