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Tests of the locality of exact Kohn-Sham exchange potentials
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It is commonly assumed that exact Kohn-Sham theory implies a local exchange-correlation potential for
ground states. Here we show that this is not true for the exchange potential in a Hartree-Fock model of
density-functional theory, although Hohenberg-Kohn theorems can be proved for this model. It may not be
possible to express exact Kohn-Sham equations in general in terms of density-functional derivatives that are
equivalent to local potential functions.

PACS numbes): 31.10+2z, 31.15.Ew, 71.16-w

[. INTRODUCTION This paradox might be resolved if Thomas-Fermi and exact
Kohn-Sham theories were equivalent for ground states, using
Hohenberg and Kohfil] proved that the external poten- the exact Hohenberg-Kohn energy functional, but this has
tial acting on an interactingN-electron system is uniquely been ruled out by a recent demonstration of inconsistency for
associated with the electronic ground-state density functiorsystems with more than two electrofgj.
Thus the ground-state energy is a functional of electron den- Here we examine this hypothesis in a density-functional
sity. Kohn and Shanp2] introduced an orbital model or ref- theory of the Hartree-Fock approximation, in order to clarify
erence state. An exact Kohn-Sham theory is defined by vanthe relationship between a local exchange potential and a
ing the occupied orbital functions of this reference state so agonlocal exchange operator. The theory is developed in di-
to minimize the Hohenberg-Kohn ground-state energy funcrect analogy to standard density-functional thedBFT)
tional. Alternatively, in the Kohn-Sham construction, the or-[1,2 4], updating an earlier derivation by Payfs. We de-
bital functions are determined by minimizing the model ki- rive exact Kohn-Sham equations, equivalent to the Hartree-
netic energy over all sets of occupied orbital functions thatFock equations of this model, but expressed in terms of func-
produce the ground-state density. tional derivatives of the Hartree-Fock energy functional.
Exact Kohn-Sham equations are defined as the Eulerfhis provides a model problem for which exact results are
Lagrange equations that determine occupied orbifgl§  known. A criterion for the existence of exact local potential
and the density functiop(r), expressed asn; ¢ ¢;, if the  functions is defined and tested in this model. It fails for the
energy functional is known. The exchange-correlation enkinetic energy by a large margin over any possible numerical
ergy functional E,{p] determines a functional derivative inaccuracy. This justifies the choice of the Salinger op-
Vyc= 0Exc/ 6p in these equations. If the functional derivative erator by Kohn and Sham, and verifies the inconsistency of
V,c iS equivalent to a local potential function(r), the = Thomas-Fermi theory and exact KS equations. This and
Kohn-Sham construction and exact Kohn-Sham theoryther tests of the exchange potential are considered here and
should give identical exact results for ground states. This i¢ead to the conclusion that an exact local exchange potential
commonly assumed to be true as a matter of definition. Bedoes not exist for ground states of typical atoms.
cause we find that longstanding results in existing literature A universal Hohenberg-Kohn functional is defined for
appear to contradict this assumption, we have set up a seriéfartree-Fock ground states. We carry out the Kohn-Sham
of tests designed to examine its validity. construction directly, minimizing the kinetic energy subject
The standard variational derivation of the Salinger to constrained density, and report calculations of comparable
equation, valid for all stationary states, can be expressed ihigh accuracy using the optimized effective potent@EP
terms of functional derivatives in the form of linear operatorsmethod [6,7], in which a local potential function is con-
acting on wave functions. Thomas-Fermi theory postulatestructed that minimizes the mean total energy of the refer-
that the kinetic-energy operator can be replaced by a locance state, without constraining the density. Calculations
potential function, while Kohn and Sha(KS) [2] retain the  comparing the Hartree-Fock model with the Kohn-Sham
kinetic-energy operator of Schiimger. The empirical suc- construction and with the OEP method were carried out for
cess of Kohn-Sham density-functional thedi®FT) indi-  atomic He, Be, and Ne. Details will be published elsewhere,
cates that this is the correct choice. It also indicates thabut relevant results are summarized here. Both OEP and the
variational theory does not imply that exact Kohn-ShamKS construction posit a local exchange potential, but the KS
equations can be expressed in terms of density-functionalonstruction also constrains the density function. This im-
derivatives equivalent to local potential functioftse local-  pliesExs=Eqgp, S0 thatExs=Eqe=E ¢ [8]. If the locality
ity hypothesig, contradicting the common assumption thathypothesis were valid, OEP, the KS construction, and exact
validity of this hypothesis is implied by variational theory. Kohn-Sham theory would be equivalent for Hartree-Fock
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ground states and give the Hartree-Fock energy and wav@dexed electron densify(r). Specific spin indices are omit-
function. A well-established counterexample is provided byted in derivations here. These definitions correspond to the
comparing HF ground-state energies with the OEP metho@nrestricted Hartree-Fock approximation for a ground state.
[6,7]. The ground-state energi&pep [9,10] are —14.5724  |f an N-electron reference state is defined by the criterion of
for Be and—128.5455 for Ne, in Hartree units, above the maximum projection on®, as in reference-state density-
Hartree-Fock energies[11] —14.5730 for Be and functional theory(RDFT) [15], this reference state is identi-
—128.5471 for Ne by amounts greater than the expectedal to the Hartree-Fock ground state and the two spin-
residual computational errors. Energies very close to OEfhdexed densities coincide. It follows from theorems proved
are obtained using the Kohn-Sham construc(iéh These in RDFT that the ground-state Hartree-Fock theory is
results are confirmed by new calculations reported here. Taequivalent to a density-functional theory based on spin-
tal energies are obtained with sufficient accuracy to removéndexed densityp. Theorems that establish this analogy to
any doubt thatExs and E differ significantly except for  standard DFT1,2] are derived here in the Hartree-Fock con-
He. Eqoed<Eks) is greater tharkE,r, which is the exact text.

