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Linear optics simulations of the quantum baker’s map
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~Received 9 July 1999; revised manuscript received 28 September 1999; published 13 December 1999!

The unitary evolution of linear optics can be used to model quantum computational networks. In this paper,
a quantum simulation of a classically chaotic map~the baker’s map! is developed using linear optics. Two
different models are presented. The first model employs only 50-50 beam splitters and phase shifters to
simulate universal 2-qubit gates of a quantum computer. The second model uses the discrete Fourier transform
generated by symmetricN3N fiber couplers. If single photons are used as inputs for these linear optics
models, the result is a physical realization of the quantum baker’s map.

PACS number~s!: 03.67.Lx, 05.45.Mt
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I. INTRODUCTION

Quantum computers have been shown to be superio
classical computers in factoring large numbers@1,2#, search-
ing @3,4#, and in simulating quantum systems@5#. Several
physical systems including ion traps@6#, liquid state NMR
@7,8#, cavity QED@9#, far-off-resonance optical lattices@10#,
and solid state systems@11# have been explored as possib
quantum computers. There are only a few requirements f
quantum computer. The quantum bits~qubits! must be
strongly entangled with each other. The bits must be ea
manipulated by controlled external fields, and minima
coupled to all other fields. For example, the qubits in the
trap @6# are the ions and these ions are entangled via
Coulomb repulsion. The states of the qubits are the e
tronic states of the ions, which are manipulated with la
fields.

This paper proposes an all-optical implementation
quantum logic. Many all-optical implementations of qua
tum logic have been proposed and studied@12–17#. For ex-
ample, solutions to the factoring problem have been p
posed based upon anN-slit interferometer@14# and upon a
simple phase-varying Mach-Zehnder interferometer@15#.
Also a linear optics simulation of the Deutsch-Jozsa al
rithm has been developed@13#. Of particular interest is the
work of Cerf et al. @12# and Kwiat et al. @17#. They used
simple linear optical elements~e.g., 50-50 beam splitters an
waveplates! to simulate quantum circuits such as telepor
tion @18# and an exhaustive search@3,4#.

The quantum behavior of linear optics is realized by ide
tifying a particular path with a particular quantum state. F
example, a 1-bit simulation requires two paths. The paths
labeled 0 and 1 representing the eigenvectorsu0& and u1&,
respectively. The analogy to the operation of quantum lo
gates is particularly apparent in single-photon interferome
experiments. In that case, the quantum bit is directly ass
ated with the ‘‘which path’’ variable@19#. For example, an
optical symmetric beam splitter is known to act as the squ
root of a controlledNOT gate~up to a phase ofp/4) @12#. The
key is that a single photon may be used to represent mul
quantum bits.

Typical quantum computers rely heavily on basic 1-
and 2-bit gates to form the fundamental logic. Hence, al
rithms are developed in terms of the most basic gates. Th
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true because of the difficulty of implementing more-tha
two-bit gates. Therefore, the thrust of many researchers i
show that the 1-bit and 2-bit gates form a complete set
universal gates@20,21#. However, linear optics is not con
strained by such limitations. It is only bounded by the phy
cal size of the apparatus@12,22#, since the apparatus siz
grows exponentially with the number of bits. Using line
optics, manyL-bit gates can be implemented in a single u
tary operation~a brief disscussion is found in@23#!.

The discrete Fourier transform~DFT! @2,24# is an ex-
ample of an operation that can be performed exponenti
faster on a quantum computer than on a classical compu
For a typicalL-bit quantum computer, the number of 2-b
operations needed to realize the DFT goes as( l 51

L l . How-
ever, for a symmetric multiport@25,26# device, the DFT can
be effected in a single unitary operation@27#. This fact will
be used to construct a relatively simple quantum baker’s m
later on in the paper.

