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Tests of the locality of exact Kohn-Sham exchange potentials
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It is commonly assumed that exact Kohn-Sham theory implies a local exchange-correlation potential for
ground states. Here we show that this is not true for the exchange potential in a Hartree-Fock model of
density-functional theory, although Hohenberg-Kohn theorems can be proved for this model. It may not be
possible to express exact Kohn-Sham equations in general in terms of density-functional derivatives that are
equivalent to local potential functions.

PACS number~s!: 31.10.1z, 31.15.Ew, 71.10.2w
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I. INTRODUCTION

Hohenberg and Kohn@1# proved that the external poten
tial acting on an interactingN-electron system is uniquel
associated with the electronic ground-state density funct
Thus the ground-state energy is a functional of electron d
sity. Kohn and Sham@2# introduced an orbital model or ref
erence state. An exact Kohn-Sham theory is defined by v
ing the occupied orbital functions of this reference state so
to minimize the Hohenberg-Kohn ground-state energy fu
tional. Alternatively, in the Kohn-Sham construction, the o
bital functions are determined by minimizing the model
netic energy over all sets of occupied orbital functions t
produce the ground-state density.

Exact Kohn-Sham equations are defined as the Eu
Lagrange equations that determine occupied orbitals$f i%
and the density functionr(r ), expressed as( inif i* f i , if the
energy functional is known. The exchange-correlation
ergy functionalExc@r# determines a functional derivativ
v̂xc5dExc /dr in these equations. If the functional derivativ
v̂xc is equivalent to a local potential functionvxc(r ), the
Kohn-Sham construction and exact Kohn-Sham the
should give identical exact results for ground states. Thi
commonly assumed to be true as a matter of definition.
cause we find that longstanding results in existing literat
appear to contradict this assumption, we have set up a s
of tests designed to examine its validity.

The standard variational derivation of the Schro¨dinger
equation, valid for all stationary states, can be expresse
terms of functional derivatives in the form of linear operato
acting on wave functions. Thomas-Fermi theory postula
that the kinetic-energy operator can be replaced by a lo
potential function, while Kohn and Sham~KS! @2# retain the
kinetic-energy operator of Schro¨dinger. The empirical suc
cess of Kohn-Sham density-functional theory~DFT! indi-
cates that this is the correct choice. It also indicates
variational theory does not imply that exact Kohn-Sha
equations can be expressed in terms of density-functio
derivatives equivalent to local potential functions~the local-
ity hypothesis!, contradicting the common assumption th
validity of this hypothesis is implied by variational theor
1050-2947/99/61~1!/012503~7!/$15.00 61 0125
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This paradox might be resolved if Thomas-Fermi and ex
Kohn-Sham theories were equivalent for ground states, u
the exact Hohenberg-Kohn energy functional, but this h
been ruled out by a recent demonstration of inconsistency
systems with more than two electrons@3#.

Here we examine this hypothesis in a density-functio
theory of the Hartree-Fock approximation, in order to clar
the relationship between a local exchange potential an
nonlocal exchange operator. The theory is developed in
rect analogy to standard density-functional theory~DFT!
@1,2,4#, updating an earlier derivation by Payne@5#. We de-
rive exact Kohn-Sham equations, equivalent to the Hartr
Fock equations of this model, but expressed in terms of fu
tional derivatives of the Hartree-Fock energy function
This provides a model problem for which exact results
known. A criterion for the existence of exact local potent
functions is defined and tested in this model. It fails for t
kinetic energy by a large margin over any possible numer
inaccuracy. This justifies the choice of the Schro¨dinger op-
erator by Kohn and Sham, and verifies the inconsistency
Thomas-Fermi theory and exact KS equations. This a
other tests of the exchange potential are considered here
lead to the conclusion that an exact local exchange pote
does not exist for ground states of typical atoms.

