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Linear optics simulations of the quantum baker’s map
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The unitary evolution of linear optics can be used to model quantum computational networks. In this paper,
a quantum simulation of a classically chaotic m#pe baker's mapis developed using linear optics. Two
different models are presented. The first model employs only 50-50 beam splitters and phase shifters to
simulate universal 2-qubit gates of a quantum computer. The second model uses the discrete Fourier transform
generated by symmetribl X N fiber couplers. If single photons are used as inputs for these linear optics
models, the result is a physical realization of the quantum baker's map.

PACS numbegs): 03.67.Lx, 05.45.Mt

[. INTRODUCTION true because of the difficulty of implementing more-than-
two-bit gates. Therefore, the thrust of many researchers is to
Quantum computers have been shown to be superior tshow that the 1-bit and 2-bit gates form a complete set of
classical computers in factoring large numbfgr®], search-  universal gate$20,21. However, linear optics is not con-
ing [3,4], and in simulating quantum systerf§]. Several strained by such limitations. It is only bounded by the physi-
physical systems including ion trapg], liquid state NMR cal size of the apparatyd?2,22, since the apparatus size
[7,8], cavity QED[9], far-off-resonance optical lattic¢&0], grows exponentially with the number of bits. Using linear
and solid state systeni$1] have been explored as possible optics, manyL-bit gates can be implemented in a single uni-
quantum computers. There are only a few requirements for tary operationa brief disscussion is found §i23]).
guantum computer. The quantum bifgubity must be The discrete Fourier transforfDFT) [2,24] is an ex-
strongly entangled with each other. The bits must be easilpmple of an operation that can be performed exponentially
manipulated by controlled external fields, and minimally faster on a quantum computer than on a classical computer.
coupled to all other fields. For example, the qubits in the ionFor a typicalL-bit quantum computer, the number of 2-bit
trap [6] are the ions and these ions are entangled via theperations needed to realize the DFT goe§b§ll. How-
Coulomb repulsion. The states of the qubits are the elecever, for a symmetric multipof25,26| device, the DFT can
tronic states of the ions, which are manipulated with lasebe effected in a single unitary operatif@7]. This fact will
fields. be used to construct a relatively simple quantum baker’'s map
This paper proposes an all-optical implementation oflater on in the paper.
quantum logic. Many all-optical implementations of quan- Even though it has been shown that linear optics can re-
tum logic have been proposed and studig@—-17. For ex-  alize any unitary operatiof28] and simulate quantum net-
ample, solutions to the factoring problem have been proworks [12], this framework cannot be considered a true
posed based upon axslit interferometef14] and upon a quantum computing system. A quantum computer has
simple phase-varying Mach-Zehnder interferomef2b].  n-entangled bits having a"Zlimensional Hilbert space.
Also a linear optics simulation of the Deutsch-Jozsa algoHence, there are two significant differences. First, in linear
rithm has been developdd3]. Of particular interest is the optics the entanglement is between different degrees of free-
work of Cerfetal. [12] and Kwiatet al. [17]. They used dom of a single particlgl6]. On the other hand, with typical
simple linear optical elemente.g., 50-50 beam splitters and quantum computing systems many particles are entangled
waveplates to simulate quantum circuits such as teleporta-nonlocally. Second, as Barenai al. [22] points out, the
tion [18] and an exhaustive searfB,4]. physical size of the apparatus performing the computation
The quantum behavior of linear optics is realized by iden-grows with the number of bits for a quantum computer and