Even though it has been shown that linear optics can
alize any unitary operation@28# and simulate quantum net
works @12#, this framework cannot be considered a tr
quantum computing system. A quantum computer h
n-entangled bits having a 2n-dimensional Hilbert space
Hence, there are two significant differences. First, in line
optics the entanglement is between different degrees of f
dom of a single particle@16#. On the other hand, with typica
quantum computing systems many particles are entan
nonlocally. Second, as Barencoet al. @22# points out, the
physical size of the apparatus performing the computa
grows with the number of bits for a quantum computer a
with the Hilbert space for a linear optics setup. As Spree
@16# indicates the exponential growth in the number of pa
is a direct consequence of the lack of nonlocality in th
system as compared to the typical quantum computer sys
In effect then, the result is a classical optical computer, w
one exception. If single photons are used, then the results
probabilistic and quantum mechanical. That is, a sin
implementation of the device using a single photon yield
single realization of the computation. The measuremen
the photon will find it in a particular output path. For a wea
classical light field input, an ensemble of such individu
realizations result. In that case, the output intensities may
associated with the probabilities of finding the photon in
particular output path. In this sense, the implementation
©1999 The American Physical Society04-1
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the computation device with single photons is a quant
analog of the device while the implementation with classi
fields is a simulation of the device. However, it should
noted that although it is easy to describe a single pho
setup, it is not as easy to experimentally implement o
While great strides have been made in detection@29# and
controlled generation of single photons@30#, it is still very
difficult to work with them. Therefore, we will give ex
amples which utilize classical fields as inputs as well
single photons.

The exponential growth of the linear optical setup w
the number of bits poses serious difficulties for impleme
ing a computation device with linear optics. However, line
optics does appear to be a natural framework in which
simulate small-L quantum systems@5,24#. In this case, if a
single photon is used as an input then the result is a quan
mechanical realization of the system. If a classical field
used then the result is a simulation of that quantum syst

In this paper, linear optics will be used to model the qua
tum baker’s map~QBM! @24#. Two different setups will be
presented. The first setup will simulate the evolution o
typical quantum computer, which uses the basic 2-bit ga
The second, will make use of linear integrated optics wh
offers some conceptual and possibly technical simplifi
tions.

II. THE BAKER’S MAP

Simple maps such as the classical baker’s map are
tremely useful in studying chaotic behavior. They represe
class of completely chaotic systems from which much or
undesirable difficulties, not associated with chaotic behav
have been removed@31#. By quantizing these classical mod
els, it is hoped that understanding will be gained of h
chaotic information is stored in the quantum description
nature and in what limit chaos appears. In addition, simu
tions have been done on the QBM, which have shown th
is hypersensitive to perturbation of the map@32#. The sensi-
tivity of the QBM to perturbation is a proposed realization
quantum chaos. Schack@24# showed that a simple 3-bi
quantum computer could be used to realize the quantum
er’s map. It was shown that a sequence of eleven 2-bit g
could realize one iteration of the map. Hannayet al. @33#
demonstrated one possible optical realization of the qu
tized baker’s map by using the analogy between ray
wave optics and classical and quantum mechanics.

The classical baker’s map is a simple area-preserv
transformation in the momentum-position phase space.
assumed that the motion is bounded by (Q,P). The motion
in phase space@31# is governed by the map

~q,p!°H ~2q, 1
2 p! if 0<q, 1

2 Q,

@2q2Q, 1
2 ~p1P!# if 1

2 Q,q<Q.
~2.1!

Hence, the rectangle is compressed to half its original siz
thep dimension and stretched to twice its original size in t
q dimension. Then it is cut in half in theq dimension and the
right most portion is stacked on top of the left most portio
01230
l

n
.

s

-
r
o

m
s

.
-

a
s.
h
-

x-
a
ll
r,

f
-
it

k-
es

n-
d

g
is

in

.

