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Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer
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Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamilto-
nians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any
quantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the
average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated
system. The flexibility of the procedure is illustrated with NMR on13C labeled alanine by creating the
nonphysical Hamiltonianszszsz corresponding to a three-body interaction.

PACS number~s!: 03.67.2a, 76.60.2k
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I. INTRODUCTION

In the early 1980’s, researchers such as Benioff, Benn
Deutsch, Feynman, and Landauer@1–5# studied the possibil-
ity of performing computations using the principles of qua
tum mechanics, and conjectured that a machine base
these principles might be able to solve certain types of pr
lems more efficiently than can be done on a conventio
von Neumann computer. Later, Lloyd proposed that suc
quantum computer might be built from an array of coup
two-state quantum systems, each of which can store
quantum bit, or qubit, of information@6,7#. Shortly thereaf-
ter, Shor proved that a quantum computer would be cap
of factorizing integers in polynomial time, thereby showin
that the exponential number of degrees of freedom acces
to a quantum computer does indeed enable it to solve s
problems more efficiently than is believed possible on a c
ventional machine@8#.

An essential feature of a universal quantum compute
the ability to transform efficiently any initial state vector
any other state vector within a large Hilbert space. Su
operations can be thought of as using a real-number~con-
tinuous! rather than a Turing-machine~digital! model of
computation@9#. Algorithms can be tailored to take adva
tage of this as well as the parallelism from quantum sup
position. Since any quantum system governed by an arbit
Hamiltonian may be described by the paths taken by a se
basis vectors, a quantum information processor should
able to simulate the evolution of any smaller quantum sys
up to a specified time point.

Accordingly, one of the first proposed applications
quantum computers was quantum simulation: using a qu
tum mechanical computer to simulate another quantum
chanical system. Feynman’s original proposal in 1982@4#
that there might be a universal and efficient quantum sim
lator of physical systems was recently validated, in gene
terms, by Lloyd @10#. Algorithms for specific classes o
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quantum systems have also been proposed@11–14#. To apply
a quantum algorithm such as factorization to a problem
yond the reach of conventional computers, a quantum c
puter will have to perform millions of operations coheren
and substantially without error. Although such control can
principle be achieved through quantum error correction@15–
21#, this involves a very high overhead. In contrast, use
quantum simulations will perhaps require only hundreds
operations.

While it is possible to simulate a quantum system on
classical computer, it becomes increasingly difficult as
size of the system increases to store the quantum state, m
less to compute the entire wave-function evolution. For
ample, a quantum system of 50 spin one-half particles oc
pies a Hilbert space of dimension 250;1015. This requires
;1015 complex numbers to specify the state complete
While intractable using classical computers, a quantu
mechanical device would require only 50 qubits to store
state of the system. Evolving this state vector is also diffic
For the case of local interactions~all systems obeying specia
and general relativity!, Lloyd has suggested an efficient co
struction of the evolution operator with small time steps
evolution under local interactions@10#.

This article describes a general scheme for implemen
quantum simulations, and illustrates the flexibility of th
method with the synthesis of a Hamiltonian not norma
found in nature. The challenge that remains is to find a
quence of propagators or ‘‘gates’’ that canefficientlyproduce
the desired behavior in practical problems.

II. QUANTUM SIMULATION

Many of the concepts of quantum simulation are impli
in the average Hamiltonian theory~AHT! developed by Hae-
berlen and Waugh to design NMR pulse sequences
implement a specific desired effective NMR Hamiltonia
@22#. While AHT as applied to NMR spectroscopy is ofte
directed at obtaining a selectively scaled version of the in
nal HamiltonianHint , the formalism makes clear that othe
Hamiltonians in the operator space may be constructed.
significant contribution to quantum information processing
ic
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to articulate the range of propagatorsU that may be simu-
lated givenHint and allowed external interactions. Throug
the tenets of quantum information processing it is clear th
provided there are coupling pathways~interactions! connect-
ing any two identifiable qubits, any Hamiltonian that spa
this space may be constructed@10,23,24#. AHT provides a
means by which to quantify the precision of a specific sim
lation and allows a systematic improvement of the precis
of the implementation.

