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Quantum simulation of a three-body-interaction Hamiltonian on an NMR quantum computer
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Extensions of average Hamiltonian theory to quantum computation permit the design of arbitrary Hamilto-
nians, allowing rotations throughout a large Hilbert space. In this way, the kinematics and dynamics of any
guantum system may be simulated by a quantum computer. A basis mapping between the systems dictates the
average Hamiltonian in the quantum computer needed to implement the desired Hamiltonian in the simulated
system. The flexibility of the procedure is illustrated with NMR &fC labeled alanine by creating the
nonphysical Hamiltoniamr,o,0, corresponding to a three-body interaction.

PACS numbds): 03.67—a, 76.60-k

I. INTRODUCTION guantum systems have also been propdséd14. To apply
a quantum algorithm such as factorization to a problem be-
In the early 1980’s, researchers such as Benioff, Bennetyond the reach of conventional computers, a quantum com-
Deutsch, Feynman, and Landali#+5] studied the possibil- puter will have to perform millions of operations coherently
ity of performing computations using the principles of quan-and substantially without error. Although such control can in
tum mechanics, and conjectured that a machine based dHinciple be achieved through quantum error correcfids-
these principles might be able to solve certain types of prob21], this involves a very high overhead. In contrast, useful
lems more efficiently than can be done on a conventionafiuantum simulations will perhaps require only hundreds of
von Neumann computer. Later, Lloyd proposed that such @perations.
quantum computer might be built from an array of coupled While it is possible to simulate a quantum system on a
two-state quantum systems, each of which can store Or@aSSiCSJ computer, it becomes increasingly difficult as the
quantum bit, or qubit, of informatiof6,7]. Shortly thereaf- ~ Size of the system increases to store the quantum state, much
ter, Shor proved that a quantum computer would be capabl€ss to compute the entire wave-function evolution. For ex-
of factorizing integers in polynomial time, thereby showing @mple, a quantum system of 50 spin one-half particles occu-
that the exponential number of degrees of freedom accessibRies a Hilbert space of dimensiorr®-10". This requires
to a quantum computer does indeed enable it to solve some 10 complex numbers to specify the state completely.
problems more efficiently than is believed possible on a conWhile intractable using classical computers, a quantum-
ventional machings]. mechanical device would require only 50 qubits to store the
An essential feature of a universal quantum computer istate of the system. Evolving this state vector is also difficult.
the ability to transform efficiently any initial state vector to For the case of local interactiotall systems obeying special
any other state vector within a large Hilbert space. Suctand general relativiy Lloyd has suggested an efficient con-
operations can be thought of as using a real-nunfben-  struction of the evolution operator with small time steps of
tinuou9 rather than a Turing-machin@igital) model of  evolution under local interactiorj40].
computation[9]. Algorithms can be tailored to take advan-  This article describes a general scheme for implementing
tage of this as well as the parallelism from quantum superduantum simulations, and illustrates the flexibility of the
position. Since any quantum system governed by an arbitrafjpethod with the synthesis of a Hamiltonian not normally
Hamiltonian may be described by the paths taken by a set dpund in nature. The challenge that remains is to find a se-
basis vectors, a quantum information processor should b@uence of propagators or “gates” that cefficientlyproduce
able to simulate the evolution of any smaller quantum systerthe desired behavior in practical problems.
up to a specified time point.
Accordingly, one of the first pro'posed' appllc;atlons of II. QUANTUM SIMULATION
guantum computers was quantum simulation: using a quan-
tum mechanical computer to simulate another quantum me- Many of the concepts of quantum simulation are implicit
chanical system. Feynman’s original proposal in 1982 in the average Hamiltonian theoHT) developed by Hae-
that there might be a universal and efficient quantum simuberlen and Waugh to design NMR pulse sequences that
lator of physical systems was recently validated, in generaimplement a specific desired effective NMR Hamiltonian
terms, by Lloyd[10]. Algorithms for specific classes of [22]. While AHT as applied to NMR spectroscopy is often
directed at obtaining a selectively scaled version of the inter-
nal HamiltonianX;,;, the formalism makes clear that other
* Author to whom correspondence should be addressed. Electrontdamiltonians in the operator space may be constructed. The
address: dcory@mit.edu significant contribution to quantum information processing is
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to articulate the range of propagatddsthat may be simu- model HS=2i<jaijgiZgiZ and the three-body interactidtg
lated givenH,,; and allowed external interactions. Through = (h/2) 70 t0%0? discussed in this paper. A general
the tenets of quantum information processing it is clear thatmethod for systems with known eigenstructure is given in
provided there are coupling pathwafissteractions connect- the Appendix. For cases where the eigenstructure is not
i?}g any two identt)ifiable qubit{sﬂ,i;:l% gzmpi\l;o_ltlian thglt SPANS; hown or the Hamiltonian is not expressed in terms of the
this space may be constructgt0,23,24. provides a P S . .
means by which to quantify the precision of a specific simu-Cz" S|mul_at|0n is still pOS_S|bIe. _For ex_ample, in the tr_eatment
lation and allows a systematic improvement of the precisior?| the driven anharmonic oscillator in R¢25] the eigen-
of the implementation. structure is not assumed.