The baker’s map is quantized following@31#. The rect-
angle is divided into phase cells of area 2p\. The number of
phase cells is given byN5PQ/2p\, wherePQ is an integer
multiple of 2p\. For three bits, there would be 2358 cells
with a total phase-space area of 16p\. Adopting the notation
of Balazs and Voros@31#, the periodic normalized position
eigenvectors areun& with eigenvaluesqn52p\n/P, n
50,1, . . . ,N21. The normalized periodic momentum
eigenvectors areum&, with eigenvaluespm52p\m/Q, m
50,1, . . . ,N21. The operatorsp andq are defined as trans
lation operators acting on each other’s eigenstates. The tr
formation between the position basis and momentum bas
done by the~DFT! @1,2,24,31# having matrix elements given
by

~FN!nm5^num&5
1

AN
e2p inm/N. ~2.2!

The quantum baker’s map is defined to be

B5FN
21S FN/2 0

0 FN/2
D . ~2.3!

In @2#, it is shown that the DFT can be realized by on
two basic unitary operations. The first transformation act
on qubit j is given by

Aj5
1

A2
S 1 1

1 21D . ~2.4!

In @12# this operation is referred to as the Hadamard tra
formation and was implemented using a beam splitter
two 2p/2 phase shifters one at each port in the high o
path. The transformation can also be considered a 1-bit D
Figure 1 has a dashed box around a 1-bit Hadamard ga
the upper left-hand corner. It is important to note that
every beam splitter in the figure there are two phase shift
The other phase shifters were not drawn for aesthetic
sons.

FIG. 1. Optical realization of a 3-bit quantum baker’s map us
basic 2-bit gates. Transformations (R, S, and A) are outlined by
dashed boxes. In addition, a 1-bit Hadamard gate is boxed in
upper left-hand corner with a label ofH.
4-2
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The second operation is a phase-gate operating on thi th
and j th (i , j ) qubits defined by

Ri j ukL21 , . . . ,k0&5eiw i j ukL21 , . . . ,k0& ~2.5!

where

w i j 5H p/2j 2 i if ki5kj51

0 otherwise
~2.6!

and kmP$0,1%. Here,L is the number of qubits and henc
N52L. The matrix representation ofRi j is given by

Ri j 5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiw i j

D . ~2.7!

The linear optics realization of this gate requires putting
phase delay in the paths wherei and j are 1. For example
consider a 3-bit circuit. Suppose, the phase gate acts on
zeroth and first bits. Then, the realization of the 3-bit ph
gate is to place ap/2 phase shift in the 111 and 011 paths
is shown in partR of Fig. 1 ~inside a dashed box labeledR!.

For L bits, the total unitary transformation needed to
alize the DFT is

~A0R01 . . . R0,L21!3 . . . 3~AL23RL23,L22RL23,L21!

3~AL22RL22,L21!~AL21! ~2.8!

It should be noted that~2.8! is not the DFT, unless the
qubits are swapped appropriately. Schack@24# used the swap
gate Si j , which swaps qubitsi and j to obtain the DFT.
However, as is pointed out in@24#, the swap gate is no
needed, if the qubits are relabeled after each execution of
~2.8! or the inverse of Eq.~2.8!. When anN3N fiber coupler
is used to effect the DFT and the inverse DFT, the swap g
is not needed.

Then, for three bits, one iteration of the quantum bake
map @24# is given by

B5S02A0R01
† R02

† A1R12
† A2S01A0R01A1 . ~2.9!

The optical realization of this 3-bit transformation
shown in Fig. 1. In Fig. 1, three transformations are boxed
dashed lines and labeledR, S, andA. These three transfor
mations will be discussed. Since, the other eight transfor
tions are similar to these three transformations, they will
be discussed. TransformationR is the phase gateR01. It is
realized by placing a phase shift ofp/2 in paths 111 and 011
~as an aside, all of the path lengths between beam spli
are the same up to the specified phase shifts, even if they
not drawn that way!. TransformationS is the swap gateS01,
which swaps the zeroth and first bit. This is optically realiz
by crossing and relabeling paths. For example, the 001
010 paths cross and are relabeled. Paths such as the
where the zeroth and first bit have the same value do
change meaning under the swap gate since they evolv
themselves. TransformationA is theA2 operation. Here, all
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of the paths are grouped such that the zeroth and first bit
the same upon entering the input ports of the beam splitt
For example, the 000 and 100 enter the top-left-most be
splitter. There are four beam splitters in this transformat
accounting for the four possible states of the zeroth and
bit.