tifying a particular path with a particular quantum state. Forwith the Hilbert space for a linear optics setup. As Spreeuw
example, a 1-bit simulation requires two paths. The paths argl6] indicates the exponential growth in the number of paths
labeled 0 and 1 representing the eigenvectOjsand|1), is a direct consequence of the lack of nonlocality in this
respectively. The analogy to the operation of quantum logisystem as compared to the typical quantum computer system.
gates is particularly apparent in single-photon interferometryin effect then, the result is a classical optical computer, with
experiments. In that case, the quantum bit is directly associene exception. If single photons are used, then the results are
ated with the “which path” variabld19]. For example, an probabilistic and quantum mechanical. That is, a single
optical symmetric beam splitter is known to act as the squaremplementation of the device using a single photon yields a
root of a controlledNOT gate(up to a phase ofr/4) [12]. The  single realization of the computation. The measurement of
key is that a single photon may be used to represent multiplthe photon will find it in a particular output path. For a weak
guantum bits. classical light field input, an ensemble of such individual
Typical quantum computers rely heavily on basic 1-bitrealizations result. In that case, the output intensities may be
and 2-bit gates to form the fundamental logic. Hence, algoassociated with the probabilities of finding the photon in a
rithms are developed in terms of the most basic gates. This igarticular output path. In this sense, the implementation of
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the computation device with single photons is a quantum N
analog of the device while the implementation with classical “/1/ H O
fields is a simulation of the device. However, it should be i1t
noted that although it is easy to describe a single photor
setup, it is not as easy to experimentally implement one.
While great strides have been made in detecfi2® and |
controlled generation of single photof30], it is still very 011 \
difficult to work with them. Therefore, we will give ex- 2V
amples which utilize classical fields as inputs as well as™"
single photons. 001
The exponential growth of the linear optical setup with
the number of bits poses serious difficulties for implement-
ing a computation device with linear optics. However, linear
optics does appear to be a natural framework in which to FIG. 1. Optical realization of a 3-bit quantum baker’'s map using
simulate small: quantum systemfbs,24). In this case, if a basic 2-bit gates. TransformationR,(S, and A) are outlined by
single photon is used as an input then the result is a quantugashed boxes. In addition, a 1-bit Hadamard gate is boxed in the
mechanical realization of the system. If a classical field isupper left-hand corner with a label 6f.
used then the result is a simulation of that quantum system.
In this paper, linear optics will be used to model the quan- The baker’'s map is quantized followif@1]. The rect-
tum baker's magdQBM) [24]. Two different setups will be angle is divided into phase cells of areaf2. The number of
presented. The first setup will simulate the evolution of aphase cells is given b= P Q/27%, whereP Q is an integer
typical quantum computer, which uses the basic 2-bit gatesnultiple of 27%. For three bits, there would be*2 8 cells
The second, will make use of linear integrated optics whichwith a total phase-space area ofid6 Adopting the notation
offers some conceptual and possibly technical simplificaof Balazs and Voro$31], the periodic normalized position
tions. eigenvectors argn) with eigenvaluesq,=2nAn/P, n
=0,1,...N—1. The normalized periodic momentum
Il. THE BAKER’S MAP eigenvectors arém), with eigenvaluesp,,=27Am/Q, m
) ) =0,1,... N—1. The operatorp andq are defined as trans-
Simple maps such as the classical baker's map are exation operators acting on each other's eigenstates. The trans-
tremely useful in studying chaotic behavior. They represent #,rmation between the position basis and momentum basis is