Kohn-Sham energy for this model. This tests the hypothesis Consider the constrained-search derivation of L&y
that the exact Kohn-Sham exchange potential must be a locabplied within the restricted set of single-determinant varia-
function and indicates that it is not true. tional trial functions. The universal function&lp] is de-

A criterion parameter is defined here whose vanishing is dined by the minimum of ¢|T+U|®) over the set of all
necessary but not sufficient condition for locality of an ef- normalized Slater determinardsthat produce the densijy.
fective potential function. For He, Be, and Ne, this test failsHere T andU are, respectively, thB-electron kinetic-energy
by a wide margin for the kinetic energy but is satisfied tooperator and the Coulomb interaction. An equivalent defini-
computational accuracy for the Hartree potential. For the extion is obtained by introducing a spin-indexed external po-
change potential, we prove that this parameter must vanistential v(r) as a Lagrange multiplier field. A functional of
as a consequence of the OEP integral equation, and verify(r) is defined by
this by calculations. When computed for the Kohn-Sham ex-
change potential for Be and Ne, this parameter is small but
significantly larger than in the OEP calculations. Compari- FOV[P]:min((®t|T+U|q>t)+J’ V(Pt—P)dsf)
sons of data in existing literature show inconsistencies that Py
are confirmed by the present tests. These results negate the
assumption that variationally correct exact Kohn-Sham equa- =Eq[v]— f vp ddr. (1)
tions can always be expressed in terms of functional deriva-
tives in the form of local potential functions, and hence tha
the Kohn-Sham construction for ground states is equivale
to exact Kohn-Sham theory based on the Hohenberg-Koh
energy functional.

olv] here is the ground-state Hartree-Fock energy in the
given potentialv. The minimizing stateb, determines elec-
tron densit . When v=v, such thatp,=p for ®
Y Pv p pv=p p