A general scheme for quantum simulation utilizing som
of the results of AHT is based on establishing a corresp
dence between a simulated~model! systemS and a physical
~experimental! systemP @25#. This is summarized by the
following diagram:

us& →
f up&

U↓ ↓VT

us~T!& ←
f21

upT& ~2.1!

The goal is to effect the evolution of the simulated syst

us&→
U

us(T)& using the physical systemP, where the propa-
gatorU5e2 iHST/\, andHS is the desired Hamiltonian gov
erning the simulated system. To do this,S is related toP by
an invertible mapf that determines a correspondence b
tween all the operators and states ofS and P. In particular,
the propagatorU maps toVT5fUf21. The challenge is to
implementVT using propagatorsVi arising from the avail-
able external interactions with intervening periods of natu

evolution e2 iH P
0 t/\ in P so thatVT5P ie

2 iH P
0 t i (T)Vi . If a

sufficient class of simple operations~logic gates! are imple-
mentable in the physical system, any operator~in particular
VT! can be composed of natural evolutions inP and external
interactions@10,24,26–28#. For unitary mapsf, we may
write VT5e2 i H̄PT/\, whereH̄P[fH Sf† can be identified
with the average Hamiltonian introduced by Waugh@22,29#.

After up&→
VT

upT&, the final map f† takes upT&→us(T)&,
thereby effecting the simulationus&→us(T)&. Note that
HS(T) can be a time-dependent Hamiltonian and thatT is
treated as a parameter when mapped toP. This means that
the physical timest i(T) are parameterized by the simulate
time T.

The desired simulated Hamiltonian may be specified
various ways. On the one hand, if the simulated Hamilton
is specified by eigenenergies, translation to a representa
in terms of the Pauli matricessz

i may provide further physi-
cal insight and facilitate implementation via geometric alg
bra techniques@30# using a weakly coupled spin system. A
though no general compiler from a Pauli matrix expressio
known, the universality of a quantum computer implies th
an implementation exists. Examples of such Hamiltonia
include the Balmer series of the hydrogen atom and the
monic oscillator. On the other hand, if the simulated Ham
tonian is specified in terms of Pauli matrices, translation
an eigenstructure representation permits experimental ve
cation of its spectral structure. Examples include the Is
01230
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modelHS5S i , ja i j sz
i sz

j and the three-body interactionHS

5(\/2)pJ123sz
1sz

2sz
3 discussed in this paper. A gener

method for systems with known eigenstructure is given
the Appendix. For cases where the eigenstructure is
known or the Hamiltonian is not expressed in terms of
sz

i , simulation is still possible. For example, in the treatme
of the driven anharmonic oscillator in Ref.@25# the eigen-
structure is not assumed.

III. IMPLEMENTATION OF AN EFFECTIVE szszsz

HAMILTONIAN

Liquid state NMR quantum computers@31–33# are well
suited for quantum simulations because they have long
laxation times (T1 andT2) as well as the flexibility of using
a variety of molecular samples. In particular, the ‘‘scala
coupling between the nuclear spins, denotedJ, may be re-
duced at will by means of rf pulses. Typically, spin-1/2 n
clei are used. Thus, the kinematics of any 2N level quantum
system could be simulated using a givenN-spin molecule.
We will use a 3-spin system, and illustrate the flexibility
the scheme by implementing a nonphysical three-body in
action ~see also@34#!. For a weakly coupled systemHint

5(\/2)@S iv isz
i 1S i , jpJi j sz

i sz
j #. To understand how the

coupling will behave, we first look at the usual two-bod
interaction.