A universal Hohenberg-Kohn functional is defined f
Hartree-Fock ground states. We carry out the Kohn-Sh
construction directly, minimizing the kinetic energy subje
to constrained density, and report calculations of compara
high accuracy using the optimized effective potential~OEP!
method @6,7#, in which a local potential function is con
structed that minimizes the mean total energy of the re
ence state, without constraining the density. Calculati
comparing the Hartree-Fock model with the Kohn-Sha
construction and with the OEP method were carried out
atomic He, Be, and Ne. Details will be published elsewhe
but relevant results are summarized here. Both OEP and
KS construction posit a local exchange potential, but the
construction also constrains the density function. This i
pliesEKS>EOEP, so thatEKS>EOEP>EHF @8#. If the locality
hypothesis were valid, OEP, the KS construction, and ex
Kohn-Sham theory would be equivalent for Hartree-Fo
©1999 The American Physical Society03-1
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ground states and give the Hartree-Fock energy and w
function. A well-established counterexample is provided
comparing HF ground-state energies with the OEP met
@6,7#. The ground-state energiesEOEP @9,10# are 214.5724
for Be and2128.5455 for Ne, in Hartree units, above th
Hartree-Fock energies@11# 214.5730 for Be and
2128.5471 for Ne by amounts greater than the expec
residual computational errors. Energies very close to O
are obtained using the Kohn-Sham construction@8#. These
results are confirmed by new calculations reported here.
tal energies are obtained with sufficient accuracy to rem
any doubt thatEKS and EHF differ significantly except for
He. EOEP(<EKS) is greater thanEHF, which is the exact
Kohn-Sham energy for this model. This tests the hypothe
that the exact Kohn-Sham exchange potential must be a l
function and indicates that it is not true.

A criterion parameter is defined here whose vanishing
necessary but not sufficient condition for locality of an e
fective potential function. For He, Be, and Ne, this test fa
by a wide margin for the kinetic energy but is satisfied
computational accuracy for the Hartree potential. For the
change potential, we prove that this parameter must va
as a consequence of the OEP integral equation, and v
this by calculations. When computed for the Kohn-Sham
change potential for Be and Ne, this parameter is small
significantly larger than in the OEP calculations. Compa
sons of data in existing literature show inconsistencies
are confirmed by the present tests. These results negat
assumption that variationally correct exact Kohn-Sham eq
tions can always be expressed in terms of functional der
tives in the form of local potential functions, and hence th
the Kohn-Sham construction for ground states is equiva
to exact Kohn-Sham theory based on the Hohenberg-K
energy functional.

One motivation for the present study is that Hartree-Fo
theory can be extended to include electronic correlation
adding an approximate correlation energy functional@12# to
the Hartree-Fock total-energy expression@13,14#. The Kohn-
Sham construction for such models can be derived from
constrained search procedure@4# following the logic of the
Hartree-Fock model considered here. The proposed app
mate correlation energy functional@12# is, like the ordinary
exchange energy of the reference state, an explicit functio
of the occupied orbital set, and only implicitly a functional
the density. It is important to understand the implications
exact theory regarding an effective potential derived fr
such an orbital functional. In applications to large molecu
or solids, it would be advantageous to replace the nonlo
part of these modified Hartree-Fock equations by an equ
lent local potential function, if such a potential exists.

II. HARTREE-FOCK AS A
DENSITY-FUNCTIONAL THEORY

Consider an interacting nonrelativisticN-electron quan-
tum system described by wave functions restricted to
form of single Slater determinants. A ground-state wa
function F is a single Slater determinant with orthonorm
occupied spin-indexed orbital functions$f i% and spin-
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indexed electron densityr(r ). Specific spin indices are omit
ted in derivations here. These definitions correspond to
unrestricted Hartree-Fock approximation for a ground sta
If an N-electron reference state is defined by the criterion
maximum projection onF, as in reference-state density
functional theory~RDFT! @15#, this reference state is ident
cal to the Hartree-Fock ground state and the two sp
indexed densities coincide. It follows from theorems prov
in RDFT that the ground-state Hartree-Fock theory
equivalent to a density-functional theory based on sp
indexed densityr. Theorems that establish this analogy
standard DFT@1,2# are derived here in the Hartree-Fock co
text.

Consider the constrained-search derivation of Levy@4#,
applied within the restricted set of single-determinant var
tional trial functions. The universal functionalF0@r# is de-
fined by the minimum of (FuT1UuF) over the set of all
normalized Slater determinantsF that produce the densityr.
HereT andU are, respectively, theN-electron kinetic-energy
operator and the Coulomb interaction. An equivalent defi
tion is obtained by introducing a spin-indexed external p
tential v(r ) as a Lagrange multiplier field. A functional o
r(r ) is defined by

F0v@r#5min
F t

S ~F tuT1UuF t!1E v~r t2r!d3r D
5E0@v#2E vr d3r . ~1!