One motivation for the present study is that Hartree-Fock™ @y, Eq. (1) determines the universal fu_nctlonE_IO[p ] .
theory can be extended to include electronic correlation by:(‘bp|T+U|q)p)- The numerical value of this functional in
adding an approximate correlation energy functidi& to any I-_|artree-Fock ground state is given explicitly by this
the Hartree-Fock total-energy expressj@8,14]. The Kohn- equation. , ,
Sham construction for such models can be derived from a CGeneralized Hohenberg-Kohn theorems follow immedi-
constrained search procedyd following the logic of the  ately from this definition. Whep=p, andv=v,,
Hartree-Fock model considered here. The proposed approxi-
mate correlation energy functiongl?] is, like the ordinary _ _ _ 3
exchange energy of the reference state, an explicit functional Folpl=Folr]=Eolv] f vpdr, @
of the occupied orbital set, and only implicitly a functional of
the density. It is important to understand the implications ofand the energy function&,,[p]=Fq[p]+ fvp d®r takes its
exact theory regarding an effective potential derived fromminimum valueEg[v]. Since p determines®,, when p
such an orbital functional. In applications to large molecules# p, andv#v,,, then Folp]=(P,|T+ U|<I>p) and fvp d3r
or solids, it would be advantageous to replace the nonlocar (®,|V|®,). Hence
part of these modified Hartree-Fock equations by an equiva-
lent local potential function, if such a potential exists. Eoulp]=(®,|T+U+V|D )=Eq[V]. (3)

Equationg2) and(3) establish the variational property of the
energy functionaEg,[p].

The Hartree-Fock ground-state energy functional is sub-

Consider an interacting nonrelativisti-electron quan- divided into component functionals defined as mean values
tum system described by wave functions restricted to thén the reference statd@=®,. The energy functional is
form of single Slater determinants. A ground-state waveEy[p]=T[p]+U[p]+V[p], where the individual function-
function @ is a single Slater determinant with orthonormal als can be expressed in terms of the occupied orbital func-
occupied spin-indexed orbital functionss;} and spin- tions {¢;} of ®. Introducing occupation numberg, and

II. HARTREE-FOCK AS A
DENSITY-FUNCTIONAL THEORY
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denoting the two-electron Coulomb interaction hyand  orbital functional derivatives implies a sum rule,

Coulomb minus exchange h:_y these component functionals
are oF A
2B =2 ! (DVedi(=Ve(N)p(r).  (5)

sbt
Tlp]=(P[T|®)=2 ny(i|—3V?D),
T ’ For the explicit density functionaE,=3X; ;nin;(ij|ulij),
where u=1/r,, this formula gives the classic&Hartree
potential function,

1 —
ULp]=(@[U|9)=5 2 niny(ij uli),

VR(Dp(r) =2 Mt (02 mi(ilulD . ©
VIpl=(®|V|®)= ni(ilv]i). ’
' Given E,=—3%; jnin;(ij|ulji) for a ground state, Eq5)

HereU[p]=Ei[p]+E,[p], where implies
EMF%%mwmwm v == net (O nilulen. @)
1 equivalent to the local exchange potential of Slafe]. For
E,p]l=— 3 IEJ: nin;(ij[ulji). (4)  the kinetic-energy functionald| T|®),
Assuming normalization®|¥) = (®|®) =1, the correlation v(r)p(r)= EI Ny (r{— V2L hi(r). (8

energy functional ¢ |U|¥ — @) defined in RDFT[15] van-
ishes in the present case.
IV. ONE-ELECTRON EQUATIONS AND ENERGIES

Ill. FUNCTIONAL DERIVATIVES AND

For an orthonormal set of orbital functiogs, the density
LOCAL POTENTIALS

function p=p4 takes the form=;n; ¢y ¢;. The occupation

The change of a density functionBldue to an arbitrary numbersn; for ground states are determined by Fermi-Dirac
infinitesimal variation ofp is usually expressed in the form statistics at zero temperature. For a system with discrete one-
SF =[[ 8F/3p(r)15p(r)d®r, defining the functional deriva- electron energy levels or with an energy gap at the Fermi
tive 6F/8p. Exact Kohn-Sham equations for the occupiedlevel, occupation numbers can be assumed to have values
orbital functions ofd® can only be derived if these orbital one or zero only. For consistency with the Hohenberg-Kohn
functions can be freely varied about their ground-state valtheorems, the energy functional must be minimized with re-
ues, within the relevant Hilbert space. This is a necessar§Pect to variations of the orbital functions. In the Hartree-
condition for the integralf 5¢* {H— €} ;=0 to imply an Fock_model, the energy mean vglué|(-||d>_) is an explicit
effective Schrdinger (or Dirad) equation{H—¢;}¢;=0. In  functional of the occupied orbital functions. The Euler-
Hartree-Fock or Kohn-Sham theory, the spin-indexed locall-2grange equations generated by minimizing this functional,
density functionp=3;n;¢* ¢; is constructed from orbital subject to orthonorma_llty of the orbital fgncUon;, define ex-
functions in this Hilbert space. Functional derivatives of an@ct Kohn-Sham equations for the occupied orbitals. Hartree-
orbital  functional  follow from SF=3,[{6¢*(r) Fock equations follow from the same derivation.