A scalar two-body coupling propagator of the for

e2 i (p/2)J12sz
1sz

2t ~wheres i are the Pauli matrices! will trans-
form a transverse magnetization,sx

1 , say, into itself and an
antiphase component:

sx
1→

J12

sx
1cosu1sy

1sz
2sinu,

where u5pJt. After u5p/2, the antiphase doubletsy
1sz

2

state is created. Anx-phase pulse on spins 1 and 2 w
change this into an antiphase doublet observable on sp
2sz

1sy
2 .

Analogously, a three-body coupling propagator of t

form e2 i (p/2)J123sz
1sz

2sz
3T ~where T is time in the simulated

system! will transform a transverse magnetization,sx
1 , say,

into itself and a component antiphase in the coupled spin

sx
2→

J123

sx
2cosu1sz

1sy
2sz

3sinu. ~3.1!

After u5pJ123T5p/2, the doubly antiphase quarte
sz

1sy
2sz

3 is created. An NMR pulse sequence for impleme
ing this evolution is straightforward to derive by geomet
algebra procedures@30#. The desired propagator for th
three-particle interaction can be expanded in terms of
available scalar couplings and free evolutions:
2-2
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e[ 2 i (p/2)J123Tsz
1sz

2sz
3]

5e[ 2 i (p/4)sx
2]e[ 2 i (p/4)sy

2]e[ 2 i (p/2)J123Tsz
1sy

2sz
3]e[ 1 i (p/4)sy

2]e[ 1 i (p/4)sx
2]

5e[ 2 i (p/4)sx
2]e[ 2 i (p/4)sy

2]e[ 1 i (p/2)sz
1sx

2]e[ 2 i (p/2)J123Tsz
2sz

3]e[ 2 i (p/2)sz
1sx

2]e[ 1 i (p/4)sy
2]e[ 1 i (p/4)sx

2]

5e[ 2 i (p/4)sx
2]e[ 2 i (p/2)sz

1sz
2]e[ 2 i (p/4)sy

2]e[ 2 i (p/2)J123Tsz
2sz

3]e[ 2 i (p/4)sy
2]e[ 2 i (p/2)sz

1sz
2]e[ 1 i (p/2)sy

2]e[ 1 i (p/4)sx
2] , ~3.2!
ed
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which implies the following pulse sequenceVT to simulate
the szszsz Hamiltonian:

Fp2 G
2x

2

→@p#2y
2 →F 1

2J12
G→Fp2 G

y

2

→FJ123T

2J23
G→Fp2 G

y

2

→F 1

2J12
G→Fp2 G

x

2

. ~3.3!

To generalize, anm-body interaction term can be compos
of a number of two-body interaction terms and single s
rotations linear inm. If not all pairs of spins are coupled, a
in the case of a linear chain, then relay gates must be u
@35#, which entails only a polynomial number of addition
operations.

The three-quantum-bit NMR system was a room tempe
ture sample of13C labeled alanine in deuterated water. W
identify spin 1 as the carbonylC spin, spin 2 as theCa spin,
and spin 3 as theCb spin. The scalar couplings wereJ12
554.2 Hz, J23535.1 Hz, andJ1351.2 Hz. The13C reso-
nance frequency at 9.4 T was 100.6 MHz, and was dete
by an inverse probe. The chemical shift difference betw
spins 1 and 2 was 12 580 Hz, and between spins 2 and 3
3443 Hz. The proton spins were decoupled. Initial sta
were prepared from the thermal equilibrium state with m
netization in all three spins by a shaped pulse that excites
example, spins 1 and 3, followed by a magnetic field gra
ent that dephases the magnetization in spins 1 and 3. T
only the spin-2 magnetization remains, which may be
served by exciting it into a transverse magnetization. Exp
itly,

sz
11sz

21sz
3 →

@p/2#y
1,3

sx
11sz

21sx
3→

grad

sz
2 →

@p/2#y
2

sx
2 .