class of completely chaotic systems from which much or allyone py theDFT) [1,2,24,31 having matrix elements given
undesirable difficulties, not associated with chaotic behaviory,

have been remove@1]. By quantizing these classical mod-

els, it is hoped that understanding will be gained of how 1

chaotic information is stored in the quantum description of (Fr)nm=(n|m)= ——e2mnmN, (2.2
nature and in what limit chaos appears. In addition, simula- JN

tions have been done on the QBM, which have shown that it
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is hypersensitive to perturbation of the m&@2]. The sensi- The quantum baker’'s map is defined to be

tivity of the QBM to perturbation is a proposed realization of

guantum chaos. Schadk4] showed that a simple 3-bit Fne O

guantum computer could be used to realize the quantum bak- B= FNl( 0o F /2) ‘ 2.3
N

er's map. It was shown that a sequence of eleven 2-bit gates
could realize one iteration of the map. Hannaiyal. [33] L .
demonstrated one possible optical realization of the quan- M [2]; it is shown that the DFT can be realized by only
tized baker's map by using the analogy between ray andwo ba.S|_c.un|'Fary operations. The first transformation acting
wave optics and classical and quantum mechanics. on qubitj is given by
The classical baker's map is a simple area-preserving

transformation in the momentum-position phase space. It is o111
assumed that the motion is bounded I6y,P). The motion AJ'_E 1 -1/

in phase spacf31] is governed by the map
1 . 1 In [12] this operation is referred to as the Hadamard trans-
(29,2p) it 0=q=<zQ, formation and was implemented using a beam splitter and
[20-Q,2(p+P)] if 1Q<g=Q. two — /2 phase shifters one at each port in the high or 1
(2.1)  path. The transformation can also be considered a 1-bit DFT.
Figure 1 has a dashed box around a 1-bit Hadamard gate in
Hence, the rectangle is compressed to half its original size ithe upper left-hand corner. It is important to note that for
the p dimension and stretched to twice its original size in theevery beam splitter in the figure there are two phase shifters.
g dimension. Then it is cut in half in thgedimension and the The other phase shifters were not drawn for aesthetic rea-
right most portion is stacked on top of the left most portion.sons.

(2.9

(q,p)—
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The second operation is a phase-gate operating oiththe of the paths are grouped such that the zeroth and first bit are

andjth (i<j) qubits defined by the same upon entering the input ports of the beam splitters.
. For example, the 000 and 100 enter the top-left-most beam
RijlkL -1, - .. ko)=€"ilk 1, ... ko) (2.5 splitter. There are four beam splitters in this transformation
accounting for the four possible states of the zeroth and first
where bit.

2l if ki=k=1 To construct Fig. 1 out of free-space optics would be

@i} i (2.6) extremely difficult. In order to get pathlengths to subwave-

0 otherwise length accuracy for 20 beam splitters would be nontrivial at

the very least. However, this simulation is instructive in that
it models the operation of a typical 3-bit quantum computer.
In addition, for single photons, Fig. 1 is, as Schdél]

andk,,e{0,1. Here, L is the number of qubits and hence
N=2%. The matrix representation &; is given by

100 O points out, a physical realization of a quantum baker's map.
01 0 O

Rij = 0 0 1 0 (2.7 IIl. INTEGRATED OPTICS APPROACH
0 0 0 e A linear optical simulation of the quantum baker's map

may be developed from a different approach. This approach
The linear optics realization of this gate requires putting an@y offer a more tractable means of implementation. It is
phase delay in the paths wherandj are 1. For example, &ways possible to build ahxN symmetric multiport de-
consider a 3-bit circuit. Suppose, the phase gate acts on tiéce [25] which performs the DFT. The simplest realization
zeroth and first bits. Then, the realization of the 3-bit phas@f Such a device is a symmeti¢x N fiber coupler{26]. In
gate is to place a/2 phase shift in the 111 and 011 paths as? Single coupler aN-dimensional DFT is performed.

is shown in parR of Fig. 1 (inside a dashed box label@. The inverse DFT for amNx N multiport de_vice_rlequi{es
For L bits, the total unitary transformation needed to re-tWo0 unlta[% operations. For any unitary matkikU""=U".
alize the DFT is Hence,U;; "=U} . Thus, the inverse DFT is given by

(AgRo1- - -Rop 1) X . . X(AL 3R 31 2R 31 -1) 1 ,
(FN)n—rﬁ:_e—men/N. (3.1)
X(AL-2RL -2 ~1)(AL-1) (2.9 IN

It should be noted tha2.g) is not the DFT, unless the  The inverse DFT can be obtained from a symmetric mul-
qubits are swapped appropriately. Schi@k used the swap tiport device by a simple relabeling of paths. We introduce
gate S, which swaps qubits andj to obtain the DFT.  an unitary operatio defined by
However, as is pointed out if24], the swap gate is not
needed, if the qubits are relabeled after each execution of Eq. (Fn) " 1=T(Fy) (3.2
(2.9) or the inverse of Eq2.8). When anN X N fiber coupler
is used to effect the DFT and the inverse DFT, the swap gatgnere for three bitd, in matrix form, is given by
is not needed.