X[ 8F/56] (1)]+c.cd’r and take the form of a linear op- mirr;g]r;;nan?hihk?rr:gi]cd:rfgf a(l;fm; trlgf-:rr:;rgg ;Ltj;tztlgggle?)t/he
erator acting on an orbital function,F/5¢; (r) 9 9y

- i ) constraint thatog=p for an exact ground state. This con-
=n;Ve¢i(r). For consistency with the use by Kohn and giyyction defines an effective local potential as a Lagrange
Sham [2] of the kinetic-energy operator of Schiliager,  myltiplier field w(r), in analogy to Eq(1),

functional derivatives of an orbital functional that is also a

density functional must be related by the generalized chain _

rule 8F/8¢F =n;(8F/8p)¢;, which maintains the correct TW[p]:mln((©t|T|®t)+f W(Pt—P)dsr)

order of symbols in case the functional derivati\i& P

= 6F/6p is not equivalent to a local functiom(r). This

reduces to the usual definition if the functional derivative is :Ew[W]_f wp dr. (©)
equivalent to a local function.

Each of the ground-state density functionals defined b)Here EW[W] is the noninteracting ground-state energy]\bf
Egs.(4) is an explicit functional of the occupied orbitals of electrons in an external potential field If w=w,, is chosen
the reference state. If the functional derivative=8F/8p  so that the minimizingb,, givesp,,= pue, the equations for
reduces to a local potentiak(r) for any such orbital func- the noninteracting electronic orbitals occupieddnin the
tional that is also a density functional, then the definition ofHartree-Fock model are
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V(N @i(N) =[5+ 3V2—v(r)—vn(N]ei(r), (10 _Since the left-hand members of Eq40) and (13) are
different, the two equations in general produce different sets
wherev,=w—v—v, andE,=3ne . In the exact Kohn- of occupied orbital functions. However, if the functional
X w [l

Sham equations, derived below, the local exchange potentiderivative v, = 6E,/ép(r) reduces to a local exchange po-
v,(r) here is replaced by the functional derivative tential v_x(r), the 'proof that the H'art_ree-Fock ground-state
=[6/6p(r)]E,[p]. If an equivalent local exchange potential energy is a functional of the density |mpI|e_:s that _both equa-
exists. these Xequations are identical tions produce the sameand® ,. The occupied orbital func-
First-order variations of the energy functional, modified 10NS détermined by the local-potential equation must be so-

. o . lutions of the general (noncanonical Hartree-Fock
using Lagrange multipliers ;; to enforce orthonormality of equations. If Eqs(10) and (13) are each summed and inte-
the orbital functions, are given by

grated as indicated byn;[ ¢*{---}d%, then Eq.(7) and
the invariance of such trace sums under unitary transforma-
5( E[p]-> ninj(j bF b d3r — 5”))\“] tions of the occupied orbitals imply that the sum of eigen-
i values Zin;e; must be the same for both equations. Indi-
vidual components of the total energy must also be identical.
Equation (7) implies if v,=v(r) that v, must be the
Slater exchange potential. This result follows whendeis
defined by Eq(4). It clearly carries over to the situation of
nonzero correlation energy in RDHIS5]. In standard DFT,
it is implied if correlation energy is defined in a separate
postulate as the difference between total energy and
Euler-Lagrange equations follow on requiring this expres-eference-state energyp(H|®) [18]. Since the assumed lo-
sion to vanish for unconstrained variations of occupied orbitcal exchange potential is defined for the true model ground
als of @ with fixed occupation numbers #0. The coupled ~State, it should agree with that computed in the OEP method.