E0@v# here is the ground-state Hartree-Fock energy in
given potentialv. The minimizing stateFv determines elec-
tron density rv . When v5vr such that rv5r for Fr

5Fv , Eq. ~1! determines the universal functionalF0@r#
5(FruT1UuFr). The numerical value of this functional in
any Hartree-Fock ground state is given explicitly by th
equation.

Generalized Hohenberg-Kohn theorems follow imme
ately from this definition. Whenr5rv andv5vr ,

F0@r#5F0v@r#5E0@v#2E vr d3r , ~2!

and the energy functionalE0v@r#5F0@r#1*vr d3r takes its
minimum valueE0@v#. Since r determinesFr , when r
Þrv andvÞvr , thenF0@r#5(FruT1UuFr) and*vr d3r
5(FruVuFr). Hence

E0v@r#5~FruT1U1VuFr!>E0@v#. ~3!

Equations~2! and~3! establish the variational property of th
energy functionalE0v@r#.

The Hartree-Fock ground-state energy functional is s
divided into component functionals defined as mean val
in the reference stateF5Fr . The energy functional is
E0@r#5T@r#1U@r#1V@r#, where the individual function-
als can be expressed in terms of the occupied orbital fu
tions $f i% of F. Introducing occupation numbersni , and
3-2
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TESTS OF THE LOCALITY OF EXACT KOHN-SHAM . . . PHYSICAL REVIEW A61 012503
denoting the two-electron Coulomb interaction byu and
Coulomb minus exchange byū, these component functiona
are

T@r#5~FuTuF!5(
i

ni~ i u2 1
2“

2u i !,

U@r#5~FuUuF!5
1

2 (
i , j

ninj~ i j uūu i j !,

V@r#5~FuVuF!5(
i

ni~ i uvu i !.

HereU@r#5Eh@r#1Ex@r#, where

Eh@r#5
1

2 (
i , j

ninj~ i j uuu i j !,

Ex@r#52
1

2 (
i , j

ninj~ i j uuu j i !. ~4!

Assuming normalization (FuC)5(FuF)51, the correlation
energy functional (FuUuC2F) defined in RDFT@15# van-
ishes in the present case.

III. FUNCTIONAL DERIVATIVES AND
LOCAL POTENTIALS

The change of a density functionalF due to an arbitrary
infinitesimal variation ofr is usually expressed in the form
dF5*@dF/dr(r )#dr(r )d3r , defining the functional deriva
tive dF/dr. Exact Kohn-Sham equations for the occupi
orbital functions ofF can only be derived if these orbita
functions can be freely varied about their ground-state v
ues, within the relevant Hilbert space. This is a necess
condition for the integral*df i* $H2e i%f i50 to imply an
effective Schro¨dinger ~or Dirac! equation$H2e i%f i50. In
Hartree-Fock or Kohn-Sham theory, the spin-indexed loc
density functionr5( inif i* f i is constructed from orbita
functions in this Hilbert space. Functional derivatives of
orbital functional follow from dF5( i*$df i* (r )
3@dF/df i* (r )#1c.c.%d3r and take the form of a linear op
erator acting on an orbital function,dF/df i* (r )
5ni v̂Ff i(r ). For consistency with the use by Kohn an
Sham @2# of the kinetic-energy operator of Schro¨dinger,
functional derivatives of an orbital functional that is also
density functional must be related by the generalized ch
rule dF/df i* 5ni(dF/dr)f i , which maintains the correc
order of symbols in case the functional derivativev̂F
5dF/dr is not equivalent to a local functionv(r ). This
reduces to the usual definition if the functional derivative
equivalent to a local function.

Each of the ground-state density functionals defined
Eqs. ~4! is an explicit functional of the occupied orbitals o
the reference state. If the functional derivativev̂F5dF/dr
reduces to a local potentialvF(r ) for any such orbital func-
tional that is also a density functional, then the definition
01250
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orbital functional derivatives implies a sum rule,

(
i

f i*
dF

df i*
5(

i
nif i* ~r !v̂Ff i~r !5vF~r !r~r !. ~5!