To construct Fig. 1 out of free-space optics would
extremely difficult. In order to get pathlengths to subwav
length accuracy for 20 beam splitters would be nontrivial
the very least. However, this simulation is instructive in th
it models the operation of a typical 3-bit quantum comput
In addition, for single photons, Fig. 1 is, as Schack@24#
points out, a physical realization of a quantum baker’s m

III. INTEGRATED OPTICS APPROACH

A linear optical simulation of the quantum baker’s ma
may be developed from a different approach. This appro
may offer a more tractable means of implementation. It
always possible to build anN3N symmetric multiport de-
vice @25# which performs the DFT. The simplest realizatio
of such a device is a symmetricN3N fiber coupler@26#. In
a single coupler anN-dimensional DFT is performed.

The inverse DFT for anN3N multiport device requires
two unitary operations. For any unitary matrixU,U215U†.
Hence,Ui j

215U ji* . Thus, the inverse DFT is given by

~FN!nm
215

1

AN
e22p imn/N. ~3.1!

The inverse DFT can be obtained from a symmetric m
tiport device by a simple relabeling of paths. We introdu
an unitary operationT defined by

~FN!215T~FN! ~3.2!

where for three bitsT, in matrix form, is given by

T51
1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

2 . ~3.3!

The T matrix simply swaps rows of the DFT. For exampl
the 111 path is relabled as the 001 path. Hence, the quan
Baker’s map transformation can be rewritten as

B5T~FN!S FN/2 0

0 FN/2
D . ~3.4!

One can consider the QBM as simply a rotation operat
4-3
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on some vector in the Hilbert space. The quantum analog
the classical trajectory is looking at the evolution of the
rection of the vector. Hence, varying the input state or p
turbing the map by introducing phase or amplitude shifts w
result in various phase and amplitude outputs out of th
38 coupler.

The optical realization of the map is shown in Fig. 2. T
first operation groups the paths by the most significant
All of the paths having a most significant bit value of 1~0!
enter the input ports of the top~bottom! symmetric 434
device~boxes are shown to represent the couplers for vis
clarity!. The output fibers of the 434 couplers are taken to
the inputs of the 838 coupler. TheT operation is realized by
appropriately labeling the outputs of the 838 coupler. Thus,
Fig. 2 represents one iteration of the quantum baker’s m
As can be seen it was obtained with only three optical
vices.

IV. DISCUSSION

Let us examine various input states in terms of sing
photon interferometry. The simplest input state is to hav
photon enter only a single input port. We will use this ca
and the analogous classical field~only intensity in a single
input port! in the examples below. On the other hand, t
photon can be put into a superposition of various input pa
For example,equal amplitudes in each of the inputs can
realized by introducing another amplitude splitting devic
The simplest realization of this device is to have anothe
38 fiber coupler. By coupling the photon into one of th
paths of the input coupler, the photon will have an eq
probability of being in each path. If the photon is coupl
into the 000 path and all of the pathlengths between the in
coupler and the QBM are the same, then the input stat
given by 1/A8(u000&1u001&1 . . . 1u111&).

After some iteration of the map the output must be m
sured. The measurement, in the case of single photons,
collapse the wave function so that the photon will be in o
one of the output paths. The output path in which the pho
is found can vary strongly from iteration to iteration. For
fixed map the probabilities of finding the photon in a partic
lar output ports is fixed. However, perturbations of the m
lead to strong variations in the probabilities. This is perha
easiest to visualize for a classical field which correspond
an ensemble of these individual realizations. We are ass
ing weak classical fields in which photons only interfere w
themselves.