:Z n,

N SE B oy s
f&d)i {”i&l’i* 2 I’]]d)J)\“]d r+c.c.

+Z 5nif ¢i*(;—i¢id3r. (11

equations for the occupied orbitals are In fact, characteristic differences between Slater and OEP
exchange potentials are well establishgf9,10. Since
Hartree-Fock minimizes the sum of two nonlocal energies,
SE U . ;
= 2 Nidi\ji . (12 kinetic and exchange, while the Kohn-Sham construction se-
néer I lectively minimizes the kinetic energy, the possibility that

ground-state Hartree-Fock kinetic energy is greater than that
The functional derivativesT/n; 8¢ is the differential term obtained by the Kohn-Sham construction cannot be ex-
—1V2¢,. The energy functional$,V,E,, ,E, defined above cluded. When this is true, the argument given above implies
are invariant under unitary transformation of the occupiedhat an exact local exchange potential does not exist. In this
orbitals. In Hartree-Fock theory without symmetry con-case, the reference stade determined by the Kohn-Sham
straints, variational theory determinésbut not the particu- construction, minimizing total kinetic energy for a specified
lar orbital basis. It is customary to selectanonicalortho-  density, cannot be identical with the ground-state Hartree-

normal basis which diagonalizes the matni\ = €;; . Fock wave function. The difference of total energies defines
The Euler-Lagrange equations for the canonical occupied o@n artifici_al correlation energy inherent in the Kohn-Sham
bitals{¢;} of ® are the Hartree-Fock equations construction.

To summarize, assuming that the ground-state functional
. HE 102 derivative SE, / 5p is a local function implies several exact
=2 ni(jluli) gy(r) =[ e+ 3V2=v(r) —vp()]i(1). results in the Hartree-Fock model theory. If the ground state
! (13) is not degenerate, Eq€l3) and(10) must produce occupied
orbital sets that transform into each other and give the same

The external and Coulombic potentialsand v,, are deter- reference staté. The sumz;n;e; of occupied orbital ener-
mined by the chain rule for functional derivatives, gies must be the same for Hartree-Fock, exact Kohn-Sham,

_ ; ; d OEP. The local exchange potentialmust be the Slater
SFIn; 8¢ =(6FI168p) ;. On applying this formula to the and Ot .

functionalll E,, the exclhange term on the left here become otential, EQ(5). The OEP equations must produce the same
(5E, /8p) ¢'X ,giving the exact Kohn-Sham equations. Equa- ocal potential as the Kohn-Sham construction, in which total
tionx(lo) islé)btained if this functional derivative def.ines a kinet_ic energy is minimized for a fixed der_lsity function. This
local exchange potential, . If energy formulas are interpo- requires the ground-state Hartree-Fock kinetic energy to _be a
lated using fractional occupation numbers and occupatiom'n'mum among state@. that produce the same density
numbers are varied in a basis of canonical Kohn-Sha unctionp. Conversely, faﬂurg of any of these consequences
eigenfunctions, only the final term in E¢L1) is nonzero, of exact Kohn-Sham theory implies that the functional de-

and the equation implies Janak’s theorksi], rivative SE,/dp is not a local function.

V. RESULTS OF CALCULATIONS
JE oE oE ) ] o
m:f o 5—¢>id r=f o . d°r=¢. (14 The Kohn-Sham construction defines a variational proce-
i P nio; dure using trial functions in the usual Hilbert space. The KS
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TABLE |. Criteria for local functional derivativeghartree units;
signed integers indicate powers 0f)10 Z niJ d3r d)i*(r)év(r); (1-ny) pa(r)(ea—€)*
Atom PHF phF pKs pF pKS % (alvy—w,]i)=0, (16)
He —0.347-9 0.174-9 0.174-9-0.606-5 —0.606-5 ~ . .
Be -0316-9 0126 —01-3 0.812 0.815 wherev, is the Fock exchange operator. IndidesN and
Ne 01528 0442 —03-4  6.859 6.862 a>N here denote occupied and unoccupied orbitals of the

model state with orbital energie§ and e,, respectively.
This equation is derived by requiring’(H|®) to be station-
ary for restricted orbital variations