For the explicit density functionalEh5 1
2 ( i , jninj ( i j uuu i j ),

where u51/r 12, this formula gives the classical~Hartree!
potential function,

vh~r !r~r !5(
i

nif i* ~r !(
j

nj~ j uuu j !f i~r !. ~6!

Given Ex52 1
2 ( i , jninj ( i j uuu j i ) for a ground state, Eq.~5!

implies

vx~r !r~r !52(
i

nif i* ~r !(
j

nj~ j uuu i !f j~r !, ~7!

equivalent to the local exchange potential of Slater@16#. For
the kinetic-energy functional (FuTuF),

vT~r !r~r !5(
i

nif i* ~r !$2 1
2“

2%f i~r !. ~8!

IV. ONE-ELECTRON EQUATIONS AND ENERGIES

For an orthonormal set of orbital functionsf i , the density
function r5rF takes the form( inif i* f i . The occupation
numbersni for ground states are determined by Fermi-Dir
statistics at zero temperature. For a system with discrete
electron energy levels or with an energy gap at the Fe
level, occupation numbers can be assumed to have va
one or zero only. For consistency with the Hohenberg-Ko
theorems, the energy functional must be minimized with
spect to variations of the orbital functions. In the Hartre
Fock model, the energy mean value (FuHuF) is an explicit
functional of the occupied orbital functions. The Eule
Lagrange equations generated by minimizing this function
subject to orthonormality of the orbital functions, define e
act Kohn-Sham equations for the occupied orbitals. Hartr
Fock equations follow from the same derivation.

Kohn and Sham@2# define a kinetic-energy functional b
minimizing the kinetic energy of a reference state under
constraint thatrF5r for an exact ground state. This con
struction defines an effective local potential as a Lagra
multiplier field w(r ), in analogy to Eq.~1!,

Tw@r#5min
F t

S ~F tuTuF t!1E w~r t2r!d3r D
5Ew@w#2E wr d3r . ~9!

Here Ew@w# is the noninteracting ground-state energy ofN
electrons in an external potential fieldw. If w5wr is chosen
so that the minimizingFw givesrw5rHF, the equations for
the noninteracting electronic orbitals occupied inF in the
Hartree-Fock model are
3-3
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vx~r !f i~r !5@e i
KS1 1

2“
22v~r !2vh~r !#f i~r !, ~10!

where vx5w2v2vh and Ew5(nie i . In the exact Kohn-
Sham equations, derived below, the local exchange pote
vx(r ) here is replaced by the functional derivativev̂x
5@d/dr(r )#Ex@r#. If an equivalent local exchange potenti
exists, these equations are identical.

First-order variations of the energy functional, modifi
using Lagrange multipliersl j i to enforce orthonormality of
the orbital functions, are given by

dH E@r#2(
i j

ninj S E f i* f jd
3r2d i j Dl j i J

5(
i

niF E df i* H dE

nidf i*
2(

j
njf jl j i J d3r1c.c.G

1(
i

dniE f i*
dE

dr
f id

3r . ~11!

Euler-Lagrange equations follow on requiring this expr
sion to vanish for unconstrained variations of occupied or
als of F with fixed occupation numbersniÞ0. The coupled
equations for the occupied orbitals are

dE

nidf i*
5(

j
njf jl j i . ~12!

The functional derivativedT/nidf i* is the differential term
2 1

2“
2f i . The energy functionalsT,V,Eh ,Ex defined above

are invariant under unitary transformation of the occup
orbitals. In Hartree-Fock theory without symmetry co
straints, variational theory determinesF but not the particu-
lar orbital basis. It is customary to select acanonicalortho-
normal basis which diagonalizes the matrixnjl j i 5e id i j .
The Euler-Lagrange equations for the canonical occupied
bitals $f i% of F are the Hartree-Fock equations

2(
j

nj~ j uuu i !f j~r !5@e i
HF1 1

2“
22v~r !2vh~r !#f i~r !.

~13!