Then, for three bits, one iteration of the quantum baker’s
map[24] is given by

B= SoonRglezAlRJ{zAzSoleRmAl - (2.9

The optical realization of this 3-bit transformation is
shown in Fig. 1. In Fig. 1, three transformations are boxed in
dashed lines and labeld®] S andA. These three transfor-
mations will be discussed. Since, the other eight transforma-
tions are similar to these three transformations, they will not
be discussed. Transformatiéhis the phase gatRy;. It is
realized by placing a phase shift 812 in paths 111 and 011
(as an aside, all of the path lengths between beam splitte
are the same up to the specified phase shifts, even if they
not drawn that way TransformatiorSis the swap gat&y,,
which swaps the zeroth and first bit. This is optically realized
by crossing and relabeling paths. For example, the 001 and

(3.3

O O O O O o O
R O O O O O O O
O O O O O O O
O O B O O O O O
O O O r O O O O
O O O O r O O O
O O O O O +r»r O O
O O O O O Bk

atﬁneT matrix simply swaps rows of the DFT. For example,
{fle 111 path is relabled as the 001 path. Hence, the quantum
Baker's map transformation can be rewritten as

010 paths cross and are relabeled. Paths such as the 111, B=T(FN)(FN/2 ) (3.4)
where the zeroth and first bit have the same value do not 0 Fwpe

change meaning under the swap gate since they evolve to

themselves. Transformatioh is the A, operation. Here, all One can consider the QBM as simply a rotation operation
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FIG. 2. Optical realization of a 3-bit quantum baker’s map using N .
multiport devicege.g., a symmetridN X N fiber couple) to gener- - .
ate the DFT and inverse DFT. Only three optical elements are e i
needed to implement the map. [ ]
N 1 l i l 'l l 'l l A T

on some vector in the Hilbert space. The quantum analogy of  ®0

the classical trajectory is looking at the evolution of the di-

rection of the vector. Hence, varying the input state or per-

turbing the map by introducing phase or amplitude shifts will ~ FIG. 3. Relative intensity out of the 000 path vs the number of

result in various phase and amplitude outputs out of the gterations of the map. All of the light is initially coupled into the

X 8 coupler. 000 path. The squares connected by the solid lines are for the output
The optical realization of the map is shown in Fig. 2. The©f the unperturbed quantum baker's map. The output of the per-

first operation groups the paths by the most significant bittureed mapcircles connected by the dashed )imeas generated by

All of the paths having a most significant bit value ofQ) adding a 2r/100 phase shift in the 000 path between the4dand

enter the input ports of the tofbottom symmetric 4x4 88 couplers.

device(boxes are shown to represent the couplers for visual

clarity). The output fibers of the ¥4 couplers are taken to

the inputs of the & 8 coupler. TheTl operation is realized by

a i [ . . . . . :
ppropriately labeling the outputs of thec® coupler. Thus, X 8 coupler isl gg9. The intensity ratid oo/l ; is equal to the