model potentialv determines the local exchange potential

in Eq. (10). If p is obtained by solving the Hartree-Fock Egs. , , 3

(13), an iterative process can be set up, similar to that pro- 5¢i(r):_f gi(r,r')év(r’)éi(r')dr (17
posed by Zhaet al. [19]. Starting with the Slater potential,

v, is built up by solving the Poisson equation for successivélfiven by év(r), where

iterates of the residual density errar—p. This iterative al-

gorithm will be described in detail elsewhere. The incremen- gi(r,r’)= E (1—ny)da(r)(ea— ei)‘lgﬁ;(r’).

tal exchange potential is a solution of a Poisson equation, a

which makes it a radially smooth function. Calculations us-Because of the Green’s-function weighting in E@s6), it
ing this algorithm have been carried out for atomic He, Beoes not imply thatd]v —y i)=0 for alli=N<a, a con-
X X = 1

and Ne. Computed total energies agree closely with priogiion for equivalence to UHF. If this condition is not satis-
results[8]. _ fied, the OEP model state differs from the UHF ground state,
Ground-state wave functions calculated as parametrigng E,.->E . However, the OEP integral equation im-

functions of the nuclear charge determine ground-state lies that the linear operator, is equivalent to the local

densities and values of each of the component energy fung'otential v, for all orbital variations generated by a local

. : L ) ) ! eﬁo'fential function. Since this includes variations of a nuclear
is determined by the definition of density-functional de”Va'charge, the OEP integral equation implies that the locality

tives appropriate to Hohenberg-Kohn theory. A necessaryyiterion P, for the OEP exchange energy must vanish by
condition for a local potential functiome(r) to be equiva-  construction. This provides a numerical test of the accuracy
lent to a functional derivativeSF/Sp in exact Kohn-Sham  of an OEP calculation. The Kohn-Sham construction obtains
equations is that the criterion defined (48] a local exchange potential subject to the additional constraint
that pxsc=punr in the Hartree-Fock model. Ifpogp
p dp # pune, then the KSC and OEP model states must differ,
P,:Z—F[p]—f d3rve(r)— (150  andP, does not necessarily vanish for the KS construction.
Iz 24 Table | lists computed values &f,, P,, andP+ for He,

Be, and Ne. In the Hartree-Fock model of DFT, components
should vanish to the accuracy of the wave-function calcula®f the ground-state energy functional are defined by Egs.
tion. Z derivatives of the HF density function and of these com-

For exchange energy, it is important to note that the vanPonents of the ground-state HF energy are used inEjto
ishing of P, is a necessary but not sufficient condition for €St the locality hypothesis for several effective local poten-
locality of an effective exchange potential. In the Hartree-tials. P, tests the Slater exchange potential @t tests
Fock (UHF) model of DFT[5], an effective local exchange the local exchange potential computed by the Kohn-Sham
potential can be obtained either by the Kohn-Sham construgonstruction.P, defined for the local potential computed
tion (KSC) or by minimizing the variational energy from Eq.(8), is large except for He. As expecteld, van-
(®|H|®) for a model statab whose occupied orbital func- ishes to within computational accuracy in all cases. Its value
tions are determined by a local optimized effective potentialsS @ measure of the numerical accuracy of the calculations. In
(OEP. In OEP theory[6,7], the local exchange potential these calculations?{=" vanishes to computational accuracy
vy(r) is determined by an integral equation deduced from theand P}* fails this test by a large margifL> is nonzero for
variational condition, for arbitraryv(r), Be and Ne, but is quite small. Sin€=0 is a necessary but

TABLE Il. HF and OEP energies and eigenvalues for Be and Ne: total enkngyekchange energy,),
kinetic energy Er), eigenvalues €;s, €5, €p) (hartree units

E Ex Er €1s €2s €2p
Be (HF) —14.57302 —2.66691 14.57302 —4.73267 —0.30927
Be (OEP —14.57256 —2.66609 14.573 —4.123 —-0.311
Ne (HF) —128.54709 —12.10835 128.54709 —32.7724 —1.9304 —0.8504
Ne (OEP —128.54563 —12.10551 128.546 —30.710 —1.602 —0.733
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TABLE lll. One-electron energieghartree units TABLE IV. Total energies and eigenvalue sulimartree units