The external and Coulombic potentialsv and vh are deter-
mined by the chain rule for functional derivative
dF/nidf i* 5(dF/dr)f i . On applying this formula to the
functional Ex , the exchange term on the left here becom
(dEx /dr)f i , giving the exact Kohn-Sham equations. Equ
tion ~10! is obtained if this functional derivative defines
local exchange potentialvx . If energy formulas are interpo
lated using fractional occupation numbers and occupa
numbers are varied in a basis of canonical Kohn-Sh
eigenfunctions, only the final term in Eq.~11! is nonzero,
and the equation implies Janak’s theorem@17#,

]E

]ni
5E f i*

dE

dr
f id

3r5E f i*
dE

nidf i*
d3r5e i . ~14!
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Since the left-hand members of Eqs.~10! and ~13! are
different, the two equations in general produce different s
of occupied orbital functions. However, if the function
derivative v̂x5dEx /dr(r ) reduces to a local exchange p
tential vx(r ), the proof that the Hartree-Fock ground-sta
energy is a functional of the density implies that both eq
tions produce the samer andFr . The occupied orbital func-
tions determined by the local-potential equation must be
lutions of the general ~noncanonical! Hartree-Fock
equations. If Eqs.~10! and ~13! are each summed and inte
grated as indicated by( ini*f i* $•••%d3r , then Eq.~7! and
the invariance of such trace sums under unitary transfor
tions of the occupied orbitals imply that the sum of eige
values ( inie i must be the same for both equations. Ind
vidual components of the total energy must also be identi

Equation ~7! implies if v̂x5vx(r ) that vx must be the
Slater exchange potential. This result follows wheneverEx is
defined by Eq.~4!. It clearly carries over to the situation o
nonzero correlation energy in RDFT@15#. In standard DFT,
it is implied if correlation energy is defined in a separa
postulate as the difference between total energy
reference-state energy (FuHuF) @18#. Since the assumed lo
cal exchange potential is defined for the true model grou
state, it should agree with that computed in the OEP meth
In fact, characteristic differences between Slater and O
exchange potentials are well established@7,9,10#. Since
Hartree-Fock minimizes the sum of two nonlocal energi
kinetic and exchange, while the Kohn-Sham construction
lectively minimizes the kinetic energy, the possibility th
ground-state Hartree-Fock kinetic energy is greater than
obtained by the Kohn-Sham construction cannot be
cluded. When this is true, the argument given above imp
that an exact local exchange potential does not exist. In
case, the reference stateF determined by the Kohn-Sham
construction, minimizing total kinetic energy for a specifie
density, cannot be identical with the ground-state Hartr
Fock wave function. The difference of total energies defin
an artificial correlation energy inherent in the Kohn-Sha
construction.

To summarize, assuming that the ground-state functio
derivativedEx /dr is a local function implies several exac
results in the Hartree-Fock model theory. If the ground st
is not degenerate, Eqs.~13! and~10! must produce occupied
orbital sets that transform into each other and give the sa
reference stateF. The sum( inie i of occupied orbital ener-
gies must be the same for Hartree-Fock, exact Kohn-Sh
and OEP. The local exchange potentialvx must be the Slater
potential, Eq.~5!. The OEP equations must produce the sa
local potential as the Kohn-Sham construction, in which to
kinetic energy is minimized for a fixed density function. Th
requires the ground-state Hartree-Fock kinetic energy to b
minimum among statesF that produce the same densi
functionr. Conversely, failure of any of these consequen
of exact Kohn-Sham theory implies that the functional d
rivative dEx /dr is not a local function.

V. RESULTS OF CALCULATIONS

The Kohn-Sham construction defines a variational pro
dure using trial functions in the usual Hilbert space. The
3-4
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model potentialw determines the local exchange potentialvx
in Eq. ~10!. If r is obtained by solving the Hartree-Fock Eq
~13!, an iterative process can be set up, similar to that p
posed by Zhaoet al. @19#. Starting with the Slater potentia
vx is built up by solving the Poisson equation for success
iterates of the residual density errorr t2r. This iterative al-
gorithm will be described in detail elsewhere. The increm
tal exchange potential is a solution of a Poisson equat
which makes it a radially smooth function. Calculations u
ing this algorithm have been carried out for atomic He, B
and Ne. Computed total energies agree closely with p
results@8#.

Ground-state wave functions calculated as parame
functions of the nuclear chargeZ determine ground-stat
densities and values of each of the component energy f
tionals considered here. The relationship of these quant
is determined by the definition of density-functional deriv
tives appropriate to Hohenberg-Kohn theory. A necess
condition for a local potential functionvF(r ) to be equiva-
lent to a functional derivativedF/dr in exact Kohn-Sham
equations is that the criterion defined by@18#

PF5
]

]Z
F@r#2E d3rvF~r !