A general scheme for quantum simulation utilizing some
of the results of AHT is based on establishing a correspon-
dence between a simulaté@thode) systemS and a physical ll. IMPLEMENTATION OF AN EFFECTIVE  ¢,0;0,
(experimental systemP [25]. This is summarized by the HAMILTONIAN

followi i : o
ollowing diagram Liquid state NMR quantum computef81-33 are well

5 suited for quantum simulations because they have long re-
|s) - p) laxation times T, andT,) as well as the flexibility of using
a variety of molecular samples. In particular, the “scalar”

Ul LVr coupling between the nuclear spins, denalednay be re-
IS(T)) o1t o7 2.1) duced at will by means of rf pulses. Typically, spin-1/2 nu-
— IPr ' clei are used. Thus, the kinematics of arly 12vel quantum

system could be simulated using a givierspin molecule.
U Mye will use a 3-spin system, and illustrate the flexibility of
|s)—|s(T)) using the physical systei, where the propa- the scheme by implementing a nonphysical three-body inter-
gathU=e"_HST’h, and s is the desired Hamiltonian gov- action (see alsg[34]). For a weakly coupled systerty
erning thg simulated system. Tq do thisis related toP by :(ﬁ/g)[ziwiglz+2i<j7TJijg'ZUJZ]_ To understand how the
an invertible map¢ that determines a correspondence be-coypling will behave, we first look at the usual two-body
tween all the operators and statesSéand P. In particular,  jnteraction.
the propagatot) maps tOVT:¢U¢71,- The challenge is to A scalar two-body coupling propagator of the form
implementV+ using propagator¥; arising from the avail- —i(ml2)d 0t (wh the Pauli matricasill t
able external interactions with intervening periods of natural whereo; are the 1aUI rharicesvit trans-
. CinOuh S0 (T orm a transverse magnetizationm, , say, into itself and an
evolutione™ ' P"" in P so thatVy=II,e'""PitVV,; . If a ; .
o ) : ] ; antiphase component:
sufficient class of simple operatiofi®gic gate$ are imple-
mentable in the physical system, any operdiorparticular
V1) can be composed of natural evolutiondFimnd external 1
interactions[10,24,26—-28 For unitary maps¢, we may ol—orcosf+ asl,aﬁsina,
write Vy=e~ 7T/ where Hp= ¢H 5" can be identified
with the average Hamiltonian introduced by WaugR,29.

The goal is to effect the evolution of the simulated syste

where §=7Jt. After 6=/2, the antiphase doublet)o?
state is created. Arx-phase pulse on spins 1 and 2 will
change this into an antiphase doublet observable on spin 2,

Vr

After |p)—|py), the final map ¢' takes |pr)—|s(T)),
thereby effecting the simulations)—|s(T)). Note that
Hs(T) can be a time-dependent Hamiltonian and thas 155
treated as a parameter when mapped.tdhis means that ~ 9z%- )
the physical times;(T) are parameterized by the simulated ~ANalogously, a three-body coupling propagator of the
time T. form e (72312272977, T (where T is time in the simulated

The desired simulated Hamiltonian may be specified insystem will transform a transverse magnetizatiart,, say,
various ways. On the one hand, if the simulated Hamiltoniannto itself and a component antiphase in the coupled spins:
is specified by eigenenergies, translation to a representation
in terms of the Pauli matrices, may provide further physi-
cal insight and facilitate implementation via geometric alge- 23123 ) 1o 3.
bra technique§30] using a weakly coupled spin system. Al- oy — 0xC0SO+ 03 0,0;5IN 6. 3.9
though no general compiler from a Pauli matrix expression is
known, the universality of a quantum computer implies that
an implementation exists. Examples of such Hamiltonians After 6=mJy,3T==/2, the doubly antiphase quartet
include the Balmer series of the hydrogen atom and the haraiaf,af is created. An NMR pulse sequence for implement-
monic oscillator. On the other hand, if the simulated Hamil-ing this evolution is straightforward to derive by geometric
tonian is specified in terms of Pauli matrices, translation taalgebra procedure§30]. The desired propagator for the
an eigenstructure representation permits experimental verifthree-particle interaction can be expanded in terms of the
cation of its spectral structure. Examples include the Isingavailable scalar couplings and free evolutions:
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— el i(m )l [ =i(m2)0s0 2] gl ~i(7/4)0 7] ol ~i (/23 125T o503 @l (w4 ol] ol ~i(m2) 00 3] gl +i(m/2) 0] gl +i(/4) %] , (3.2