Here grad refers to a magnetic field gradient, which destr
the transverse magnetization when viewed as a spatial a
age@36#.

Figure 1 shows the real~absorptive! and imaginary~dis-
persive! 13C spectra observed on spin 2 for representa
anglesu or delay times, confirming that the three-partic

propagatore[ 2 i (p/2)J123tsz
1sz

2sz
3] transforms the initial state ac

cording to Eq.~3.1!. It is clear that the spectra evolve with
periodicity T52/J123. The simulated time direction exhibit
only one frequency~positive and negative!, since there is
only one possible nonzero transition energy for this syst
as shown in the Appendix@Eq. ~A10!#. A two-dimensional
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Fourier transform would then directly relate the physic
eigenenergies to the simulated eigenenergies.

IV. CONCLUSION

While multiple quantum coherences have been wid
used in NMR, as have average Hamiltonian schemes to s

FIG. 1. NMR spectra from theCa spin of 13C labeled alanine,
demonstrating a quantum simulation of theszszsz Hamiltonian as
implemented by the pulse sequence~3.3!. TheCa resonance is split
twice by the couplings to the other two carbon nuclei, resulting
four lines. As a function of the angle~or evolution time!, the spectra
exhibit the periodicity given by~3.1!: u5p/2, doubly antiphase;
u5p, in-phase negative;u53p/2, doubly antiphase;u52p, back
to in-phase positive.
2-3
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down or remove terms from the natural Hamiltonian of t
physical system@37–39#, the formalism described abov
adapts these methods to quantum information processin
particular quantum simulation. Using one quantum system
simulate another quantum system efficiently is a powe
idea, which may allow the study of an otherwise intracta
class of problems. Quantum simulation permits the const
tion of an arbitrary Hamiltonian in the simulated system,
illustrated with the construction of the three-body interact
szszsz Hamiltonian. The efficiency, or computational com
plexity, of a simulation, however, depends on how difficult
is to implementVT for a given system. Although the resul
given in @7# imply that efficient approximate implementa
tions exist for general cases of physical interest, the res
discussed in this paper show that more direct, exact im
mentations may also be found in some cases.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Army R
search Office under Contract No. DAAG 55-97-1-0342 fro
the DARPA Ultrascale Computing Program. R.L. thanks
National Security Agency for support.

APPENDIX: RELATIONSHIP BETWEEN
EIGENENERGIES AND PRODUCT OPERATORS

Representations of Hamiltonians in terms of eigenen
gies may be related to representations in terms of the P
matricessz

i . Once the arbitrary Hamiltonian is expressed
terms of many-body interactions,sz

1sz
2
•••sz

n , each of these
may be broken down in terms of the available external a
internal Hamiltonians~two-body couplings!. Multiple cou-
plings can act at the same time, giving a possible increas
efficiency of implementation.

An arbitrary Hamiltonian, if the eigenstructure is know
can be written as

HS5 (
k50

`

jkuck&^cku.

The uck& are a complete set of orthogonal states and thejk
are the energy eigenvalues~not necessarily ordered by size!.
If truncated to the first 2n levels we have

HS5 (
k50

2n21

jkuck&^cku.

To simulate this with ann-spin system we require the mapf
of Eq. ~2.1!. One possible mapping that we adopt is to m
simulated eigenstates to Zeeman eigenstates:

uck&°
f

uk&,

whereuk& is the binary expansion ofk. Other mappings are
possible. The mapping need only connect a basis set
spans the 2n-dimensional Hilbert spaces of the simulated a
physical systems.
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First we resolve the identity in terms of the idempoten
E6

i 5 1
2 (16sz

i ), wheresz
i is the Pauli spin matrix for spini:

15~E1
n 1E2

n !~E1
n211E2

n21!•••~E1
1 1E2

1 !