]r

]Z
~15!

should vanish to the accuracy of the wave-function calcu
tion.

For exchange energy, it is important to note that the v
ishing of Px is a necessary but not sufficient condition f
locality of an effective exchange potential. In the Hartre
Fock ~UHF! model of DFT@5#, an effective local exchang
potential can be obtained either by the Kohn-Sham const
tion ~KSC! or by minimizing the variational energ
(FuHuF) for a model stateF whose occupied orbital func
tions are determined by a local optimized effective poten
~OEP!. In OEP theory@6,7#, the local exchange potentia
vx(r ) is determined by an integral equation deduced from
variational condition, for arbitrarydv(r ),

TABLE I. Criteria for local functional derivatives~hartree units;
signed integers indicate powers of 10!.

Atom Ph
HF Px

HF Px
KS PT

HF PT
KS

He 20.347–9 0.174–9 0.174–920.606–5 20.606–5
Be 20.316–9 0.126 20.1–3 0.812 0.815
Ne 0.152–8 0.442 20.3–4 6.859 6.862
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niE d3r f i* ~r !dv~r !(
a

~12na!fa~r !~ea2e i !
21

3~auvx2 v̂xu i !50, ~16!

where v̂x is the Fock exchange operator. Indicesi<N and
a.N here denote occupied and unoccupied orbitals of th
model state with orbital energiese i and ea , respectively.
This equation is derived by requiring (FuHuF) to be station-
ary for restricted orbital variations

df i~r !52E gi~r ,r 8!dv~r 8!f i~r 8!d3r 8 ~17!

driven bydv(r ), where

gi~r ,r 8!5(
a

~12na!fa~r !~ea2e i !
21fa* ~r 8!.

Because of the Green’s-function weighting in Eq.~16!, it
does not imply that (auvx2 v̂xu i )50 for all i<N,a, a con-
dition for equivalence to UHF. If this condition is not satis-
fied, the OEP model state differs from the UHF ground stat
and EOEP.EUHF. However, the OEP integral equation im-
plies that the linear operatorv̂x is equivalent to the local
potential vx for all orbital variations generated by a local
potential function. Since this includes variations of a nuclea
charge, the OEP integral equation implies that the locali
criterion Px for the OEP exchange energy must vanish b
construction. This provides a numerical test of the accura
of an OEP calculation. The Kohn-Sham construction obtain
a local exchange potential subject to the additional constra
that rKSC5rUHF in the Hartree-Fock model. IfrOEP
ÞrUHF, then the KSC and OEP model states must diffe
andPx does not necessarily vanish for the KS construction

Table I lists computed values ofPh , Px , andPT for He,
Be, and Ne. In the Hartree-Fock model of DFT, componen
of the ground-state energy functional are defined by Eqs.~4!.
Z derivatives of the HF density function and of these com
ponents of the ground-state HF energy are used in Eq.~15! to
test the locality hypothesis for several effective local poten
tials. Px

HF tests the Slater exchange potential andPx
KS tests

the local exchange potential computed by the Kohn-Sha
construction.PT , defined for the local potential computed
from Eq. ~8!, is large except for He. As expected,Ph van-
ishes to within computational accuracy in all cases. Its valu
is a measure of the numerical accuracy of the calculations.
these calculations,Px

OEP vanishes to computational accuracy
andPx

HF fails this test by a large margin.Px
KS is nonzero for

Be and Ne, but is quite small. SincePx50 is a necessary but
TABLE II. HF and OEP energies and eigenvalues for Be and Ne: total energy (E), exchange energy (Ex),
kinetic energy (ET), eigenvalues (e1s ,e2s ,e2p) ~hartree units!.

E Ex ET e1s e2s e2p

Be ~HF! 214.57302 22.66691 14.57302 24.73267 20.30927
Be ~OEP! 214.57256 22.66609 14.573 24.123 20.311
Ne ~HF! 2128.54709 212.10835 128.54709 232.7724 21.9304 20.8504
Ne ~OEP! 2128.54563 212.10551 128.546 230.710 21.602 20.733
3-5
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not sufficient condition for locality, this result does not co
flict with other data cited here.