which implies the following pulse sequentg to simulate  Fourier transform would then directly relate the physical

the o,0,0, Hamiltonian: eigenenergies to the simulated eigenenergies.
Wr ap? [ 1 } [Wr IV. CONCLUSION
> . 51 75 . : .
2| Y123y, 2 y While multiple quantum coherences have been widely

) 5 used in NMR, as have average Hamiltonian schemes to scale
\]123T o 1 o
=1 20,.712] 723, 2] 3.3 Real Imaginary
y X

To generalize, am-body interaction term can be composed
of a number of two-body interaction terms and single spin /4
rotations linear im. If not all pairs of spins are coupled, as
in the case of a linear chain, then relay gates must be use
[35], which entails only a polynomial number of additional
operations. /2
The three-quantum-bit NMR system was a room tempera-
ture sample of*3C labeled alanine in deuterated water. We
identify spin 1 as the carbong spin, spin 2 as th€ , spin,

and spin 3 as th€; spin. The scalar couplings weds, 3n/4
=54.2 Hz, J,;=35.1 Hz, and);3=1.2 Hz. Thé®C reso-

nance frequency at 9.4 T was 100.6 MHz, and was detecte!
by an inverse probe. The chemical shift difference between
spins 1 and 2 was 12 580 Hz, and between spins 2 and 3 wa
3443 Hz. The proton spins were decoupled. Initial states
were prepared from the thermal equilibrium state with mag-
netization in all three spins by a shaped pulse that excites, fo
example, spins 1 and 3, followed by a magnetic field gradi-
ent that dephases the magnetization in spins 1 and 3. The
only the spin-2 magnetization remains, which may be ob-
served by exciting it into a transverse magnetization. Explic-

itly,

5n/4

3n/2

[w/2]§'3 [7/215

grad

1, 2, 3 1, 2, 3 2 2
o;to,to;, — oyto;toy—o; — O

X" 7n/4
Here grad refers to a magnetic field gradient, which destroys
the transverse magnetization when viewed as a spatial avel
age[36].

Figure 1 shows the redhbsorptivé and imaginary(dis-
persivé 13C spectra observed on spin 2 for representative , N ,
angles ¢ or delay times, confirming that the three-particle . /G- 1. NMR spectra from th€,, spin of **C labeled alanine,

demonstrating a quantum simulation of #gr,o, Hamiltonian as

. 1.2 3
prop_agatoe[*'(”’Z)Jlﬂ_"z"z"z] transforms the initial state ac- jmplemented by the pulse sequeri8ed). TheC, resonance is split
cording to Eq.(3.1). Itis clear that the spectra evolve with a tyjce by the couplings to the other two carbon nuclei, resulting in
periodicity T=2/J,,3. The simulated time direction exhibits four lines. As a function of the angler evolution time, the spectra
only one frequency(positive and negatiye since there is  exhibit the periodicity given by3.1): #==/2, doubly antiphase;
only one possible nonzero transition energy for this systemg= r, in-phase negatived=3x/2, doubly antiphasef= 2, back
as shown in the AppendikEq. (A10)]. A two-dimensional to in-phase positive.

J3SE

n
a

S ESRcEs
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down or remove terms from the natural Hamiltonian of the First we resolve the identity in terms of the idempotents
physical system[37-39, the formalism described above E' =3(1+¢)), whereo, is the Pauli spin matrix for spiin
adapts these methods to quantum information processing, in

particular quantum simulation. Using one quantum system to 1=(ET+E")(ET*+E" Y. . . (EL+EY)
simulate another quantum system efficiently is a powerful . ) . L
idea, which may allow the study of an otherwise intractable =EVE} - -EL+E"ET B4

class of problems. Quantum simulation permits the construc-
tion of an arbitrary Hamiltonian in the simulated system, as
illustrated with the construction of the three-body interaction
o,0,0, Hamiltonian. The efficiency, or computational com- => ENENL..EL,
plexity, of a simulation, however, depends on how difficult it I '

is to implementV; for a given system. Although the results ) .