FIG. 2. Optical realization of a 3-bit quantum baker’s map us
multiport devices~e.g., a symmetricN3N fiber coupler! to gener-
ate the DFT and inverse DFT. Only three optical elements
needed to implement the map.
01230
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Assume that the total input intensity is given byI t and the
measured intensity coming out of the 000 output of the
38 coupler isI 000. The intensity ratioI 000/I t is equal to the
probability that the photon will be measured in the 000 pa
For example, in Fig. 3 all of the input light is coupled in
the 000 input. The dots connected by the solid line repres
the intensity ratioI 000/I t out of the 000 path of the 838
coupler as a function of the number of iterations of the m
~similar intensity plots could be obtained for each of t
outputs of the coupler!. The intensity ratio from each outpu
path for thei th iteration is equal to the probability that
photon would be measured in that path if one decides
measure the photon afteri iterations of the map. The prob
ability of finding the photon in the 000 path can va
strongly from iteration to iteration and it does not conver
to any particular value after many iterations of the map.

One clear limitation of this approach is the size of theN
3N coupler. At this time, 838 couplers are readily avail
able commercially. A few others points should be addres
about the implementation of such a device. These coup
and other integrated optics are not perfect. They have
equalities in the splittings, absortption, phase shifts, e
Thus the construction of the exact QBM is difficult. This
particularly true since the map is very sensitive to pertur
tion. Hence, these phase shifts and unequal amplitude s
tings at the couplers cause significant deviations from
desired map. For example, consider what happens to
QBM when a phase shift of 2p/100 is introduced between
the output of the 434 coupler and the input of the 838
coupler along the 000 path only. This can be represented
a diagonal matrix with all of the elements equal to 1 exc
the upper-left-most matrix element which has a value
ei2p/100. Figure 3 shows two intensity versus iteration plo
The unperturbed situation is shown with a solid line joini
the points. The perturbed situation is shown with a das

e

FIG. 3. Relative intensity out of the 000 path vs the number
iterations of the map. All of the light is initially coupled into th
000 path. The squares connected by the solid lines are for the ou
of the unperturbed quantum baker’s map. The output of the p
turbed map~circles connected by the dashed line! was generated by
adding a 2p/100 phase shift in the 000 path between the 434 and
838 couplers.
4-4
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line joining the points. One can notice that the intensity d
ference between the perturbed and unperturbed situatio
ter 18 iterations becomes quite significant. Similar plots c
be obtained for each of the eight outputs. However, the
path output is the most sensitive to phase changes in its p
In addition, there will always be some error introduced d
to unequal amplitude splittings at each of the fiber couple
For example, in Fig. 2 it was assumed that if light ente
one of the input ports of the 434 couplers that 25% of the
light would leave in each of the output ports. However, e
perimentally this is not possible since imperfections in
couplers will always exist.

Spurious phase shifts and unequal amplitude splittings
perturbations from the originally proposed QBM. Howev
it is precisely the hypersensitivity of the map due to pert
bation that is of interest. This suggests that if a particu
map is realized that is an approximation of the QBM d
signed above, this would retain the interesting physics. T
is, the characteristic behavior of a particular set up can
obtained and then perturbations from this map be studie

Multiple iterations of this QBM can be obtained by build
ing consecutive circuits each one appearing as in Fig. 2.
a small number of iterations, this is probably the prefer
n

.

.
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sc
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e,

.

01230
-
af-
n
0
th.
e
s.
d

-
e

re
,
-
r
-
at
e

or
d

method. It should also be possible to obtain multiple ite
tions of the QBM by rerouting the output to the input of th
device. Either means has significant technical challeng
The coherence must be preserved from iteration to iterat
Care must be taken to not measure the output until the
sired iteration is reached. Of course nonunitary operati
such as absorption in the optical devices is a serious conc

This paper has shown how linear optics can be used
simulate or realize the quantum baker’s map. Building su
quantum analogs using single photons is rather instruct
since the trajectory of the photon represents the evolution
the state. These ideas can be carried over to the implem
tation of an exhaustive search@3,4,17#. In that case, one can
observe the various paths from an initial state to some fi
state by following the trajectories of the photon. The act
physical realization of such linear optical analogs or simu
tions should provide further insight into the studies of qua
tum networks.
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