Table II lists total and orbital energies obtained in ne
variational HF and OEP calculations. The expected accur
is within one unit in the final figure quoted. Details of the
calculations will be published elsewhere. They verify or
fine the results of earlier OEP calculations@9,10#. Table III
lists 2I , where I is the experimental ionization potentia
canonical Hartree-Fock orbital energiese i

HF, self-consistent
orbital energiese i

XS obtained from Eq.~10! using the Slater
exchange potential of Eq.~7!, Kohn-Sham orbital energie
e i

KS obtained as described above, and OEP eigenval
Table IV lists total energy, kinetic energy, exchange ener
and eigenvalue sums from the same calculations. Excep
He, all of these results differ. As discussed above, this
plies for Be and Ne that the functional derivativedEx /dr

5 v̂x is not equivalent to a local exchange potential in t
Hartree-Fock model of DFT.

VI. DISCUSSION

Common assumptions about Kohn-Sham dens
functional theory have been tested here by numerical ca
lations. These calculations test rigorous theoretical con
quences of assuming that a local function exists equivalen
the density-functional derivative of a ground-state excha
energy. The tests clearly succeed for He but fail for both
and Ne. Since these are typical atoms, similar tests are
pected to fail in general for atoms or molecules with mo
than two electrons.

Practical results that support this conclusion have b
known for some time. While an exact Kohn-Sham theo
with a local potential is expected to reproduce energy
density-dependent properties of the true ground state,
has never been achieved for real systems with more than
electrons. If electronic correlation is omitted, such an ex
theory should coincide for Hartree-Fock ground states w
the OEP method, and both should be equivalent to ex

TABLE III. One-electron energies~hartree units!.

Atom Level 2I a e (HF) b e (OEP) e (KS) e (XS)

He 1s 20.903 20.918 20.918 20.918
Be 1s 24.733 24.123 24.125 24.624

2s 20.343 20.309 20.311 20.309 20.326
Ne 1s 232.772 230.710 230.821 232.076

2s 21.931 21.602 21.720 21.751
2p 20.792 20.850 20.733 20.852 20.912

aMoore @20#.
bFroese Fischer@11#.
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Hartree-Fock for closed-shell atoms. But characteristic d
ferences are well-established, especially in the one-elec
energies. Sums of OEP orbital energies are significantly
ferent from the corresponding Hartree-Fock sums. T
present analysis identifies the cause of these discrepanc

Although limited to a theory without electronic correla
tion, so that accurate calculations can be carried out,
present results have profoundly unsatisfactory implicatio
for several practical aspects of density-functional theory. T
full theory, including electronic correlation, can hardly b
expected to have a simpler mathematical structure than
explicit exchange energy treated here. It may not be poss
to construct a theory that realizes the goal of an exact lo
exchange-correlation potential for more than two electron

Note added in proof.In refining our OEP calculations, we
find that orbital energies are more sensitive to the variatio
basis than is indicated here. Total OEP energies, howe
are variationally stable and appear to be numerically accu
as stated. Our KSC results are cross-checked between
pendent algebraic and numerical programs, but this was
possible for the OEP results. OEP calculations in which
basis sensitivity has been reduced will be reported in a l
publication. We are grateful to J. B. Krieger for calling th
problem to our attention.
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TABLE IV. Total energies and eigenvalue sums~hartree units!.

Atom Method E ~total! E ~kinetic! Ex (e

He HFa 22.8617 2.8617 21.0258 21.8359
OEPb 22.8617 21.0258 21.8359

KS 22.8617 2.8616 21.0258 21.8359
XS 22.8617 2.8616 21.0258 21.8359

Be HF 214.5730 14.5730 22.6669 210.0839
OEP 214.5724 22.6658 28.8683
KS 214.5724 14.5724 22.6658 28.8696
XS 214.5614 14.9513 22.7155 29.9015

Ne HF 2128.5471 128.5471 212.1083 274.5081
OEP 2128.5455 212.1050 269.0184
KS 2128.5454 128.5451 212.1050 270.1940
XS 2128.5007 131.6979 212.3075 273.1273

aFroese Fischer@11#.
bEngel and Vosko@10#, present results for(e.
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