Fig. 2 represen i i ' . " ; .
vices. For example, in Fig. 3 all of the input light is coupled into
the 000 input. The dots connected by the solid line represent
the intensity ratiol goo/1; out of the 000 path of the 88
coupler as a function of the number of iterations of the map
Let us examine various input states in terms of single{similar intensity plots could be obtained for each of the
photon interferometry. The simplest input state is to have autputs of the coupler The intensity ratio from each output
photon enter only a single input port. We will use this casepath for theith iteration is equal to the probability that a
and the analogous classical fidlonly intensity in a single photon would be measured in that path if one decides to
input pord in the examples below. On the other hand, themeasure the photon afteiterations of the map. The prob-
photon can be put into a superposition of various input pathsability of finding the photon in the 000 path can vary
For example,equal amplitudes in each of the inputs can bstrongly from iteration to iteration and it does not converge
realized by introducing another amplitude splitting device.to any particular value after many iterations of the map.
The simplest realization of this device is to have another 8 One clear limitation of this approach is the size of the
x 8 fiber coupler. By coupling the photon into one of the XN coupler. At this time, &8 couplers are readily avail-
paths of the input coupler, the photon will have an equakble commercially. A few others points should be addressed
probability of being in each path. If the photon is coupledabout the implementation of such a device. These couplers
into the 000 path and all of the pathlengths between the inpuand other integrated optics are not perfect. They have in-
coupler and the QBM are the same, then the input state igqualities in the splittings, absortption, phase shifts, etc.
given by 14/8(]000) +|00D) + . .. +|111)). Thus the construction of the exact QBM is difficult. This is
After some iteration of the map the output must be meagparticularly true since the map is very sensitive to perturba-
sured. The measurement, in the case of single photons, willon. Hence, these phase shifts and unequal amplitude split-
collapse the wave function so that the photon will be in onlytings at the couplers cause significant deviations from the
one of the output paths. The output path in which the photordlesired map. For example, consider what happens to the
is found can vary strongly from iteration to iteration. For a QBM when a phase shift of 2/100 is introduced between
fixed map the probabilities of finding the photon in a particu-the output of the 44 coupler and the input of the>88
lar output ports is fixed. However, perturbations of the mapcoupler along the 000 path only. This can be represented by
lead to strong variations in the probabilities. This is perhapst diagonal matrix with all of the elements equal to 1 except
easiest to visualize for a classical field which corresponds tthe upper-left-most matrix element which has a value of
an ensemble of these individual realizations. We are assune?™'%. Figure 3 shows two intensity versus iteration plots.
ing weak classical fields in which photons only interfere with The unperturbed situation is shown with a solid line joining
themselves. the points. The perturbed situation is shown with a dashed

=
W
=

15 20
number of iterations

[
193

Assume that the total input intensity is given kyand the
measured intensity coming out of the 000 output of the 8

IV. DISCUSSION
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line joining the points. One can notice that the intensity dif-method. It should also be possible to obtain multiple itera-
ference between the perturbed and unperturbed situation afons of the QBM by rerouting the output to the input of the
ter 18 iterations becomes quite significant. Similar plots cardevice. Either means has significant technical challenges.
be obtained for each of the eight outputs. However, the 000 he coherence must be preserved from iteration to iteration.
path output is the most sensitive to phase changes in its pat@are must be taken to not measure the output until the de-
In addition, there will always be some error introduced duesired iteration is reached. Of course nonunitary operations
to unequal amplitude splittings at each of the fiber couplerssuch as absorption in the optical devices is a serious concern.
For example, in Fig. 2 it was assumed that if light entered This paper has shown how linear optics can be used to
one of the input ports of theX44 couplers that 25% of the simulate or realize the quantum baker's map. Building such
light would leave in each of the output ports. However, ex-quantum analogs using single photons is rather instructive,
perimentally this is not possible since imperfections in thesince the trajectory of the photon represents the evolution of
couplers will always exist. the state. These ideas can be carried over to the implemen-

Spurious phase shifts and unequal amplitude splittings ar&@tion of an exhaustive searg8,4,17. In that case, one can
perturbations from the originally proposed QBM. However, observe the various paths from an initial state to some final
it is precisely the hypersensitivity of the map due to pertur-state by following the trajectories of the photon. The actual
bation that is of interest. This suggests that if a particulaphysical realization of such linear optical analogs or simula-
map is realized that is an approximation of the QBM de-tions should provide further insight into the studies of quan-
signed above, this would retain the interesting physics. Thatum networks.
is, the characteristic behavior of a particular set up can be
obtaine_d ar_1d thgn perturbations from this map be studi_ed. ACKNOWLEDGMENT
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