5E1
n E1

n21
•••E1

1 1E2
n E1

n21
•••E1

1 1•••

1E2
n E2

n21
•••E2

1

5(
$e i %

Een

n Een21

n21
•••Ee1

1 ,

where thee i take on the values61. By identifying11↔0
and 21↔1, we may identify the sequenceenen21•••e2e1
with the binary expansionhnhn21•••h2h1 of some integer
k, where h i take on the value 0 or 1. A summary of th
relations follows:

enen21•••e2e1↔hnhn21•••h2h1 , ~A1!

e i5122h i ,

k5h1201h2211•••1hn2n21

5(
i 51

n

h i2
i 21. ~A2!

We may then write

15(
$e i %

Een

n Een21

n21
•••Ee2

2 Ee1

1 (
k50

2n21

Ek , ~A3!

whereEk[Ee
n
k

n
Ee

n21
k

n21
•••Ee

2
k

2
Ee

1
k

1
. Thus we have

HS°
f

H̄P5 (
k50

2n21

jkuk&^ku

5 (
k50

2n21

jkuen
ken21

k . . . e1
k&^en

ken21
k . . . e1

ku

5 (
k50

2n21

jkEe
n
k

n
Ee

n21
k

n21
. . . Ee

1
k

1

5 (
k50

2n21

jkEk . ~A4!

In general, this will have the form

H̄P5b01(
j 51

n

b jsz
n1 (

j ,k51

n

b jksz
j sz

k1•••

1b12 . . .nsz
1sz

2
•••sz

n

5 (
k50

2n21

ak~sz
1!h1

k
~sz

2!h2
k
•••~sz

n!hn
k
, ~A5!
2-4
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where the$a% and $b% are real numbers. Knowing thejk ,
how do we determine theak? Substitute a resolution of th
identity in ~A5! to get

H̄P5 (
k50

2n21

ak~sz
1!h1

k
~sz

2!h2
k
•••~sz

n!hn
k

(
j 50

2n21

Ej

5 (
j 50

2n21

(
k50

2n21

ak~e1
j !h1

k
~e2

j !h2
k
•••~en

j !hn
k
Ej . ~A6!

Comparing~A6! with ~A4!, we find that

jk5 (
j 50

2n21

~e1
k!h1

j
~e2

k!h2
j
•••~en

k!hn
j
a j .

This may be written as a matrix equation

j5M a, ~A7!

where

M k j[~e1
k!h1

j
~e2

k!h2
j
•••~en

k!hn
j
.

Noting that

MM T5 (
j 50

2n21

M k jM j l
T

5 (
j 50

2n21

M k jM l j

5 (
j 50

2n21

~e1
k!h1

j
~e2

k!h2
j
•••~en

k!hn
j
~e1

l !h1
j
~e2

l !h2
j
•••~en

l !hn
j

5 (
j 50

2n21

~e1
ke1

l !h1
j
~e2

ke2
l !h2

j
•••~en

ken
l !hn

j

i,
,

01230
5 (
j 50

2n21

dkl52ndkl52n1, ~A8!

we see that

M21522nMT.

Thus inverting the Eq.~A7!, we get thea in terms of the
energiesj:

a522nMTj. ~A9!

That is,

ak522n (
j 50

2n21

~e1
j !h1

k
~e2

j !h2
k
•••~en

j !hn
k
j j .

The matrix MT is the 2n32n Hadarmard matrix@40#. For
example, for two spins,

M5F 1 1 1 1

1 21 1 21

1 1 21 21

1 21 21 1

G .

Therefore, a simulated Hamiltonian specified byj deter-
mines the coefficientsa in the expansion of the physica
Hamiltonian with terms that are of the form of many-bod
interactionssz

1sz
2
•••sz

m . For example, the three-body inte

action Hamiltonian,H̄P5(\/2)pJ123sz
1sz

2sz
3 implies a7

5(\/2)pJ123, and all else is zero. Applying Eq.~A9! to this
gives

j5
\

2
pJ123diag~11,21,21,11,21,11,11,21!.

~A10!
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