given in [7] imply that efficient approximate implementa- Where thee; take on the values:1. By identifying + 10

tions exist for general cases of physical interest, the result@’?d _1‘—{11 we may |d_ent|fy the sequenage,_1- C- €€

discussed in this paper show that more direct, exact impleVith the binary expansiomy, 7, - - - 7,7, of some integer

mentations may also be found in some cases. k, where 7; take on the value 0 or 1. A summary of the
relations follows:

+E"EMLLEL
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APPENDIX: RELATIONSHIP BETWEEN n
EIGENENERGIES AND PRODUCT OPERATORS = 2 77i2i_1- (A2)
=1

Representations of Hamiltonians in terms of eigenener-
gies may be related to representations in terms of the Paulije may then write
matricesc’,. Once the arbitrary Hamiltonian is expressed in
terms of many-body interactions.o?- - - o}, each of these 2"1
may be broken down in terms of the available external and 1=, EQnEZr;ll' : -Eiinl Ex, (A3)
internal Hamiltoniang(two-body couplings Multiple cou- {eif k=0
plings can act at the same time, giving a possible increase in

efficiency of implementation. whereE,= E:l;E:rk:' : 'E%E%- Thus we have
An arbitrary Hamiltonian, if the eigenstructure is known,
can be written as ¢ 21
He=>Hp= 2, &IK)(K

k=0

Hs= kZO Ed (.

2n-1
=D &Gleke . N (ekek L€k
The |4) are a complete set of orthogonal states andéhe k=0 n=n-1 1/A%n%n-1 1

are the energy eigenvalu@sot necessarily ordered by sjze

2N—1
If truncated to the first 2 levels we have n —n-1 1
= E E .E
on_1 IZO gk EE €h—1 Eii
Hs= kZO Ed (. 2"-1
= IZO EkEx. (A4)

To simulate this with am-spin system we require the map
of Eq. (2.1). One possible mapping that we adopt is to mapj general, this will have the form
simulated eigenstates to Zeeman eigenstates:

n n
) - | [ SR
k. He=po+ 2, Biost 2 Biows+
1.2 n

where|k) is the binary expansion & Other mappings are t B2 00707 0y
possible. The mapping need only connect a basis set that on_q
spans the 2dimensional Hilbert spaces of the simulated and = aod) n';(az)ng' ) ,(Un)ﬂﬁ (A5)
physical systems. = z 2
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where the{a} and{B} are real numbers. Knowing th&,
how do we determine the,? Substitute a resolution of the
identity in (A5) to get
2N—-1 . . k2”—1
Ho= 2 a(o) (o) "2+ (07)™ 2, B
=

2N—1 2"-1

-3 2 () T(eh) 2. - () ME; . (AB)

Comparing(A6) with (A4), we find that
2N—1

b= 2 ()7 () () ey

This may be written as a matrix equation
£=M e, (A7)
where
Mig=(€5) 7i(e) 72 - (&l .

Noting that

n

2"'-1
_ T
MM T= ]}:}0 MM |

2N-1
= > MM,
j=0

-3 (€X)71(€5) - - - (eX)(€h) Ta(eh) 72- - - (eh)7n
P

_ K Iygl s Kk I\g) K I\ )
= jzo (Xe)M(eke,) 2. - - (ke )
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2"-1

= > 8u=2"§4=2"1, (A8)
o

we see that
M~ 1i=2""MT

Thus inverting the Eq(A7), we get thea in terms of the
energiest:

a=2""MTE (A9)
That is,
2n—1

_ ok ok Sk
=2 n;o (e'l)”l(ejz)”2---(ejn)’7n§j.

The matrixMT is the 2'x 2" Hadarmard matri{40]. For
example, for two spins,

11 1 1
1 -1 1 -1
M=l 1 -1 -
1 -1 -1 1

Therefore, a simulated Hamiltonian specified §ydeter-
mines the coefficientgr in the expansion of the physical
Hamiltonian with terms that are of the form of many-body
interactionsoia?- - - 7' For example, the three-body inter-
action Hamiltonian, Hp=(%/2)7J 1,0 020> implies a;
=(h12)mJp3, and all else is zero. Applying EGA9) to this
gives

)
g= 5 mipgliag +1,-1,-1+1,-1+1+1,-1).
(A10)
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