Atom Level —12  ¢HAb  OFP) ek xS Atom Method E (tota) E (kinetic) E, Se
He 1s —-0.903 -0.918 —-0.918 -0.918 He HF? —2.8617 2.8617 —1.0258 —1.8359
Be 1s —4.733 —4.123 —4.125 —-4.624 OEP" —2.8617 —1.0258 —1.8359
2s —0.343 —-0.309 -0.311 —-0.309 -—0.326 KS —2.8617 2.8616 —1.0258 —1.8359
Ne 1s —32.772 —30.710 —30.821 —32.076 XS —2.8617 2.8616 —1.0258 —1.8359
2s —-1.931 -1602 -1.720 -—-1.751 Be HF —14.5730 145730 —2.6669 —10.0839
2p —0.792 —-0.850 -—-0.733 -—-0.852 -—-0.912 OEP 145724 —2.6658 —8.8683
a 0 KS —14.5724 14.5724 —2.6658 —8.8696
o Oore[F.]' hef 1] XS  —145614 149513 —27155 —9.9015
roese Fise ' Ne  HF —128.5471 128.5471 —12.1083 —74.5081
. . . . OEP —128.5455 —12.1050 —69.0184
not sufficient condition for locality, this result does not con- KS 1285454 1285451 — 121050 —70.1940

flict with other data cited here.

Table Il lists total and orbital energies obtained in new
variational HF and OEP calculations. The expected accurac¥rpese Fischel1].
is within one unit in the final figure quoted. Details of thesebgnge| and Voskg10], present results foE e.
calculations will be published elsewhere. They verify or re-
fine the results of earlier OEP calculatiof®10]. Table Il y4rtree-Fock for closed-shell atoms. But characteristic dif-
lists —1I, wherel is the experimental ionization potential, ferences are well-established, especially in the one-electron
canonical Hartree-Fock orbital energielS”, self-consistent energies. Sums of OEP orbital energies are significantly dif-
orbital energiess® obtained from Eq(10) using the Slater ferent from the corresponding Hartree-Fock sums. The
exchange potential of Ed7), Kohn-Sham orbital energies present analysis identifies the cause of these discrepancies.
€S obtained as described above, and OEP eigenvalues. Although limited to a theory without electronic correla-
Table IV lists total energy, kinetic energy, exchange energytion, so that accurate calculations can be carried out, the
and eigenvalue sums from the same calculations. Except f@resent results have profoundly unsatisfactory implications
He, all of these results differ. As discussed above, this imfor several practical aspects of density-functional theory. The
plies for Be and Ne that the functional derivatié&,/dp  full theory, including electronic correlation, can hardly be
=v, is not equivalent to a local exchange potential in theexpected to have a simpler mathematical structure than the
Hartree-Fock model of DFT. explicit exchange energy treated here. It may not be possible

to construct a theory that realizes the goal of an exact local
exchange-correlation potential for more than two electrons.
VI- DISCUSSION Note added in proofin refining our OEP calculations, we

Common assumptions about Kohn-Sham densityfind that orbital energies are more sensitive to the variational
functional theory have been tested here by numerical calclPasis than is indicated here. Total OEP energies, however,
lations. These calculations test rigorous theoretical conseare variationally stable and appear to be numerically accurate
quences of assuming that a local function exists equivalent t8s stated. Our KSC results are cross-checked between inde-
the density-functional derivative of a ground-state exchangg@endent algebraic and numerical programs, but this was not
energy. The tests clearly succeed for He but fail for both Bepossible for the OEP results. OEP calculations in which the
and Ne. Since these are typical atoms, similar tests are e®asis sensitivity has been reduced will be reported in a later
pected to fail in general for atoms or molecules with morepublication. We are grateful to J. B. Krieger for calling this

XS —128.5007 131.6979 —12.3075 —73.1273

than two electrons. problem to our attention.
Practical results that support this conclusion have been
known for some time. While an exact Kohn-Sham theory ACKNOWLEDGMENTS
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